cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rseq.c (10522B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Restartable sequences system call
      4 *
      5 * Copyright (C) 2015, Google, Inc.,
      6 * Paul Turner <pjt@google.com> and Andrew Hunter <ahh@google.com>
      7 * Copyright (C) 2015-2018, EfficiOS Inc.,
      8 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      9 */
     10
     11#include <linux/sched.h>
     12#include <linux/uaccess.h>
     13#include <linux/syscalls.h>
     14#include <linux/rseq.h>
     15#include <linux/types.h>
     16#include <asm/ptrace.h>
     17
     18#define CREATE_TRACE_POINTS
     19#include <trace/events/rseq.h>
     20
     21#define RSEQ_CS_PREEMPT_MIGRATE_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE | \
     22				       RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT)
     23
     24/*
     25 *
     26 * Restartable sequences are a lightweight interface that allows
     27 * user-level code to be executed atomically relative to scheduler
     28 * preemption and signal delivery. Typically used for implementing
     29 * per-cpu operations.
     30 *
     31 * It allows user-space to perform update operations on per-cpu data
     32 * without requiring heavy-weight atomic operations.
     33 *
     34 * Detailed algorithm of rseq user-space assembly sequences:
     35 *
     36 *                     init(rseq_cs)
     37 *                     cpu = TLS->rseq::cpu_id_start
     38 *   [1]               TLS->rseq::rseq_cs = rseq_cs
     39 *   [start_ip]        ----------------------------
     40 *   [2]               if (cpu != TLS->rseq::cpu_id)
     41 *                             goto abort_ip;
     42 *   [3]               <last_instruction_in_cs>
     43 *   [post_commit_ip]  ----------------------------
     44 *
     45 *   The address of jump target abort_ip must be outside the critical
     46 *   region, i.e.:
     47 *
     48 *     [abort_ip] < [start_ip]  || [abort_ip] >= [post_commit_ip]
     49 *
     50 *   Steps [2]-[3] (inclusive) need to be a sequence of instructions in
     51 *   userspace that can handle being interrupted between any of those
     52 *   instructions, and then resumed to the abort_ip.
     53 *
     54 *   1.  Userspace stores the address of the struct rseq_cs assembly
     55 *       block descriptor into the rseq_cs field of the registered
     56 *       struct rseq TLS area. This update is performed through a single
     57 *       store within the inline assembly instruction sequence.
     58 *       [start_ip]
     59 *
     60 *   2.  Userspace tests to check whether the current cpu_id field match
     61 *       the cpu number loaded before start_ip, branching to abort_ip
     62 *       in case of a mismatch.
     63 *
     64 *       If the sequence is preempted or interrupted by a signal
     65 *       at or after start_ip and before post_commit_ip, then the kernel
     66 *       clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
     67 *       ip to abort_ip before returning to user-space, so the preempted
     68 *       execution resumes at abort_ip.
     69 *
     70 *   3.  Userspace critical section final instruction before
     71 *       post_commit_ip is the commit. The critical section is
     72 *       self-terminating.
     73 *       [post_commit_ip]
     74 *
     75 *   4.  <success>
     76 *
     77 *   On failure at [2], or if interrupted by preempt or signal delivery
     78 *   between [1] and [3]:
     79 *
     80 *       [abort_ip]
     81 *   F1. <failure>
     82 */
     83
     84static int rseq_update_cpu_id(struct task_struct *t)
     85{
     86	u32 cpu_id = raw_smp_processor_id();
     87	struct rseq __user *rseq = t->rseq;
     88
     89	if (!user_write_access_begin(rseq, sizeof(*rseq)))
     90		goto efault;
     91	unsafe_put_user(cpu_id, &rseq->cpu_id_start, efault_end);
     92	unsafe_put_user(cpu_id, &rseq->cpu_id, efault_end);
     93	user_write_access_end();
     94	trace_rseq_update(t);
     95	return 0;
     96
     97efault_end:
     98	user_write_access_end();
     99efault:
    100	return -EFAULT;
    101}
    102
    103static int rseq_reset_rseq_cpu_id(struct task_struct *t)
    104{
    105	u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED;
    106
    107	/*
    108	 * Reset cpu_id_start to its initial state (0).
    109	 */
    110	if (put_user(cpu_id_start, &t->rseq->cpu_id_start))
    111		return -EFAULT;
    112	/*
    113	 * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
    114	 * in after unregistration can figure out that rseq needs to be
    115	 * registered again.
    116	 */
    117	if (put_user(cpu_id, &t->rseq->cpu_id))
    118		return -EFAULT;
    119	return 0;
    120}
    121
    122static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
    123{
    124	struct rseq_cs __user *urseq_cs;
    125	u64 ptr;
    126	u32 __user *usig;
    127	u32 sig;
    128	int ret;
    129
    130#ifdef CONFIG_64BIT
    131	if (get_user(ptr, &t->rseq->rseq_cs))
    132		return -EFAULT;
    133#else
    134	if (copy_from_user(&ptr, &t->rseq->rseq_cs, sizeof(ptr)))
    135		return -EFAULT;
    136#endif
    137	if (!ptr) {
    138		memset(rseq_cs, 0, sizeof(*rseq_cs));
    139		return 0;
    140	}
    141	if (ptr >= TASK_SIZE)
    142		return -EINVAL;
    143	urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr;
    144	if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
    145		return -EFAULT;
    146
    147	if (rseq_cs->start_ip >= TASK_SIZE ||
    148	    rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE ||
    149	    rseq_cs->abort_ip >= TASK_SIZE ||
    150	    rseq_cs->version > 0)
    151		return -EINVAL;
    152	/* Check for overflow. */
    153	if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip)
    154		return -EINVAL;
    155	/* Ensure that abort_ip is not in the critical section. */
    156	if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
    157		return -EINVAL;
    158
    159	usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32));
    160	ret = get_user(sig, usig);
    161	if (ret)
    162		return ret;
    163
    164	if (current->rseq_sig != sig) {
    165		printk_ratelimited(KERN_WARNING
    166			"Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
    167			sig, current->rseq_sig, current->pid, usig);
    168		return -EINVAL;
    169	}
    170	return 0;
    171}
    172
    173static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
    174{
    175	u32 flags, event_mask;
    176	int ret;
    177
    178	/* Get thread flags. */
    179	ret = get_user(flags, &t->rseq->flags);
    180	if (ret)
    181		return ret;
    182
    183	/* Take critical section flags into account. */
    184	flags |= cs_flags;
    185
    186	/*
    187	 * Restart on signal can only be inhibited when restart on
    188	 * preempt and restart on migrate are inhibited too. Otherwise,
    189	 * a preempted signal handler could fail to restart the prior
    190	 * execution context on sigreturn.
    191	 */
    192	if (unlikely((flags & RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL) &&
    193		     (flags & RSEQ_CS_PREEMPT_MIGRATE_FLAGS) !=
    194		     RSEQ_CS_PREEMPT_MIGRATE_FLAGS))
    195		return -EINVAL;
    196
    197	/*
    198	 * Load and clear event mask atomically with respect to
    199	 * scheduler preemption.
    200	 */
    201	preempt_disable();
    202	event_mask = t->rseq_event_mask;
    203	t->rseq_event_mask = 0;
    204	preempt_enable();
    205
    206	return !!(event_mask & ~flags);
    207}
    208
    209static int clear_rseq_cs(struct task_struct *t)
    210{
    211	/*
    212	 * The rseq_cs field is set to NULL on preemption or signal
    213	 * delivery on top of rseq assembly block, as well as on top
    214	 * of code outside of the rseq assembly block. This performs
    215	 * a lazy clear of the rseq_cs field.
    216	 *
    217	 * Set rseq_cs to NULL.
    218	 */
    219#ifdef CONFIG_64BIT
    220	return put_user(0UL, &t->rseq->rseq_cs);
    221#else
    222	if (clear_user(&t->rseq->rseq_cs, sizeof(t->rseq->rseq_cs)))
    223		return -EFAULT;
    224	return 0;
    225#endif
    226}
    227
    228/*
    229 * Unsigned comparison will be true when ip >= start_ip, and when
    230 * ip < start_ip + post_commit_offset.
    231 */
    232static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
    233{
    234	return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
    235}
    236
    237static int rseq_ip_fixup(struct pt_regs *regs)
    238{
    239	unsigned long ip = instruction_pointer(regs);
    240	struct task_struct *t = current;
    241	struct rseq_cs rseq_cs;
    242	int ret;
    243
    244	ret = rseq_get_rseq_cs(t, &rseq_cs);
    245	if (ret)
    246		return ret;
    247
    248	/*
    249	 * Handle potentially not being within a critical section.
    250	 * If not nested over a rseq critical section, restart is useless.
    251	 * Clear the rseq_cs pointer and return.
    252	 */
    253	if (!in_rseq_cs(ip, &rseq_cs))
    254		return clear_rseq_cs(t);
    255	ret = rseq_need_restart(t, rseq_cs.flags);
    256	if (ret <= 0)
    257		return ret;
    258	ret = clear_rseq_cs(t);
    259	if (ret)
    260		return ret;
    261	trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
    262			    rseq_cs.abort_ip);
    263	instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
    264	return 0;
    265}
    266
    267/*
    268 * This resume handler must always be executed between any of:
    269 * - preemption,
    270 * - signal delivery,
    271 * and return to user-space.
    272 *
    273 * This is how we can ensure that the entire rseq critical section
    274 * will issue the commit instruction only if executed atomically with
    275 * respect to other threads scheduled on the same CPU, and with respect
    276 * to signal handlers.
    277 */
    278void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
    279{
    280	struct task_struct *t = current;
    281	int ret, sig;
    282
    283	if (unlikely(t->flags & PF_EXITING))
    284		return;
    285
    286	/*
    287	 * regs is NULL if and only if the caller is in a syscall path.  Skip
    288	 * fixup and leave rseq_cs as is so that rseq_sycall() will detect and
    289	 * kill a misbehaving userspace on debug kernels.
    290	 */
    291	if (regs) {
    292		ret = rseq_ip_fixup(regs);
    293		if (unlikely(ret < 0))
    294			goto error;
    295	}
    296	if (unlikely(rseq_update_cpu_id(t)))
    297		goto error;
    298	return;
    299
    300error:
    301	sig = ksig ? ksig->sig : 0;
    302	force_sigsegv(sig);
    303}
    304
    305#ifdef CONFIG_DEBUG_RSEQ
    306
    307/*
    308 * Terminate the process if a syscall is issued within a restartable
    309 * sequence.
    310 */
    311void rseq_syscall(struct pt_regs *regs)
    312{
    313	unsigned long ip = instruction_pointer(regs);
    314	struct task_struct *t = current;
    315	struct rseq_cs rseq_cs;
    316
    317	if (!t->rseq)
    318		return;
    319	if (rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
    320		force_sig(SIGSEGV);
    321}
    322
    323#endif
    324
    325/*
    326 * sys_rseq - setup restartable sequences for caller thread.
    327 */
    328SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
    329		int, flags, u32, sig)
    330{
    331	int ret;
    332
    333	if (flags & RSEQ_FLAG_UNREGISTER) {
    334		if (flags & ~RSEQ_FLAG_UNREGISTER)
    335			return -EINVAL;
    336		/* Unregister rseq for current thread. */
    337		if (current->rseq != rseq || !current->rseq)
    338			return -EINVAL;
    339		if (rseq_len != sizeof(*rseq))
    340			return -EINVAL;
    341		if (current->rseq_sig != sig)
    342			return -EPERM;
    343		ret = rseq_reset_rseq_cpu_id(current);
    344		if (ret)
    345			return ret;
    346		current->rseq = NULL;
    347		current->rseq_sig = 0;
    348		return 0;
    349	}
    350
    351	if (unlikely(flags))
    352		return -EINVAL;
    353
    354	if (current->rseq) {
    355		/*
    356		 * If rseq is already registered, check whether
    357		 * the provided address differs from the prior
    358		 * one.
    359		 */
    360		if (current->rseq != rseq || rseq_len != sizeof(*rseq))
    361			return -EINVAL;
    362		if (current->rseq_sig != sig)
    363			return -EPERM;
    364		/* Already registered. */
    365		return -EBUSY;
    366	}
    367
    368	/*
    369	 * If there was no rseq previously registered,
    370	 * ensure the provided rseq is properly aligned and valid.
    371	 */
    372	if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
    373	    rseq_len != sizeof(*rseq))
    374		return -EINVAL;
    375	if (!access_ok(rseq, rseq_len))
    376		return -EFAULT;
    377	current->rseq = rseq;
    378	current->rseq_sig = sig;
    379	/*
    380	 * If rseq was previously inactive, and has just been
    381	 * registered, ensure the cpu_id_start and cpu_id fields
    382	 * are updated before returning to user-space.
    383	 */
    384	rseq_set_notify_resume(current);
    385
    386	return 0;
    387}