cpufreq_schedutil.c (23980B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * CPUFreq governor based on scheduler-provided CPU utilization data. 4 * 5 * Copyright (C) 2016, Intel Corporation 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 */ 8 9#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8) 10 11struct sugov_tunables { 12 struct gov_attr_set attr_set; 13 unsigned int rate_limit_us; 14}; 15 16struct sugov_policy { 17 struct cpufreq_policy *policy; 18 19 struct sugov_tunables *tunables; 20 struct list_head tunables_hook; 21 22 raw_spinlock_t update_lock; 23 u64 last_freq_update_time; 24 s64 freq_update_delay_ns; 25 unsigned int next_freq; 26 unsigned int cached_raw_freq; 27 28 /* The next fields are only needed if fast switch cannot be used: */ 29 struct irq_work irq_work; 30 struct kthread_work work; 31 struct mutex work_lock; 32 struct kthread_worker worker; 33 struct task_struct *thread; 34 bool work_in_progress; 35 36 bool limits_changed; 37 bool need_freq_update; 38}; 39 40struct sugov_cpu { 41 struct update_util_data update_util; 42 struct sugov_policy *sg_policy; 43 unsigned int cpu; 44 45 bool iowait_boost_pending; 46 unsigned int iowait_boost; 47 u64 last_update; 48 49 unsigned long util; 50 unsigned long bw_dl; 51 unsigned long max; 52 53 /* The field below is for single-CPU policies only: */ 54#ifdef CONFIG_NO_HZ_COMMON 55 unsigned long saved_idle_calls; 56#endif 57}; 58 59static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu); 60 61/************************ Governor internals ***********************/ 62 63static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time) 64{ 65 s64 delta_ns; 66 67 /* 68 * Since cpufreq_update_util() is called with rq->lock held for 69 * the @target_cpu, our per-CPU data is fully serialized. 70 * 71 * However, drivers cannot in general deal with cross-CPU 72 * requests, so while get_next_freq() will work, our 73 * sugov_update_commit() call may not for the fast switching platforms. 74 * 75 * Hence stop here for remote requests if they aren't supported 76 * by the hardware, as calculating the frequency is pointless if 77 * we cannot in fact act on it. 78 * 79 * This is needed on the slow switching platforms too to prevent CPUs 80 * going offline from leaving stale IRQ work items behind. 81 */ 82 if (!cpufreq_this_cpu_can_update(sg_policy->policy)) 83 return false; 84 85 if (unlikely(sg_policy->limits_changed)) { 86 sg_policy->limits_changed = false; 87 sg_policy->need_freq_update = true; 88 return true; 89 } 90 91 delta_ns = time - sg_policy->last_freq_update_time; 92 93 return delta_ns >= sg_policy->freq_update_delay_ns; 94} 95 96static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time, 97 unsigned int next_freq) 98{ 99 if (sg_policy->need_freq_update) 100 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 101 else if (sg_policy->next_freq == next_freq) 102 return false; 103 104 sg_policy->next_freq = next_freq; 105 sg_policy->last_freq_update_time = time; 106 107 return true; 108} 109 110static void sugov_deferred_update(struct sugov_policy *sg_policy) 111{ 112 if (!sg_policy->work_in_progress) { 113 sg_policy->work_in_progress = true; 114 irq_work_queue(&sg_policy->irq_work); 115 } 116} 117 118/** 119 * get_next_freq - Compute a new frequency for a given cpufreq policy. 120 * @sg_policy: schedutil policy object to compute the new frequency for. 121 * @util: Current CPU utilization. 122 * @max: CPU capacity. 123 * 124 * If the utilization is frequency-invariant, choose the new frequency to be 125 * proportional to it, that is 126 * 127 * next_freq = C * max_freq * util / max 128 * 129 * Otherwise, approximate the would-be frequency-invariant utilization by 130 * util_raw * (curr_freq / max_freq) which leads to 131 * 132 * next_freq = C * curr_freq * util_raw / max 133 * 134 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8. 135 * 136 * The lowest driver-supported frequency which is equal or greater than the raw 137 * next_freq (as calculated above) is returned, subject to policy min/max and 138 * cpufreq driver limitations. 139 */ 140static unsigned int get_next_freq(struct sugov_policy *sg_policy, 141 unsigned long util, unsigned long max) 142{ 143 struct cpufreq_policy *policy = sg_policy->policy; 144 unsigned int freq = arch_scale_freq_invariant() ? 145 policy->cpuinfo.max_freq : policy->cur; 146 147 util = map_util_perf(util); 148 freq = map_util_freq(util, freq, max); 149 150 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update) 151 return sg_policy->next_freq; 152 153 sg_policy->cached_raw_freq = freq; 154 return cpufreq_driver_resolve_freq(policy, freq); 155} 156 157static void sugov_get_util(struct sugov_cpu *sg_cpu) 158{ 159 struct rq *rq = cpu_rq(sg_cpu->cpu); 160 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu); 161 162 sg_cpu->max = max; 163 sg_cpu->bw_dl = cpu_bw_dl(rq); 164 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu), max, 165 FREQUENCY_UTIL, NULL); 166} 167 168/** 169 * sugov_iowait_reset() - Reset the IO boost status of a CPU. 170 * @sg_cpu: the sugov data for the CPU to boost 171 * @time: the update time from the caller 172 * @set_iowait_boost: true if an IO boost has been requested 173 * 174 * The IO wait boost of a task is disabled after a tick since the last update 175 * of a CPU. If a new IO wait boost is requested after more then a tick, then 176 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy 177 * efficiency by ignoring sporadic wakeups from IO. 178 */ 179static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time, 180 bool set_iowait_boost) 181{ 182 s64 delta_ns = time - sg_cpu->last_update; 183 184 /* Reset boost only if a tick has elapsed since last request */ 185 if (delta_ns <= TICK_NSEC) 186 return false; 187 188 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0; 189 sg_cpu->iowait_boost_pending = set_iowait_boost; 190 191 return true; 192} 193 194/** 195 * sugov_iowait_boost() - Updates the IO boost status of a CPU. 196 * @sg_cpu: the sugov data for the CPU to boost 197 * @time: the update time from the caller 198 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait 199 * 200 * Each time a task wakes up after an IO operation, the CPU utilization can be 201 * boosted to a certain utilization which doubles at each "frequent and 202 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization 203 * of the maximum OPP. 204 * 205 * To keep doubling, an IO boost has to be requested at least once per tick, 206 * otherwise we restart from the utilization of the minimum OPP. 207 */ 208static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time, 209 unsigned int flags) 210{ 211 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT; 212 213 /* Reset boost if the CPU appears to have been idle enough */ 214 if (sg_cpu->iowait_boost && 215 sugov_iowait_reset(sg_cpu, time, set_iowait_boost)) 216 return; 217 218 /* Boost only tasks waking up after IO */ 219 if (!set_iowait_boost) 220 return; 221 222 /* Ensure boost doubles only one time at each request */ 223 if (sg_cpu->iowait_boost_pending) 224 return; 225 sg_cpu->iowait_boost_pending = true; 226 227 /* Double the boost at each request */ 228 if (sg_cpu->iowait_boost) { 229 sg_cpu->iowait_boost = 230 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE); 231 return; 232 } 233 234 /* First wakeup after IO: start with minimum boost */ 235 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN; 236} 237 238/** 239 * sugov_iowait_apply() - Apply the IO boost to a CPU. 240 * @sg_cpu: the sugov data for the cpu to boost 241 * @time: the update time from the caller 242 * 243 * A CPU running a task which woken up after an IO operation can have its 244 * utilization boosted to speed up the completion of those IO operations. 245 * The IO boost value is increased each time a task wakes up from IO, in 246 * sugov_iowait_apply(), and it's instead decreased by this function, 247 * each time an increase has not been requested (!iowait_boost_pending). 248 * 249 * A CPU which also appears to have been idle for at least one tick has also 250 * its IO boost utilization reset. 251 * 252 * This mechanism is designed to boost high frequently IO waiting tasks, while 253 * being more conservative on tasks which does sporadic IO operations. 254 */ 255static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time) 256{ 257 unsigned long boost; 258 259 /* No boost currently required */ 260 if (!sg_cpu->iowait_boost) 261 return; 262 263 /* Reset boost if the CPU appears to have been idle enough */ 264 if (sugov_iowait_reset(sg_cpu, time, false)) 265 return; 266 267 if (!sg_cpu->iowait_boost_pending) { 268 /* 269 * No boost pending; reduce the boost value. 270 */ 271 sg_cpu->iowait_boost >>= 1; 272 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) { 273 sg_cpu->iowait_boost = 0; 274 return; 275 } 276 } 277 278 sg_cpu->iowait_boost_pending = false; 279 280 /* 281 * sg_cpu->util is already in capacity scale; convert iowait_boost 282 * into the same scale so we can compare. 283 */ 284 boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT; 285 boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL); 286 if (sg_cpu->util < boost) 287 sg_cpu->util = boost; 288} 289 290#ifdef CONFIG_NO_HZ_COMMON 291static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) 292{ 293 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); 294 bool ret = idle_calls == sg_cpu->saved_idle_calls; 295 296 sg_cpu->saved_idle_calls = idle_calls; 297 return ret; 298} 299#else 300static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } 301#endif /* CONFIG_NO_HZ_COMMON */ 302 303/* 304 * Make sugov_should_update_freq() ignore the rate limit when DL 305 * has increased the utilization. 306 */ 307static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu) 308{ 309 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl) 310 sg_cpu->sg_policy->limits_changed = true; 311} 312 313static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu, 314 u64 time, unsigned int flags) 315{ 316 sugov_iowait_boost(sg_cpu, time, flags); 317 sg_cpu->last_update = time; 318 319 ignore_dl_rate_limit(sg_cpu); 320 321 if (!sugov_should_update_freq(sg_cpu->sg_policy, time)) 322 return false; 323 324 sugov_get_util(sg_cpu); 325 sugov_iowait_apply(sg_cpu, time); 326 327 return true; 328} 329 330static void sugov_update_single_freq(struct update_util_data *hook, u64 time, 331 unsigned int flags) 332{ 333 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 334 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 335 unsigned int cached_freq = sg_policy->cached_raw_freq; 336 unsigned int next_f; 337 338 if (!sugov_update_single_common(sg_cpu, time, flags)) 339 return; 340 341 next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max); 342 /* 343 * Do not reduce the frequency if the CPU has not been idle 344 * recently, as the reduction is likely to be premature then. 345 * 346 * Except when the rq is capped by uclamp_max. 347 */ 348 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && 349 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) { 350 next_f = sg_policy->next_freq; 351 352 /* Restore cached freq as next_freq has changed */ 353 sg_policy->cached_raw_freq = cached_freq; 354 } 355 356 if (!sugov_update_next_freq(sg_policy, time, next_f)) 357 return; 358 359 /* 360 * This code runs under rq->lock for the target CPU, so it won't run 361 * concurrently on two different CPUs for the same target and it is not 362 * necessary to acquire the lock in the fast switch case. 363 */ 364 if (sg_policy->policy->fast_switch_enabled) { 365 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 366 } else { 367 raw_spin_lock(&sg_policy->update_lock); 368 sugov_deferred_update(sg_policy); 369 raw_spin_unlock(&sg_policy->update_lock); 370 } 371} 372 373static void sugov_update_single_perf(struct update_util_data *hook, u64 time, 374 unsigned int flags) 375{ 376 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 377 unsigned long prev_util = sg_cpu->util; 378 379 /* 380 * Fall back to the "frequency" path if frequency invariance is not 381 * supported, because the direct mapping between the utilization and 382 * the performance levels depends on the frequency invariance. 383 */ 384 if (!arch_scale_freq_invariant()) { 385 sugov_update_single_freq(hook, time, flags); 386 return; 387 } 388 389 if (!sugov_update_single_common(sg_cpu, time, flags)) 390 return; 391 392 /* 393 * Do not reduce the target performance level if the CPU has not been 394 * idle recently, as the reduction is likely to be premature then. 395 * 396 * Except when the rq is capped by uclamp_max. 397 */ 398 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && 399 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util) 400 sg_cpu->util = prev_util; 401 402 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl), 403 map_util_perf(sg_cpu->util), sg_cpu->max); 404 405 sg_cpu->sg_policy->last_freq_update_time = time; 406} 407 408static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time) 409{ 410 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 411 struct cpufreq_policy *policy = sg_policy->policy; 412 unsigned long util = 0, max = 1; 413 unsigned int j; 414 415 for_each_cpu(j, policy->cpus) { 416 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j); 417 unsigned long j_util, j_max; 418 419 sugov_get_util(j_sg_cpu); 420 sugov_iowait_apply(j_sg_cpu, time); 421 j_util = j_sg_cpu->util; 422 j_max = j_sg_cpu->max; 423 424 if (j_util * max > j_max * util) { 425 util = j_util; 426 max = j_max; 427 } 428 } 429 430 return get_next_freq(sg_policy, util, max); 431} 432 433static void 434sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags) 435{ 436 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util); 437 struct sugov_policy *sg_policy = sg_cpu->sg_policy; 438 unsigned int next_f; 439 440 raw_spin_lock(&sg_policy->update_lock); 441 442 sugov_iowait_boost(sg_cpu, time, flags); 443 sg_cpu->last_update = time; 444 445 ignore_dl_rate_limit(sg_cpu); 446 447 if (sugov_should_update_freq(sg_policy, time)) { 448 next_f = sugov_next_freq_shared(sg_cpu, time); 449 450 if (!sugov_update_next_freq(sg_policy, time, next_f)) 451 goto unlock; 452 453 if (sg_policy->policy->fast_switch_enabled) 454 cpufreq_driver_fast_switch(sg_policy->policy, next_f); 455 else 456 sugov_deferred_update(sg_policy); 457 } 458unlock: 459 raw_spin_unlock(&sg_policy->update_lock); 460} 461 462static void sugov_work(struct kthread_work *work) 463{ 464 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work); 465 unsigned int freq; 466 unsigned long flags; 467 468 /* 469 * Hold sg_policy->update_lock shortly to handle the case where: 470 * in case sg_policy->next_freq is read here, and then updated by 471 * sugov_deferred_update() just before work_in_progress is set to false 472 * here, we may miss queueing the new update. 473 * 474 * Note: If a work was queued after the update_lock is released, 475 * sugov_work() will just be called again by kthread_work code; and the 476 * request will be proceed before the sugov thread sleeps. 477 */ 478 raw_spin_lock_irqsave(&sg_policy->update_lock, flags); 479 freq = sg_policy->next_freq; 480 sg_policy->work_in_progress = false; 481 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags); 482 483 mutex_lock(&sg_policy->work_lock); 484 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L); 485 mutex_unlock(&sg_policy->work_lock); 486} 487 488static void sugov_irq_work(struct irq_work *irq_work) 489{ 490 struct sugov_policy *sg_policy; 491 492 sg_policy = container_of(irq_work, struct sugov_policy, irq_work); 493 494 kthread_queue_work(&sg_policy->worker, &sg_policy->work); 495} 496 497/************************** sysfs interface ************************/ 498 499static struct sugov_tunables *global_tunables; 500static DEFINE_MUTEX(global_tunables_lock); 501 502static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set) 503{ 504 return container_of(attr_set, struct sugov_tunables, attr_set); 505} 506 507static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf) 508{ 509 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 510 511 return sprintf(buf, "%u\n", tunables->rate_limit_us); 512} 513 514static ssize_t 515rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count) 516{ 517 struct sugov_tunables *tunables = to_sugov_tunables(attr_set); 518 struct sugov_policy *sg_policy; 519 unsigned int rate_limit_us; 520 521 if (kstrtouint(buf, 10, &rate_limit_us)) 522 return -EINVAL; 523 524 tunables->rate_limit_us = rate_limit_us; 525 526 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook) 527 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC; 528 529 return count; 530} 531 532static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us); 533 534static struct attribute *sugov_attrs[] = { 535 &rate_limit_us.attr, 536 NULL 537}; 538ATTRIBUTE_GROUPS(sugov); 539 540static void sugov_tunables_free(struct kobject *kobj) 541{ 542 struct gov_attr_set *attr_set = to_gov_attr_set(kobj); 543 544 kfree(to_sugov_tunables(attr_set)); 545} 546 547static struct kobj_type sugov_tunables_ktype = { 548 .default_groups = sugov_groups, 549 .sysfs_ops = &governor_sysfs_ops, 550 .release = &sugov_tunables_free, 551}; 552 553/********************** cpufreq governor interface *********************/ 554 555struct cpufreq_governor schedutil_gov; 556 557static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy) 558{ 559 struct sugov_policy *sg_policy; 560 561 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL); 562 if (!sg_policy) 563 return NULL; 564 565 sg_policy->policy = policy; 566 raw_spin_lock_init(&sg_policy->update_lock); 567 return sg_policy; 568} 569 570static void sugov_policy_free(struct sugov_policy *sg_policy) 571{ 572 kfree(sg_policy); 573} 574 575static int sugov_kthread_create(struct sugov_policy *sg_policy) 576{ 577 struct task_struct *thread; 578 struct sched_attr attr = { 579 .size = sizeof(struct sched_attr), 580 .sched_policy = SCHED_DEADLINE, 581 .sched_flags = SCHED_FLAG_SUGOV, 582 .sched_nice = 0, 583 .sched_priority = 0, 584 /* 585 * Fake (unused) bandwidth; workaround to "fix" 586 * priority inheritance. 587 */ 588 .sched_runtime = 1000000, 589 .sched_deadline = 10000000, 590 .sched_period = 10000000, 591 }; 592 struct cpufreq_policy *policy = sg_policy->policy; 593 int ret; 594 595 /* kthread only required for slow path */ 596 if (policy->fast_switch_enabled) 597 return 0; 598 599 kthread_init_work(&sg_policy->work, sugov_work); 600 kthread_init_worker(&sg_policy->worker); 601 thread = kthread_create(kthread_worker_fn, &sg_policy->worker, 602 "sugov:%d", 603 cpumask_first(policy->related_cpus)); 604 if (IS_ERR(thread)) { 605 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread)); 606 return PTR_ERR(thread); 607 } 608 609 ret = sched_setattr_nocheck(thread, &attr); 610 if (ret) { 611 kthread_stop(thread); 612 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__); 613 return ret; 614 } 615 616 sg_policy->thread = thread; 617 kthread_bind_mask(thread, policy->related_cpus); 618 init_irq_work(&sg_policy->irq_work, sugov_irq_work); 619 mutex_init(&sg_policy->work_lock); 620 621 wake_up_process(thread); 622 623 return 0; 624} 625 626static void sugov_kthread_stop(struct sugov_policy *sg_policy) 627{ 628 /* kthread only required for slow path */ 629 if (sg_policy->policy->fast_switch_enabled) 630 return; 631 632 kthread_flush_worker(&sg_policy->worker); 633 kthread_stop(sg_policy->thread); 634 mutex_destroy(&sg_policy->work_lock); 635} 636 637static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy) 638{ 639 struct sugov_tunables *tunables; 640 641 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); 642 if (tunables) { 643 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook); 644 if (!have_governor_per_policy()) 645 global_tunables = tunables; 646 } 647 return tunables; 648} 649 650static void sugov_clear_global_tunables(void) 651{ 652 if (!have_governor_per_policy()) 653 global_tunables = NULL; 654} 655 656static int sugov_init(struct cpufreq_policy *policy) 657{ 658 struct sugov_policy *sg_policy; 659 struct sugov_tunables *tunables; 660 int ret = 0; 661 662 /* State should be equivalent to EXIT */ 663 if (policy->governor_data) 664 return -EBUSY; 665 666 cpufreq_enable_fast_switch(policy); 667 668 sg_policy = sugov_policy_alloc(policy); 669 if (!sg_policy) { 670 ret = -ENOMEM; 671 goto disable_fast_switch; 672 } 673 674 ret = sugov_kthread_create(sg_policy); 675 if (ret) 676 goto free_sg_policy; 677 678 mutex_lock(&global_tunables_lock); 679 680 if (global_tunables) { 681 if (WARN_ON(have_governor_per_policy())) { 682 ret = -EINVAL; 683 goto stop_kthread; 684 } 685 policy->governor_data = sg_policy; 686 sg_policy->tunables = global_tunables; 687 688 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook); 689 goto out; 690 } 691 692 tunables = sugov_tunables_alloc(sg_policy); 693 if (!tunables) { 694 ret = -ENOMEM; 695 goto stop_kthread; 696 } 697 698 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy); 699 700 policy->governor_data = sg_policy; 701 sg_policy->tunables = tunables; 702 703 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype, 704 get_governor_parent_kobj(policy), "%s", 705 schedutil_gov.name); 706 if (ret) 707 goto fail; 708 709out: 710 mutex_unlock(&global_tunables_lock); 711 return 0; 712 713fail: 714 kobject_put(&tunables->attr_set.kobj); 715 policy->governor_data = NULL; 716 sugov_clear_global_tunables(); 717 718stop_kthread: 719 sugov_kthread_stop(sg_policy); 720 mutex_unlock(&global_tunables_lock); 721 722free_sg_policy: 723 sugov_policy_free(sg_policy); 724 725disable_fast_switch: 726 cpufreq_disable_fast_switch(policy); 727 728 pr_err("initialization failed (error %d)\n", ret); 729 return ret; 730} 731 732static void sugov_exit(struct cpufreq_policy *policy) 733{ 734 struct sugov_policy *sg_policy = policy->governor_data; 735 struct sugov_tunables *tunables = sg_policy->tunables; 736 unsigned int count; 737 738 mutex_lock(&global_tunables_lock); 739 740 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook); 741 policy->governor_data = NULL; 742 if (!count) 743 sugov_clear_global_tunables(); 744 745 mutex_unlock(&global_tunables_lock); 746 747 sugov_kthread_stop(sg_policy); 748 sugov_policy_free(sg_policy); 749 cpufreq_disable_fast_switch(policy); 750} 751 752static int sugov_start(struct cpufreq_policy *policy) 753{ 754 struct sugov_policy *sg_policy = policy->governor_data; 755 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags); 756 unsigned int cpu; 757 758 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC; 759 sg_policy->last_freq_update_time = 0; 760 sg_policy->next_freq = 0; 761 sg_policy->work_in_progress = false; 762 sg_policy->limits_changed = false; 763 sg_policy->cached_raw_freq = 0; 764 765 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS); 766 767 for_each_cpu(cpu, policy->cpus) { 768 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 769 770 memset(sg_cpu, 0, sizeof(*sg_cpu)); 771 sg_cpu->cpu = cpu; 772 sg_cpu->sg_policy = sg_policy; 773 } 774 775 if (policy_is_shared(policy)) 776 uu = sugov_update_shared; 777 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf()) 778 uu = sugov_update_single_perf; 779 else 780 uu = sugov_update_single_freq; 781 782 for_each_cpu(cpu, policy->cpus) { 783 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu); 784 785 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu); 786 } 787 return 0; 788} 789 790static void sugov_stop(struct cpufreq_policy *policy) 791{ 792 struct sugov_policy *sg_policy = policy->governor_data; 793 unsigned int cpu; 794 795 for_each_cpu(cpu, policy->cpus) 796 cpufreq_remove_update_util_hook(cpu); 797 798 synchronize_rcu(); 799 800 if (!policy->fast_switch_enabled) { 801 irq_work_sync(&sg_policy->irq_work); 802 kthread_cancel_work_sync(&sg_policy->work); 803 } 804} 805 806static void sugov_limits(struct cpufreq_policy *policy) 807{ 808 struct sugov_policy *sg_policy = policy->governor_data; 809 810 if (!policy->fast_switch_enabled) { 811 mutex_lock(&sg_policy->work_lock); 812 cpufreq_policy_apply_limits(policy); 813 mutex_unlock(&sg_policy->work_lock); 814 } 815 816 sg_policy->limits_changed = true; 817} 818 819struct cpufreq_governor schedutil_gov = { 820 .name = "schedutil", 821 .owner = THIS_MODULE, 822 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING, 823 .init = sugov_init, 824 .exit = sugov_exit, 825 .start = sugov_start, 826 .stop = sugov_stop, 827 .limits = sugov_limits, 828}; 829 830#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL 831struct cpufreq_governor *cpufreq_default_governor(void) 832{ 833 return &schedutil_gov; 834} 835#endif 836 837cpufreq_governor_init(schedutil_gov); 838 839#ifdef CONFIG_ENERGY_MODEL 840static void rebuild_sd_workfn(struct work_struct *work) 841{ 842 rebuild_sched_domains_energy(); 843} 844static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn); 845 846/* 847 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains 848 * on governor changes to make sure the scheduler knows about it. 849 */ 850void sched_cpufreq_governor_change(struct cpufreq_policy *policy, 851 struct cpufreq_governor *old_gov) 852{ 853 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) { 854 /* 855 * When called from the cpufreq_register_driver() path, the 856 * cpu_hotplug_lock is already held, so use a work item to 857 * avoid nested locking in rebuild_sched_domains(). 858 */ 859 schedule_work(&rebuild_sd_work); 860 } 861 862} 863#endif