cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

clock.c (12504B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * sched_clock() for unstable CPU clocks
      4 *
      5 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
      6 *
      7 *  Updates and enhancements:
      8 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
      9 *
     10 * Based on code by:
     11 *   Ingo Molnar <mingo@redhat.com>
     12 *   Guillaume Chazarain <guichaz@gmail.com>
     13 *
     14 *
     15 * What this file implements:
     16 *
     17 * cpu_clock(i) provides a fast (execution time) high resolution
     18 * clock with bounded drift between CPUs. The value of cpu_clock(i)
     19 * is monotonic for constant i. The timestamp returned is in nanoseconds.
     20 *
     21 * ######################### BIG FAT WARNING ##########################
     22 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
     23 * # go backwards !!                                                  #
     24 * ####################################################################
     25 *
     26 * There is no strict promise about the base, although it tends to start
     27 * at 0 on boot (but people really shouldn't rely on that).
     28 *
     29 * cpu_clock(i)       -- can be used from any context, including NMI.
     30 * local_clock()      -- is cpu_clock() on the current CPU.
     31 *
     32 * sched_clock_cpu(i)
     33 *
     34 * How it is implemented:
     35 *
     36 * The implementation either uses sched_clock() when
     37 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
     38 * sched_clock() is assumed to provide these properties (mostly it means
     39 * the architecture provides a globally synchronized highres time source).
     40 *
     41 * Otherwise it tries to create a semi stable clock from a mixture of other
     42 * clocks, including:
     43 *
     44 *  - GTOD (clock monotonic)
     45 *  - sched_clock()
     46 *  - explicit idle events
     47 *
     48 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
     49 * deltas are filtered to provide monotonicity and keeping it within an
     50 * expected window.
     51 *
     52 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
     53 * that is otherwise invisible (TSC gets stopped).
     54 *
     55 */
     56
     57/*
     58 * Scheduler clock - returns current time in nanosec units.
     59 * This is default implementation.
     60 * Architectures and sub-architectures can override this.
     61 */
     62notrace unsigned long long __weak sched_clock(void)
     63{
     64	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
     65					* (NSEC_PER_SEC / HZ);
     66}
     67EXPORT_SYMBOL_GPL(sched_clock);
     68
     69static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
     70
     71#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
     72/*
     73 * We must start with !__sched_clock_stable because the unstable -> stable
     74 * transition is accurate, while the stable -> unstable transition is not.
     75 *
     76 * Similarly we start with __sched_clock_stable_early, thereby assuming we
     77 * will become stable, such that there's only a single 1 -> 0 transition.
     78 */
     79static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
     80static int __sched_clock_stable_early = 1;
     81
     82/*
     83 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
     84 */
     85__read_mostly u64 __sched_clock_offset;
     86static __read_mostly u64 __gtod_offset;
     87
     88struct sched_clock_data {
     89	u64			tick_raw;
     90	u64			tick_gtod;
     91	u64			clock;
     92};
     93
     94static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
     95
     96notrace static inline struct sched_clock_data *this_scd(void)
     97{
     98	return this_cpu_ptr(&sched_clock_data);
     99}
    100
    101notrace static inline struct sched_clock_data *cpu_sdc(int cpu)
    102{
    103	return &per_cpu(sched_clock_data, cpu);
    104}
    105
    106notrace int sched_clock_stable(void)
    107{
    108	return static_branch_likely(&__sched_clock_stable);
    109}
    110
    111notrace static void __scd_stamp(struct sched_clock_data *scd)
    112{
    113	scd->tick_gtod = ktime_get_ns();
    114	scd->tick_raw = sched_clock();
    115}
    116
    117notrace static void __set_sched_clock_stable(void)
    118{
    119	struct sched_clock_data *scd;
    120
    121	/*
    122	 * Since we're still unstable and the tick is already running, we have
    123	 * to disable IRQs in order to get a consistent scd->tick* reading.
    124	 */
    125	local_irq_disable();
    126	scd = this_scd();
    127	/*
    128	 * Attempt to make the (initial) unstable->stable transition continuous.
    129	 */
    130	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
    131	local_irq_enable();
    132
    133	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
    134			scd->tick_gtod, __gtod_offset,
    135			scd->tick_raw,  __sched_clock_offset);
    136
    137	static_branch_enable(&__sched_clock_stable);
    138	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
    139}
    140
    141/*
    142 * If we ever get here, we're screwed, because we found out -- typically after
    143 * the fact -- that TSC wasn't good. This means all our clocksources (including
    144 * ktime) could have reported wrong values.
    145 *
    146 * What we do here is an attempt to fix up and continue sort of where we left
    147 * off in a coherent manner.
    148 *
    149 * The only way to fully avoid random clock jumps is to boot with:
    150 * "tsc=unstable".
    151 */
    152notrace static void __sched_clock_work(struct work_struct *work)
    153{
    154	struct sched_clock_data *scd;
    155	int cpu;
    156
    157	/* take a current timestamp and set 'now' */
    158	preempt_disable();
    159	scd = this_scd();
    160	__scd_stamp(scd);
    161	scd->clock = scd->tick_gtod + __gtod_offset;
    162	preempt_enable();
    163
    164	/* clone to all CPUs */
    165	for_each_possible_cpu(cpu)
    166		per_cpu(sched_clock_data, cpu) = *scd;
    167
    168	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
    169	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
    170			scd->tick_gtod, __gtod_offset,
    171			scd->tick_raw,  __sched_clock_offset);
    172
    173	static_branch_disable(&__sched_clock_stable);
    174}
    175
    176static DECLARE_WORK(sched_clock_work, __sched_clock_work);
    177
    178notrace static void __clear_sched_clock_stable(void)
    179{
    180	if (!sched_clock_stable())
    181		return;
    182
    183	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
    184	schedule_work(&sched_clock_work);
    185}
    186
    187notrace void clear_sched_clock_stable(void)
    188{
    189	__sched_clock_stable_early = 0;
    190
    191	smp_mb(); /* matches sched_clock_init_late() */
    192
    193	if (static_key_count(&sched_clock_running.key) == 2)
    194		__clear_sched_clock_stable();
    195}
    196
    197notrace static void __sched_clock_gtod_offset(void)
    198{
    199	struct sched_clock_data *scd = this_scd();
    200
    201	__scd_stamp(scd);
    202	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
    203}
    204
    205void __init sched_clock_init(void)
    206{
    207	/*
    208	 * Set __gtod_offset such that once we mark sched_clock_running,
    209	 * sched_clock_tick() continues where sched_clock() left off.
    210	 *
    211	 * Even if TSC is buggered, we're still UP at this point so it
    212	 * can't really be out of sync.
    213	 */
    214	local_irq_disable();
    215	__sched_clock_gtod_offset();
    216	local_irq_enable();
    217
    218	static_branch_inc(&sched_clock_running);
    219}
    220/*
    221 * We run this as late_initcall() such that it runs after all built-in drivers,
    222 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
    223 */
    224static int __init sched_clock_init_late(void)
    225{
    226	static_branch_inc(&sched_clock_running);
    227	/*
    228	 * Ensure that it is impossible to not do a static_key update.
    229	 *
    230	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
    231	 * and do the update, or we must see their __sched_clock_stable_early
    232	 * and do the update, or both.
    233	 */
    234	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
    235
    236	if (__sched_clock_stable_early)
    237		__set_sched_clock_stable();
    238
    239	return 0;
    240}
    241late_initcall(sched_clock_init_late);
    242
    243/*
    244 * min, max except they take wrapping into account
    245 */
    246
    247notrace static inline u64 wrap_min(u64 x, u64 y)
    248{
    249	return (s64)(x - y) < 0 ? x : y;
    250}
    251
    252notrace static inline u64 wrap_max(u64 x, u64 y)
    253{
    254	return (s64)(x - y) > 0 ? x : y;
    255}
    256
    257/*
    258 * update the percpu scd from the raw @now value
    259 *
    260 *  - filter out backward motion
    261 *  - use the GTOD tick value to create a window to filter crazy TSC values
    262 */
    263notrace static u64 sched_clock_local(struct sched_clock_data *scd)
    264{
    265	u64 now, clock, old_clock, min_clock, max_clock, gtod;
    266	s64 delta;
    267
    268again:
    269	now = sched_clock();
    270	delta = now - scd->tick_raw;
    271	if (unlikely(delta < 0))
    272		delta = 0;
    273
    274	old_clock = scd->clock;
    275
    276	/*
    277	 * scd->clock = clamp(scd->tick_gtod + delta,
    278	 *		      max(scd->tick_gtod, scd->clock),
    279	 *		      scd->tick_gtod + TICK_NSEC);
    280	 */
    281
    282	gtod = scd->tick_gtod + __gtod_offset;
    283	clock = gtod + delta;
    284	min_clock = wrap_max(gtod, old_clock);
    285	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
    286
    287	clock = wrap_max(clock, min_clock);
    288	clock = wrap_min(clock, max_clock);
    289
    290	if (!try_cmpxchg64(&scd->clock, &old_clock, clock))
    291		goto again;
    292
    293	return clock;
    294}
    295
    296notrace static u64 sched_clock_remote(struct sched_clock_data *scd)
    297{
    298	struct sched_clock_data *my_scd = this_scd();
    299	u64 this_clock, remote_clock;
    300	u64 *ptr, old_val, val;
    301
    302#if BITS_PER_LONG != 64
    303again:
    304	/*
    305	 * Careful here: The local and the remote clock values need to
    306	 * be read out atomic as we need to compare the values and
    307	 * then update either the local or the remote side. So the
    308	 * cmpxchg64 below only protects one readout.
    309	 *
    310	 * We must reread via sched_clock_local() in the retry case on
    311	 * 32-bit kernels as an NMI could use sched_clock_local() via the
    312	 * tracer and hit between the readout of
    313	 * the low 32-bit and the high 32-bit portion.
    314	 */
    315	this_clock = sched_clock_local(my_scd);
    316	/*
    317	 * We must enforce atomic readout on 32-bit, otherwise the
    318	 * update on the remote CPU can hit inbetween the readout of
    319	 * the low 32-bit and the high 32-bit portion.
    320	 */
    321	remote_clock = cmpxchg64(&scd->clock, 0, 0);
    322#else
    323	/*
    324	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
    325	 * update, so we can avoid the above 32-bit dance.
    326	 */
    327	sched_clock_local(my_scd);
    328again:
    329	this_clock = my_scd->clock;
    330	remote_clock = scd->clock;
    331#endif
    332
    333	/*
    334	 * Use the opportunity that we have both locks
    335	 * taken to couple the two clocks: we take the
    336	 * larger time as the latest time for both
    337	 * runqueues. (this creates monotonic movement)
    338	 */
    339	if (likely((s64)(remote_clock - this_clock) < 0)) {
    340		ptr = &scd->clock;
    341		old_val = remote_clock;
    342		val = this_clock;
    343	} else {
    344		/*
    345		 * Should be rare, but possible:
    346		 */
    347		ptr = &my_scd->clock;
    348		old_val = this_clock;
    349		val = remote_clock;
    350	}
    351
    352	if (!try_cmpxchg64(ptr, &old_val, val))
    353		goto again;
    354
    355	return val;
    356}
    357
    358/*
    359 * Similar to cpu_clock(), but requires local IRQs to be disabled.
    360 *
    361 * See cpu_clock().
    362 */
    363notrace u64 sched_clock_cpu(int cpu)
    364{
    365	struct sched_clock_data *scd;
    366	u64 clock;
    367
    368	if (sched_clock_stable())
    369		return sched_clock() + __sched_clock_offset;
    370
    371	if (!static_branch_likely(&sched_clock_running))
    372		return sched_clock();
    373
    374	preempt_disable_notrace();
    375	scd = cpu_sdc(cpu);
    376
    377	if (cpu != smp_processor_id())
    378		clock = sched_clock_remote(scd);
    379	else
    380		clock = sched_clock_local(scd);
    381	preempt_enable_notrace();
    382
    383	return clock;
    384}
    385EXPORT_SYMBOL_GPL(sched_clock_cpu);
    386
    387notrace void sched_clock_tick(void)
    388{
    389	struct sched_clock_data *scd;
    390
    391	if (sched_clock_stable())
    392		return;
    393
    394	if (!static_branch_likely(&sched_clock_running))
    395		return;
    396
    397	lockdep_assert_irqs_disabled();
    398
    399	scd = this_scd();
    400	__scd_stamp(scd);
    401	sched_clock_local(scd);
    402}
    403
    404notrace void sched_clock_tick_stable(void)
    405{
    406	if (!sched_clock_stable())
    407		return;
    408
    409	/*
    410	 * Called under watchdog_lock.
    411	 *
    412	 * The watchdog just found this TSC to (still) be stable, so now is a
    413	 * good moment to update our __gtod_offset. Because once we find the
    414	 * TSC to be unstable, any computation will be computing crap.
    415	 */
    416	local_irq_disable();
    417	__sched_clock_gtod_offset();
    418	local_irq_enable();
    419}
    420
    421/*
    422 * We are going deep-idle (irqs are disabled):
    423 */
    424notrace void sched_clock_idle_sleep_event(void)
    425{
    426	sched_clock_cpu(smp_processor_id());
    427}
    428EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
    429
    430/*
    431 * We just idled; resync with ktime.
    432 */
    433notrace void sched_clock_idle_wakeup_event(void)
    434{
    435	unsigned long flags;
    436
    437	if (sched_clock_stable())
    438		return;
    439
    440	if (unlikely(timekeeping_suspended))
    441		return;
    442
    443	local_irq_save(flags);
    444	sched_clock_tick();
    445	local_irq_restore(flags);
    446}
    447EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
    448
    449#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
    450
    451void __init sched_clock_init(void)
    452{
    453	static_branch_inc(&sched_clock_running);
    454	local_irq_disable();
    455	generic_sched_clock_init();
    456	local_irq_enable();
    457}
    458
    459notrace u64 sched_clock_cpu(int cpu)
    460{
    461	if (!static_branch_likely(&sched_clock_running))
    462		return 0;
    463
    464	return sched_clock();
    465}
    466
    467#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
    468
    469/*
    470 * Running clock - returns the time that has elapsed while a guest has been
    471 * running.
    472 * On a guest this value should be local_clock minus the time the guest was
    473 * suspended by the hypervisor (for any reason).
    474 * On bare metal this function should return the same as local_clock.
    475 * Architectures and sub-architectures can override this.
    476 */
    477notrace u64 __weak running_clock(void)
    478{
    479	return local_clock();
    480}