cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

relay.c (30750B)


      1/*
      2 * Public API and common code for kernel->userspace relay file support.
      3 *
      4 * See Documentation/filesystems/relay.rst for an overview.
      5 *
      6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
      7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
      8 *
      9 * Moved to kernel/relay.c by Paul Mundt, 2006.
     10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
     11 * 	(mathieu.desnoyers@polymtl.ca)
     12 *
     13 * This file is released under the GPL.
     14 */
     15#include <linux/errno.h>
     16#include <linux/stddef.h>
     17#include <linux/slab.h>
     18#include <linux/export.h>
     19#include <linux/string.h>
     20#include <linux/relay.h>
     21#include <linux/vmalloc.h>
     22#include <linux/mm.h>
     23#include <linux/cpu.h>
     24#include <linux/splice.h>
     25
     26/* list of open channels, for cpu hotplug */
     27static DEFINE_MUTEX(relay_channels_mutex);
     28static LIST_HEAD(relay_channels);
     29
     30/*
     31 * fault() vm_op implementation for relay file mapping.
     32 */
     33static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
     34{
     35	struct page *page;
     36	struct rchan_buf *buf = vmf->vma->vm_private_data;
     37	pgoff_t pgoff = vmf->pgoff;
     38
     39	if (!buf)
     40		return VM_FAULT_OOM;
     41
     42	page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
     43	if (!page)
     44		return VM_FAULT_SIGBUS;
     45	get_page(page);
     46	vmf->page = page;
     47
     48	return 0;
     49}
     50
     51/*
     52 * vm_ops for relay file mappings.
     53 */
     54static const struct vm_operations_struct relay_file_mmap_ops = {
     55	.fault = relay_buf_fault,
     56};
     57
     58/*
     59 * allocate an array of pointers of struct page
     60 */
     61static struct page **relay_alloc_page_array(unsigned int n_pages)
     62{
     63	const size_t pa_size = n_pages * sizeof(struct page *);
     64	if (pa_size > PAGE_SIZE)
     65		return vzalloc(pa_size);
     66	return kzalloc(pa_size, GFP_KERNEL);
     67}
     68
     69/*
     70 * free an array of pointers of struct page
     71 */
     72static void relay_free_page_array(struct page **array)
     73{
     74	kvfree(array);
     75}
     76
     77/**
     78 *	relay_mmap_buf: - mmap channel buffer to process address space
     79 *	@buf: relay channel buffer
     80 *	@vma: vm_area_struct describing memory to be mapped
     81 *
     82 *	Returns 0 if ok, negative on error
     83 *
     84 *	Caller should already have grabbed mmap_lock.
     85 */
     86static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
     87{
     88	unsigned long length = vma->vm_end - vma->vm_start;
     89
     90	if (!buf)
     91		return -EBADF;
     92
     93	if (length != (unsigned long)buf->chan->alloc_size)
     94		return -EINVAL;
     95
     96	vma->vm_ops = &relay_file_mmap_ops;
     97	vma->vm_flags |= VM_DONTEXPAND;
     98	vma->vm_private_data = buf;
     99
    100	return 0;
    101}
    102
    103/**
    104 *	relay_alloc_buf - allocate a channel buffer
    105 *	@buf: the buffer struct
    106 *	@size: total size of the buffer
    107 *
    108 *	Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
    109 *	passed in size will get page aligned, if it isn't already.
    110 */
    111static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
    112{
    113	void *mem;
    114	unsigned int i, j, n_pages;
    115
    116	*size = PAGE_ALIGN(*size);
    117	n_pages = *size >> PAGE_SHIFT;
    118
    119	buf->page_array = relay_alloc_page_array(n_pages);
    120	if (!buf->page_array)
    121		return NULL;
    122
    123	for (i = 0; i < n_pages; i++) {
    124		buf->page_array[i] = alloc_page(GFP_KERNEL);
    125		if (unlikely(!buf->page_array[i]))
    126			goto depopulate;
    127		set_page_private(buf->page_array[i], (unsigned long)buf);
    128	}
    129	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
    130	if (!mem)
    131		goto depopulate;
    132
    133	memset(mem, 0, *size);
    134	buf->page_count = n_pages;
    135	return mem;
    136
    137depopulate:
    138	for (j = 0; j < i; j++)
    139		__free_page(buf->page_array[j]);
    140	relay_free_page_array(buf->page_array);
    141	return NULL;
    142}
    143
    144/**
    145 *	relay_create_buf - allocate and initialize a channel buffer
    146 *	@chan: the relay channel
    147 *
    148 *	Returns channel buffer if successful, %NULL otherwise.
    149 */
    150static struct rchan_buf *relay_create_buf(struct rchan *chan)
    151{
    152	struct rchan_buf *buf;
    153
    154	if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
    155		return NULL;
    156
    157	buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
    158	if (!buf)
    159		return NULL;
    160	buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
    161				     GFP_KERNEL);
    162	if (!buf->padding)
    163		goto free_buf;
    164
    165	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
    166	if (!buf->start)
    167		goto free_buf;
    168
    169	buf->chan = chan;
    170	kref_get(&buf->chan->kref);
    171	return buf;
    172
    173free_buf:
    174	kfree(buf->padding);
    175	kfree(buf);
    176	return NULL;
    177}
    178
    179/**
    180 *	relay_destroy_channel - free the channel struct
    181 *	@kref: target kernel reference that contains the relay channel
    182 *
    183 *	Should only be called from kref_put().
    184 */
    185static void relay_destroy_channel(struct kref *kref)
    186{
    187	struct rchan *chan = container_of(kref, struct rchan, kref);
    188	free_percpu(chan->buf);
    189	kfree(chan);
    190}
    191
    192/**
    193 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
    194 *	@buf: the buffer struct
    195 */
    196static void relay_destroy_buf(struct rchan_buf *buf)
    197{
    198	struct rchan *chan = buf->chan;
    199	unsigned int i;
    200
    201	if (likely(buf->start)) {
    202		vunmap(buf->start);
    203		for (i = 0; i < buf->page_count; i++)
    204			__free_page(buf->page_array[i]);
    205		relay_free_page_array(buf->page_array);
    206	}
    207	*per_cpu_ptr(chan->buf, buf->cpu) = NULL;
    208	kfree(buf->padding);
    209	kfree(buf);
    210	kref_put(&chan->kref, relay_destroy_channel);
    211}
    212
    213/**
    214 *	relay_remove_buf - remove a channel buffer
    215 *	@kref: target kernel reference that contains the relay buffer
    216 *
    217 *	Removes the file from the filesystem, which also frees the
    218 *	rchan_buf_struct and the channel buffer.  Should only be called from
    219 *	kref_put().
    220 */
    221static void relay_remove_buf(struct kref *kref)
    222{
    223	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
    224	relay_destroy_buf(buf);
    225}
    226
    227/**
    228 *	relay_buf_empty - boolean, is the channel buffer empty?
    229 *	@buf: channel buffer
    230 *
    231 *	Returns 1 if the buffer is empty, 0 otherwise.
    232 */
    233static int relay_buf_empty(struct rchan_buf *buf)
    234{
    235	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
    236}
    237
    238/**
    239 *	relay_buf_full - boolean, is the channel buffer full?
    240 *	@buf: channel buffer
    241 *
    242 *	Returns 1 if the buffer is full, 0 otherwise.
    243 */
    244int relay_buf_full(struct rchan_buf *buf)
    245{
    246	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
    247	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
    248}
    249EXPORT_SYMBOL_GPL(relay_buf_full);
    250
    251/*
    252 * High-level relay kernel API and associated functions.
    253 */
    254
    255static int relay_subbuf_start(struct rchan_buf *buf, void *subbuf,
    256			      void *prev_subbuf, size_t prev_padding)
    257{
    258	if (!buf->chan->cb->subbuf_start)
    259		return !relay_buf_full(buf);
    260
    261	return buf->chan->cb->subbuf_start(buf, subbuf,
    262					   prev_subbuf, prev_padding);
    263}
    264
    265/**
    266 *	wakeup_readers - wake up readers waiting on a channel
    267 *	@work: contains the channel buffer
    268 *
    269 *	This is the function used to defer reader waking
    270 */
    271static void wakeup_readers(struct irq_work *work)
    272{
    273	struct rchan_buf *buf;
    274
    275	buf = container_of(work, struct rchan_buf, wakeup_work);
    276	wake_up_interruptible(&buf->read_wait);
    277}
    278
    279/**
    280 *	__relay_reset - reset a channel buffer
    281 *	@buf: the channel buffer
    282 *	@init: 1 if this is a first-time initialization
    283 *
    284 *	See relay_reset() for description of effect.
    285 */
    286static void __relay_reset(struct rchan_buf *buf, unsigned int init)
    287{
    288	size_t i;
    289
    290	if (init) {
    291		init_waitqueue_head(&buf->read_wait);
    292		kref_init(&buf->kref);
    293		init_irq_work(&buf->wakeup_work, wakeup_readers);
    294	} else {
    295		irq_work_sync(&buf->wakeup_work);
    296	}
    297
    298	buf->subbufs_produced = 0;
    299	buf->subbufs_consumed = 0;
    300	buf->bytes_consumed = 0;
    301	buf->finalized = 0;
    302	buf->data = buf->start;
    303	buf->offset = 0;
    304
    305	for (i = 0; i < buf->chan->n_subbufs; i++)
    306		buf->padding[i] = 0;
    307
    308	relay_subbuf_start(buf, buf->data, NULL, 0);
    309}
    310
    311/**
    312 *	relay_reset - reset the channel
    313 *	@chan: the channel
    314 *
    315 *	This has the effect of erasing all data from all channel buffers
    316 *	and restarting the channel in its initial state.  The buffers
    317 *	are not freed, so any mappings are still in effect.
    318 *
    319 *	NOTE. Care should be taken that the channel isn't actually
    320 *	being used by anything when this call is made.
    321 */
    322void relay_reset(struct rchan *chan)
    323{
    324	struct rchan_buf *buf;
    325	unsigned int i;
    326
    327	if (!chan)
    328		return;
    329
    330	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
    331		__relay_reset(buf, 0);
    332		return;
    333	}
    334
    335	mutex_lock(&relay_channels_mutex);
    336	for_each_possible_cpu(i)
    337		if ((buf = *per_cpu_ptr(chan->buf, i)))
    338			__relay_reset(buf, 0);
    339	mutex_unlock(&relay_channels_mutex);
    340}
    341EXPORT_SYMBOL_GPL(relay_reset);
    342
    343static inline void relay_set_buf_dentry(struct rchan_buf *buf,
    344					struct dentry *dentry)
    345{
    346	buf->dentry = dentry;
    347	d_inode(buf->dentry)->i_size = buf->early_bytes;
    348}
    349
    350static struct dentry *relay_create_buf_file(struct rchan *chan,
    351					    struct rchan_buf *buf,
    352					    unsigned int cpu)
    353{
    354	struct dentry *dentry;
    355	char *tmpname;
    356
    357	tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
    358	if (!tmpname)
    359		return NULL;
    360	snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
    361
    362	/* Create file in fs */
    363	dentry = chan->cb->create_buf_file(tmpname, chan->parent,
    364					   S_IRUSR, buf,
    365					   &chan->is_global);
    366	if (IS_ERR(dentry))
    367		dentry = NULL;
    368
    369	kfree(tmpname);
    370
    371	return dentry;
    372}
    373
    374/*
    375 *	relay_open_buf - create a new relay channel buffer
    376 *
    377 *	used by relay_open() and CPU hotplug.
    378 */
    379static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
    380{
    381 	struct rchan_buf *buf = NULL;
    382	struct dentry *dentry;
    383
    384 	if (chan->is_global)
    385		return *per_cpu_ptr(chan->buf, 0);
    386
    387	buf = relay_create_buf(chan);
    388	if (!buf)
    389		return NULL;
    390
    391	if (chan->has_base_filename) {
    392		dentry = relay_create_buf_file(chan, buf, cpu);
    393		if (!dentry)
    394			goto free_buf;
    395		relay_set_buf_dentry(buf, dentry);
    396	} else {
    397		/* Only retrieve global info, nothing more, nothing less */
    398		dentry = chan->cb->create_buf_file(NULL, NULL,
    399						   S_IRUSR, buf,
    400						   &chan->is_global);
    401		if (IS_ERR_OR_NULL(dentry))
    402			goto free_buf;
    403	}
    404
    405 	buf->cpu = cpu;
    406 	__relay_reset(buf, 1);
    407
    408 	if(chan->is_global) {
    409		*per_cpu_ptr(chan->buf, 0) = buf;
    410 		buf->cpu = 0;
    411  	}
    412
    413	return buf;
    414
    415free_buf:
    416 	relay_destroy_buf(buf);
    417	return NULL;
    418}
    419
    420/**
    421 *	relay_close_buf - close a channel buffer
    422 *	@buf: channel buffer
    423 *
    424 *	Marks the buffer finalized and restores the default callbacks.
    425 *	The channel buffer and channel buffer data structure are then freed
    426 *	automatically when the last reference is given up.
    427 */
    428static void relay_close_buf(struct rchan_buf *buf)
    429{
    430	buf->finalized = 1;
    431	irq_work_sync(&buf->wakeup_work);
    432	buf->chan->cb->remove_buf_file(buf->dentry);
    433	kref_put(&buf->kref, relay_remove_buf);
    434}
    435
    436int relay_prepare_cpu(unsigned int cpu)
    437{
    438	struct rchan *chan;
    439	struct rchan_buf *buf;
    440
    441	mutex_lock(&relay_channels_mutex);
    442	list_for_each_entry(chan, &relay_channels, list) {
    443		if (*per_cpu_ptr(chan->buf, cpu))
    444			continue;
    445		buf = relay_open_buf(chan, cpu);
    446		if (!buf) {
    447			pr_err("relay: cpu %d buffer creation failed\n", cpu);
    448			mutex_unlock(&relay_channels_mutex);
    449			return -ENOMEM;
    450		}
    451		*per_cpu_ptr(chan->buf, cpu) = buf;
    452	}
    453	mutex_unlock(&relay_channels_mutex);
    454	return 0;
    455}
    456
    457/**
    458 *	relay_open - create a new relay channel
    459 *	@base_filename: base name of files to create, %NULL for buffering only
    460 *	@parent: dentry of parent directory, %NULL for root directory or buffer
    461 *	@subbuf_size: size of sub-buffers
    462 *	@n_subbufs: number of sub-buffers
    463 *	@cb: client callback functions
    464 *	@private_data: user-defined data
    465 *
    466 *	Returns channel pointer if successful, %NULL otherwise.
    467 *
    468 *	Creates a channel buffer for each cpu using the sizes and
    469 *	attributes specified.  The created channel buffer files
    470 *	will be named base_filename0...base_filenameN-1.  File
    471 *	permissions will be %S_IRUSR.
    472 *
    473 *	If opening a buffer (@parent = NULL) that you later wish to register
    474 *	in a filesystem, call relay_late_setup_files() once the @parent dentry
    475 *	is available.
    476 */
    477struct rchan *relay_open(const char *base_filename,
    478			 struct dentry *parent,
    479			 size_t subbuf_size,
    480			 size_t n_subbufs,
    481			 const struct rchan_callbacks *cb,
    482			 void *private_data)
    483{
    484	unsigned int i;
    485	struct rchan *chan;
    486	struct rchan_buf *buf;
    487
    488	if (!(subbuf_size && n_subbufs))
    489		return NULL;
    490	if (subbuf_size > UINT_MAX / n_subbufs)
    491		return NULL;
    492	if (!cb || !cb->create_buf_file || !cb->remove_buf_file)
    493		return NULL;
    494
    495	chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
    496	if (!chan)
    497		return NULL;
    498
    499	chan->buf = alloc_percpu(struct rchan_buf *);
    500	if (!chan->buf) {
    501		kfree(chan);
    502		return NULL;
    503	}
    504
    505	chan->version = RELAYFS_CHANNEL_VERSION;
    506	chan->n_subbufs = n_subbufs;
    507	chan->subbuf_size = subbuf_size;
    508	chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
    509	chan->parent = parent;
    510	chan->private_data = private_data;
    511	if (base_filename) {
    512		chan->has_base_filename = 1;
    513		strlcpy(chan->base_filename, base_filename, NAME_MAX);
    514	}
    515	chan->cb = cb;
    516	kref_init(&chan->kref);
    517
    518	mutex_lock(&relay_channels_mutex);
    519	for_each_online_cpu(i) {
    520		buf = relay_open_buf(chan, i);
    521		if (!buf)
    522			goto free_bufs;
    523		*per_cpu_ptr(chan->buf, i) = buf;
    524	}
    525	list_add(&chan->list, &relay_channels);
    526	mutex_unlock(&relay_channels_mutex);
    527
    528	return chan;
    529
    530free_bufs:
    531	for_each_possible_cpu(i) {
    532		if ((buf = *per_cpu_ptr(chan->buf, i)))
    533			relay_close_buf(buf);
    534	}
    535
    536	kref_put(&chan->kref, relay_destroy_channel);
    537	mutex_unlock(&relay_channels_mutex);
    538	return NULL;
    539}
    540EXPORT_SYMBOL_GPL(relay_open);
    541
    542struct rchan_percpu_buf_dispatcher {
    543	struct rchan_buf *buf;
    544	struct dentry *dentry;
    545};
    546
    547/* Called in atomic context. */
    548static void __relay_set_buf_dentry(void *info)
    549{
    550	struct rchan_percpu_buf_dispatcher *p = info;
    551
    552	relay_set_buf_dentry(p->buf, p->dentry);
    553}
    554
    555/**
    556 *	relay_late_setup_files - triggers file creation
    557 *	@chan: channel to operate on
    558 *	@base_filename: base name of files to create
    559 *	@parent: dentry of parent directory, %NULL for root directory
    560 *
    561 *	Returns 0 if successful, non-zero otherwise.
    562 *
    563 *	Use to setup files for a previously buffer-only channel created
    564 *	by relay_open() with a NULL parent dentry.
    565 *
    566 *	For example, this is useful for perfomring early tracing in kernel,
    567 *	before VFS is up and then exposing the early results once the dentry
    568 *	is available.
    569 */
    570int relay_late_setup_files(struct rchan *chan,
    571			   const char *base_filename,
    572			   struct dentry *parent)
    573{
    574	int err = 0;
    575	unsigned int i, curr_cpu;
    576	unsigned long flags;
    577	struct dentry *dentry;
    578	struct rchan_buf *buf;
    579	struct rchan_percpu_buf_dispatcher disp;
    580
    581	if (!chan || !base_filename)
    582		return -EINVAL;
    583
    584	strlcpy(chan->base_filename, base_filename, NAME_MAX);
    585
    586	mutex_lock(&relay_channels_mutex);
    587	/* Is chan already set up? */
    588	if (unlikely(chan->has_base_filename)) {
    589		mutex_unlock(&relay_channels_mutex);
    590		return -EEXIST;
    591	}
    592	chan->has_base_filename = 1;
    593	chan->parent = parent;
    594
    595	if (chan->is_global) {
    596		err = -EINVAL;
    597		buf = *per_cpu_ptr(chan->buf, 0);
    598		if (!WARN_ON_ONCE(!buf)) {
    599			dentry = relay_create_buf_file(chan, buf, 0);
    600			if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
    601				relay_set_buf_dentry(buf, dentry);
    602				err = 0;
    603			}
    604		}
    605		mutex_unlock(&relay_channels_mutex);
    606		return err;
    607	}
    608
    609	curr_cpu = get_cpu();
    610	/*
    611	 * The CPU hotplug notifier ran before us and created buffers with
    612	 * no files associated. So it's safe to call relay_setup_buf_file()
    613	 * on all currently online CPUs.
    614	 */
    615	for_each_online_cpu(i) {
    616		buf = *per_cpu_ptr(chan->buf, i);
    617		if (unlikely(!buf)) {
    618			WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
    619			err = -EINVAL;
    620			break;
    621		}
    622
    623		dentry = relay_create_buf_file(chan, buf, i);
    624		if (unlikely(!dentry)) {
    625			err = -EINVAL;
    626			break;
    627		}
    628
    629		if (curr_cpu == i) {
    630			local_irq_save(flags);
    631			relay_set_buf_dentry(buf, dentry);
    632			local_irq_restore(flags);
    633		} else {
    634			disp.buf = buf;
    635			disp.dentry = dentry;
    636			smp_mb();
    637			/* relay_channels_mutex must be held, so wait. */
    638			err = smp_call_function_single(i,
    639						       __relay_set_buf_dentry,
    640						       &disp, 1);
    641		}
    642		if (unlikely(err))
    643			break;
    644	}
    645	put_cpu();
    646	mutex_unlock(&relay_channels_mutex);
    647
    648	return err;
    649}
    650EXPORT_SYMBOL_GPL(relay_late_setup_files);
    651
    652/**
    653 *	relay_switch_subbuf - switch to a new sub-buffer
    654 *	@buf: channel buffer
    655 *	@length: size of current event
    656 *
    657 *	Returns either the length passed in or 0 if full.
    658 *
    659 *	Performs sub-buffer-switch tasks such as invoking callbacks,
    660 *	updating padding counts, waking up readers, etc.
    661 */
    662size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
    663{
    664	void *old, *new;
    665	size_t old_subbuf, new_subbuf;
    666
    667	if (unlikely(length > buf->chan->subbuf_size))
    668		goto toobig;
    669
    670	if (buf->offset != buf->chan->subbuf_size + 1) {
    671		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
    672		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
    673		buf->padding[old_subbuf] = buf->prev_padding;
    674		buf->subbufs_produced++;
    675		if (buf->dentry)
    676			d_inode(buf->dentry)->i_size +=
    677				buf->chan->subbuf_size -
    678				buf->padding[old_subbuf];
    679		else
    680			buf->early_bytes += buf->chan->subbuf_size -
    681					    buf->padding[old_subbuf];
    682		smp_mb();
    683		if (waitqueue_active(&buf->read_wait)) {
    684			/*
    685			 * Calling wake_up_interruptible() from here
    686			 * will deadlock if we happen to be logging
    687			 * from the scheduler (trying to re-grab
    688			 * rq->lock), so defer it.
    689			 */
    690			irq_work_queue(&buf->wakeup_work);
    691		}
    692	}
    693
    694	old = buf->data;
    695	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
    696	new = buf->start + new_subbuf * buf->chan->subbuf_size;
    697	buf->offset = 0;
    698	if (!relay_subbuf_start(buf, new, old, buf->prev_padding)) {
    699		buf->offset = buf->chan->subbuf_size + 1;
    700		return 0;
    701	}
    702	buf->data = new;
    703	buf->padding[new_subbuf] = 0;
    704
    705	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
    706		goto toobig;
    707
    708	return length;
    709
    710toobig:
    711	buf->chan->last_toobig = length;
    712	return 0;
    713}
    714EXPORT_SYMBOL_GPL(relay_switch_subbuf);
    715
    716/**
    717 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
    718 *	@chan: the channel
    719 *	@cpu: the cpu associated with the channel buffer to update
    720 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
    721 *
    722 *	Adds to the channel buffer's consumed sub-buffer count.
    723 *	subbufs_consumed should be the number of sub-buffers newly consumed,
    724 *	not the total consumed.
    725 *
    726 *	NOTE. Kernel clients don't need to call this function if the channel
    727 *	mode is 'overwrite'.
    728 */
    729void relay_subbufs_consumed(struct rchan *chan,
    730			    unsigned int cpu,
    731			    size_t subbufs_consumed)
    732{
    733	struct rchan_buf *buf;
    734
    735	if (!chan || cpu >= NR_CPUS)
    736		return;
    737
    738	buf = *per_cpu_ptr(chan->buf, cpu);
    739	if (!buf || subbufs_consumed > chan->n_subbufs)
    740		return;
    741
    742	if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
    743		buf->subbufs_consumed = buf->subbufs_produced;
    744	else
    745		buf->subbufs_consumed += subbufs_consumed;
    746}
    747EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
    748
    749/**
    750 *	relay_close - close the channel
    751 *	@chan: the channel
    752 *
    753 *	Closes all channel buffers and frees the channel.
    754 */
    755void relay_close(struct rchan *chan)
    756{
    757	struct rchan_buf *buf;
    758	unsigned int i;
    759
    760	if (!chan)
    761		return;
    762
    763	mutex_lock(&relay_channels_mutex);
    764	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
    765		relay_close_buf(buf);
    766	else
    767		for_each_possible_cpu(i)
    768			if ((buf = *per_cpu_ptr(chan->buf, i)))
    769				relay_close_buf(buf);
    770
    771	if (chan->last_toobig)
    772		printk(KERN_WARNING "relay: one or more items not logged "
    773		       "[item size (%zd) > sub-buffer size (%zd)]\n",
    774		       chan->last_toobig, chan->subbuf_size);
    775
    776	list_del(&chan->list);
    777	kref_put(&chan->kref, relay_destroy_channel);
    778	mutex_unlock(&relay_channels_mutex);
    779}
    780EXPORT_SYMBOL_GPL(relay_close);
    781
    782/**
    783 *	relay_flush - close the channel
    784 *	@chan: the channel
    785 *
    786 *	Flushes all channel buffers, i.e. forces buffer switch.
    787 */
    788void relay_flush(struct rchan *chan)
    789{
    790	struct rchan_buf *buf;
    791	unsigned int i;
    792
    793	if (!chan)
    794		return;
    795
    796	if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
    797		relay_switch_subbuf(buf, 0);
    798		return;
    799	}
    800
    801	mutex_lock(&relay_channels_mutex);
    802	for_each_possible_cpu(i)
    803		if ((buf = *per_cpu_ptr(chan->buf, i)))
    804			relay_switch_subbuf(buf, 0);
    805	mutex_unlock(&relay_channels_mutex);
    806}
    807EXPORT_SYMBOL_GPL(relay_flush);
    808
    809/**
    810 *	relay_file_open - open file op for relay files
    811 *	@inode: the inode
    812 *	@filp: the file
    813 *
    814 *	Increments the channel buffer refcount.
    815 */
    816static int relay_file_open(struct inode *inode, struct file *filp)
    817{
    818	struct rchan_buf *buf = inode->i_private;
    819	kref_get(&buf->kref);
    820	filp->private_data = buf;
    821
    822	return nonseekable_open(inode, filp);
    823}
    824
    825/**
    826 *	relay_file_mmap - mmap file op for relay files
    827 *	@filp: the file
    828 *	@vma: the vma describing what to map
    829 *
    830 *	Calls upon relay_mmap_buf() to map the file into user space.
    831 */
    832static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
    833{
    834	struct rchan_buf *buf = filp->private_data;
    835	return relay_mmap_buf(buf, vma);
    836}
    837
    838/**
    839 *	relay_file_poll - poll file op for relay files
    840 *	@filp: the file
    841 *	@wait: poll table
    842 *
    843 *	Poll implemention.
    844 */
    845static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
    846{
    847	__poll_t mask = 0;
    848	struct rchan_buf *buf = filp->private_data;
    849
    850	if (buf->finalized)
    851		return EPOLLERR;
    852
    853	if (filp->f_mode & FMODE_READ) {
    854		poll_wait(filp, &buf->read_wait, wait);
    855		if (!relay_buf_empty(buf))
    856			mask |= EPOLLIN | EPOLLRDNORM;
    857	}
    858
    859	return mask;
    860}
    861
    862/**
    863 *	relay_file_release - release file op for relay files
    864 *	@inode: the inode
    865 *	@filp: the file
    866 *
    867 *	Decrements the channel refcount, as the filesystem is
    868 *	no longer using it.
    869 */
    870static int relay_file_release(struct inode *inode, struct file *filp)
    871{
    872	struct rchan_buf *buf = filp->private_data;
    873	kref_put(&buf->kref, relay_remove_buf);
    874
    875	return 0;
    876}
    877
    878/*
    879 *	relay_file_read_consume - update the consumed count for the buffer
    880 */
    881static void relay_file_read_consume(struct rchan_buf *buf,
    882				    size_t read_pos,
    883				    size_t bytes_consumed)
    884{
    885	size_t subbuf_size = buf->chan->subbuf_size;
    886	size_t n_subbufs = buf->chan->n_subbufs;
    887	size_t read_subbuf;
    888
    889	if (buf->subbufs_produced == buf->subbufs_consumed &&
    890	    buf->offset == buf->bytes_consumed)
    891		return;
    892
    893	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
    894		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
    895		buf->bytes_consumed = 0;
    896	}
    897
    898	buf->bytes_consumed += bytes_consumed;
    899	if (!read_pos)
    900		read_subbuf = buf->subbufs_consumed % n_subbufs;
    901	else
    902		read_subbuf = read_pos / buf->chan->subbuf_size;
    903	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
    904		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
    905		    (buf->offset == subbuf_size))
    906			return;
    907		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
    908		buf->bytes_consumed = 0;
    909	}
    910}
    911
    912/*
    913 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
    914 */
    915static int relay_file_read_avail(struct rchan_buf *buf)
    916{
    917	size_t subbuf_size = buf->chan->subbuf_size;
    918	size_t n_subbufs = buf->chan->n_subbufs;
    919	size_t produced = buf->subbufs_produced;
    920	size_t consumed;
    921
    922	relay_file_read_consume(buf, 0, 0);
    923
    924	consumed = buf->subbufs_consumed;
    925
    926	if (unlikely(buf->offset > subbuf_size)) {
    927		if (produced == consumed)
    928			return 0;
    929		return 1;
    930	}
    931
    932	if (unlikely(produced - consumed >= n_subbufs)) {
    933		consumed = produced - n_subbufs + 1;
    934		buf->subbufs_consumed = consumed;
    935		buf->bytes_consumed = 0;
    936	}
    937
    938	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
    939	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
    940
    941	if (consumed > produced)
    942		produced += n_subbufs * subbuf_size;
    943
    944	if (consumed == produced) {
    945		if (buf->offset == subbuf_size &&
    946		    buf->subbufs_produced > buf->subbufs_consumed)
    947			return 1;
    948		return 0;
    949	}
    950
    951	return 1;
    952}
    953
    954/**
    955 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
    956 *	@read_pos: file read position
    957 *	@buf: relay channel buffer
    958 */
    959static size_t relay_file_read_subbuf_avail(size_t read_pos,
    960					   struct rchan_buf *buf)
    961{
    962	size_t padding, avail = 0;
    963	size_t read_subbuf, read_offset, write_subbuf, write_offset;
    964	size_t subbuf_size = buf->chan->subbuf_size;
    965
    966	write_subbuf = (buf->data - buf->start) / subbuf_size;
    967	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
    968	read_subbuf = read_pos / subbuf_size;
    969	read_offset = read_pos % subbuf_size;
    970	padding = buf->padding[read_subbuf];
    971
    972	if (read_subbuf == write_subbuf) {
    973		if (read_offset + padding < write_offset)
    974			avail = write_offset - (read_offset + padding);
    975	} else
    976		avail = (subbuf_size - padding) - read_offset;
    977
    978	return avail;
    979}
    980
    981/**
    982 *	relay_file_read_start_pos - find the first available byte to read
    983 *	@buf: relay channel buffer
    984 *
    985 *	If the read_pos is in the middle of padding, return the
    986 *	position of the first actually available byte, otherwise
    987 *	return the original value.
    988 */
    989static size_t relay_file_read_start_pos(struct rchan_buf *buf)
    990{
    991	size_t read_subbuf, padding, padding_start, padding_end;
    992	size_t subbuf_size = buf->chan->subbuf_size;
    993	size_t n_subbufs = buf->chan->n_subbufs;
    994	size_t consumed = buf->subbufs_consumed % n_subbufs;
    995	size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
    996
    997	read_subbuf = read_pos / subbuf_size;
    998	padding = buf->padding[read_subbuf];
    999	padding_start = (read_subbuf + 1) * subbuf_size - padding;
   1000	padding_end = (read_subbuf + 1) * subbuf_size;
   1001	if (read_pos >= padding_start && read_pos < padding_end) {
   1002		read_subbuf = (read_subbuf + 1) % n_subbufs;
   1003		read_pos = read_subbuf * subbuf_size;
   1004	}
   1005
   1006	return read_pos;
   1007}
   1008
   1009/**
   1010 *	relay_file_read_end_pos - return the new read position
   1011 *	@read_pos: file read position
   1012 *	@buf: relay channel buffer
   1013 *	@count: number of bytes to be read
   1014 */
   1015static size_t relay_file_read_end_pos(struct rchan_buf *buf,
   1016				      size_t read_pos,
   1017				      size_t count)
   1018{
   1019	size_t read_subbuf, padding, end_pos;
   1020	size_t subbuf_size = buf->chan->subbuf_size;
   1021	size_t n_subbufs = buf->chan->n_subbufs;
   1022
   1023	read_subbuf = read_pos / subbuf_size;
   1024	padding = buf->padding[read_subbuf];
   1025	if (read_pos % subbuf_size + count + padding == subbuf_size)
   1026		end_pos = (read_subbuf + 1) * subbuf_size;
   1027	else
   1028		end_pos = read_pos + count;
   1029	if (end_pos >= subbuf_size * n_subbufs)
   1030		end_pos = 0;
   1031
   1032	return end_pos;
   1033}
   1034
   1035static ssize_t relay_file_read(struct file *filp,
   1036			       char __user *buffer,
   1037			       size_t count,
   1038			       loff_t *ppos)
   1039{
   1040	struct rchan_buf *buf = filp->private_data;
   1041	size_t read_start, avail;
   1042	size_t written = 0;
   1043	int ret;
   1044
   1045	if (!count)
   1046		return 0;
   1047
   1048	inode_lock(file_inode(filp));
   1049	do {
   1050		void *from;
   1051
   1052		if (!relay_file_read_avail(buf))
   1053			break;
   1054
   1055		read_start = relay_file_read_start_pos(buf);
   1056		avail = relay_file_read_subbuf_avail(read_start, buf);
   1057		if (!avail)
   1058			break;
   1059
   1060		avail = min(count, avail);
   1061		from = buf->start + read_start;
   1062		ret = avail;
   1063		if (copy_to_user(buffer, from, avail))
   1064			break;
   1065
   1066		buffer += ret;
   1067		written += ret;
   1068		count -= ret;
   1069
   1070		relay_file_read_consume(buf, read_start, ret);
   1071		*ppos = relay_file_read_end_pos(buf, read_start, ret);
   1072	} while (count);
   1073	inode_unlock(file_inode(filp));
   1074
   1075	return written;
   1076}
   1077
   1078static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
   1079{
   1080	rbuf->bytes_consumed += bytes_consumed;
   1081
   1082	if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
   1083		relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
   1084		rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
   1085	}
   1086}
   1087
   1088static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
   1089				   struct pipe_buffer *buf)
   1090{
   1091	struct rchan_buf *rbuf;
   1092
   1093	rbuf = (struct rchan_buf *)page_private(buf->page);
   1094	relay_consume_bytes(rbuf, buf->private);
   1095}
   1096
   1097static const struct pipe_buf_operations relay_pipe_buf_ops = {
   1098	.release	= relay_pipe_buf_release,
   1099	.try_steal	= generic_pipe_buf_try_steal,
   1100	.get		= generic_pipe_buf_get,
   1101};
   1102
   1103static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
   1104{
   1105}
   1106
   1107/*
   1108 *	subbuf_splice_actor - splice up to one subbuf's worth of data
   1109 */
   1110static ssize_t subbuf_splice_actor(struct file *in,
   1111			       loff_t *ppos,
   1112			       struct pipe_inode_info *pipe,
   1113			       size_t len,
   1114			       unsigned int flags,
   1115			       int *nonpad_ret)
   1116{
   1117	unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
   1118	struct rchan_buf *rbuf = in->private_data;
   1119	unsigned int subbuf_size = rbuf->chan->subbuf_size;
   1120	uint64_t pos = (uint64_t) *ppos;
   1121	uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
   1122	size_t read_start = (size_t) do_div(pos, alloc_size);
   1123	size_t read_subbuf = read_start / subbuf_size;
   1124	size_t padding = rbuf->padding[read_subbuf];
   1125	size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
   1126	struct page *pages[PIPE_DEF_BUFFERS];
   1127	struct partial_page partial[PIPE_DEF_BUFFERS];
   1128	struct splice_pipe_desc spd = {
   1129		.pages = pages,
   1130		.nr_pages = 0,
   1131		.nr_pages_max = PIPE_DEF_BUFFERS,
   1132		.partial = partial,
   1133		.ops = &relay_pipe_buf_ops,
   1134		.spd_release = relay_page_release,
   1135	};
   1136	ssize_t ret;
   1137
   1138	if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
   1139		return 0;
   1140	if (splice_grow_spd(pipe, &spd))
   1141		return -ENOMEM;
   1142
   1143	/*
   1144	 * Adjust read len, if longer than what is available
   1145	 */
   1146	if (len > (subbuf_size - read_start % subbuf_size))
   1147		len = subbuf_size - read_start % subbuf_size;
   1148
   1149	subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
   1150	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
   1151	poff = read_start & ~PAGE_MASK;
   1152	nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
   1153
   1154	for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
   1155		unsigned int this_len, this_end, private;
   1156		unsigned int cur_pos = read_start + total_len;
   1157
   1158		if (!len)
   1159			break;
   1160
   1161		this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
   1162		private = this_len;
   1163
   1164		spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
   1165		spd.partial[spd.nr_pages].offset = poff;
   1166
   1167		this_end = cur_pos + this_len;
   1168		if (this_end >= nonpad_end) {
   1169			this_len = nonpad_end - cur_pos;
   1170			private = this_len + padding;
   1171		}
   1172		spd.partial[spd.nr_pages].len = this_len;
   1173		spd.partial[spd.nr_pages].private = private;
   1174
   1175		len -= this_len;
   1176		total_len += this_len;
   1177		poff = 0;
   1178		pidx = (pidx + 1) % subbuf_pages;
   1179
   1180		if (this_end >= nonpad_end) {
   1181			spd.nr_pages++;
   1182			break;
   1183		}
   1184	}
   1185
   1186	ret = 0;
   1187	if (!spd.nr_pages)
   1188		goto out;
   1189
   1190	ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
   1191	if (ret < 0 || ret < total_len)
   1192		goto out;
   1193
   1194        if (read_start + ret == nonpad_end)
   1195                ret += padding;
   1196
   1197out:
   1198	splice_shrink_spd(&spd);
   1199	return ret;
   1200}
   1201
   1202static ssize_t relay_file_splice_read(struct file *in,
   1203				      loff_t *ppos,
   1204				      struct pipe_inode_info *pipe,
   1205				      size_t len,
   1206				      unsigned int flags)
   1207{
   1208	ssize_t spliced;
   1209	int ret;
   1210	int nonpad_ret = 0;
   1211
   1212	ret = 0;
   1213	spliced = 0;
   1214
   1215	while (len && !spliced) {
   1216		ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
   1217		if (ret < 0)
   1218			break;
   1219		else if (!ret) {
   1220			if (flags & SPLICE_F_NONBLOCK)
   1221				ret = -EAGAIN;
   1222			break;
   1223		}
   1224
   1225		*ppos += ret;
   1226		if (ret > len)
   1227			len = 0;
   1228		else
   1229			len -= ret;
   1230		spliced += nonpad_ret;
   1231		nonpad_ret = 0;
   1232	}
   1233
   1234	if (spliced)
   1235		return spliced;
   1236
   1237	return ret;
   1238}
   1239
   1240const struct file_operations relay_file_operations = {
   1241	.open		= relay_file_open,
   1242	.poll		= relay_file_poll,
   1243	.mmap		= relay_file_mmap,
   1244	.read		= relay_file_read,
   1245	.llseek		= no_llseek,
   1246	.release	= relay_file_release,
   1247	.splice_read	= relay_file_splice_read,
   1248};
   1249EXPORT_SYMBOL_GPL(relay_file_operations);