fair.c (316769B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23#include <linux/energy_model.h> 24#include <linux/mmap_lock.h> 25#include <linux/hugetlb_inline.h> 26#include <linux/jiffies.h> 27#include <linux/mm_api.h> 28#include <linux/highmem.h> 29#include <linux/spinlock_api.h> 30#include <linux/cpumask_api.h> 31#include <linux/lockdep_api.h> 32#include <linux/softirq.h> 33#include <linux/refcount_api.h> 34#include <linux/topology.h> 35#include <linux/sched/clock.h> 36#include <linux/sched/cond_resched.h> 37#include <linux/sched/cputime.h> 38#include <linux/sched/isolation.h> 39#include <linux/sched/nohz.h> 40 41#include <linux/cpuidle.h> 42#include <linux/interrupt.h> 43#include <linux/mempolicy.h> 44#include <linux/mutex_api.h> 45#include <linux/profile.h> 46#include <linux/psi.h> 47#include <linux/ratelimit.h> 48#include <linux/task_work.h> 49 50#include <asm/switch_to.h> 51 52#include <linux/sched/cond_resched.h> 53 54#include "sched.h" 55#include "stats.h" 56#include "autogroup.h" 57 58/* 59 * Targeted preemption latency for CPU-bound tasks: 60 * 61 * NOTE: this latency value is not the same as the concept of 62 * 'timeslice length' - timeslices in CFS are of variable length 63 * and have no persistent notion like in traditional, time-slice 64 * based scheduling concepts. 65 * 66 * (to see the precise effective timeslice length of your workload, 67 * run vmstat and monitor the context-switches (cs) field) 68 * 69 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 70 */ 71unsigned int sysctl_sched_latency = 6000000ULL; 72static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 73 74/* 75 * The initial- and re-scaling of tunables is configurable 76 * 77 * Options are: 78 * 79 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 80 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 81 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 82 * 83 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 84 */ 85unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 86 87/* 88 * Minimal preemption granularity for CPU-bound tasks: 89 * 90 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 91 */ 92unsigned int sysctl_sched_min_granularity = 750000ULL; 93static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 94 95/* 96 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 97 * Applies only when SCHED_IDLE tasks compete with normal tasks. 98 * 99 * (default: 0.75 msec) 100 */ 101unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 102 103/* 104 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 105 */ 106static unsigned int sched_nr_latency = 8; 107 108/* 109 * After fork, child runs first. If set to 0 (default) then 110 * parent will (try to) run first. 111 */ 112unsigned int sysctl_sched_child_runs_first __read_mostly; 113 114/* 115 * SCHED_OTHER wake-up granularity. 116 * 117 * This option delays the preemption effects of decoupled workloads 118 * and reduces their over-scheduling. Synchronous workloads will still 119 * have immediate wakeup/sleep latencies. 120 * 121 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 122 */ 123unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 124static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 125 126const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 127 128int sched_thermal_decay_shift; 129static int __init setup_sched_thermal_decay_shift(char *str) 130{ 131 int _shift = 0; 132 133 if (kstrtoint(str, 0, &_shift)) 134 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 135 136 sched_thermal_decay_shift = clamp(_shift, 0, 10); 137 return 1; 138} 139__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 140 141#ifdef CONFIG_SMP 142/* 143 * For asym packing, by default the lower numbered CPU has higher priority. 144 */ 145int __weak arch_asym_cpu_priority(int cpu) 146{ 147 return -cpu; 148} 149 150/* 151 * The margin used when comparing utilization with CPU capacity. 152 * 153 * (default: ~20%) 154 */ 155#define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 156 157/* 158 * The margin used when comparing CPU capacities. 159 * is 'cap1' noticeably greater than 'cap2' 160 * 161 * (default: ~5%) 162 */ 163#define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 164#endif 165 166#ifdef CONFIG_CFS_BANDWIDTH 167/* 168 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 169 * each time a cfs_rq requests quota. 170 * 171 * Note: in the case that the slice exceeds the runtime remaining (either due 172 * to consumption or the quota being specified to be smaller than the slice) 173 * we will always only issue the remaining available time. 174 * 175 * (default: 5 msec, units: microseconds) 176 */ 177static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 178#endif 179 180#ifdef CONFIG_SYSCTL 181static struct ctl_table sched_fair_sysctls[] = { 182 { 183 .procname = "sched_child_runs_first", 184 .data = &sysctl_sched_child_runs_first, 185 .maxlen = sizeof(unsigned int), 186 .mode = 0644, 187 .proc_handler = proc_dointvec, 188 }, 189#ifdef CONFIG_CFS_BANDWIDTH 190 { 191 .procname = "sched_cfs_bandwidth_slice_us", 192 .data = &sysctl_sched_cfs_bandwidth_slice, 193 .maxlen = sizeof(unsigned int), 194 .mode = 0644, 195 .proc_handler = proc_dointvec_minmax, 196 .extra1 = SYSCTL_ONE, 197 }, 198#endif 199 {} 200}; 201 202static int __init sched_fair_sysctl_init(void) 203{ 204 register_sysctl_init("kernel", sched_fair_sysctls); 205 return 0; 206} 207late_initcall(sched_fair_sysctl_init); 208#endif 209 210static inline void update_load_add(struct load_weight *lw, unsigned long inc) 211{ 212 lw->weight += inc; 213 lw->inv_weight = 0; 214} 215 216static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 217{ 218 lw->weight -= dec; 219 lw->inv_weight = 0; 220} 221 222static inline void update_load_set(struct load_weight *lw, unsigned long w) 223{ 224 lw->weight = w; 225 lw->inv_weight = 0; 226} 227 228/* 229 * Increase the granularity value when there are more CPUs, 230 * because with more CPUs the 'effective latency' as visible 231 * to users decreases. But the relationship is not linear, 232 * so pick a second-best guess by going with the log2 of the 233 * number of CPUs. 234 * 235 * This idea comes from the SD scheduler of Con Kolivas: 236 */ 237static unsigned int get_update_sysctl_factor(void) 238{ 239 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 240 unsigned int factor; 241 242 switch (sysctl_sched_tunable_scaling) { 243 case SCHED_TUNABLESCALING_NONE: 244 factor = 1; 245 break; 246 case SCHED_TUNABLESCALING_LINEAR: 247 factor = cpus; 248 break; 249 case SCHED_TUNABLESCALING_LOG: 250 default: 251 factor = 1 + ilog2(cpus); 252 break; 253 } 254 255 return factor; 256} 257 258static void update_sysctl(void) 259{ 260 unsigned int factor = get_update_sysctl_factor(); 261 262#define SET_SYSCTL(name) \ 263 (sysctl_##name = (factor) * normalized_sysctl_##name) 264 SET_SYSCTL(sched_min_granularity); 265 SET_SYSCTL(sched_latency); 266 SET_SYSCTL(sched_wakeup_granularity); 267#undef SET_SYSCTL 268} 269 270void __init sched_init_granularity(void) 271{ 272 update_sysctl(); 273} 274 275#define WMULT_CONST (~0U) 276#define WMULT_SHIFT 32 277 278static void __update_inv_weight(struct load_weight *lw) 279{ 280 unsigned long w; 281 282 if (likely(lw->inv_weight)) 283 return; 284 285 w = scale_load_down(lw->weight); 286 287 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 288 lw->inv_weight = 1; 289 else if (unlikely(!w)) 290 lw->inv_weight = WMULT_CONST; 291 else 292 lw->inv_weight = WMULT_CONST / w; 293} 294 295/* 296 * delta_exec * weight / lw.weight 297 * OR 298 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 299 * 300 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 301 * we're guaranteed shift stays positive because inv_weight is guaranteed to 302 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 303 * 304 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 305 * weight/lw.weight <= 1, and therefore our shift will also be positive. 306 */ 307static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 308{ 309 u64 fact = scale_load_down(weight); 310 u32 fact_hi = (u32)(fact >> 32); 311 int shift = WMULT_SHIFT; 312 int fs; 313 314 __update_inv_weight(lw); 315 316 if (unlikely(fact_hi)) { 317 fs = fls(fact_hi); 318 shift -= fs; 319 fact >>= fs; 320 } 321 322 fact = mul_u32_u32(fact, lw->inv_weight); 323 324 fact_hi = (u32)(fact >> 32); 325 if (fact_hi) { 326 fs = fls(fact_hi); 327 shift -= fs; 328 fact >>= fs; 329 } 330 331 return mul_u64_u32_shr(delta_exec, fact, shift); 332} 333 334 335const struct sched_class fair_sched_class; 336 337/************************************************************** 338 * CFS operations on generic schedulable entities: 339 */ 340 341#ifdef CONFIG_FAIR_GROUP_SCHED 342 343/* Walk up scheduling entities hierarchy */ 344#define for_each_sched_entity(se) \ 345 for (; se; se = se->parent) 346 347static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 348{ 349 struct rq *rq = rq_of(cfs_rq); 350 int cpu = cpu_of(rq); 351 352 if (cfs_rq->on_list) 353 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 354 355 cfs_rq->on_list = 1; 356 357 /* 358 * Ensure we either appear before our parent (if already 359 * enqueued) or force our parent to appear after us when it is 360 * enqueued. The fact that we always enqueue bottom-up 361 * reduces this to two cases and a special case for the root 362 * cfs_rq. Furthermore, it also means that we will always reset 363 * tmp_alone_branch either when the branch is connected 364 * to a tree or when we reach the top of the tree 365 */ 366 if (cfs_rq->tg->parent && 367 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 368 /* 369 * If parent is already on the list, we add the child 370 * just before. Thanks to circular linked property of 371 * the list, this means to put the child at the tail 372 * of the list that starts by parent. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 376 /* 377 * The branch is now connected to its tree so we can 378 * reset tmp_alone_branch to the beginning of the 379 * list. 380 */ 381 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 382 return true; 383 } 384 385 if (!cfs_rq->tg->parent) { 386 /* 387 * cfs rq without parent should be put 388 * at the tail of the list. 389 */ 390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 391 &rq->leaf_cfs_rq_list); 392 /* 393 * We have reach the top of a tree so we can reset 394 * tmp_alone_branch to the beginning of the list. 395 */ 396 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 397 return true; 398 } 399 400 /* 401 * The parent has not already been added so we want to 402 * make sure that it will be put after us. 403 * tmp_alone_branch points to the begin of the branch 404 * where we will add parent. 405 */ 406 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 407 /* 408 * update tmp_alone_branch to points to the new begin 409 * of the branch 410 */ 411 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 412 return false; 413} 414 415static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 416{ 417 if (cfs_rq->on_list) { 418 struct rq *rq = rq_of(cfs_rq); 419 420 /* 421 * With cfs_rq being unthrottled/throttled during an enqueue, 422 * it can happen the tmp_alone_branch points the a leaf that 423 * we finally want to del. In this case, tmp_alone_branch moves 424 * to the prev element but it will point to rq->leaf_cfs_rq_list 425 * at the end of the enqueue. 426 */ 427 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 428 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 429 430 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 431 cfs_rq->on_list = 0; 432 } 433} 434 435static inline void assert_list_leaf_cfs_rq(struct rq *rq) 436{ 437 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 438} 439 440/* Iterate thr' all leaf cfs_rq's on a runqueue */ 441#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 442 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 443 leaf_cfs_rq_list) 444 445/* Do the two (enqueued) entities belong to the same group ? */ 446static inline struct cfs_rq * 447is_same_group(struct sched_entity *se, struct sched_entity *pse) 448{ 449 if (se->cfs_rq == pse->cfs_rq) 450 return se->cfs_rq; 451 452 return NULL; 453} 454 455static inline struct sched_entity *parent_entity(struct sched_entity *se) 456{ 457 return se->parent; 458} 459 460static void 461find_matching_se(struct sched_entity **se, struct sched_entity **pse) 462{ 463 int se_depth, pse_depth; 464 465 /* 466 * preemption test can be made between sibling entities who are in the 467 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 468 * both tasks until we find their ancestors who are siblings of common 469 * parent. 470 */ 471 472 /* First walk up until both entities are at same depth */ 473 se_depth = (*se)->depth; 474 pse_depth = (*pse)->depth; 475 476 while (se_depth > pse_depth) { 477 se_depth--; 478 *se = parent_entity(*se); 479 } 480 481 while (pse_depth > se_depth) { 482 pse_depth--; 483 *pse = parent_entity(*pse); 484 } 485 486 while (!is_same_group(*se, *pse)) { 487 *se = parent_entity(*se); 488 *pse = parent_entity(*pse); 489 } 490} 491 492static int tg_is_idle(struct task_group *tg) 493{ 494 return tg->idle > 0; 495} 496 497static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 498{ 499 return cfs_rq->idle > 0; 500} 501 502static int se_is_idle(struct sched_entity *se) 503{ 504 if (entity_is_task(se)) 505 return task_has_idle_policy(task_of(se)); 506 return cfs_rq_is_idle(group_cfs_rq(se)); 507} 508 509#else /* !CONFIG_FAIR_GROUP_SCHED */ 510 511#define for_each_sched_entity(se) \ 512 for (; se; se = NULL) 513 514static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 515{ 516 return true; 517} 518 519static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 520{ 521} 522 523static inline void assert_list_leaf_cfs_rq(struct rq *rq) 524{ 525} 526 527#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 528 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 529 530static inline struct sched_entity *parent_entity(struct sched_entity *se) 531{ 532 return NULL; 533} 534 535static inline void 536find_matching_se(struct sched_entity **se, struct sched_entity **pse) 537{ 538} 539 540static inline int tg_is_idle(struct task_group *tg) 541{ 542 return 0; 543} 544 545static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 546{ 547 return 0; 548} 549 550static int se_is_idle(struct sched_entity *se) 551{ 552 return 0; 553} 554 555#endif /* CONFIG_FAIR_GROUP_SCHED */ 556 557static __always_inline 558void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 559 560/************************************************************** 561 * Scheduling class tree data structure manipulation methods: 562 */ 563 564static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 565{ 566 s64 delta = (s64)(vruntime - max_vruntime); 567 if (delta > 0) 568 max_vruntime = vruntime; 569 570 return max_vruntime; 571} 572 573static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 574{ 575 s64 delta = (s64)(vruntime - min_vruntime); 576 if (delta < 0) 577 min_vruntime = vruntime; 578 579 return min_vruntime; 580} 581 582static inline bool entity_before(struct sched_entity *a, 583 struct sched_entity *b) 584{ 585 return (s64)(a->vruntime - b->vruntime) < 0; 586} 587 588#define __node_2_se(node) \ 589 rb_entry((node), struct sched_entity, run_node) 590 591static void update_min_vruntime(struct cfs_rq *cfs_rq) 592{ 593 struct sched_entity *curr = cfs_rq->curr; 594 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 595 596 u64 vruntime = cfs_rq->min_vruntime; 597 598 if (curr) { 599 if (curr->on_rq) 600 vruntime = curr->vruntime; 601 else 602 curr = NULL; 603 } 604 605 if (leftmost) { /* non-empty tree */ 606 struct sched_entity *se = __node_2_se(leftmost); 607 608 if (!curr) 609 vruntime = se->vruntime; 610 else 611 vruntime = min_vruntime(vruntime, se->vruntime); 612 } 613 614 /* ensure we never gain time by being placed backwards. */ 615 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 616#ifndef CONFIG_64BIT 617 smp_wmb(); 618 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 619#endif 620} 621 622static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 623{ 624 return entity_before(__node_2_se(a), __node_2_se(b)); 625} 626 627/* 628 * Enqueue an entity into the rb-tree: 629 */ 630static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 631{ 632 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 633} 634 635static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 636{ 637 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 638} 639 640struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 641{ 642 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 643 644 if (!left) 645 return NULL; 646 647 return __node_2_se(left); 648} 649 650static struct sched_entity *__pick_next_entity(struct sched_entity *se) 651{ 652 struct rb_node *next = rb_next(&se->run_node); 653 654 if (!next) 655 return NULL; 656 657 return __node_2_se(next); 658} 659 660#ifdef CONFIG_SCHED_DEBUG 661struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 662{ 663 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 664 665 if (!last) 666 return NULL; 667 668 return __node_2_se(last); 669} 670 671/************************************************************** 672 * Scheduling class statistics methods: 673 */ 674 675int sched_update_scaling(void) 676{ 677 unsigned int factor = get_update_sysctl_factor(); 678 679 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 680 sysctl_sched_min_granularity); 681 682#define WRT_SYSCTL(name) \ 683 (normalized_sysctl_##name = sysctl_##name / (factor)) 684 WRT_SYSCTL(sched_min_granularity); 685 WRT_SYSCTL(sched_latency); 686 WRT_SYSCTL(sched_wakeup_granularity); 687#undef WRT_SYSCTL 688 689 return 0; 690} 691#endif 692 693/* 694 * delta /= w 695 */ 696static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 697{ 698 if (unlikely(se->load.weight != NICE_0_LOAD)) 699 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 700 701 return delta; 702} 703 704/* 705 * The idea is to set a period in which each task runs once. 706 * 707 * When there are too many tasks (sched_nr_latency) we have to stretch 708 * this period because otherwise the slices get too small. 709 * 710 * p = (nr <= nl) ? l : l*nr/nl 711 */ 712static u64 __sched_period(unsigned long nr_running) 713{ 714 if (unlikely(nr_running > sched_nr_latency)) 715 return nr_running * sysctl_sched_min_granularity; 716 else 717 return sysctl_sched_latency; 718} 719 720static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 721 722/* 723 * We calculate the wall-time slice from the period by taking a part 724 * proportional to the weight. 725 * 726 * s = p*P[w/rw] 727 */ 728static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 729{ 730 unsigned int nr_running = cfs_rq->nr_running; 731 struct sched_entity *init_se = se; 732 unsigned int min_gran; 733 u64 slice; 734 735 if (sched_feat(ALT_PERIOD)) 736 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 737 738 slice = __sched_period(nr_running + !se->on_rq); 739 740 for_each_sched_entity(se) { 741 struct load_weight *load; 742 struct load_weight lw; 743 struct cfs_rq *qcfs_rq; 744 745 qcfs_rq = cfs_rq_of(se); 746 load = &qcfs_rq->load; 747 748 if (unlikely(!se->on_rq)) { 749 lw = qcfs_rq->load; 750 751 update_load_add(&lw, se->load.weight); 752 load = &lw; 753 } 754 slice = __calc_delta(slice, se->load.weight, load); 755 } 756 757 if (sched_feat(BASE_SLICE)) { 758 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 759 min_gran = sysctl_sched_idle_min_granularity; 760 else 761 min_gran = sysctl_sched_min_granularity; 762 763 slice = max_t(u64, slice, min_gran); 764 } 765 766 return slice; 767} 768 769/* 770 * We calculate the vruntime slice of a to-be-inserted task. 771 * 772 * vs = s/w 773 */ 774static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 775{ 776 return calc_delta_fair(sched_slice(cfs_rq, se), se); 777} 778 779#include "pelt.h" 780#ifdef CONFIG_SMP 781 782static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 783static unsigned long task_h_load(struct task_struct *p); 784static unsigned long capacity_of(int cpu); 785 786/* Give new sched_entity start runnable values to heavy its load in infant time */ 787void init_entity_runnable_average(struct sched_entity *se) 788{ 789 struct sched_avg *sa = &se->avg; 790 791 memset(sa, 0, sizeof(*sa)); 792 793 /* 794 * Tasks are initialized with full load to be seen as heavy tasks until 795 * they get a chance to stabilize to their real load level. 796 * Group entities are initialized with zero load to reflect the fact that 797 * nothing has been attached to the task group yet. 798 */ 799 if (entity_is_task(se)) 800 sa->load_avg = scale_load_down(se->load.weight); 801 802 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 803} 804 805static void attach_entity_cfs_rq(struct sched_entity *se); 806 807/* 808 * With new tasks being created, their initial util_avgs are extrapolated 809 * based on the cfs_rq's current util_avg: 810 * 811 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 812 * 813 * However, in many cases, the above util_avg does not give a desired 814 * value. Moreover, the sum of the util_avgs may be divergent, such 815 * as when the series is a harmonic series. 816 * 817 * To solve this problem, we also cap the util_avg of successive tasks to 818 * only 1/2 of the left utilization budget: 819 * 820 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 821 * 822 * where n denotes the nth task and cpu_scale the CPU capacity. 823 * 824 * For example, for a CPU with 1024 of capacity, a simplest series from 825 * the beginning would be like: 826 * 827 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 828 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 829 * 830 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 831 * if util_avg > util_avg_cap. 832 */ 833void post_init_entity_util_avg(struct task_struct *p) 834{ 835 struct sched_entity *se = &p->se; 836 struct cfs_rq *cfs_rq = cfs_rq_of(se); 837 struct sched_avg *sa = &se->avg; 838 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 839 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 840 841 if (cap > 0) { 842 if (cfs_rq->avg.util_avg != 0) { 843 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 844 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 845 846 if (sa->util_avg > cap) 847 sa->util_avg = cap; 848 } else { 849 sa->util_avg = cap; 850 } 851 } 852 853 sa->runnable_avg = sa->util_avg; 854 855 if (p->sched_class != &fair_sched_class) { 856 /* 857 * For !fair tasks do: 858 * 859 update_cfs_rq_load_avg(now, cfs_rq); 860 attach_entity_load_avg(cfs_rq, se); 861 switched_from_fair(rq, p); 862 * 863 * such that the next switched_to_fair() has the 864 * expected state. 865 */ 866 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 867 return; 868 } 869 870 attach_entity_cfs_rq(se); 871} 872 873#else /* !CONFIG_SMP */ 874void init_entity_runnable_average(struct sched_entity *se) 875{ 876} 877void post_init_entity_util_avg(struct task_struct *p) 878{ 879} 880static void update_tg_load_avg(struct cfs_rq *cfs_rq) 881{ 882} 883#endif /* CONFIG_SMP */ 884 885/* 886 * Update the current task's runtime statistics. 887 */ 888static void update_curr(struct cfs_rq *cfs_rq) 889{ 890 struct sched_entity *curr = cfs_rq->curr; 891 u64 now = rq_clock_task(rq_of(cfs_rq)); 892 u64 delta_exec; 893 894 if (unlikely(!curr)) 895 return; 896 897 delta_exec = now - curr->exec_start; 898 if (unlikely((s64)delta_exec <= 0)) 899 return; 900 901 curr->exec_start = now; 902 903 if (schedstat_enabled()) { 904 struct sched_statistics *stats; 905 906 stats = __schedstats_from_se(curr); 907 __schedstat_set(stats->exec_max, 908 max(delta_exec, stats->exec_max)); 909 } 910 911 curr->sum_exec_runtime += delta_exec; 912 schedstat_add(cfs_rq->exec_clock, delta_exec); 913 914 curr->vruntime += calc_delta_fair(delta_exec, curr); 915 update_min_vruntime(cfs_rq); 916 917 if (entity_is_task(curr)) { 918 struct task_struct *curtask = task_of(curr); 919 920 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 921 cgroup_account_cputime(curtask, delta_exec); 922 account_group_exec_runtime(curtask, delta_exec); 923 } 924 925 account_cfs_rq_runtime(cfs_rq, delta_exec); 926} 927 928static void update_curr_fair(struct rq *rq) 929{ 930 update_curr(cfs_rq_of(&rq->curr->se)); 931} 932 933static inline void 934update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 935{ 936 struct sched_statistics *stats; 937 struct task_struct *p = NULL; 938 939 if (!schedstat_enabled()) 940 return; 941 942 stats = __schedstats_from_se(se); 943 944 if (entity_is_task(se)) 945 p = task_of(se); 946 947 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 948} 949 950static inline void 951update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 952{ 953 struct sched_statistics *stats; 954 struct task_struct *p = NULL; 955 956 if (!schedstat_enabled()) 957 return; 958 959 stats = __schedstats_from_se(se); 960 961 /* 962 * When the sched_schedstat changes from 0 to 1, some sched se 963 * maybe already in the runqueue, the se->statistics.wait_start 964 * will be 0.So it will let the delta wrong. We need to avoid this 965 * scenario. 966 */ 967 if (unlikely(!schedstat_val(stats->wait_start))) 968 return; 969 970 if (entity_is_task(se)) 971 p = task_of(se); 972 973 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 974} 975 976static inline void 977update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 978{ 979 struct sched_statistics *stats; 980 struct task_struct *tsk = NULL; 981 982 if (!schedstat_enabled()) 983 return; 984 985 stats = __schedstats_from_se(se); 986 987 if (entity_is_task(se)) 988 tsk = task_of(se); 989 990 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 991} 992 993/* 994 * Task is being enqueued - update stats: 995 */ 996static inline void 997update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 998{ 999 if (!schedstat_enabled()) 1000 return; 1001 1002 /* 1003 * Are we enqueueing a waiting task? (for current tasks 1004 * a dequeue/enqueue event is a NOP) 1005 */ 1006 if (se != cfs_rq->curr) 1007 update_stats_wait_start_fair(cfs_rq, se); 1008 1009 if (flags & ENQUEUE_WAKEUP) 1010 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1011} 1012 1013static inline void 1014update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1015{ 1016 1017 if (!schedstat_enabled()) 1018 return; 1019 1020 /* 1021 * Mark the end of the wait period if dequeueing a 1022 * waiting task: 1023 */ 1024 if (se != cfs_rq->curr) 1025 update_stats_wait_end_fair(cfs_rq, se); 1026 1027 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1028 struct task_struct *tsk = task_of(se); 1029 unsigned int state; 1030 1031 /* XXX racy against TTWU */ 1032 state = READ_ONCE(tsk->__state); 1033 if (state & TASK_INTERRUPTIBLE) 1034 __schedstat_set(tsk->stats.sleep_start, 1035 rq_clock(rq_of(cfs_rq))); 1036 if (state & TASK_UNINTERRUPTIBLE) 1037 __schedstat_set(tsk->stats.block_start, 1038 rq_clock(rq_of(cfs_rq))); 1039 } 1040} 1041 1042/* 1043 * We are picking a new current task - update its stats: 1044 */ 1045static inline void 1046update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1047{ 1048 /* 1049 * We are starting a new run period: 1050 */ 1051 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1052} 1053 1054/************************************************** 1055 * Scheduling class queueing methods: 1056 */ 1057 1058#ifdef CONFIG_NUMA_BALANCING 1059/* 1060 * Approximate time to scan a full NUMA task in ms. The task scan period is 1061 * calculated based on the tasks virtual memory size and 1062 * numa_balancing_scan_size. 1063 */ 1064unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1065unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1066 1067/* Portion of address space to scan in MB */ 1068unsigned int sysctl_numa_balancing_scan_size = 256; 1069 1070/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1071unsigned int sysctl_numa_balancing_scan_delay = 1000; 1072 1073struct numa_group { 1074 refcount_t refcount; 1075 1076 spinlock_t lock; /* nr_tasks, tasks */ 1077 int nr_tasks; 1078 pid_t gid; 1079 int active_nodes; 1080 1081 struct rcu_head rcu; 1082 unsigned long total_faults; 1083 unsigned long max_faults_cpu; 1084 /* 1085 * faults[] array is split into two regions: faults_mem and faults_cpu. 1086 * 1087 * Faults_cpu is used to decide whether memory should move 1088 * towards the CPU. As a consequence, these stats are weighted 1089 * more by CPU use than by memory faults. 1090 */ 1091 unsigned long faults[]; 1092}; 1093 1094/* 1095 * For functions that can be called in multiple contexts that permit reading 1096 * ->numa_group (see struct task_struct for locking rules). 1097 */ 1098static struct numa_group *deref_task_numa_group(struct task_struct *p) 1099{ 1100 return rcu_dereference_check(p->numa_group, p == current || 1101 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1102} 1103 1104static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1105{ 1106 return rcu_dereference_protected(p->numa_group, p == current); 1107} 1108 1109static inline unsigned long group_faults_priv(struct numa_group *ng); 1110static inline unsigned long group_faults_shared(struct numa_group *ng); 1111 1112static unsigned int task_nr_scan_windows(struct task_struct *p) 1113{ 1114 unsigned long rss = 0; 1115 unsigned long nr_scan_pages; 1116 1117 /* 1118 * Calculations based on RSS as non-present and empty pages are skipped 1119 * by the PTE scanner and NUMA hinting faults should be trapped based 1120 * on resident pages 1121 */ 1122 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1123 rss = get_mm_rss(p->mm); 1124 if (!rss) 1125 rss = nr_scan_pages; 1126 1127 rss = round_up(rss, nr_scan_pages); 1128 return rss / nr_scan_pages; 1129} 1130 1131/* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1132#define MAX_SCAN_WINDOW 2560 1133 1134static unsigned int task_scan_min(struct task_struct *p) 1135{ 1136 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1137 unsigned int scan, floor; 1138 unsigned int windows = 1; 1139 1140 if (scan_size < MAX_SCAN_WINDOW) 1141 windows = MAX_SCAN_WINDOW / scan_size; 1142 floor = 1000 / windows; 1143 1144 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1145 return max_t(unsigned int, floor, scan); 1146} 1147 1148static unsigned int task_scan_start(struct task_struct *p) 1149{ 1150 unsigned long smin = task_scan_min(p); 1151 unsigned long period = smin; 1152 struct numa_group *ng; 1153 1154 /* Scale the maximum scan period with the amount of shared memory. */ 1155 rcu_read_lock(); 1156 ng = rcu_dereference(p->numa_group); 1157 if (ng) { 1158 unsigned long shared = group_faults_shared(ng); 1159 unsigned long private = group_faults_priv(ng); 1160 1161 period *= refcount_read(&ng->refcount); 1162 period *= shared + 1; 1163 period /= private + shared + 1; 1164 } 1165 rcu_read_unlock(); 1166 1167 return max(smin, period); 1168} 1169 1170static unsigned int task_scan_max(struct task_struct *p) 1171{ 1172 unsigned long smin = task_scan_min(p); 1173 unsigned long smax; 1174 struct numa_group *ng; 1175 1176 /* Watch for min being lower than max due to floor calculations */ 1177 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1178 1179 /* Scale the maximum scan period with the amount of shared memory. */ 1180 ng = deref_curr_numa_group(p); 1181 if (ng) { 1182 unsigned long shared = group_faults_shared(ng); 1183 unsigned long private = group_faults_priv(ng); 1184 unsigned long period = smax; 1185 1186 period *= refcount_read(&ng->refcount); 1187 period *= shared + 1; 1188 period /= private + shared + 1; 1189 1190 smax = max(smax, period); 1191 } 1192 1193 return max(smin, smax); 1194} 1195 1196static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1197{ 1198 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1199 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1200} 1201 1202static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1203{ 1204 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1205 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1206} 1207 1208/* Shared or private faults. */ 1209#define NR_NUMA_HINT_FAULT_TYPES 2 1210 1211/* Memory and CPU locality */ 1212#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1213 1214/* Averaged statistics, and temporary buffers. */ 1215#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1216 1217pid_t task_numa_group_id(struct task_struct *p) 1218{ 1219 struct numa_group *ng; 1220 pid_t gid = 0; 1221 1222 rcu_read_lock(); 1223 ng = rcu_dereference(p->numa_group); 1224 if (ng) 1225 gid = ng->gid; 1226 rcu_read_unlock(); 1227 1228 return gid; 1229} 1230 1231/* 1232 * The averaged statistics, shared & private, memory & CPU, 1233 * occupy the first half of the array. The second half of the 1234 * array is for current counters, which are averaged into the 1235 * first set by task_numa_placement. 1236 */ 1237static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1238{ 1239 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1240} 1241 1242static inline unsigned long task_faults(struct task_struct *p, int nid) 1243{ 1244 if (!p->numa_faults) 1245 return 0; 1246 1247 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1248 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1249} 1250 1251static inline unsigned long group_faults(struct task_struct *p, int nid) 1252{ 1253 struct numa_group *ng = deref_task_numa_group(p); 1254 1255 if (!ng) 1256 return 0; 1257 1258 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1259 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1260} 1261 1262static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1263{ 1264 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1265 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1266} 1267 1268static inline unsigned long group_faults_priv(struct numa_group *ng) 1269{ 1270 unsigned long faults = 0; 1271 int node; 1272 1273 for_each_online_node(node) { 1274 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1275 } 1276 1277 return faults; 1278} 1279 1280static inline unsigned long group_faults_shared(struct numa_group *ng) 1281{ 1282 unsigned long faults = 0; 1283 int node; 1284 1285 for_each_online_node(node) { 1286 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1287 } 1288 1289 return faults; 1290} 1291 1292/* 1293 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1294 * considered part of a numa group's pseudo-interleaving set. Migrations 1295 * between these nodes are slowed down, to allow things to settle down. 1296 */ 1297#define ACTIVE_NODE_FRACTION 3 1298 1299static bool numa_is_active_node(int nid, struct numa_group *ng) 1300{ 1301 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1302} 1303 1304/* Handle placement on systems where not all nodes are directly connected. */ 1305static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1306 int lim_dist, bool task) 1307{ 1308 unsigned long score = 0; 1309 int node, max_dist; 1310 1311 /* 1312 * All nodes are directly connected, and the same distance 1313 * from each other. No need for fancy placement algorithms. 1314 */ 1315 if (sched_numa_topology_type == NUMA_DIRECT) 1316 return 0; 1317 1318 /* sched_max_numa_distance may be changed in parallel. */ 1319 max_dist = READ_ONCE(sched_max_numa_distance); 1320 /* 1321 * This code is called for each node, introducing N^2 complexity, 1322 * which should be ok given the number of nodes rarely exceeds 8. 1323 */ 1324 for_each_online_node(node) { 1325 unsigned long faults; 1326 int dist = node_distance(nid, node); 1327 1328 /* 1329 * The furthest away nodes in the system are not interesting 1330 * for placement; nid was already counted. 1331 */ 1332 if (dist >= max_dist || node == nid) 1333 continue; 1334 1335 /* 1336 * On systems with a backplane NUMA topology, compare groups 1337 * of nodes, and move tasks towards the group with the most 1338 * memory accesses. When comparing two nodes at distance 1339 * "hoplimit", only nodes closer by than "hoplimit" are part 1340 * of each group. Skip other nodes. 1341 */ 1342 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1343 continue; 1344 1345 /* Add up the faults from nearby nodes. */ 1346 if (task) 1347 faults = task_faults(p, node); 1348 else 1349 faults = group_faults(p, node); 1350 1351 /* 1352 * On systems with a glueless mesh NUMA topology, there are 1353 * no fixed "groups of nodes". Instead, nodes that are not 1354 * directly connected bounce traffic through intermediate 1355 * nodes; a numa_group can occupy any set of nodes. 1356 * The further away a node is, the less the faults count. 1357 * This seems to result in good task placement. 1358 */ 1359 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1360 faults *= (max_dist - dist); 1361 faults /= (max_dist - LOCAL_DISTANCE); 1362 } 1363 1364 score += faults; 1365 } 1366 1367 return score; 1368} 1369 1370/* 1371 * These return the fraction of accesses done by a particular task, or 1372 * task group, on a particular numa node. The group weight is given a 1373 * larger multiplier, in order to group tasks together that are almost 1374 * evenly spread out between numa nodes. 1375 */ 1376static inline unsigned long task_weight(struct task_struct *p, int nid, 1377 int dist) 1378{ 1379 unsigned long faults, total_faults; 1380 1381 if (!p->numa_faults) 1382 return 0; 1383 1384 total_faults = p->total_numa_faults; 1385 1386 if (!total_faults) 1387 return 0; 1388 1389 faults = task_faults(p, nid); 1390 faults += score_nearby_nodes(p, nid, dist, true); 1391 1392 return 1000 * faults / total_faults; 1393} 1394 1395static inline unsigned long group_weight(struct task_struct *p, int nid, 1396 int dist) 1397{ 1398 struct numa_group *ng = deref_task_numa_group(p); 1399 unsigned long faults, total_faults; 1400 1401 if (!ng) 1402 return 0; 1403 1404 total_faults = ng->total_faults; 1405 1406 if (!total_faults) 1407 return 0; 1408 1409 faults = group_faults(p, nid); 1410 faults += score_nearby_nodes(p, nid, dist, false); 1411 1412 return 1000 * faults / total_faults; 1413} 1414 1415bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1416 int src_nid, int dst_cpu) 1417{ 1418 struct numa_group *ng = deref_curr_numa_group(p); 1419 int dst_nid = cpu_to_node(dst_cpu); 1420 int last_cpupid, this_cpupid; 1421 1422 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1423 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1424 1425 /* 1426 * Allow first faults or private faults to migrate immediately early in 1427 * the lifetime of a task. The magic number 4 is based on waiting for 1428 * two full passes of the "multi-stage node selection" test that is 1429 * executed below. 1430 */ 1431 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1432 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1433 return true; 1434 1435 /* 1436 * Multi-stage node selection is used in conjunction with a periodic 1437 * migration fault to build a temporal task<->page relation. By using 1438 * a two-stage filter we remove short/unlikely relations. 1439 * 1440 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1441 * a task's usage of a particular page (n_p) per total usage of this 1442 * page (n_t) (in a given time-span) to a probability. 1443 * 1444 * Our periodic faults will sample this probability and getting the 1445 * same result twice in a row, given these samples are fully 1446 * independent, is then given by P(n)^2, provided our sample period 1447 * is sufficiently short compared to the usage pattern. 1448 * 1449 * This quadric squishes small probabilities, making it less likely we 1450 * act on an unlikely task<->page relation. 1451 */ 1452 if (!cpupid_pid_unset(last_cpupid) && 1453 cpupid_to_nid(last_cpupid) != dst_nid) 1454 return false; 1455 1456 /* Always allow migrate on private faults */ 1457 if (cpupid_match_pid(p, last_cpupid)) 1458 return true; 1459 1460 /* A shared fault, but p->numa_group has not been set up yet. */ 1461 if (!ng) 1462 return true; 1463 1464 /* 1465 * Destination node is much more heavily used than the source 1466 * node? Allow migration. 1467 */ 1468 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1469 ACTIVE_NODE_FRACTION) 1470 return true; 1471 1472 /* 1473 * Distribute memory according to CPU & memory use on each node, 1474 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1475 * 1476 * faults_cpu(dst) 3 faults_cpu(src) 1477 * --------------- * - > --------------- 1478 * faults_mem(dst) 4 faults_mem(src) 1479 */ 1480 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1481 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1482} 1483 1484/* 1485 * 'numa_type' describes the node at the moment of load balancing. 1486 */ 1487enum numa_type { 1488 /* The node has spare capacity that can be used to run more tasks. */ 1489 node_has_spare = 0, 1490 /* 1491 * The node is fully used and the tasks don't compete for more CPU 1492 * cycles. Nevertheless, some tasks might wait before running. 1493 */ 1494 node_fully_busy, 1495 /* 1496 * The node is overloaded and can't provide expected CPU cycles to all 1497 * tasks. 1498 */ 1499 node_overloaded 1500}; 1501 1502/* Cached statistics for all CPUs within a node */ 1503struct numa_stats { 1504 unsigned long load; 1505 unsigned long runnable; 1506 unsigned long util; 1507 /* Total compute capacity of CPUs on a node */ 1508 unsigned long compute_capacity; 1509 unsigned int nr_running; 1510 unsigned int weight; 1511 enum numa_type node_type; 1512 int idle_cpu; 1513}; 1514 1515static inline bool is_core_idle(int cpu) 1516{ 1517#ifdef CONFIG_SCHED_SMT 1518 int sibling; 1519 1520 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1521 if (cpu == sibling) 1522 continue; 1523 1524 if (!idle_cpu(sibling)) 1525 return false; 1526 } 1527#endif 1528 1529 return true; 1530} 1531 1532struct task_numa_env { 1533 struct task_struct *p; 1534 1535 int src_cpu, src_nid; 1536 int dst_cpu, dst_nid; 1537 int imb_numa_nr; 1538 1539 struct numa_stats src_stats, dst_stats; 1540 1541 int imbalance_pct; 1542 int dist; 1543 1544 struct task_struct *best_task; 1545 long best_imp; 1546 int best_cpu; 1547}; 1548 1549static unsigned long cpu_load(struct rq *rq); 1550static unsigned long cpu_runnable(struct rq *rq); 1551static inline long adjust_numa_imbalance(int imbalance, 1552 int dst_running, int imb_numa_nr); 1553 1554static inline enum 1555numa_type numa_classify(unsigned int imbalance_pct, 1556 struct numa_stats *ns) 1557{ 1558 if ((ns->nr_running > ns->weight) && 1559 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1560 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1561 return node_overloaded; 1562 1563 if ((ns->nr_running < ns->weight) || 1564 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1565 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1566 return node_has_spare; 1567 1568 return node_fully_busy; 1569} 1570 1571#ifdef CONFIG_SCHED_SMT 1572/* Forward declarations of select_idle_sibling helpers */ 1573static inline bool test_idle_cores(int cpu, bool def); 1574static inline int numa_idle_core(int idle_core, int cpu) 1575{ 1576 if (!static_branch_likely(&sched_smt_present) || 1577 idle_core >= 0 || !test_idle_cores(cpu, false)) 1578 return idle_core; 1579 1580 /* 1581 * Prefer cores instead of packing HT siblings 1582 * and triggering future load balancing. 1583 */ 1584 if (is_core_idle(cpu)) 1585 idle_core = cpu; 1586 1587 return idle_core; 1588} 1589#else 1590static inline int numa_idle_core(int idle_core, int cpu) 1591{ 1592 return idle_core; 1593} 1594#endif 1595 1596/* 1597 * Gather all necessary information to make NUMA balancing placement 1598 * decisions that are compatible with standard load balancer. This 1599 * borrows code and logic from update_sg_lb_stats but sharing a 1600 * common implementation is impractical. 1601 */ 1602static void update_numa_stats(struct task_numa_env *env, 1603 struct numa_stats *ns, int nid, 1604 bool find_idle) 1605{ 1606 int cpu, idle_core = -1; 1607 1608 memset(ns, 0, sizeof(*ns)); 1609 ns->idle_cpu = -1; 1610 1611 rcu_read_lock(); 1612 for_each_cpu(cpu, cpumask_of_node(nid)) { 1613 struct rq *rq = cpu_rq(cpu); 1614 1615 ns->load += cpu_load(rq); 1616 ns->runnable += cpu_runnable(rq); 1617 ns->util += cpu_util_cfs(cpu); 1618 ns->nr_running += rq->cfs.h_nr_running; 1619 ns->compute_capacity += capacity_of(cpu); 1620 1621 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1622 if (READ_ONCE(rq->numa_migrate_on) || 1623 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1624 continue; 1625 1626 if (ns->idle_cpu == -1) 1627 ns->idle_cpu = cpu; 1628 1629 idle_core = numa_idle_core(idle_core, cpu); 1630 } 1631 } 1632 rcu_read_unlock(); 1633 1634 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1635 1636 ns->node_type = numa_classify(env->imbalance_pct, ns); 1637 1638 if (idle_core >= 0) 1639 ns->idle_cpu = idle_core; 1640} 1641 1642static void task_numa_assign(struct task_numa_env *env, 1643 struct task_struct *p, long imp) 1644{ 1645 struct rq *rq = cpu_rq(env->dst_cpu); 1646 1647 /* Check if run-queue part of active NUMA balance. */ 1648 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1649 int cpu; 1650 int start = env->dst_cpu; 1651 1652 /* Find alternative idle CPU. */ 1653 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1654 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1655 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1656 continue; 1657 } 1658 1659 env->dst_cpu = cpu; 1660 rq = cpu_rq(env->dst_cpu); 1661 if (!xchg(&rq->numa_migrate_on, 1)) 1662 goto assign; 1663 } 1664 1665 /* Failed to find an alternative idle CPU */ 1666 return; 1667 } 1668 1669assign: 1670 /* 1671 * Clear previous best_cpu/rq numa-migrate flag, since task now 1672 * found a better CPU to move/swap. 1673 */ 1674 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1675 rq = cpu_rq(env->best_cpu); 1676 WRITE_ONCE(rq->numa_migrate_on, 0); 1677 } 1678 1679 if (env->best_task) 1680 put_task_struct(env->best_task); 1681 if (p) 1682 get_task_struct(p); 1683 1684 env->best_task = p; 1685 env->best_imp = imp; 1686 env->best_cpu = env->dst_cpu; 1687} 1688 1689static bool load_too_imbalanced(long src_load, long dst_load, 1690 struct task_numa_env *env) 1691{ 1692 long imb, old_imb; 1693 long orig_src_load, orig_dst_load; 1694 long src_capacity, dst_capacity; 1695 1696 /* 1697 * The load is corrected for the CPU capacity available on each node. 1698 * 1699 * src_load dst_load 1700 * ------------ vs --------- 1701 * src_capacity dst_capacity 1702 */ 1703 src_capacity = env->src_stats.compute_capacity; 1704 dst_capacity = env->dst_stats.compute_capacity; 1705 1706 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1707 1708 orig_src_load = env->src_stats.load; 1709 orig_dst_load = env->dst_stats.load; 1710 1711 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1712 1713 /* Would this change make things worse? */ 1714 return (imb > old_imb); 1715} 1716 1717/* 1718 * Maximum NUMA importance can be 1998 (2*999); 1719 * SMALLIMP @ 30 would be close to 1998/64. 1720 * Used to deter task migration. 1721 */ 1722#define SMALLIMP 30 1723 1724/* 1725 * This checks if the overall compute and NUMA accesses of the system would 1726 * be improved if the source tasks was migrated to the target dst_cpu taking 1727 * into account that it might be best if task running on the dst_cpu should 1728 * be exchanged with the source task 1729 */ 1730static bool task_numa_compare(struct task_numa_env *env, 1731 long taskimp, long groupimp, bool maymove) 1732{ 1733 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1734 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1735 long imp = p_ng ? groupimp : taskimp; 1736 struct task_struct *cur; 1737 long src_load, dst_load; 1738 int dist = env->dist; 1739 long moveimp = imp; 1740 long load; 1741 bool stopsearch = false; 1742 1743 if (READ_ONCE(dst_rq->numa_migrate_on)) 1744 return false; 1745 1746 rcu_read_lock(); 1747 cur = rcu_dereference(dst_rq->curr); 1748 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1749 cur = NULL; 1750 1751 /* 1752 * Because we have preemption enabled we can get migrated around and 1753 * end try selecting ourselves (current == env->p) as a swap candidate. 1754 */ 1755 if (cur == env->p) { 1756 stopsearch = true; 1757 goto unlock; 1758 } 1759 1760 if (!cur) { 1761 if (maymove && moveimp >= env->best_imp) 1762 goto assign; 1763 else 1764 goto unlock; 1765 } 1766 1767 /* Skip this swap candidate if cannot move to the source cpu. */ 1768 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1769 goto unlock; 1770 1771 /* 1772 * Skip this swap candidate if it is not moving to its preferred 1773 * node and the best task is. 1774 */ 1775 if (env->best_task && 1776 env->best_task->numa_preferred_nid == env->src_nid && 1777 cur->numa_preferred_nid != env->src_nid) { 1778 goto unlock; 1779 } 1780 1781 /* 1782 * "imp" is the fault differential for the source task between the 1783 * source and destination node. Calculate the total differential for 1784 * the source task and potential destination task. The more negative 1785 * the value is, the more remote accesses that would be expected to 1786 * be incurred if the tasks were swapped. 1787 * 1788 * If dst and source tasks are in the same NUMA group, or not 1789 * in any group then look only at task weights. 1790 */ 1791 cur_ng = rcu_dereference(cur->numa_group); 1792 if (cur_ng == p_ng) { 1793 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1794 task_weight(cur, env->dst_nid, dist); 1795 /* 1796 * Add some hysteresis to prevent swapping the 1797 * tasks within a group over tiny differences. 1798 */ 1799 if (cur_ng) 1800 imp -= imp / 16; 1801 } else { 1802 /* 1803 * Compare the group weights. If a task is all by itself 1804 * (not part of a group), use the task weight instead. 1805 */ 1806 if (cur_ng && p_ng) 1807 imp += group_weight(cur, env->src_nid, dist) - 1808 group_weight(cur, env->dst_nid, dist); 1809 else 1810 imp += task_weight(cur, env->src_nid, dist) - 1811 task_weight(cur, env->dst_nid, dist); 1812 } 1813 1814 /* Discourage picking a task already on its preferred node */ 1815 if (cur->numa_preferred_nid == env->dst_nid) 1816 imp -= imp / 16; 1817 1818 /* 1819 * Encourage picking a task that moves to its preferred node. 1820 * This potentially makes imp larger than it's maximum of 1821 * 1998 (see SMALLIMP and task_weight for why) but in this 1822 * case, it does not matter. 1823 */ 1824 if (cur->numa_preferred_nid == env->src_nid) 1825 imp += imp / 8; 1826 1827 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1828 imp = moveimp; 1829 cur = NULL; 1830 goto assign; 1831 } 1832 1833 /* 1834 * Prefer swapping with a task moving to its preferred node over a 1835 * task that is not. 1836 */ 1837 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1838 env->best_task->numa_preferred_nid != env->src_nid) { 1839 goto assign; 1840 } 1841 1842 /* 1843 * If the NUMA importance is less than SMALLIMP, 1844 * task migration might only result in ping pong 1845 * of tasks and also hurt performance due to cache 1846 * misses. 1847 */ 1848 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1849 goto unlock; 1850 1851 /* 1852 * In the overloaded case, try and keep the load balanced. 1853 */ 1854 load = task_h_load(env->p) - task_h_load(cur); 1855 if (!load) 1856 goto assign; 1857 1858 dst_load = env->dst_stats.load + load; 1859 src_load = env->src_stats.load - load; 1860 1861 if (load_too_imbalanced(src_load, dst_load, env)) 1862 goto unlock; 1863 1864assign: 1865 /* Evaluate an idle CPU for a task numa move. */ 1866 if (!cur) { 1867 int cpu = env->dst_stats.idle_cpu; 1868 1869 /* Nothing cached so current CPU went idle since the search. */ 1870 if (cpu < 0) 1871 cpu = env->dst_cpu; 1872 1873 /* 1874 * If the CPU is no longer truly idle and the previous best CPU 1875 * is, keep using it. 1876 */ 1877 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1878 idle_cpu(env->best_cpu)) { 1879 cpu = env->best_cpu; 1880 } 1881 1882 env->dst_cpu = cpu; 1883 } 1884 1885 task_numa_assign(env, cur, imp); 1886 1887 /* 1888 * If a move to idle is allowed because there is capacity or load 1889 * balance improves then stop the search. While a better swap 1890 * candidate may exist, a search is not free. 1891 */ 1892 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1893 stopsearch = true; 1894 1895 /* 1896 * If a swap candidate must be identified and the current best task 1897 * moves its preferred node then stop the search. 1898 */ 1899 if (!maymove && env->best_task && 1900 env->best_task->numa_preferred_nid == env->src_nid) { 1901 stopsearch = true; 1902 } 1903unlock: 1904 rcu_read_unlock(); 1905 1906 return stopsearch; 1907} 1908 1909static void task_numa_find_cpu(struct task_numa_env *env, 1910 long taskimp, long groupimp) 1911{ 1912 bool maymove = false; 1913 int cpu; 1914 1915 /* 1916 * If dst node has spare capacity, then check if there is an 1917 * imbalance that would be overruled by the load balancer. 1918 */ 1919 if (env->dst_stats.node_type == node_has_spare) { 1920 unsigned int imbalance; 1921 int src_running, dst_running; 1922 1923 /* 1924 * Would movement cause an imbalance? Note that if src has 1925 * more running tasks that the imbalance is ignored as the 1926 * move improves the imbalance from the perspective of the 1927 * CPU load balancer. 1928 * */ 1929 src_running = env->src_stats.nr_running - 1; 1930 dst_running = env->dst_stats.nr_running + 1; 1931 imbalance = max(0, dst_running - src_running); 1932 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1933 env->imb_numa_nr); 1934 1935 /* Use idle CPU if there is no imbalance */ 1936 if (!imbalance) { 1937 maymove = true; 1938 if (env->dst_stats.idle_cpu >= 0) { 1939 env->dst_cpu = env->dst_stats.idle_cpu; 1940 task_numa_assign(env, NULL, 0); 1941 return; 1942 } 1943 } 1944 } else { 1945 long src_load, dst_load, load; 1946 /* 1947 * If the improvement from just moving env->p direction is better 1948 * than swapping tasks around, check if a move is possible. 1949 */ 1950 load = task_h_load(env->p); 1951 dst_load = env->dst_stats.load + load; 1952 src_load = env->src_stats.load - load; 1953 maymove = !load_too_imbalanced(src_load, dst_load, env); 1954 } 1955 1956 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1957 /* Skip this CPU if the source task cannot migrate */ 1958 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1959 continue; 1960 1961 env->dst_cpu = cpu; 1962 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1963 break; 1964 } 1965} 1966 1967static int task_numa_migrate(struct task_struct *p) 1968{ 1969 struct task_numa_env env = { 1970 .p = p, 1971 1972 .src_cpu = task_cpu(p), 1973 .src_nid = task_node(p), 1974 1975 .imbalance_pct = 112, 1976 1977 .best_task = NULL, 1978 .best_imp = 0, 1979 .best_cpu = -1, 1980 }; 1981 unsigned long taskweight, groupweight; 1982 struct sched_domain *sd; 1983 long taskimp, groupimp; 1984 struct numa_group *ng; 1985 struct rq *best_rq; 1986 int nid, ret, dist; 1987 1988 /* 1989 * Pick the lowest SD_NUMA domain, as that would have the smallest 1990 * imbalance and would be the first to start moving tasks about. 1991 * 1992 * And we want to avoid any moving of tasks about, as that would create 1993 * random movement of tasks -- counter the numa conditions we're trying 1994 * to satisfy here. 1995 */ 1996 rcu_read_lock(); 1997 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1998 if (sd) { 1999 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2000 env.imb_numa_nr = sd->imb_numa_nr; 2001 } 2002 rcu_read_unlock(); 2003 2004 /* 2005 * Cpusets can break the scheduler domain tree into smaller 2006 * balance domains, some of which do not cross NUMA boundaries. 2007 * Tasks that are "trapped" in such domains cannot be migrated 2008 * elsewhere, so there is no point in (re)trying. 2009 */ 2010 if (unlikely(!sd)) { 2011 sched_setnuma(p, task_node(p)); 2012 return -EINVAL; 2013 } 2014 2015 env.dst_nid = p->numa_preferred_nid; 2016 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2017 taskweight = task_weight(p, env.src_nid, dist); 2018 groupweight = group_weight(p, env.src_nid, dist); 2019 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2020 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2021 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2022 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2023 2024 /* Try to find a spot on the preferred nid. */ 2025 task_numa_find_cpu(&env, taskimp, groupimp); 2026 2027 /* 2028 * Look at other nodes in these cases: 2029 * - there is no space available on the preferred_nid 2030 * - the task is part of a numa_group that is interleaved across 2031 * multiple NUMA nodes; in order to better consolidate the group, 2032 * we need to check other locations. 2033 */ 2034 ng = deref_curr_numa_group(p); 2035 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2036 for_each_node_state(nid, N_CPU) { 2037 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2038 continue; 2039 2040 dist = node_distance(env.src_nid, env.dst_nid); 2041 if (sched_numa_topology_type == NUMA_BACKPLANE && 2042 dist != env.dist) { 2043 taskweight = task_weight(p, env.src_nid, dist); 2044 groupweight = group_weight(p, env.src_nid, dist); 2045 } 2046 2047 /* Only consider nodes where both task and groups benefit */ 2048 taskimp = task_weight(p, nid, dist) - taskweight; 2049 groupimp = group_weight(p, nid, dist) - groupweight; 2050 if (taskimp < 0 && groupimp < 0) 2051 continue; 2052 2053 env.dist = dist; 2054 env.dst_nid = nid; 2055 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2056 task_numa_find_cpu(&env, taskimp, groupimp); 2057 } 2058 } 2059 2060 /* 2061 * If the task is part of a workload that spans multiple NUMA nodes, 2062 * and is migrating into one of the workload's active nodes, remember 2063 * this node as the task's preferred numa node, so the workload can 2064 * settle down. 2065 * A task that migrated to a second choice node will be better off 2066 * trying for a better one later. Do not set the preferred node here. 2067 */ 2068 if (ng) { 2069 if (env.best_cpu == -1) 2070 nid = env.src_nid; 2071 else 2072 nid = cpu_to_node(env.best_cpu); 2073 2074 if (nid != p->numa_preferred_nid) 2075 sched_setnuma(p, nid); 2076 } 2077 2078 /* No better CPU than the current one was found. */ 2079 if (env.best_cpu == -1) { 2080 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2081 return -EAGAIN; 2082 } 2083 2084 best_rq = cpu_rq(env.best_cpu); 2085 if (env.best_task == NULL) { 2086 ret = migrate_task_to(p, env.best_cpu); 2087 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2088 if (ret != 0) 2089 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2090 return ret; 2091 } 2092 2093 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2094 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2095 2096 if (ret != 0) 2097 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2098 put_task_struct(env.best_task); 2099 return ret; 2100} 2101 2102/* Attempt to migrate a task to a CPU on the preferred node. */ 2103static void numa_migrate_preferred(struct task_struct *p) 2104{ 2105 unsigned long interval = HZ; 2106 2107 /* This task has no NUMA fault statistics yet */ 2108 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2109 return; 2110 2111 /* Periodically retry migrating the task to the preferred node */ 2112 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2113 p->numa_migrate_retry = jiffies + interval; 2114 2115 /* Success if task is already running on preferred CPU */ 2116 if (task_node(p) == p->numa_preferred_nid) 2117 return; 2118 2119 /* Otherwise, try migrate to a CPU on the preferred node */ 2120 task_numa_migrate(p); 2121} 2122 2123/* 2124 * Find out how many nodes the workload is actively running on. Do this by 2125 * tracking the nodes from which NUMA hinting faults are triggered. This can 2126 * be different from the set of nodes where the workload's memory is currently 2127 * located. 2128 */ 2129static void numa_group_count_active_nodes(struct numa_group *numa_group) 2130{ 2131 unsigned long faults, max_faults = 0; 2132 int nid, active_nodes = 0; 2133 2134 for_each_node_state(nid, N_CPU) { 2135 faults = group_faults_cpu(numa_group, nid); 2136 if (faults > max_faults) 2137 max_faults = faults; 2138 } 2139 2140 for_each_node_state(nid, N_CPU) { 2141 faults = group_faults_cpu(numa_group, nid); 2142 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2143 active_nodes++; 2144 } 2145 2146 numa_group->max_faults_cpu = max_faults; 2147 numa_group->active_nodes = active_nodes; 2148} 2149 2150/* 2151 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2152 * increments. The more local the fault statistics are, the higher the scan 2153 * period will be for the next scan window. If local/(local+remote) ratio is 2154 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2155 * the scan period will decrease. Aim for 70% local accesses. 2156 */ 2157#define NUMA_PERIOD_SLOTS 10 2158#define NUMA_PERIOD_THRESHOLD 7 2159 2160/* 2161 * Increase the scan period (slow down scanning) if the majority of 2162 * our memory is already on our local node, or if the majority of 2163 * the page accesses are shared with other processes. 2164 * Otherwise, decrease the scan period. 2165 */ 2166static void update_task_scan_period(struct task_struct *p, 2167 unsigned long shared, unsigned long private) 2168{ 2169 unsigned int period_slot; 2170 int lr_ratio, ps_ratio; 2171 int diff; 2172 2173 unsigned long remote = p->numa_faults_locality[0]; 2174 unsigned long local = p->numa_faults_locality[1]; 2175 2176 /* 2177 * If there were no record hinting faults then either the task is 2178 * completely idle or all activity is in areas that are not of interest 2179 * to automatic numa balancing. Related to that, if there were failed 2180 * migration then it implies we are migrating too quickly or the local 2181 * node is overloaded. In either case, scan slower 2182 */ 2183 if (local + shared == 0 || p->numa_faults_locality[2]) { 2184 p->numa_scan_period = min(p->numa_scan_period_max, 2185 p->numa_scan_period << 1); 2186 2187 p->mm->numa_next_scan = jiffies + 2188 msecs_to_jiffies(p->numa_scan_period); 2189 2190 return; 2191 } 2192 2193 /* 2194 * Prepare to scale scan period relative to the current period. 2195 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2196 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2197 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2198 */ 2199 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2200 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2201 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2202 2203 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2204 /* 2205 * Most memory accesses are local. There is no need to 2206 * do fast NUMA scanning, since memory is already local. 2207 */ 2208 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2209 if (!slot) 2210 slot = 1; 2211 diff = slot * period_slot; 2212 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2213 /* 2214 * Most memory accesses are shared with other tasks. 2215 * There is no point in continuing fast NUMA scanning, 2216 * since other tasks may just move the memory elsewhere. 2217 */ 2218 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2219 if (!slot) 2220 slot = 1; 2221 diff = slot * period_slot; 2222 } else { 2223 /* 2224 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2225 * yet they are not on the local NUMA node. Speed up 2226 * NUMA scanning to get the memory moved over. 2227 */ 2228 int ratio = max(lr_ratio, ps_ratio); 2229 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2230 } 2231 2232 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2233 task_scan_min(p), task_scan_max(p)); 2234 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2235} 2236 2237/* 2238 * Get the fraction of time the task has been running since the last 2239 * NUMA placement cycle. The scheduler keeps similar statistics, but 2240 * decays those on a 32ms period, which is orders of magnitude off 2241 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2242 * stats only if the task is so new there are no NUMA statistics yet. 2243 */ 2244static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2245{ 2246 u64 runtime, delta, now; 2247 /* Use the start of this time slice to avoid calculations. */ 2248 now = p->se.exec_start; 2249 runtime = p->se.sum_exec_runtime; 2250 2251 if (p->last_task_numa_placement) { 2252 delta = runtime - p->last_sum_exec_runtime; 2253 *period = now - p->last_task_numa_placement; 2254 2255 /* Avoid time going backwards, prevent potential divide error: */ 2256 if (unlikely((s64)*period < 0)) 2257 *period = 0; 2258 } else { 2259 delta = p->se.avg.load_sum; 2260 *period = LOAD_AVG_MAX; 2261 } 2262 2263 p->last_sum_exec_runtime = runtime; 2264 p->last_task_numa_placement = now; 2265 2266 return delta; 2267} 2268 2269/* 2270 * Determine the preferred nid for a task in a numa_group. This needs to 2271 * be done in a way that produces consistent results with group_weight, 2272 * otherwise workloads might not converge. 2273 */ 2274static int preferred_group_nid(struct task_struct *p, int nid) 2275{ 2276 nodemask_t nodes; 2277 int dist; 2278 2279 /* Direct connections between all NUMA nodes. */ 2280 if (sched_numa_topology_type == NUMA_DIRECT) 2281 return nid; 2282 2283 /* 2284 * On a system with glueless mesh NUMA topology, group_weight 2285 * scores nodes according to the number of NUMA hinting faults on 2286 * both the node itself, and on nearby nodes. 2287 */ 2288 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2289 unsigned long score, max_score = 0; 2290 int node, max_node = nid; 2291 2292 dist = sched_max_numa_distance; 2293 2294 for_each_node_state(node, N_CPU) { 2295 score = group_weight(p, node, dist); 2296 if (score > max_score) { 2297 max_score = score; 2298 max_node = node; 2299 } 2300 } 2301 return max_node; 2302 } 2303 2304 /* 2305 * Finding the preferred nid in a system with NUMA backplane 2306 * interconnect topology is more involved. The goal is to locate 2307 * tasks from numa_groups near each other in the system, and 2308 * untangle workloads from different sides of the system. This requires 2309 * searching down the hierarchy of node groups, recursively searching 2310 * inside the highest scoring group of nodes. The nodemask tricks 2311 * keep the complexity of the search down. 2312 */ 2313 nodes = node_states[N_CPU]; 2314 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2315 unsigned long max_faults = 0; 2316 nodemask_t max_group = NODE_MASK_NONE; 2317 int a, b; 2318 2319 /* Are there nodes at this distance from each other? */ 2320 if (!find_numa_distance(dist)) 2321 continue; 2322 2323 for_each_node_mask(a, nodes) { 2324 unsigned long faults = 0; 2325 nodemask_t this_group; 2326 nodes_clear(this_group); 2327 2328 /* Sum group's NUMA faults; includes a==b case. */ 2329 for_each_node_mask(b, nodes) { 2330 if (node_distance(a, b) < dist) { 2331 faults += group_faults(p, b); 2332 node_set(b, this_group); 2333 node_clear(b, nodes); 2334 } 2335 } 2336 2337 /* Remember the top group. */ 2338 if (faults > max_faults) { 2339 max_faults = faults; 2340 max_group = this_group; 2341 /* 2342 * subtle: at the smallest distance there is 2343 * just one node left in each "group", the 2344 * winner is the preferred nid. 2345 */ 2346 nid = a; 2347 } 2348 } 2349 /* Next round, evaluate the nodes within max_group. */ 2350 if (!max_faults) 2351 break; 2352 nodes = max_group; 2353 } 2354 return nid; 2355} 2356 2357static void task_numa_placement(struct task_struct *p) 2358{ 2359 int seq, nid, max_nid = NUMA_NO_NODE; 2360 unsigned long max_faults = 0; 2361 unsigned long fault_types[2] = { 0, 0 }; 2362 unsigned long total_faults; 2363 u64 runtime, period; 2364 spinlock_t *group_lock = NULL; 2365 struct numa_group *ng; 2366 2367 /* 2368 * The p->mm->numa_scan_seq field gets updated without 2369 * exclusive access. Use READ_ONCE() here to ensure 2370 * that the field is read in a single access: 2371 */ 2372 seq = READ_ONCE(p->mm->numa_scan_seq); 2373 if (p->numa_scan_seq == seq) 2374 return; 2375 p->numa_scan_seq = seq; 2376 p->numa_scan_period_max = task_scan_max(p); 2377 2378 total_faults = p->numa_faults_locality[0] + 2379 p->numa_faults_locality[1]; 2380 runtime = numa_get_avg_runtime(p, &period); 2381 2382 /* If the task is part of a group prevent parallel updates to group stats */ 2383 ng = deref_curr_numa_group(p); 2384 if (ng) { 2385 group_lock = &ng->lock; 2386 spin_lock_irq(group_lock); 2387 } 2388 2389 /* Find the node with the highest number of faults */ 2390 for_each_online_node(nid) { 2391 /* Keep track of the offsets in numa_faults array */ 2392 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2393 unsigned long faults = 0, group_faults = 0; 2394 int priv; 2395 2396 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2397 long diff, f_diff, f_weight; 2398 2399 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2400 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2401 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2402 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2403 2404 /* Decay existing window, copy faults since last scan */ 2405 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2406 fault_types[priv] += p->numa_faults[membuf_idx]; 2407 p->numa_faults[membuf_idx] = 0; 2408 2409 /* 2410 * Normalize the faults_from, so all tasks in a group 2411 * count according to CPU use, instead of by the raw 2412 * number of faults. Tasks with little runtime have 2413 * little over-all impact on throughput, and thus their 2414 * faults are less important. 2415 */ 2416 f_weight = div64_u64(runtime << 16, period + 1); 2417 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2418 (total_faults + 1); 2419 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2420 p->numa_faults[cpubuf_idx] = 0; 2421 2422 p->numa_faults[mem_idx] += diff; 2423 p->numa_faults[cpu_idx] += f_diff; 2424 faults += p->numa_faults[mem_idx]; 2425 p->total_numa_faults += diff; 2426 if (ng) { 2427 /* 2428 * safe because we can only change our own group 2429 * 2430 * mem_idx represents the offset for a given 2431 * nid and priv in a specific region because it 2432 * is at the beginning of the numa_faults array. 2433 */ 2434 ng->faults[mem_idx] += diff; 2435 ng->faults[cpu_idx] += f_diff; 2436 ng->total_faults += diff; 2437 group_faults += ng->faults[mem_idx]; 2438 } 2439 } 2440 2441 if (!ng) { 2442 if (faults > max_faults) { 2443 max_faults = faults; 2444 max_nid = nid; 2445 } 2446 } else if (group_faults > max_faults) { 2447 max_faults = group_faults; 2448 max_nid = nid; 2449 } 2450 } 2451 2452 /* Cannot migrate task to CPU-less node */ 2453 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2454 int near_nid = max_nid; 2455 int distance, near_distance = INT_MAX; 2456 2457 for_each_node_state(nid, N_CPU) { 2458 distance = node_distance(max_nid, nid); 2459 if (distance < near_distance) { 2460 near_nid = nid; 2461 near_distance = distance; 2462 } 2463 } 2464 max_nid = near_nid; 2465 } 2466 2467 if (ng) { 2468 numa_group_count_active_nodes(ng); 2469 spin_unlock_irq(group_lock); 2470 max_nid = preferred_group_nid(p, max_nid); 2471 } 2472 2473 if (max_faults) { 2474 /* Set the new preferred node */ 2475 if (max_nid != p->numa_preferred_nid) 2476 sched_setnuma(p, max_nid); 2477 } 2478 2479 update_task_scan_period(p, fault_types[0], fault_types[1]); 2480} 2481 2482static inline int get_numa_group(struct numa_group *grp) 2483{ 2484 return refcount_inc_not_zero(&grp->refcount); 2485} 2486 2487static inline void put_numa_group(struct numa_group *grp) 2488{ 2489 if (refcount_dec_and_test(&grp->refcount)) 2490 kfree_rcu(grp, rcu); 2491} 2492 2493static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2494 int *priv) 2495{ 2496 struct numa_group *grp, *my_grp; 2497 struct task_struct *tsk; 2498 bool join = false; 2499 int cpu = cpupid_to_cpu(cpupid); 2500 int i; 2501 2502 if (unlikely(!deref_curr_numa_group(p))) { 2503 unsigned int size = sizeof(struct numa_group) + 2504 NR_NUMA_HINT_FAULT_STATS * 2505 nr_node_ids * sizeof(unsigned long); 2506 2507 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2508 if (!grp) 2509 return; 2510 2511 refcount_set(&grp->refcount, 1); 2512 grp->active_nodes = 1; 2513 grp->max_faults_cpu = 0; 2514 spin_lock_init(&grp->lock); 2515 grp->gid = p->pid; 2516 2517 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2518 grp->faults[i] = p->numa_faults[i]; 2519 2520 grp->total_faults = p->total_numa_faults; 2521 2522 grp->nr_tasks++; 2523 rcu_assign_pointer(p->numa_group, grp); 2524 } 2525 2526 rcu_read_lock(); 2527 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2528 2529 if (!cpupid_match_pid(tsk, cpupid)) 2530 goto no_join; 2531 2532 grp = rcu_dereference(tsk->numa_group); 2533 if (!grp) 2534 goto no_join; 2535 2536 my_grp = deref_curr_numa_group(p); 2537 if (grp == my_grp) 2538 goto no_join; 2539 2540 /* 2541 * Only join the other group if its bigger; if we're the bigger group, 2542 * the other task will join us. 2543 */ 2544 if (my_grp->nr_tasks > grp->nr_tasks) 2545 goto no_join; 2546 2547 /* 2548 * Tie-break on the grp address. 2549 */ 2550 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2551 goto no_join; 2552 2553 /* Always join threads in the same process. */ 2554 if (tsk->mm == current->mm) 2555 join = true; 2556 2557 /* Simple filter to avoid false positives due to PID collisions */ 2558 if (flags & TNF_SHARED) 2559 join = true; 2560 2561 /* Update priv based on whether false sharing was detected */ 2562 *priv = !join; 2563 2564 if (join && !get_numa_group(grp)) 2565 goto no_join; 2566 2567 rcu_read_unlock(); 2568 2569 if (!join) 2570 return; 2571 2572 BUG_ON(irqs_disabled()); 2573 double_lock_irq(&my_grp->lock, &grp->lock); 2574 2575 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2576 my_grp->faults[i] -= p->numa_faults[i]; 2577 grp->faults[i] += p->numa_faults[i]; 2578 } 2579 my_grp->total_faults -= p->total_numa_faults; 2580 grp->total_faults += p->total_numa_faults; 2581 2582 my_grp->nr_tasks--; 2583 grp->nr_tasks++; 2584 2585 spin_unlock(&my_grp->lock); 2586 spin_unlock_irq(&grp->lock); 2587 2588 rcu_assign_pointer(p->numa_group, grp); 2589 2590 put_numa_group(my_grp); 2591 return; 2592 2593no_join: 2594 rcu_read_unlock(); 2595 return; 2596} 2597 2598/* 2599 * Get rid of NUMA statistics associated with a task (either current or dead). 2600 * If @final is set, the task is dead and has reached refcount zero, so we can 2601 * safely free all relevant data structures. Otherwise, there might be 2602 * concurrent reads from places like load balancing and procfs, and we should 2603 * reset the data back to default state without freeing ->numa_faults. 2604 */ 2605void task_numa_free(struct task_struct *p, bool final) 2606{ 2607 /* safe: p either is current or is being freed by current */ 2608 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2609 unsigned long *numa_faults = p->numa_faults; 2610 unsigned long flags; 2611 int i; 2612 2613 if (!numa_faults) 2614 return; 2615 2616 if (grp) { 2617 spin_lock_irqsave(&grp->lock, flags); 2618 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2619 grp->faults[i] -= p->numa_faults[i]; 2620 grp->total_faults -= p->total_numa_faults; 2621 2622 grp->nr_tasks--; 2623 spin_unlock_irqrestore(&grp->lock, flags); 2624 RCU_INIT_POINTER(p->numa_group, NULL); 2625 put_numa_group(grp); 2626 } 2627 2628 if (final) { 2629 p->numa_faults = NULL; 2630 kfree(numa_faults); 2631 } else { 2632 p->total_numa_faults = 0; 2633 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2634 numa_faults[i] = 0; 2635 } 2636} 2637 2638/* 2639 * Got a PROT_NONE fault for a page on @node. 2640 */ 2641void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2642{ 2643 struct task_struct *p = current; 2644 bool migrated = flags & TNF_MIGRATED; 2645 int cpu_node = task_node(current); 2646 int local = !!(flags & TNF_FAULT_LOCAL); 2647 struct numa_group *ng; 2648 int priv; 2649 2650 if (!static_branch_likely(&sched_numa_balancing)) 2651 return; 2652 2653 /* for example, ksmd faulting in a user's mm */ 2654 if (!p->mm) 2655 return; 2656 2657 /* Allocate buffer to track faults on a per-node basis */ 2658 if (unlikely(!p->numa_faults)) { 2659 int size = sizeof(*p->numa_faults) * 2660 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2661 2662 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2663 if (!p->numa_faults) 2664 return; 2665 2666 p->total_numa_faults = 0; 2667 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2668 } 2669 2670 /* 2671 * First accesses are treated as private, otherwise consider accesses 2672 * to be private if the accessing pid has not changed 2673 */ 2674 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2675 priv = 1; 2676 } else { 2677 priv = cpupid_match_pid(p, last_cpupid); 2678 if (!priv && !(flags & TNF_NO_GROUP)) 2679 task_numa_group(p, last_cpupid, flags, &priv); 2680 } 2681 2682 /* 2683 * If a workload spans multiple NUMA nodes, a shared fault that 2684 * occurs wholly within the set of nodes that the workload is 2685 * actively using should be counted as local. This allows the 2686 * scan rate to slow down when a workload has settled down. 2687 */ 2688 ng = deref_curr_numa_group(p); 2689 if (!priv && !local && ng && ng->active_nodes > 1 && 2690 numa_is_active_node(cpu_node, ng) && 2691 numa_is_active_node(mem_node, ng)) 2692 local = 1; 2693 2694 /* 2695 * Retry to migrate task to preferred node periodically, in case it 2696 * previously failed, or the scheduler moved us. 2697 */ 2698 if (time_after(jiffies, p->numa_migrate_retry)) { 2699 task_numa_placement(p); 2700 numa_migrate_preferred(p); 2701 } 2702 2703 if (migrated) 2704 p->numa_pages_migrated += pages; 2705 if (flags & TNF_MIGRATE_FAIL) 2706 p->numa_faults_locality[2] += pages; 2707 2708 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2709 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2710 p->numa_faults_locality[local] += pages; 2711} 2712 2713static void reset_ptenuma_scan(struct task_struct *p) 2714{ 2715 /* 2716 * We only did a read acquisition of the mmap sem, so 2717 * p->mm->numa_scan_seq is written to without exclusive access 2718 * and the update is not guaranteed to be atomic. That's not 2719 * much of an issue though, since this is just used for 2720 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2721 * expensive, to avoid any form of compiler optimizations: 2722 */ 2723 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2724 p->mm->numa_scan_offset = 0; 2725} 2726 2727/* 2728 * The expensive part of numa migration is done from task_work context. 2729 * Triggered from task_tick_numa(). 2730 */ 2731static void task_numa_work(struct callback_head *work) 2732{ 2733 unsigned long migrate, next_scan, now = jiffies; 2734 struct task_struct *p = current; 2735 struct mm_struct *mm = p->mm; 2736 u64 runtime = p->se.sum_exec_runtime; 2737 struct vm_area_struct *vma; 2738 unsigned long start, end; 2739 unsigned long nr_pte_updates = 0; 2740 long pages, virtpages; 2741 2742 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2743 2744 work->next = work; 2745 /* 2746 * Who cares about NUMA placement when they're dying. 2747 * 2748 * NOTE: make sure not to dereference p->mm before this check, 2749 * exit_task_work() happens _after_ exit_mm() so we could be called 2750 * without p->mm even though we still had it when we enqueued this 2751 * work. 2752 */ 2753 if (p->flags & PF_EXITING) 2754 return; 2755 2756 if (!mm->numa_next_scan) { 2757 mm->numa_next_scan = now + 2758 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2759 } 2760 2761 /* 2762 * Enforce maximal scan/migration frequency.. 2763 */ 2764 migrate = mm->numa_next_scan; 2765 if (time_before(now, migrate)) 2766 return; 2767 2768 if (p->numa_scan_period == 0) { 2769 p->numa_scan_period_max = task_scan_max(p); 2770 p->numa_scan_period = task_scan_start(p); 2771 } 2772 2773 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2774 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2775 return; 2776 2777 /* 2778 * Delay this task enough that another task of this mm will likely win 2779 * the next time around. 2780 */ 2781 p->node_stamp += 2 * TICK_NSEC; 2782 2783 start = mm->numa_scan_offset; 2784 pages = sysctl_numa_balancing_scan_size; 2785 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2786 virtpages = pages * 8; /* Scan up to this much virtual space */ 2787 if (!pages) 2788 return; 2789 2790 2791 if (!mmap_read_trylock(mm)) 2792 return; 2793 vma = find_vma(mm, start); 2794 if (!vma) { 2795 reset_ptenuma_scan(p); 2796 start = 0; 2797 vma = mm->mmap; 2798 } 2799 for (; vma; vma = vma->vm_next) { 2800 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2801 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2802 continue; 2803 } 2804 2805 /* 2806 * Shared library pages mapped by multiple processes are not 2807 * migrated as it is expected they are cache replicated. Avoid 2808 * hinting faults in read-only file-backed mappings or the vdso 2809 * as migrating the pages will be of marginal benefit. 2810 */ 2811 if (!vma->vm_mm || 2812 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2813 continue; 2814 2815 /* 2816 * Skip inaccessible VMAs to avoid any confusion between 2817 * PROT_NONE and NUMA hinting ptes 2818 */ 2819 if (!vma_is_accessible(vma)) 2820 continue; 2821 2822 do { 2823 start = max(start, vma->vm_start); 2824 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2825 end = min(end, vma->vm_end); 2826 nr_pte_updates = change_prot_numa(vma, start, end); 2827 2828 /* 2829 * Try to scan sysctl_numa_balancing_size worth of 2830 * hpages that have at least one present PTE that 2831 * is not already pte-numa. If the VMA contains 2832 * areas that are unused or already full of prot_numa 2833 * PTEs, scan up to virtpages, to skip through those 2834 * areas faster. 2835 */ 2836 if (nr_pte_updates) 2837 pages -= (end - start) >> PAGE_SHIFT; 2838 virtpages -= (end - start) >> PAGE_SHIFT; 2839 2840 start = end; 2841 if (pages <= 0 || virtpages <= 0) 2842 goto out; 2843 2844 cond_resched(); 2845 } while (end != vma->vm_end); 2846 } 2847 2848out: 2849 /* 2850 * It is possible to reach the end of the VMA list but the last few 2851 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2852 * would find the !migratable VMA on the next scan but not reset the 2853 * scanner to the start so check it now. 2854 */ 2855 if (vma) 2856 mm->numa_scan_offset = start; 2857 else 2858 reset_ptenuma_scan(p); 2859 mmap_read_unlock(mm); 2860 2861 /* 2862 * Make sure tasks use at least 32x as much time to run other code 2863 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2864 * Usually update_task_scan_period slows down scanning enough; on an 2865 * overloaded system we need to limit overhead on a per task basis. 2866 */ 2867 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2868 u64 diff = p->se.sum_exec_runtime - runtime; 2869 p->node_stamp += 32 * diff; 2870 } 2871} 2872 2873void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2874{ 2875 int mm_users = 0; 2876 struct mm_struct *mm = p->mm; 2877 2878 if (mm) { 2879 mm_users = atomic_read(&mm->mm_users); 2880 if (mm_users == 1) { 2881 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2882 mm->numa_scan_seq = 0; 2883 } 2884 } 2885 p->node_stamp = 0; 2886 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2887 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2888 /* Protect against double add, see task_tick_numa and task_numa_work */ 2889 p->numa_work.next = &p->numa_work; 2890 p->numa_faults = NULL; 2891 p->numa_pages_migrated = 0; 2892 p->total_numa_faults = 0; 2893 RCU_INIT_POINTER(p->numa_group, NULL); 2894 p->last_task_numa_placement = 0; 2895 p->last_sum_exec_runtime = 0; 2896 2897 init_task_work(&p->numa_work, task_numa_work); 2898 2899 /* New address space, reset the preferred nid */ 2900 if (!(clone_flags & CLONE_VM)) { 2901 p->numa_preferred_nid = NUMA_NO_NODE; 2902 return; 2903 } 2904 2905 /* 2906 * New thread, keep existing numa_preferred_nid which should be copied 2907 * already by arch_dup_task_struct but stagger when scans start. 2908 */ 2909 if (mm) { 2910 unsigned int delay; 2911 2912 delay = min_t(unsigned int, task_scan_max(current), 2913 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2914 delay += 2 * TICK_NSEC; 2915 p->node_stamp = delay; 2916 } 2917} 2918 2919/* 2920 * Drive the periodic memory faults.. 2921 */ 2922static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2923{ 2924 struct callback_head *work = &curr->numa_work; 2925 u64 period, now; 2926 2927 /* 2928 * We don't care about NUMA placement if we don't have memory. 2929 */ 2930 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2931 return; 2932 2933 /* 2934 * Using runtime rather than walltime has the dual advantage that 2935 * we (mostly) drive the selection from busy threads and that the 2936 * task needs to have done some actual work before we bother with 2937 * NUMA placement. 2938 */ 2939 now = curr->se.sum_exec_runtime; 2940 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2941 2942 if (now > curr->node_stamp + period) { 2943 if (!curr->node_stamp) 2944 curr->numa_scan_period = task_scan_start(curr); 2945 curr->node_stamp += period; 2946 2947 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2948 task_work_add(curr, work, TWA_RESUME); 2949 } 2950} 2951 2952static void update_scan_period(struct task_struct *p, int new_cpu) 2953{ 2954 int src_nid = cpu_to_node(task_cpu(p)); 2955 int dst_nid = cpu_to_node(new_cpu); 2956 2957 if (!static_branch_likely(&sched_numa_balancing)) 2958 return; 2959 2960 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2961 return; 2962 2963 if (src_nid == dst_nid) 2964 return; 2965 2966 /* 2967 * Allow resets if faults have been trapped before one scan 2968 * has completed. This is most likely due to a new task that 2969 * is pulled cross-node due to wakeups or load balancing. 2970 */ 2971 if (p->numa_scan_seq) { 2972 /* 2973 * Avoid scan adjustments if moving to the preferred 2974 * node or if the task was not previously running on 2975 * the preferred node. 2976 */ 2977 if (dst_nid == p->numa_preferred_nid || 2978 (p->numa_preferred_nid != NUMA_NO_NODE && 2979 src_nid != p->numa_preferred_nid)) 2980 return; 2981 } 2982 2983 p->numa_scan_period = task_scan_start(p); 2984} 2985 2986#else 2987static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2988{ 2989} 2990 2991static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2992{ 2993} 2994 2995static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2996{ 2997} 2998 2999static inline void update_scan_period(struct task_struct *p, int new_cpu) 3000{ 3001} 3002 3003#endif /* CONFIG_NUMA_BALANCING */ 3004 3005static void 3006account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3007{ 3008 update_load_add(&cfs_rq->load, se->load.weight); 3009#ifdef CONFIG_SMP 3010 if (entity_is_task(se)) { 3011 struct rq *rq = rq_of(cfs_rq); 3012 3013 account_numa_enqueue(rq, task_of(se)); 3014 list_add(&se->group_node, &rq->cfs_tasks); 3015 } 3016#endif 3017 cfs_rq->nr_running++; 3018 if (se_is_idle(se)) 3019 cfs_rq->idle_nr_running++; 3020} 3021 3022static void 3023account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3024{ 3025 update_load_sub(&cfs_rq->load, se->load.weight); 3026#ifdef CONFIG_SMP 3027 if (entity_is_task(se)) { 3028 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3029 list_del_init(&se->group_node); 3030 } 3031#endif 3032 cfs_rq->nr_running--; 3033 if (se_is_idle(se)) 3034 cfs_rq->idle_nr_running--; 3035} 3036 3037/* 3038 * Signed add and clamp on underflow. 3039 * 3040 * Explicitly do a load-store to ensure the intermediate value never hits 3041 * memory. This allows lockless observations without ever seeing the negative 3042 * values. 3043 */ 3044#define add_positive(_ptr, _val) do { \ 3045 typeof(_ptr) ptr = (_ptr); \ 3046 typeof(_val) val = (_val); \ 3047 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3048 \ 3049 res = var + val; \ 3050 \ 3051 if (val < 0 && res > var) \ 3052 res = 0; \ 3053 \ 3054 WRITE_ONCE(*ptr, res); \ 3055} while (0) 3056 3057/* 3058 * Unsigned subtract and clamp on underflow. 3059 * 3060 * Explicitly do a load-store to ensure the intermediate value never hits 3061 * memory. This allows lockless observations without ever seeing the negative 3062 * values. 3063 */ 3064#define sub_positive(_ptr, _val) do { \ 3065 typeof(_ptr) ptr = (_ptr); \ 3066 typeof(*ptr) val = (_val); \ 3067 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3068 res = var - val; \ 3069 if (res > var) \ 3070 res = 0; \ 3071 WRITE_ONCE(*ptr, res); \ 3072} while (0) 3073 3074/* 3075 * Remove and clamp on negative, from a local variable. 3076 * 3077 * A variant of sub_positive(), which does not use explicit load-store 3078 * and is thus optimized for local variable updates. 3079 */ 3080#define lsub_positive(_ptr, _val) do { \ 3081 typeof(_ptr) ptr = (_ptr); \ 3082 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3083} while (0) 3084 3085#ifdef CONFIG_SMP 3086static inline void 3087enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3088{ 3089 cfs_rq->avg.load_avg += se->avg.load_avg; 3090 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3091} 3092 3093static inline void 3094dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3095{ 3096 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3097 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3098 /* See update_cfs_rq_load_avg() */ 3099 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3100 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3101} 3102#else 3103static inline void 3104enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3105static inline void 3106dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3107#endif 3108 3109static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3110 unsigned long weight) 3111{ 3112 if (se->on_rq) { 3113 /* commit outstanding execution time */ 3114 if (cfs_rq->curr == se) 3115 update_curr(cfs_rq); 3116 update_load_sub(&cfs_rq->load, se->load.weight); 3117 } 3118 dequeue_load_avg(cfs_rq, se); 3119 3120 update_load_set(&se->load, weight); 3121 3122#ifdef CONFIG_SMP 3123 do { 3124 u32 divider = get_pelt_divider(&se->avg); 3125 3126 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3127 } while (0); 3128#endif 3129 3130 enqueue_load_avg(cfs_rq, se); 3131 if (se->on_rq) 3132 update_load_add(&cfs_rq->load, se->load.weight); 3133 3134} 3135 3136void reweight_task(struct task_struct *p, int prio) 3137{ 3138 struct sched_entity *se = &p->se; 3139 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3140 struct load_weight *load = &se->load; 3141 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3142 3143 reweight_entity(cfs_rq, se, weight); 3144 load->inv_weight = sched_prio_to_wmult[prio]; 3145} 3146 3147#ifdef CONFIG_FAIR_GROUP_SCHED 3148#ifdef CONFIG_SMP 3149/* 3150 * All this does is approximate the hierarchical proportion which includes that 3151 * global sum we all love to hate. 3152 * 3153 * That is, the weight of a group entity, is the proportional share of the 3154 * group weight based on the group runqueue weights. That is: 3155 * 3156 * tg->weight * grq->load.weight 3157 * ge->load.weight = ----------------------------- (1) 3158 * \Sum grq->load.weight 3159 * 3160 * Now, because computing that sum is prohibitively expensive to compute (been 3161 * there, done that) we approximate it with this average stuff. The average 3162 * moves slower and therefore the approximation is cheaper and more stable. 3163 * 3164 * So instead of the above, we substitute: 3165 * 3166 * grq->load.weight -> grq->avg.load_avg (2) 3167 * 3168 * which yields the following: 3169 * 3170 * tg->weight * grq->avg.load_avg 3171 * ge->load.weight = ------------------------------ (3) 3172 * tg->load_avg 3173 * 3174 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3175 * 3176 * That is shares_avg, and it is right (given the approximation (2)). 3177 * 3178 * The problem with it is that because the average is slow -- it was designed 3179 * to be exactly that of course -- this leads to transients in boundary 3180 * conditions. In specific, the case where the group was idle and we start the 3181 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3182 * yielding bad latency etc.. 3183 * 3184 * Now, in that special case (1) reduces to: 3185 * 3186 * tg->weight * grq->load.weight 3187 * ge->load.weight = ----------------------------- = tg->weight (4) 3188 * grp->load.weight 3189 * 3190 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3191 * 3192 * So what we do is modify our approximation (3) to approach (4) in the (near) 3193 * UP case, like: 3194 * 3195 * ge->load.weight = 3196 * 3197 * tg->weight * grq->load.weight 3198 * --------------------------------------------------- (5) 3199 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3200 * 3201 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3202 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3203 * 3204 * 3205 * tg->weight * grq->load.weight 3206 * ge->load.weight = ----------------------------- (6) 3207 * tg_load_avg' 3208 * 3209 * Where: 3210 * 3211 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3212 * max(grq->load.weight, grq->avg.load_avg) 3213 * 3214 * And that is shares_weight and is icky. In the (near) UP case it approaches 3215 * (4) while in the normal case it approaches (3). It consistently 3216 * overestimates the ge->load.weight and therefore: 3217 * 3218 * \Sum ge->load.weight >= tg->weight 3219 * 3220 * hence icky! 3221 */ 3222static long calc_group_shares(struct cfs_rq *cfs_rq) 3223{ 3224 long tg_weight, tg_shares, load, shares; 3225 struct task_group *tg = cfs_rq->tg; 3226 3227 tg_shares = READ_ONCE(tg->shares); 3228 3229 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3230 3231 tg_weight = atomic_long_read(&tg->load_avg); 3232 3233 /* Ensure tg_weight >= load */ 3234 tg_weight -= cfs_rq->tg_load_avg_contrib; 3235 tg_weight += load; 3236 3237 shares = (tg_shares * load); 3238 if (tg_weight) 3239 shares /= tg_weight; 3240 3241 /* 3242 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3243 * of a group with small tg->shares value. It is a floor value which is 3244 * assigned as a minimum load.weight to the sched_entity representing 3245 * the group on a CPU. 3246 * 3247 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3248 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3249 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3250 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3251 * instead of 0. 3252 */ 3253 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3254} 3255#endif /* CONFIG_SMP */ 3256 3257static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3258 3259/* 3260 * Recomputes the group entity based on the current state of its group 3261 * runqueue. 3262 */ 3263static void update_cfs_group(struct sched_entity *se) 3264{ 3265 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3266 long shares; 3267 3268 if (!gcfs_rq) 3269 return; 3270 3271 if (throttled_hierarchy(gcfs_rq)) 3272 return; 3273 3274#ifndef CONFIG_SMP 3275 shares = READ_ONCE(gcfs_rq->tg->shares); 3276 3277 if (likely(se->load.weight == shares)) 3278 return; 3279#else 3280 shares = calc_group_shares(gcfs_rq); 3281#endif 3282 3283 reweight_entity(cfs_rq_of(se), se, shares); 3284} 3285 3286#else /* CONFIG_FAIR_GROUP_SCHED */ 3287static inline void update_cfs_group(struct sched_entity *se) 3288{ 3289} 3290#endif /* CONFIG_FAIR_GROUP_SCHED */ 3291 3292static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3293{ 3294 struct rq *rq = rq_of(cfs_rq); 3295 3296 if (&rq->cfs == cfs_rq) { 3297 /* 3298 * There are a few boundary cases this might miss but it should 3299 * get called often enough that that should (hopefully) not be 3300 * a real problem. 3301 * 3302 * It will not get called when we go idle, because the idle 3303 * thread is a different class (!fair), nor will the utilization 3304 * number include things like RT tasks. 3305 * 3306 * As is, the util number is not freq-invariant (we'd have to 3307 * implement arch_scale_freq_capacity() for that). 3308 * 3309 * See cpu_util_cfs(). 3310 */ 3311 cpufreq_update_util(rq, flags); 3312 } 3313} 3314 3315#ifdef CONFIG_SMP 3316#ifdef CONFIG_FAIR_GROUP_SCHED 3317/* 3318 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3319 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3320 * bottom-up, we only have to test whether the cfs_rq before us on the list 3321 * is our child. 3322 * If cfs_rq is not on the list, test whether a child needs its to be added to 3323 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3324 */ 3325static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3326{ 3327 struct cfs_rq *prev_cfs_rq; 3328 struct list_head *prev; 3329 3330 if (cfs_rq->on_list) { 3331 prev = cfs_rq->leaf_cfs_rq_list.prev; 3332 } else { 3333 struct rq *rq = rq_of(cfs_rq); 3334 3335 prev = rq->tmp_alone_branch; 3336 } 3337 3338 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3339 3340 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3341} 3342 3343static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3344{ 3345 if (cfs_rq->load.weight) 3346 return false; 3347 3348 if (cfs_rq->avg.load_sum) 3349 return false; 3350 3351 if (cfs_rq->avg.util_sum) 3352 return false; 3353 3354 if (cfs_rq->avg.runnable_sum) 3355 return false; 3356 3357 if (child_cfs_rq_on_list(cfs_rq)) 3358 return false; 3359 3360 /* 3361 * _avg must be null when _sum are null because _avg = _sum / divider 3362 * Make sure that rounding and/or propagation of PELT values never 3363 * break this. 3364 */ 3365 SCHED_WARN_ON(cfs_rq->avg.load_avg || 3366 cfs_rq->avg.util_avg || 3367 cfs_rq->avg.runnable_avg); 3368 3369 return true; 3370} 3371 3372/** 3373 * update_tg_load_avg - update the tg's load avg 3374 * @cfs_rq: the cfs_rq whose avg changed 3375 * 3376 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3377 * However, because tg->load_avg is a global value there are performance 3378 * considerations. 3379 * 3380 * In order to avoid having to look at the other cfs_rq's, we use a 3381 * differential update where we store the last value we propagated. This in 3382 * turn allows skipping updates if the differential is 'small'. 3383 * 3384 * Updating tg's load_avg is necessary before update_cfs_share(). 3385 */ 3386static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3387{ 3388 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3389 3390 /* 3391 * No need to update load_avg for root_task_group as it is not used. 3392 */ 3393 if (cfs_rq->tg == &root_task_group) 3394 return; 3395 3396 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3397 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3398 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3399 } 3400} 3401 3402/* 3403 * Called within set_task_rq() right before setting a task's CPU. The 3404 * caller only guarantees p->pi_lock is held; no other assumptions, 3405 * including the state of rq->lock, should be made. 3406 */ 3407void set_task_rq_fair(struct sched_entity *se, 3408 struct cfs_rq *prev, struct cfs_rq *next) 3409{ 3410 u64 p_last_update_time; 3411 u64 n_last_update_time; 3412 3413 if (!sched_feat(ATTACH_AGE_LOAD)) 3414 return; 3415 3416 /* 3417 * We are supposed to update the task to "current" time, then its up to 3418 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3419 * getting what current time is, so simply throw away the out-of-date 3420 * time. This will result in the wakee task is less decayed, but giving 3421 * the wakee more load sounds not bad. 3422 */ 3423 if (!(se->avg.last_update_time && prev)) 3424 return; 3425 3426#ifndef CONFIG_64BIT 3427 { 3428 u64 p_last_update_time_copy; 3429 u64 n_last_update_time_copy; 3430 3431 do { 3432 p_last_update_time_copy = prev->load_last_update_time_copy; 3433 n_last_update_time_copy = next->load_last_update_time_copy; 3434 3435 smp_rmb(); 3436 3437 p_last_update_time = prev->avg.last_update_time; 3438 n_last_update_time = next->avg.last_update_time; 3439 3440 } while (p_last_update_time != p_last_update_time_copy || 3441 n_last_update_time != n_last_update_time_copy); 3442 } 3443#else 3444 p_last_update_time = prev->avg.last_update_time; 3445 n_last_update_time = next->avg.last_update_time; 3446#endif 3447 __update_load_avg_blocked_se(p_last_update_time, se); 3448 se->avg.last_update_time = n_last_update_time; 3449} 3450 3451/* 3452 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3453 * propagate its contribution. The key to this propagation is the invariant 3454 * that for each group: 3455 * 3456 * ge->avg == grq->avg (1) 3457 * 3458 * _IFF_ we look at the pure running and runnable sums. Because they 3459 * represent the very same entity, just at different points in the hierarchy. 3460 * 3461 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3462 * and simply copies the running/runnable sum over (but still wrong, because 3463 * the group entity and group rq do not have their PELT windows aligned). 3464 * 3465 * However, update_tg_cfs_load() is more complex. So we have: 3466 * 3467 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3468 * 3469 * And since, like util, the runnable part should be directly transferable, 3470 * the following would _appear_ to be the straight forward approach: 3471 * 3472 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3473 * 3474 * And per (1) we have: 3475 * 3476 * ge->avg.runnable_avg == grq->avg.runnable_avg 3477 * 3478 * Which gives: 3479 * 3480 * ge->load.weight * grq->avg.load_avg 3481 * ge->avg.load_avg = ----------------------------------- (4) 3482 * grq->load.weight 3483 * 3484 * Except that is wrong! 3485 * 3486 * Because while for entities historical weight is not important and we 3487 * really only care about our future and therefore can consider a pure 3488 * runnable sum, runqueues can NOT do this. 3489 * 3490 * We specifically want runqueues to have a load_avg that includes 3491 * historical weights. Those represent the blocked load, the load we expect 3492 * to (shortly) return to us. This only works by keeping the weights as 3493 * integral part of the sum. We therefore cannot decompose as per (3). 3494 * 3495 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3496 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3497 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3498 * runnable section of these tasks overlap (or not). If they were to perfectly 3499 * align the rq as a whole would be runnable 2/3 of the time. If however we 3500 * always have at least 1 runnable task, the rq as a whole is always runnable. 3501 * 3502 * So we'll have to approximate.. :/ 3503 * 3504 * Given the constraint: 3505 * 3506 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3507 * 3508 * We can construct a rule that adds runnable to a rq by assuming minimal 3509 * overlap. 3510 * 3511 * On removal, we'll assume each task is equally runnable; which yields: 3512 * 3513 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3514 * 3515 * XXX: only do this for the part of runnable > running ? 3516 * 3517 */ 3518static inline void 3519update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3520{ 3521 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3522 u32 new_sum, divider; 3523 3524 /* Nothing to update */ 3525 if (!delta_avg) 3526 return; 3527 3528 /* 3529 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3530 * See ___update_load_avg() for details. 3531 */ 3532 divider = get_pelt_divider(&cfs_rq->avg); 3533 3534 3535 /* Set new sched_entity's utilization */ 3536 se->avg.util_avg = gcfs_rq->avg.util_avg; 3537 new_sum = se->avg.util_avg * divider; 3538 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3539 se->avg.util_sum = new_sum; 3540 3541 /* Update parent cfs_rq utilization */ 3542 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3543 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3544 3545 /* See update_cfs_rq_load_avg() */ 3546 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3547 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3548} 3549 3550static inline void 3551update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3552{ 3553 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3554 u32 new_sum, divider; 3555 3556 /* Nothing to update */ 3557 if (!delta_avg) 3558 return; 3559 3560 /* 3561 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3562 * See ___update_load_avg() for details. 3563 */ 3564 divider = get_pelt_divider(&cfs_rq->avg); 3565 3566 /* Set new sched_entity's runnable */ 3567 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3568 new_sum = se->avg.runnable_avg * divider; 3569 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3570 se->avg.runnable_sum = new_sum; 3571 3572 /* Update parent cfs_rq runnable */ 3573 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3574 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3575 /* See update_cfs_rq_load_avg() */ 3576 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3577 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3578} 3579 3580static inline void 3581update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3582{ 3583 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3584 unsigned long load_avg; 3585 u64 load_sum = 0; 3586 s64 delta_sum; 3587 u32 divider; 3588 3589 if (!runnable_sum) 3590 return; 3591 3592 gcfs_rq->prop_runnable_sum = 0; 3593 3594 /* 3595 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3596 * See ___update_load_avg() for details. 3597 */ 3598 divider = get_pelt_divider(&cfs_rq->avg); 3599 3600 if (runnable_sum >= 0) { 3601 /* 3602 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3603 * the CPU is saturated running == runnable. 3604 */ 3605 runnable_sum += se->avg.load_sum; 3606 runnable_sum = min_t(long, runnable_sum, divider); 3607 } else { 3608 /* 3609 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3610 * assuming all tasks are equally runnable. 3611 */ 3612 if (scale_load_down(gcfs_rq->load.weight)) { 3613 load_sum = div_u64(gcfs_rq->avg.load_sum, 3614 scale_load_down(gcfs_rq->load.weight)); 3615 } 3616 3617 /* But make sure to not inflate se's runnable */ 3618 runnable_sum = min(se->avg.load_sum, load_sum); 3619 } 3620 3621 /* 3622 * runnable_sum can't be lower than running_sum 3623 * Rescale running sum to be in the same range as runnable sum 3624 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3625 * runnable_sum is in [0 : LOAD_AVG_MAX] 3626 */ 3627 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3628 runnable_sum = max(runnable_sum, running_sum); 3629 3630 load_sum = se_weight(se) * runnable_sum; 3631 load_avg = div_u64(load_sum, divider); 3632 3633 delta_avg = load_avg - se->avg.load_avg; 3634 if (!delta_avg) 3635 return; 3636 3637 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3638 3639 se->avg.load_sum = runnable_sum; 3640 se->avg.load_avg = load_avg; 3641 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3642 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3643 /* See update_cfs_rq_load_avg() */ 3644 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3645 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3646} 3647 3648static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3649{ 3650 cfs_rq->propagate = 1; 3651 cfs_rq->prop_runnable_sum += runnable_sum; 3652} 3653 3654/* Update task and its cfs_rq load average */ 3655static inline int propagate_entity_load_avg(struct sched_entity *se) 3656{ 3657 struct cfs_rq *cfs_rq, *gcfs_rq; 3658 3659 if (entity_is_task(se)) 3660 return 0; 3661 3662 gcfs_rq = group_cfs_rq(se); 3663 if (!gcfs_rq->propagate) 3664 return 0; 3665 3666 gcfs_rq->propagate = 0; 3667 3668 cfs_rq = cfs_rq_of(se); 3669 3670 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3671 3672 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3673 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3674 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3675 3676 trace_pelt_cfs_tp(cfs_rq); 3677 trace_pelt_se_tp(se); 3678 3679 return 1; 3680} 3681 3682/* 3683 * Check if we need to update the load and the utilization of a blocked 3684 * group_entity: 3685 */ 3686static inline bool skip_blocked_update(struct sched_entity *se) 3687{ 3688 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3689 3690 /* 3691 * If sched_entity still have not zero load or utilization, we have to 3692 * decay it: 3693 */ 3694 if (se->avg.load_avg || se->avg.util_avg) 3695 return false; 3696 3697 /* 3698 * If there is a pending propagation, we have to update the load and 3699 * the utilization of the sched_entity: 3700 */ 3701 if (gcfs_rq->propagate) 3702 return false; 3703 3704 /* 3705 * Otherwise, the load and the utilization of the sched_entity is 3706 * already zero and there is no pending propagation, so it will be a 3707 * waste of time to try to decay it: 3708 */ 3709 return true; 3710} 3711 3712#else /* CONFIG_FAIR_GROUP_SCHED */ 3713 3714static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3715 3716static inline int propagate_entity_load_avg(struct sched_entity *se) 3717{ 3718 return 0; 3719} 3720 3721static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3722 3723#endif /* CONFIG_FAIR_GROUP_SCHED */ 3724 3725/** 3726 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3727 * @now: current time, as per cfs_rq_clock_pelt() 3728 * @cfs_rq: cfs_rq to update 3729 * 3730 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3731 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3732 * post_init_entity_util_avg(). 3733 * 3734 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3735 * 3736 * Return: true if the load decayed or we removed load. 3737 * 3738 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3739 * call update_tg_load_avg() when this function returns true. 3740 */ 3741static inline int 3742update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3743{ 3744 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3745 struct sched_avg *sa = &cfs_rq->avg; 3746 int decayed = 0; 3747 3748 if (cfs_rq->removed.nr) { 3749 unsigned long r; 3750 u32 divider = get_pelt_divider(&cfs_rq->avg); 3751 3752 raw_spin_lock(&cfs_rq->removed.lock); 3753 swap(cfs_rq->removed.util_avg, removed_util); 3754 swap(cfs_rq->removed.load_avg, removed_load); 3755 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3756 cfs_rq->removed.nr = 0; 3757 raw_spin_unlock(&cfs_rq->removed.lock); 3758 3759 r = removed_load; 3760 sub_positive(&sa->load_avg, r); 3761 sub_positive(&sa->load_sum, r * divider); 3762 /* See sa->util_sum below */ 3763 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 3764 3765 r = removed_util; 3766 sub_positive(&sa->util_avg, r); 3767 sub_positive(&sa->util_sum, r * divider); 3768 /* 3769 * Because of rounding, se->util_sum might ends up being +1 more than 3770 * cfs->util_sum. Although this is not a problem by itself, detaching 3771 * a lot of tasks with the rounding problem between 2 updates of 3772 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 3773 * cfs_util_avg is not. 3774 * Check that util_sum is still above its lower bound for the new 3775 * util_avg. Given that period_contrib might have moved since the last 3776 * sync, we are only sure that util_sum must be above or equal to 3777 * util_avg * minimum possible divider 3778 */ 3779 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 3780 3781 r = removed_runnable; 3782 sub_positive(&sa->runnable_avg, r); 3783 sub_positive(&sa->runnable_sum, r * divider); 3784 /* See sa->util_sum above */ 3785 sa->runnable_sum = max_t(u32, sa->runnable_sum, 3786 sa->runnable_avg * PELT_MIN_DIVIDER); 3787 3788 /* 3789 * removed_runnable is the unweighted version of removed_load so we 3790 * can use it to estimate removed_load_sum. 3791 */ 3792 add_tg_cfs_propagate(cfs_rq, 3793 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3794 3795 decayed = 1; 3796 } 3797 3798 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3799 3800#ifndef CONFIG_64BIT 3801 smp_wmb(); 3802 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3803#endif 3804 3805 return decayed; 3806} 3807 3808/** 3809 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3810 * @cfs_rq: cfs_rq to attach to 3811 * @se: sched_entity to attach 3812 * 3813 * Must call update_cfs_rq_load_avg() before this, since we rely on 3814 * cfs_rq->avg.last_update_time being current. 3815 */ 3816static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3817{ 3818 /* 3819 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3820 * See ___update_load_avg() for details. 3821 */ 3822 u32 divider = get_pelt_divider(&cfs_rq->avg); 3823 3824 /* 3825 * When we attach the @se to the @cfs_rq, we must align the decay 3826 * window because without that, really weird and wonderful things can 3827 * happen. 3828 * 3829 * XXX illustrate 3830 */ 3831 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3832 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3833 3834 /* 3835 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3836 * period_contrib. This isn't strictly correct, but since we're 3837 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3838 * _sum a little. 3839 */ 3840 se->avg.util_sum = se->avg.util_avg * divider; 3841 3842 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3843 3844 se->avg.load_sum = se->avg.load_avg * divider; 3845 if (se_weight(se) < se->avg.load_sum) 3846 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 3847 else 3848 se->avg.load_sum = 1; 3849 3850 enqueue_load_avg(cfs_rq, se); 3851 cfs_rq->avg.util_avg += se->avg.util_avg; 3852 cfs_rq->avg.util_sum += se->avg.util_sum; 3853 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3854 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3855 3856 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3857 3858 cfs_rq_util_change(cfs_rq, 0); 3859 3860 trace_pelt_cfs_tp(cfs_rq); 3861} 3862 3863/** 3864 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3865 * @cfs_rq: cfs_rq to detach from 3866 * @se: sched_entity to detach 3867 * 3868 * Must call update_cfs_rq_load_avg() before this, since we rely on 3869 * cfs_rq->avg.last_update_time being current. 3870 */ 3871static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3872{ 3873 dequeue_load_avg(cfs_rq, se); 3874 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3875 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3876 /* See update_cfs_rq_load_avg() */ 3877 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3878 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3879 3880 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3881 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3882 /* See update_cfs_rq_load_avg() */ 3883 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3884 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3885 3886 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3887 3888 cfs_rq_util_change(cfs_rq, 0); 3889 3890 trace_pelt_cfs_tp(cfs_rq); 3891} 3892 3893/* 3894 * Optional action to be done while updating the load average 3895 */ 3896#define UPDATE_TG 0x1 3897#define SKIP_AGE_LOAD 0x2 3898#define DO_ATTACH 0x4 3899 3900/* Update task and its cfs_rq load average */ 3901static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3902{ 3903 u64 now = cfs_rq_clock_pelt(cfs_rq); 3904 int decayed; 3905 3906 /* 3907 * Track task load average for carrying it to new CPU after migrated, and 3908 * track group sched_entity load average for task_h_load calc in migration 3909 */ 3910 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3911 __update_load_avg_se(now, cfs_rq, se); 3912 3913 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3914 decayed |= propagate_entity_load_avg(se); 3915 3916 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3917 3918 /* 3919 * DO_ATTACH means we're here from enqueue_entity(). 3920 * !last_update_time means we've passed through 3921 * migrate_task_rq_fair() indicating we migrated. 3922 * 3923 * IOW we're enqueueing a task on a new CPU. 3924 */ 3925 attach_entity_load_avg(cfs_rq, se); 3926 update_tg_load_avg(cfs_rq); 3927 3928 } else if (decayed) { 3929 cfs_rq_util_change(cfs_rq, 0); 3930 3931 if (flags & UPDATE_TG) 3932 update_tg_load_avg(cfs_rq); 3933 } 3934} 3935 3936#ifndef CONFIG_64BIT 3937static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3938{ 3939 u64 last_update_time_copy; 3940 u64 last_update_time; 3941 3942 do { 3943 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3944 smp_rmb(); 3945 last_update_time = cfs_rq->avg.last_update_time; 3946 } while (last_update_time != last_update_time_copy); 3947 3948 return last_update_time; 3949} 3950#else 3951static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3952{ 3953 return cfs_rq->avg.last_update_time; 3954} 3955#endif 3956 3957/* 3958 * Synchronize entity load avg of dequeued entity without locking 3959 * the previous rq. 3960 */ 3961static void sync_entity_load_avg(struct sched_entity *se) 3962{ 3963 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3964 u64 last_update_time; 3965 3966 last_update_time = cfs_rq_last_update_time(cfs_rq); 3967 __update_load_avg_blocked_se(last_update_time, se); 3968} 3969 3970/* 3971 * Task first catches up with cfs_rq, and then subtract 3972 * itself from the cfs_rq (task must be off the queue now). 3973 */ 3974static void remove_entity_load_avg(struct sched_entity *se) 3975{ 3976 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3977 unsigned long flags; 3978 3979 /* 3980 * tasks cannot exit without having gone through wake_up_new_task() -> 3981 * post_init_entity_util_avg() which will have added things to the 3982 * cfs_rq, so we can remove unconditionally. 3983 */ 3984 3985 sync_entity_load_avg(se); 3986 3987 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3988 ++cfs_rq->removed.nr; 3989 cfs_rq->removed.util_avg += se->avg.util_avg; 3990 cfs_rq->removed.load_avg += se->avg.load_avg; 3991 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3992 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3993} 3994 3995static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3996{ 3997 return cfs_rq->avg.runnable_avg; 3998} 3999 4000static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4001{ 4002 return cfs_rq->avg.load_avg; 4003} 4004 4005static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4006 4007static inline unsigned long task_util(struct task_struct *p) 4008{ 4009 return READ_ONCE(p->se.avg.util_avg); 4010} 4011 4012static inline unsigned long _task_util_est(struct task_struct *p) 4013{ 4014 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4015 4016 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4017} 4018 4019static inline unsigned long task_util_est(struct task_struct *p) 4020{ 4021 return max(task_util(p), _task_util_est(p)); 4022} 4023 4024#ifdef CONFIG_UCLAMP_TASK 4025static inline unsigned long uclamp_task_util(struct task_struct *p) 4026{ 4027 return clamp(task_util_est(p), 4028 uclamp_eff_value(p, UCLAMP_MIN), 4029 uclamp_eff_value(p, UCLAMP_MAX)); 4030} 4031#else 4032static inline unsigned long uclamp_task_util(struct task_struct *p) 4033{ 4034 return task_util_est(p); 4035} 4036#endif 4037 4038static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4039 struct task_struct *p) 4040{ 4041 unsigned int enqueued; 4042 4043 if (!sched_feat(UTIL_EST)) 4044 return; 4045 4046 /* Update root cfs_rq's estimated utilization */ 4047 enqueued = cfs_rq->avg.util_est.enqueued; 4048 enqueued += _task_util_est(p); 4049 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4050 4051 trace_sched_util_est_cfs_tp(cfs_rq); 4052} 4053 4054static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4055 struct task_struct *p) 4056{ 4057 unsigned int enqueued; 4058 4059 if (!sched_feat(UTIL_EST)) 4060 return; 4061 4062 /* Update root cfs_rq's estimated utilization */ 4063 enqueued = cfs_rq->avg.util_est.enqueued; 4064 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4065 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4066 4067 trace_sched_util_est_cfs_tp(cfs_rq); 4068} 4069 4070#define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4071 4072/* 4073 * Check if a (signed) value is within a specified (unsigned) margin, 4074 * based on the observation that: 4075 * 4076 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4077 * 4078 * NOTE: this only works when value + margin < INT_MAX. 4079 */ 4080static inline bool within_margin(int value, int margin) 4081{ 4082 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4083} 4084 4085static inline void util_est_update(struct cfs_rq *cfs_rq, 4086 struct task_struct *p, 4087 bool task_sleep) 4088{ 4089 long last_ewma_diff, last_enqueued_diff; 4090 struct util_est ue; 4091 4092 if (!sched_feat(UTIL_EST)) 4093 return; 4094 4095 /* 4096 * Skip update of task's estimated utilization when the task has not 4097 * yet completed an activation, e.g. being migrated. 4098 */ 4099 if (!task_sleep) 4100 return; 4101 4102 /* 4103 * If the PELT values haven't changed since enqueue time, 4104 * skip the util_est update. 4105 */ 4106 ue = p->se.avg.util_est; 4107 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4108 return; 4109 4110 last_enqueued_diff = ue.enqueued; 4111 4112 /* 4113 * Reset EWMA on utilization increases, the moving average is used only 4114 * to smooth utilization decreases. 4115 */ 4116 ue.enqueued = task_util(p); 4117 if (sched_feat(UTIL_EST_FASTUP)) { 4118 if (ue.ewma < ue.enqueued) { 4119 ue.ewma = ue.enqueued; 4120 goto done; 4121 } 4122 } 4123 4124 /* 4125 * Skip update of task's estimated utilization when its members are 4126 * already ~1% close to its last activation value. 4127 */ 4128 last_ewma_diff = ue.enqueued - ue.ewma; 4129 last_enqueued_diff -= ue.enqueued; 4130 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4131 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4132 goto done; 4133 4134 return; 4135 } 4136 4137 /* 4138 * To avoid overestimation of actual task utilization, skip updates if 4139 * we cannot grant there is idle time in this CPU. 4140 */ 4141 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4142 return; 4143 4144 /* 4145 * Update Task's estimated utilization 4146 * 4147 * When *p completes an activation we can consolidate another sample 4148 * of the task size. This is done by storing the current PELT value 4149 * as ue.enqueued and by using this value to update the Exponential 4150 * Weighted Moving Average (EWMA): 4151 * 4152 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4153 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4154 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4155 * = w * ( last_ewma_diff ) + ewma(t-1) 4156 * = w * (last_ewma_diff + ewma(t-1) / w) 4157 * 4158 * Where 'w' is the weight of new samples, which is configured to be 4159 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4160 */ 4161 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4162 ue.ewma += last_ewma_diff; 4163 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4164done: 4165 ue.enqueued |= UTIL_AVG_UNCHANGED; 4166 WRITE_ONCE(p->se.avg.util_est, ue); 4167 4168 trace_sched_util_est_se_tp(&p->se); 4169} 4170 4171static inline int task_fits_capacity(struct task_struct *p, 4172 unsigned long capacity) 4173{ 4174 return fits_capacity(uclamp_task_util(p), capacity); 4175} 4176 4177static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4178{ 4179 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4180 return; 4181 4182 if (!p || p->nr_cpus_allowed == 1) { 4183 rq->misfit_task_load = 0; 4184 return; 4185 } 4186 4187 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4188 rq->misfit_task_load = 0; 4189 return; 4190 } 4191 4192 /* 4193 * Make sure that misfit_task_load will not be null even if 4194 * task_h_load() returns 0. 4195 */ 4196 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4197} 4198 4199#else /* CONFIG_SMP */ 4200 4201static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4202{ 4203 return true; 4204} 4205 4206#define UPDATE_TG 0x0 4207#define SKIP_AGE_LOAD 0x0 4208#define DO_ATTACH 0x0 4209 4210static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4211{ 4212 cfs_rq_util_change(cfs_rq, 0); 4213} 4214 4215static inline void remove_entity_load_avg(struct sched_entity *se) {} 4216 4217static inline void 4218attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4219static inline void 4220detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4221 4222static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4223{ 4224 return 0; 4225} 4226 4227static inline void 4228util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4229 4230static inline void 4231util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4232 4233static inline void 4234util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4235 bool task_sleep) {} 4236static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4237 4238#endif /* CONFIG_SMP */ 4239 4240static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4241{ 4242#ifdef CONFIG_SCHED_DEBUG 4243 s64 d = se->vruntime - cfs_rq->min_vruntime; 4244 4245 if (d < 0) 4246 d = -d; 4247 4248 if (d > 3*sysctl_sched_latency) 4249 schedstat_inc(cfs_rq->nr_spread_over); 4250#endif 4251} 4252 4253static void 4254place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4255{ 4256 u64 vruntime = cfs_rq->min_vruntime; 4257 4258 /* 4259 * The 'current' period is already promised to the current tasks, 4260 * however the extra weight of the new task will slow them down a 4261 * little, place the new task so that it fits in the slot that 4262 * stays open at the end. 4263 */ 4264 if (initial && sched_feat(START_DEBIT)) 4265 vruntime += sched_vslice(cfs_rq, se); 4266 4267 /* sleeps up to a single latency don't count. */ 4268 if (!initial) { 4269 unsigned long thresh; 4270 4271 if (se_is_idle(se)) 4272 thresh = sysctl_sched_min_granularity; 4273 else 4274 thresh = sysctl_sched_latency; 4275 4276 /* 4277 * Halve their sleep time's effect, to allow 4278 * for a gentler effect of sleepers: 4279 */ 4280 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4281 thresh >>= 1; 4282 4283 vruntime -= thresh; 4284 } 4285 4286 /* ensure we never gain time by being placed backwards. */ 4287 se->vruntime = max_vruntime(se->vruntime, vruntime); 4288} 4289 4290static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4291 4292static inline bool cfs_bandwidth_used(void); 4293 4294/* 4295 * MIGRATION 4296 * 4297 * dequeue 4298 * update_curr() 4299 * update_min_vruntime() 4300 * vruntime -= min_vruntime 4301 * 4302 * enqueue 4303 * update_curr() 4304 * update_min_vruntime() 4305 * vruntime += min_vruntime 4306 * 4307 * this way the vruntime transition between RQs is done when both 4308 * min_vruntime are up-to-date. 4309 * 4310 * WAKEUP (remote) 4311 * 4312 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4313 * vruntime -= min_vruntime 4314 * 4315 * enqueue 4316 * update_curr() 4317 * update_min_vruntime() 4318 * vruntime += min_vruntime 4319 * 4320 * this way we don't have the most up-to-date min_vruntime on the originating 4321 * CPU and an up-to-date min_vruntime on the destination CPU. 4322 */ 4323 4324static void 4325enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4326{ 4327 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4328 bool curr = cfs_rq->curr == se; 4329 4330 /* 4331 * If we're the current task, we must renormalise before calling 4332 * update_curr(). 4333 */ 4334 if (renorm && curr) 4335 se->vruntime += cfs_rq->min_vruntime; 4336 4337 update_curr(cfs_rq); 4338 4339 /* 4340 * Otherwise, renormalise after, such that we're placed at the current 4341 * moment in time, instead of some random moment in the past. Being 4342 * placed in the past could significantly boost this task to the 4343 * fairness detriment of existing tasks. 4344 */ 4345 if (renorm && !curr) 4346 se->vruntime += cfs_rq->min_vruntime; 4347 4348 /* 4349 * When enqueuing a sched_entity, we must: 4350 * - Update loads to have both entity and cfs_rq synced with now. 4351 * - Add its load to cfs_rq->runnable_avg 4352 * - For group_entity, update its weight to reflect the new share of 4353 * its group cfs_rq 4354 * - Add its new weight to cfs_rq->load.weight 4355 */ 4356 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4357 se_update_runnable(se); 4358 update_cfs_group(se); 4359 account_entity_enqueue(cfs_rq, se); 4360 4361 if (flags & ENQUEUE_WAKEUP) 4362 place_entity(cfs_rq, se, 0); 4363 4364 check_schedstat_required(); 4365 update_stats_enqueue_fair(cfs_rq, se, flags); 4366 check_spread(cfs_rq, se); 4367 if (!curr) 4368 __enqueue_entity(cfs_rq, se); 4369 se->on_rq = 1; 4370 4371 /* 4372 * When bandwidth control is enabled, cfs might have been removed 4373 * because of a parent been throttled but cfs->nr_running > 1. Try to 4374 * add it unconditionally. 4375 */ 4376 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4377 list_add_leaf_cfs_rq(cfs_rq); 4378 4379 if (cfs_rq->nr_running == 1) 4380 check_enqueue_throttle(cfs_rq); 4381} 4382 4383static void __clear_buddies_last(struct sched_entity *se) 4384{ 4385 for_each_sched_entity(se) { 4386 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4387 if (cfs_rq->last != se) 4388 break; 4389 4390 cfs_rq->last = NULL; 4391 } 4392} 4393 4394static void __clear_buddies_next(struct sched_entity *se) 4395{ 4396 for_each_sched_entity(se) { 4397 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4398 if (cfs_rq->next != se) 4399 break; 4400 4401 cfs_rq->next = NULL; 4402 } 4403} 4404 4405static void __clear_buddies_skip(struct sched_entity *se) 4406{ 4407 for_each_sched_entity(se) { 4408 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4409 if (cfs_rq->skip != se) 4410 break; 4411 4412 cfs_rq->skip = NULL; 4413 } 4414} 4415 4416static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4417{ 4418 if (cfs_rq->last == se) 4419 __clear_buddies_last(se); 4420 4421 if (cfs_rq->next == se) 4422 __clear_buddies_next(se); 4423 4424 if (cfs_rq->skip == se) 4425 __clear_buddies_skip(se); 4426} 4427 4428static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4429 4430static void 4431dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4432{ 4433 /* 4434 * Update run-time statistics of the 'current'. 4435 */ 4436 update_curr(cfs_rq); 4437 4438 /* 4439 * When dequeuing a sched_entity, we must: 4440 * - Update loads to have both entity and cfs_rq synced with now. 4441 * - Subtract its load from the cfs_rq->runnable_avg. 4442 * - Subtract its previous weight from cfs_rq->load.weight. 4443 * - For group entity, update its weight to reflect the new share 4444 * of its group cfs_rq. 4445 */ 4446 update_load_avg(cfs_rq, se, UPDATE_TG); 4447 se_update_runnable(se); 4448 4449 update_stats_dequeue_fair(cfs_rq, se, flags); 4450 4451 clear_buddies(cfs_rq, se); 4452 4453 if (se != cfs_rq->curr) 4454 __dequeue_entity(cfs_rq, se); 4455 se->on_rq = 0; 4456 account_entity_dequeue(cfs_rq, se); 4457 4458 /* 4459 * Normalize after update_curr(); which will also have moved 4460 * min_vruntime if @se is the one holding it back. But before doing 4461 * update_min_vruntime() again, which will discount @se's position and 4462 * can move min_vruntime forward still more. 4463 */ 4464 if (!(flags & DEQUEUE_SLEEP)) 4465 se->vruntime -= cfs_rq->min_vruntime; 4466 4467 /* return excess runtime on last dequeue */ 4468 return_cfs_rq_runtime(cfs_rq); 4469 4470 update_cfs_group(se); 4471 4472 /* 4473 * Now advance min_vruntime if @se was the entity holding it back, 4474 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4475 * put back on, and if we advance min_vruntime, we'll be placed back 4476 * further than we started -- ie. we'll be penalized. 4477 */ 4478 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4479 update_min_vruntime(cfs_rq); 4480} 4481 4482/* 4483 * Preempt the current task with a newly woken task if needed: 4484 */ 4485static void 4486check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4487{ 4488 unsigned long ideal_runtime, delta_exec; 4489 struct sched_entity *se; 4490 s64 delta; 4491 4492 ideal_runtime = sched_slice(cfs_rq, curr); 4493 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4494 if (delta_exec > ideal_runtime) { 4495 resched_curr(rq_of(cfs_rq)); 4496 /* 4497 * The current task ran long enough, ensure it doesn't get 4498 * re-elected due to buddy favours. 4499 */ 4500 clear_buddies(cfs_rq, curr); 4501 return; 4502 } 4503 4504 /* 4505 * Ensure that a task that missed wakeup preemption by a 4506 * narrow margin doesn't have to wait for a full slice. 4507 * This also mitigates buddy induced latencies under load. 4508 */ 4509 if (delta_exec < sysctl_sched_min_granularity) 4510 return; 4511 4512 se = __pick_first_entity(cfs_rq); 4513 delta = curr->vruntime - se->vruntime; 4514 4515 if (delta < 0) 4516 return; 4517 4518 if (delta > ideal_runtime) 4519 resched_curr(rq_of(cfs_rq)); 4520} 4521 4522static void 4523set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4524{ 4525 clear_buddies(cfs_rq, se); 4526 4527 /* 'current' is not kept within the tree. */ 4528 if (se->on_rq) { 4529 /* 4530 * Any task has to be enqueued before it get to execute on 4531 * a CPU. So account for the time it spent waiting on the 4532 * runqueue. 4533 */ 4534 update_stats_wait_end_fair(cfs_rq, se); 4535 __dequeue_entity(cfs_rq, se); 4536 update_load_avg(cfs_rq, se, UPDATE_TG); 4537 } 4538 4539 update_stats_curr_start(cfs_rq, se); 4540 cfs_rq->curr = se; 4541 4542 /* 4543 * Track our maximum slice length, if the CPU's load is at 4544 * least twice that of our own weight (i.e. dont track it 4545 * when there are only lesser-weight tasks around): 4546 */ 4547 if (schedstat_enabled() && 4548 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4549 struct sched_statistics *stats; 4550 4551 stats = __schedstats_from_se(se); 4552 __schedstat_set(stats->slice_max, 4553 max((u64)stats->slice_max, 4554 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4555 } 4556 4557 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4558} 4559 4560static int 4561wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4562 4563/* 4564 * Pick the next process, keeping these things in mind, in this order: 4565 * 1) keep things fair between processes/task groups 4566 * 2) pick the "next" process, since someone really wants that to run 4567 * 3) pick the "last" process, for cache locality 4568 * 4) do not run the "skip" process, if something else is available 4569 */ 4570static struct sched_entity * 4571pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4572{ 4573 struct sched_entity *left = __pick_first_entity(cfs_rq); 4574 struct sched_entity *se; 4575 4576 /* 4577 * If curr is set we have to see if its left of the leftmost entity 4578 * still in the tree, provided there was anything in the tree at all. 4579 */ 4580 if (!left || (curr && entity_before(curr, left))) 4581 left = curr; 4582 4583 se = left; /* ideally we run the leftmost entity */ 4584 4585 /* 4586 * Avoid running the skip buddy, if running something else can 4587 * be done without getting too unfair. 4588 */ 4589 if (cfs_rq->skip && cfs_rq->skip == se) { 4590 struct sched_entity *second; 4591 4592 if (se == curr) { 4593 second = __pick_first_entity(cfs_rq); 4594 } else { 4595 second = __pick_next_entity(se); 4596 if (!second || (curr && entity_before(curr, second))) 4597 second = curr; 4598 } 4599 4600 if (second && wakeup_preempt_entity(second, left) < 1) 4601 se = second; 4602 } 4603 4604 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4605 /* 4606 * Someone really wants this to run. If it's not unfair, run it. 4607 */ 4608 se = cfs_rq->next; 4609 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4610 /* 4611 * Prefer last buddy, try to return the CPU to a preempted task. 4612 */ 4613 se = cfs_rq->last; 4614 } 4615 4616 return se; 4617} 4618 4619static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4620 4621static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4622{ 4623 /* 4624 * If still on the runqueue then deactivate_task() 4625 * was not called and update_curr() has to be done: 4626 */ 4627 if (prev->on_rq) 4628 update_curr(cfs_rq); 4629 4630 /* throttle cfs_rqs exceeding runtime */ 4631 check_cfs_rq_runtime(cfs_rq); 4632 4633 check_spread(cfs_rq, prev); 4634 4635 if (prev->on_rq) { 4636 update_stats_wait_start_fair(cfs_rq, prev); 4637 /* Put 'current' back into the tree. */ 4638 __enqueue_entity(cfs_rq, prev); 4639 /* in !on_rq case, update occurred at dequeue */ 4640 update_load_avg(cfs_rq, prev, 0); 4641 } 4642 cfs_rq->curr = NULL; 4643} 4644 4645static void 4646entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4647{ 4648 /* 4649 * Update run-time statistics of the 'current'. 4650 */ 4651 update_curr(cfs_rq); 4652 4653 /* 4654 * Ensure that runnable average is periodically updated. 4655 */ 4656 update_load_avg(cfs_rq, curr, UPDATE_TG); 4657 update_cfs_group(curr); 4658 4659#ifdef CONFIG_SCHED_HRTICK 4660 /* 4661 * queued ticks are scheduled to match the slice, so don't bother 4662 * validating it and just reschedule. 4663 */ 4664 if (queued) { 4665 resched_curr(rq_of(cfs_rq)); 4666 return; 4667 } 4668 /* 4669 * don't let the period tick interfere with the hrtick preemption 4670 */ 4671 if (!sched_feat(DOUBLE_TICK) && 4672 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4673 return; 4674#endif 4675 4676 if (cfs_rq->nr_running > 1) 4677 check_preempt_tick(cfs_rq, curr); 4678} 4679 4680 4681/************************************************** 4682 * CFS bandwidth control machinery 4683 */ 4684 4685#ifdef CONFIG_CFS_BANDWIDTH 4686 4687#ifdef CONFIG_JUMP_LABEL 4688static struct static_key __cfs_bandwidth_used; 4689 4690static inline bool cfs_bandwidth_used(void) 4691{ 4692 return static_key_false(&__cfs_bandwidth_used); 4693} 4694 4695void cfs_bandwidth_usage_inc(void) 4696{ 4697 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4698} 4699 4700void cfs_bandwidth_usage_dec(void) 4701{ 4702 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4703} 4704#else /* CONFIG_JUMP_LABEL */ 4705static bool cfs_bandwidth_used(void) 4706{ 4707 return true; 4708} 4709 4710void cfs_bandwidth_usage_inc(void) {} 4711void cfs_bandwidth_usage_dec(void) {} 4712#endif /* CONFIG_JUMP_LABEL */ 4713 4714/* 4715 * default period for cfs group bandwidth. 4716 * default: 0.1s, units: nanoseconds 4717 */ 4718static inline u64 default_cfs_period(void) 4719{ 4720 return 100000000ULL; 4721} 4722 4723static inline u64 sched_cfs_bandwidth_slice(void) 4724{ 4725 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4726} 4727 4728/* 4729 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4730 * directly instead of rq->clock to avoid adding additional synchronization 4731 * around rq->lock. 4732 * 4733 * requires cfs_b->lock 4734 */ 4735void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4736{ 4737 s64 runtime; 4738 4739 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4740 return; 4741 4742 cfs_b->runtime += cfs_b->quota; 4743 runtime = cfs_b->runtime_snap - cfs_b->runtime; 4744 if (runtime > 0) { 4745 cfs_b->burst_time += runtime; 4746 cfs_b->nr_burst++; 4747 } 4748 4749 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4750 cfs_b->runtime_snap = cfs_b->runtime; 4751} 4752 4753static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4754{ 4755 return &tg->cfs_bandwidth; 4756} 4757 4758/* returns 0 on failure to allocate runtime */ 4759static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4760 struct cfs_rq *cfs_rq, u64 target_runtime) 4761{ 4762 u64 min_amount, amount = 0; 4763 4764 lockdep_assert_held(&cfs_b->lock); 4765 4766 /* note: this is a positive sum as runtime_remaining <= 0 */ 4767 min_amount = target_runtime - cfs_rq->runtime_remaining; 4768 4769 if (cfs_b->quota == RUNTIME_INF) 4770 amount = min_amount; 4771 else { 4772 start_cfs_bandwidth(cfs_b); 4773 4774 if (cfs_b->runtime > 0) { 4775 amount = min(cfs_b->runtime, min_amount); 4776 cfs_b->runtime -= amount; 4777 cfs_b->idle = 0; 4778 } 4779 } 4780 4781 cfs_rq->runtime_remaining += amount; 4782 4783 return cfs_rq->runtime_remaining > 0; 4784} 4785 4786/* returns 0 on failure to allocate runtime */ 4787static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4788{ 4789 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4790 int ret; 4791 4792 raw_spin_lock(&cfs_b->lock); 4793 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4794 raw_spin_unlock(&cfs_b->lock); 4795 4796 return ret; 4797} 4798 4799static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4800{ 4801 /* dock delta_exec before expiring quota (as it could span periods) */ 4802 cfs_rq->runtime_remaining -= delta_exec; 4803 4804 if (likely(cfs_rq->runtime_remaining > 0)) 4805 return; 4806 4807 if (cfs_rq->throttled) 4808 return; 4809 /* 4810 * if we're unable to extend our runtime we resched so that the active 4811 * hierarchy can be throttled 4812 */ 4813 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4814 resched_curr(rq_of(cfs_rq)); 4815} 4816 4817static __always_inline 4818void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4819{ 4820 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4821 return; 4822 4823 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4824} 4825 4826static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4827{ 4828 return cfs_bandwidth_used() && cfs_rq->throttled; 4829} 4830 4831/* check whether cfs_rq, or any parent, is throttled */ 4832static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4833{ 4834 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4835} 4836 4837/* 4838 * Ensure that neither of the group entities corresponding to src_cpu or 4839 * dest_cpu are members of a throttled hierarchy when performing group 4840 * load-balance operations. 4841 */ 4842static inline int throttled_lb_pair(struct task_group *tg, 4843 int src_cpu, int dest_cpu) 4844{ 4845 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4846 4847 src_cfs_rq = tg->cfs_rq[src_cpu]; 4848 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4849 4850 return throttled_hierarchy(src_cfs_rq) || 4851 throttled_hierarchy(dest_cfs_rq); 4852} 4853 4854static int tg_unthrottle_up(struct task_group *tg, void *data) 4855{ 4856 struct rq *rq = data; 4857 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4858 4859 cfs_rq->throttle_count--; 4860 if (!cfs_rq->throttle_count) { 4861 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 4862 cfs_rq->throttled_clock_pelt; 4863 4864 /* Add cfs_rq with load or one or more already running entities to the list */ 4865 if (!cfs_rq_is_decayed(cfs_rq)) 4866 list_add_leaf_cfs_rq(cfs_rq); 4867 } 4868 4869 return 0; 4870} 4871 4872static int tg_throttle_down(struct task_group *tg, void *data) 4873{ 4874 struct rq *rq = data; 4875 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4876 4877 /* group is entering throttled state, stop time */ 4878 if (!cfs_rq->throttle_count) { 4879 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 4880 list_del_leaf_cfs_rq(cfs_rq); 4881 } 4882 cfs_rq->throttle_count++; 4883 4884 return 0; 4885} 4886 4887static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4888{ 4889 struct rq *rq = rq_of(cfs_rq); 4890 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4891 struct sched_entity *se; 4892 long task_delta, idle_task_delta, dequeue = 1; 4893 4894 raw_spin_lock(&cfs_b->lock); 4895 /* This will start the period timer if necessary */ 4896 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4897 /* 4898 * We have raced with bandwidth becoming available, and if we 4899 * actually throttled the timer might not unthrottle us for an 4900 * entire period. We additionally needed to make sure that any 4901 * subsequent check_cfs_rq_runtime calls agree not to throttle 4902 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4903 * for 1ns of runtime rather than just check cfs_b. 4904 */ 4905 dequeue = 0; 4906 } else { 4907 list_add_tail_rcu(&cfs_rq->throttled_list, 4908 &cfs_b->throttled_cfs_rq); 4909 } 4910 raw_spin_unlock(&cfs_b->lock); 4911 4912 if (!dequeue) 4913 return false; /* Throttle no longer required. */ 4914 4915 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4916 4917 /* freeze hierarchy runnable averages while throttled */ 4918 rcu_read_lock(); 4919 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4920 rcu_read_unlock(); 4921 4922 task_delta = cfs_rq->h_nr_running; 4923 idle_task_delta = cfs_rq->idle_h_nr_running; 4924 for_each_sched_entity(se) { 4925 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4926 /* throttled entity or throttle-on-deactivate */ 4927 if (!se->on_rq) 4928 goto done; 4929 4930 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4931 4932 if (cfs_rq_is_idle(group_cfs_rq(se))) 4933 idle_task_delta = cfs_rq->h_nr_running; 4934 4935 qcfs_rq->h_nr_running -= task_delta; 4936 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4937 4938 if (qcfs_rq->load.weight) { 4939 /* Avoid re-evaluating load for this entity: */ 4940 se = parent_entity(se); 4941 break; 4942 } 4943 } 4944 4945 for_each_sched_entity(se) { 4946 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4947 /* throttled entity or throttle-on-deactivate */ 4948 if (!se->on_rq) 4949 goto done; 4950 4951 update_load_avg(qcfs_rq, se, 0); 4952 se_update_runnable(se); 4953 4954 if (cfs_rq_is_idle(group_cfs_rq(se))) 4955 idle_task_delta = cfs_rq->h_nr_running; 4956 4957 qcfs_rq->h_nr_running -= task_delta; 4958 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4959 } 4960 4961 /* At this point se is NULL and we are at root level*/ 4962 sub_nr_running(rq, task_delta); 4963 4964done: 4965 /* 4966 * Note: distribution will already see us throttled via the 4967 * throttled-list. rq->lock protects completion. 4968 */ 4969 cfs_rq->throttled = 1; 4970 cfs_rq->throttled_clock = rq_clock(rq); 4971 return true; 4972} 4973 4974void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4975{ 4976 struct rq *rq = rq_of(cfs_rq); 4977 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4978 struct sched_entity *se; 4979 long task_delta, idle_task_delta; 4980 4981 se = cfs_rq->tg->se[cpu_of(rq)]; 4982 4983 cfs_rq->throttled = 0; 4984 4985 update_rq_clock(rq); 4986 4987 raw_spin_lock(&cfs_b->lock); 4988 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4989 list_del_rcu(&cfs_rq->throttled_list); 4990 raw_spin_unlock(&cfs_b->lock); 4991 4992 /* update hierarchical throttle state */ 4993 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4994 4995 /* Nothing to run but something to decay (on_list)? Complete the branch */ 4996 if (!cfs_rq->load.weight) { 4997 if (cfs_rq->on_list) 4998 goto unthrottle_throttle; 4999 return; 5000 } 5001 5002 task_delta = cfs_rq->h_nr_running; 5003 idle_task_delta = cfs_rq->idle_h_nr_running; 5004 for_each_sched_entity(se) { 5005 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5006 5007 if (se->on_rq) 5008 break; 5009 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5010 5011 if (cfs_rq_is_idle(group_cfs_rq(se))) 5012 idle_task_delta = cfs_rq->h_nr_running; 5013 5014 qcfs_rq->h_nr_running += task_delta; 5015 qcfs_rq->idle_h_nr_running += idle_task_delta; 5016 5017 /* end evaluation on encountering a throttled cfs_rq */ 5018 if (cfs_rq_throttled(qcfs_rq)) 5019 goto unthrottle_throttle; 5020 } 5021 5022 for_each_sched_entity(se) { 5023 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5024 5025 update_load_avg(qcfs_rq, se, UPDATE_TG); 5026 se_update_runnable(se); 5027 5028 if (cfs_rq_is_idle(group_cfs_rq(se))) 5029 idle_task_delta = cfs_rq->h_nr_running; 5030 5031 qcfs_rq->h_nr_running += task_delta; 5032 qcfs_rq->idle_h_nr_running += idle_task_delta; 5033 5034 /* end evaluation on encountering a throttled cfs_rq */ 5035 if (cfs_rq_throttled(qcfs_rq)) 5036 goto unthrottle_throttle; 5037 5038 /* 5039 * One parent has been throttled and cfs_rq removed from the 5040 * list. Add it back to not break the leaf list. 5041 */ 5042 if (throttled_hierarchy(qcfs_rq)) 5043 list_add_leaf_cfs_rq(qcfs_rq); 5044 } 5045 5046 /* At this point se is NULL and we are at root level*/ 5047 add_nr_running(rq, task_delta); 5048 5049unthrottle_throttle: 5050 /* 5051 * The cfs_rq_throttled() breaks in the above iteration can result in 5052 * incomplete leaf list maintenance, resulting in triggering the 5053 * assertion below. 5054 */ 5055 for_each_sched_entity(se) { 5056 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5057 5058 if (list_add_leaf_cfs_rq(qcfs_rq)) 5059 break; 5060 } 5061 5062 assert_list_leaf_cfs_rq(rq); 5063 5064 /* Determine whether we need to wake up potentially idle CPU: */ 5065 if (rq->curr == rq->idle && rq->cfs.nr_running) 5066 resched_curr(rq); 5067} 5068 5069static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5070{ 5071 struct cfs_rq *cfs_rq; 5072 u64 runtime, remaining = 1; 5073 5074 rcu_read_lock(); 5075 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5076 throttled_list) { 5077 struct rq *rq = rq_of(cfs_rq); 5078 struct rq_flags rf; 5079 5080 rq_lock_irqsave(rq, &rf); 5081 if (!cfs_rq_throttled(cfs_rq)) 5082 goto next; 5083 5084 /* By the above check, this should never be true */ 5085 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5086 5087 raw_spin_lock(&cfs_b->lock); 5088 runtime = -cfs_rq->runtime_remaining + 1; 5089 if (runtime > cfs_b->runtime) 5090 runtime = cfs_b->runtime; 5091 cfs_b->runtime -= runtime; 5092 remaining = cfs_b->runtime; 5093 raw_spin_unlock(&cfs_b->lock); 5094 5095 cfs_rq->runtime_remaining += runtime; 5096 5097 /* we check whether we're throttled above */ 5098 if (cfs_rq->runtime_remaining > 0) 5099 unthrottle_cfs_rq(cfs_rq); 5100 5101next: 5102 rq_unlock_irqrestore(rq, &rf); 5103 5104 if (!remaining) 5105 break; 5106 } 5107 rcu_read_unlock(); 5108} 5109 5110/* 5111 * Responsible for refilling a task_group's bandwidth and unthrottling its 5112 * cfs_rqs as appropriate. If there has been no activity within the last 5113 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5114 * used to track this state. 5115 */ 5116static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5117{ 5118 int throttled; 5119 5120 /* no need to continue the timer with no bandwidth constraint */ 5121 if (cfs_b->quota == RUNTIME_INF) 5122 goto out_deactivate; 5123 5124 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5125 cfs_b->nr_periods += overrun; 5126 5127 /* Refill extra burst quota even if cfs_b->idle */ 5128 __refill_cfs_bandwidth_runtime(cfs_b); 5129 5130 /* 5131 * idle depends on !throttled (for the case of a large deficit), and if 5132 * we're going inactive then everything else can be deferred 5133 */ 5134 if (cfs_b->idle && !throttled) 5135 goto out_deactivate; 5136 5137 if (!throttled) { 5138 /* mark as potentially idle for the upcoming period */ 5139 cfs_b->idle = 1; 5140 return 0; 5141 } 5142 5143 /* account preceding periods in which throttling occurred */ 5144 cfs_b->nr_throttled += overrun; 5145 5146 /* 5147 * This check is repeated as we release cfs_b->lock while we unthrottle. 5148 */ 5149 while (throttled && cfs_b->runtime > 0) { 5150 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5151 /* we can't nest cfs_b->lock while distributing bandwidth */ 5152 distribute_cfs_runtime(cfs_b); 5153 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5154 5155 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5156 } 5157 5158 /* 5159 * While we are ensured activity in the period following an 5160 * unthrottle, this also covers the case in which the new bandwidth is 5161 * insufficient to cover the existing bandwidth deficit. (Forcing the 5162 * timer to remain active while there are any throttled entities.) 5163 */ 5164 cfs_b->idle = 0; 5165 5166 return 0; 5167 5168out_deactivate: 5169 return 1; 5170} 5171 5172/* a cfs_rq won't donate quota below this amount */ 5173static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5174/* minimum remaining period time to redistribute slack quota */ 5175static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5176/* how long we wait to gather additional slack before distributing */ 5177static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5178 5179/* 5180 * Are we near the end of the current quota period? 5181 * 5182 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5183 * hrtimer base being cleared by hrtimer_start. In the case of 5184 * migrate_hrtimers, base is never cleared, so we are fine. 5185 */ 5186static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5187{ 5188 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5189 s64 remaining; 5190 5191 /* if the call-back is running a quota refresh is already occurring */ 5192 if (hrtimer_callback_running(refresh_timer)) 5193 return 1; 5194 5195 /* is a quota refresh about to occur? */ 5196 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5197 if (remaining < (s64)min_expire) 5198 return 1; 5199 5200 return 0; 5201} 5202 5203static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5204{ 5205 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5206 5207 /* if there's a quota refresh soon don't bother with slack */ 5208 if (runtime_refresh_within(cfs_b, min_left)) 5209 return; 5210 5211 /* don't push forwards an existing deferred unthrottle */ 5212 if (cfs_b->slack_started) 5213 return; 5214 cfs_b->slack_started = true; 5215 5216 hrtimer_start(&cfs_b->slack_timer, 5217 ns_to_ktime(cfs_bandwidth_slack_period), 5218 HRTIMER_MODE_REL); 5219} 5220 5221/* we know any runtime found here is valid as update_curr() precedes return */ 5222static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5223{ 5224 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5225 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5226 5227 if (slack_runtime <= 0) 5228 return; 5229 5230 raw_spin_lock(&cfs_b->lock); 5231 if (cfs_b->quota != RUNTIME_INF) { 5232 cfs_b->runtime += slack_runtime; 5233 5234 /* we are under rq->lock, defer unthrottling using a timer */ 5235 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5236 !list_empty(&cfs_b->throttled_cfs_rq)) 5237 start_cfs_slack_bandwidth(cfs_b); 5238 } 5239 raw_spin_unlock(&cfs_b->lock); 5240 5241 /* even if it's not valid for return we don't want to try again */ 5242 cfs_rq->runtime_remaining -= slack_runtime; 5243} 5244 5245static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5246{ 5247 if (!cfs_bandwidth_used()) 5248 return; 5249 5250 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5251 return; 5252 5253 __return_cfs_rq_runtime(cfs_rq); 5254} 5255 5256/* 5257 * This is done with a timer (instead of inline with bandwidth return) since 5258 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5259 */ 5260static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5261{ 5262 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5263 unsigned long flags; 5264 5265 /* confirm we're still not at a refresh boundary */ 5266 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5267 cfs_b->slack_started = false; 5268 5269 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5270 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5271 return; 5272 } 5273 5274 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5275 runtime = cfs_b->runtime; 5276 5277 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5278 5279 if (!runtime) 5280 return; 5281 5282 distribute_cfs_runtime(cfs_b); 5283} 5284 5285/* 5286 * When a group wakes up we want to make sure that its quota is not already 5287 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5288 * runtime as update_curr() throttling can not trigger until it's on-rq. 5289 */ 5290static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5291{ 5292 if (!cfs_bandwidth_used()) 5293 return; 5294 5295 /* an active group must be handled by the update_curr()->put() path */ 5296 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5297 return; 5298 5299 /* ensure the group is not already throttled */ 5300 if (cfs_rq_throttled(cfs_rq)) 5301 return; 5302 5303 /* update runtime allocation */ 5304 account_cfs_rq_runtime(cfs_rq, 0); 5305 if (cfs_rq->runtime_remaining <= 0) 5306 throttle_cfs_rq(cfs_rq); 5307} 5308 5309static void sync_throttle(struct task_group *tg, int cpu) 5310{ 5311 struct cfs_rq *pcfs_rq, *cfs_rq; 5312 5313 if (!cfs_bandwidth_used()) 5314 return; 5315 5316 if (!tg->parent) 5317 return; 5318 5319 cfs_rq = tg->cfs_rq[cpu]; 5320 pcfs_rq = tg->parent->cfs_rq[cpu]; 5321 5322 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5323 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5324} 5325 5326/* conditionally throttle active cfs_rq's from put_prev_entity() */ 5327static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5328{ 5329 if (!cfs_bandwidth_used()) 5330 return false; 5331 5332 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5333 return false; 5334 5335 /* 5336 * it's possible for a throttled entity to be forced into a running 5337 * state (e.g. set_curr_task), in this case we're finished. 5338 */ 5339 if (cfs_rq_throttled(cfs_rq)) 5340 return true; 5341 5342 return throttle_cfs_rq(cfs_rq); 5343} 5344 5345static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5346{ 5347 struct cfs_bandwidth *cfs_b = 5348 container_of(timer, struct cfs_bandwidth, slack_timer); 5349 5350 do_sched_cfs_slack_timer(cfs_b); 5351 5352 return HRTIMER_NORESTART; 5353} 5354 5355extern const u64 max_cfs_quota_period; 5356 5357static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5358{ 5359 struct cfs_bandwidth *cfs_b = 5360 container_of(timer, struct cfs_bandwidth, period_timer); 5361 unsigned long flags; 5362 int overrun; 5363 int idle = 0; 5364 int count = 0; 5365 5366 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5367 for (;;) { 5368 overrun = hrtimer_forward_now(timer, cfs_b->period); 5369 if (!overrun) 5370 break; 5371 5372 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5373 5374 if (++count > 3) { 5375 u64 new, old = ktime_to_ns(cfs_b->period); 5376 5377 /* 5378 * Grow period by a factor of 2 to avoid losing precision. 5379 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5380 * to fail. 5381 */ 5382 new = old * 2; 5383 if (new < max_cfs_quota_period) { 5384 cfs_b->period = ns_to_ktime(new); 5385 cfs_b->quota *= 2; 5386 cfs_b->burst *= 2; 5387 5388 pr_warn_ratelimited( 5389 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5390 smp_processor_id(), 5391 div_u64(new, NSEC_PER_USEC), 5392 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5393 } else { 5394 pr_warn_ratelimited( 5395 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5396 smp_processor_id(), 5397 div_u64(old, NSEC_PER_USEC), 5398 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5399 } 5400 5401 /* reset count so we don't come right back in here */ 5402 count = 0; 5403 } 5404 } 5405 if (idle) 5406 cfs_b->period_active = 0; 5407 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5408 5409 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5410} 5411 5412void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5413{ 5414 raw_spin_lock_init(&cfs_b->lock); 5415 cfs_b->runtime = 0; 5416 cfs_b->quota = RUNTIME_INF; 5417 cfs_b->period = ns_to_ktime(default_cfs_period()); 5418 cfs_b->burst = 0; 5419 5420 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5421 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5422 cfs_b->period_timer.function = sched_cfs_period_timer; 5423 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5424 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5425 cfs_b->slack_started = false; 5426} 5427 5428static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5429{ 5430 cfs_rq->runtime_enabled = 0; 5431 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5432} 5433 5434void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5435{ 5436 lockdep_assert_held(&cfs_b->lock); 5437 5438 if (cfs_b->period_active) 5439 return; 5440 5441 cfs_b->period_active = 1; 5442 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5443 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5444} 5445 5446static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5447{ 5448 /* init_cfs_bandwidth() was not called */ 5449 if (!cfs_b->throttled_cfs_rq.next) 5450 return; 5451 5452 hrtimer_cancel(&cfs_b->period_timer); 5453 hrtimer_cancel(&cfs_b->slack_timer); 5454} 5455 5456/* 5457 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5458 * 5459 * The race is harmless, since modifying bandwidth settings of unhooked group 5460 * bits doesn't do much. 5461 */ 5462 5463/* cpu online callback */ 5464static void __maybe_unused update_runtime_enabled(struct rq *rq) 5465{ 5466 struct task_group *tg; 5467 5468 lockdep_assert_rq_held(rq); 5469 5470 rcu_read_lock(); 5471 list_for_each_entry_rcu(tg, &task_groups, list) { 5472 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5473 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5474 5475 raw_spin_lock(&cfs_b->lock); 5476 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5477 raw_spin_unlock(&cfs_b->lock); 5478 } 5479 rcu_read_unlock(); 5480} 5481 5482/* cpu offline callback */ 5483static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5484{ 5485 struct task_group *tg; 5486 5487 lockdep_assert_rq_held(rq); 5488 5489 rcu_read_lock(); 5490 list_for_each_entry_rcu(tg, &task_groups, list) { 5491 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5492 5493 if (!cfs_rq->runtime_enabled) 5494 continue; 5495 5496 /* 5497 * clock_task is not advancing so we just need to make sure 5498 * there's some valid quota amount 5499 */ 5500 cfs_rq->runtime_remaining = 1; 5501 /* 5502 * Offline rq is schedulable till CPU is completely disabled 5503 * in take_cpu_down(), so we prevent new cfs throttling here. 5504 */ 5505 cfs_rq->runtime_enabled = 0; 5506 5507 if (cfs_rq_throttled(cfs_rq)) 5508 unthrottle_cfs_rq(cfs_rq); 5509 } 5510 rcu_read_unlock(); 5511} 5512 5513#else /* CONFIG_CFS_BANDWIDTH */ 5514 5515static inline bool cfs_bandwidth_used(void) 5516{ 5517 return false; 5518} 5519 5520static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5521static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5522static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5523static inline void sync_throttle(struct task_group *tg, int cpu) {} 5524static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5525 5526static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5527{ 5528 return 0; 5529} 5530 5531static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5532{ 5533 return 0; 5534} 5535 5536static inline int throttled_lb_pair(struct task_group *tg, 5537 int src_cpu, int dest_cpu) 5538{ 5539 return 0; 5540} 5541 5542void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5543 5544#ifdef CONFIG_FAIR_GROUP_SCHED 5545static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5546#endif 5547 5548static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5549{ 5550 return NULL; 5551} 5552static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5553static inline void update_runtime_enabled(struct rq *rq) {} 5554static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5555 5556#endif /* CONFIG_CFS_BANDWIDTH */ 5557 5558/************************************************** 5559 * CFS operations on tasks: 5560 */ 5561 5562#ifdef CONFIG_SCHED_HRTICK 5563static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5564{ 5565 struct sched_entity *se = &p->se; 5566 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5567 5568 SCHED_WARN_ON(task_rq(p) != rq); 5569 5570 if (rq->cfs.h_nr_running > 1) { 5571 u64 slice = sched_slice(cfs_rq, se); 5572 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5573 s64 delta = slice - ran; 5574 5575 if (delta < 0) { 5576 if (task_current(rq, p)) 5577 resched_curr(rq); 5578 return; 5579 } 5580 hrtick_start(rq, delta); 5581 } 5582} 5583 5584/* 5585 * called from enqueue/dequeue and updates the hrtick when the 5586 * current task is from our class and nr_running is low enough 5587 * to matter. 5588 */ 5589static void hrtick_update(struct rq *rq) 5590{ 5591 struct task_struct *curr = rq->curr; 5592 5593 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5594 return; 5595 5596 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5597 hrtick_start_fair(rq, curr); 5598} 5599#else /* !CONFIG_SCHED_HRTICK */ 5600static inline void 5601hrtick_start_fair(struct rq *rq, struct task_struct *p) 5602{ 5603} 5604 5605static inline void hrtick_update(struct rq *rq) 5606{ 5607} 5608#endif 5609 5610#ifdef CONFIG_SMP 5611static inline bool cpu_overutilized(int cpu) 5612{ 5613 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu)); 5614} 5615 5616static inline void update_overutilized_status(struct rq *rq) 5617{ 5618 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5619 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5620 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5621 } 5622} 5623#else 5624static inline void update_overutilized_status(struct rq *rq) { } 5625#endif 5626 5627/* Runqueue only has SCHED_IDLE tasks enqueued */ 5628static int sched_idle_rq(struct rq *rq) 5629{ 5630 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5631 rq->nr_running); 5632} 5633 5634/* 5635 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 5636 * of idle_nr_running, which does not consider idle descendants of normal 5637 * entities. 5638 */ 5639static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 5640{ 5641 return cfs_rq->nr_running && 5642 cfs_rq->nr_running == cfs_rq->idle_nr_running; 5643} 5644 5645#ifdef CONFIG_SMP 5646static int sched_idle_cpu(int cpu) 5647{ 5648 return sched_idle_rq(cpu_rq(cpu)); 5649} 5650#endif 5651 5652/* 5653 * The enqueue_task method is called before nr_running is 5654 * increased. Here we update the fair scheduling stats and 5655 * then put the task into the rbtree: 5656 */ 5657static void 5658enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5659{ 5660 struct cfs_rq *cfs_rq; 5661 struct sched_entity *se = &p->se; 5662 int idle_h_nr_running = task_has_idle_policy(p); 5663 int task_new = !(flags & ENQUEUE_WAKEUP); 5664 5665 /* 5666 * The code below (indirectly) updates schedutil which looks at 5667 * the cfs_rq utilization to select a frequency. 5668 * Let's add the task's estimated utilization to the cfs_rq's 5669 * estimated utilization, before we update schedutil. 5670 */ 5671 util_est_enqueue(&rq->cfs, p); 5672 5673 /* 5674 * If in_iowait is set, the code below may not trigger any cpufreq 5675 * utilization updates, so do it here explicitly with the IOWAIT flag 5676 * passed. 5677 */ 5678 if (p->in_iowait) 5679 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5680 5681 for_each_sched_entity(se) { 5682 if (se->on_rq) 5683 break; 5684 cfs_rq = cfs_rq_of(se); 5685 enqueue_entity(cfs_rq, se, flags); 5686 5687 cfs_rq->h_nr_running++; 5688 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5689 5690 if (cfs_rq_is_idle(cfs_rq)) 5691 idle_h_nr_running = 1; 5692 5693 /* end evaluation on encountering a throttled cfs_rq */ 5694 if (cfs_rq_throttled(cfs_rq)) 5695 goto enqueue_throttle; 5696 5697 flags = ENQUEUE_WAKEUP; 5698 } 5699 5700 for_each_sched_entity(se) { 5701 cfs_rq = cfs_rq_of(se); 5702 5703 update_load_avg(cfs_rq, se, UPDATE_TG); 5704 se_update_runnable(se); 5705 update_cfs_group(se); 5706 5707 cfs_rq->h_nr_running++; 5708 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5709 5710 if (cfs_rq_is_idle(cfs_rq)) 5711 idle_h_nr_running = 1; 5712 5713 /* end evaluation on encountering a throttled cfs_rq */ 5714 if (cfs_rq_throttled(cfs_rq)) 5715 goto enqueue_throttle; 5716 5717 /* 5718 * One parent has been throttled and cfs_rq removed from the 5719 * list. Add it back to not break the leaf list. 5720 */ 5721 if (throttled_hierarchy(cfs_rq)) 5722 list_add_leaf_cfs_rq(cfs_rq); 5723 } 5724 5725 /* At this point se is NULL and we are at root level*/ 5726 add_nr_running(rq, 1); 5727 5728 /* 5729 * Since new tasks are assigned an initial util_avg equal to 5730 * half of the spare capacity of their CPU, tiny tasks have the 5731 * ability to cross the overutilized threshold, which will 5732 * result in the load balancer ruining all the task placement 5733 * done by EAS. As a way to mitigate that effect, do not account 5734 * for the first enqueue operation of new tasks during the 5735 * overutilized flag detection. 5736 * 5737 * A better way of solving this problem would be to wait for 5738 * the PELT signals of tasks to converge before taking them 5739 * into account, but that is not straightforward to implement, 5740 * and the following generally works well enough in practice. 5741 */ 5742 if (!task_new) 5743 update_overutilized_status(rq); 5744 5745enqueue_throttle: 5746 if (cfs_bandwidth_used()) { 5747 /* 5748 * When bandwidth control is enabled; the cfs_rq_throttled() 5749 * breaks in the above iteration can result in incomplete 5750 * leaf list maintenance, resulting in triggering the assertion 5751 * below. 5752 */ 5753 for_each_sched_entity(se) { 5754 cfs_rq = cfs_rq_of(se); 5755 5756 if (list_add_leaf_cfs_rq(cfs_rq)) 5757 break; 5758 } 5759 } 5760 5761 assert_list_leaf_cfs_rq(rq); 5762 5763 hrtick_update(rq); 5764} 5765 5766static void set_next_buddy(struct sched_entity *se); 5767 5768/* 5769 * The dequeue_task method is called before nr_running is 5770 * decreased. We remove the task from the rbtree and 5771 * update the fair scheduling stats: 5772 */ 5773static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5774{ 5775 struct cfs_rq *cfs_rq; 5776 struct sched_entity *se = &p->se; 5777 int task_sleep = flags & DEQUEUE_SLEEP; 5778 int idle_h_nr_running = task_has_idle_policy(p); 5779 bool was_sched_idle = sched_idle_rq(rq); 5780 5781 util_est_dequeue(&rq->cfs, p); 5782 5783 for_each_sched_entity(se) { 5784 cfs_rq = cfs_rq_of(se); 5785 dequeue_entity(cfs_rq, se, flags); 5786 5787 cfs_rq->h_nr_running--; 5788 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5789 5790 if (cfs_rq_is_idle(cfs_rq)) 5791 idle_h_nr_running = 1; 5792 5793 /* end evaluation on encountering a throttled cfs_rq */ 5794 if (cfs_rq_throttled(cfs_rq)) 5795 goto dequeue_throttle; 5796 5797 /* Don't dequeue parent if it has other entities besides us */ 5798 if (cfs_rq->load.weight) { 5799 /* Avoid re-evaluating load for this entity: */ 5800 se = parent_entity(se); 5801 /* 5802 * Bias pick_next to pick a task from this cfs_rq, as 5803 * p is sleeping when it is within its sched_slice. 5804 */ 5805 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5806 set_next_buddy(se); 5807 break; 5808 } 5809 flags |= DEQUEUE_SLEEP; 5810 } 5811 5812 for_each_sched_entity(se) { 5813 cfs_rq = cfs_rq_of(se); 5814 5815 update_load_avg(cfs_rq, se, UPDATE_TG); 5816 se_update_runnable(se); 5817 update_cfs_group(se); 5818 5819 cfs_rq->h_nr_running--; 5820 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5821 5822 if (cfs_rq_is_idle(cfs_rq)) 5823 idle_h_nr_running = 1; 5824 5825 /* end evaluation on encountering a throttled cfs_rq */ 5826 if (cfs_rq_throttled(cfs_rq)) 5827 goto dequeue_throttle; 5828 5829 } 5830 5831 /* At this point se is NULL and we are at root level*/ 5832 sub_nr_running(rq, 1); 5833 5834 /* balance early to pull high priority tasks */ 5835 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5836 rq->next_balance = jiffies; 5837 5838dequeue_throttle: 5839 util_est_update(&rq->cfs, p, task_sleep); 5840 hrtick_update(rq); 5841} 5842 5843#ifdef CONFIG_SMP 5844 5845/* Working cpumask for: load_balance, load_balance_newidle. */ 5846DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5847DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5848 5849#ifdef CONFIG_NO_HZ_COMMON 5850 5851static struct { 5852 cpumask_var_t idle_cpus_mask; 5853 atomic_t nr_cpus; 5854 int has_blocked; /* Idle CPUS has blocked load */ 5855 int needs_update; /* Newly idle CPUs need their next_balance collated */ 5856 unsigned long next_balance; /* in jiffy units */ 5857 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5858} nohz ____cacheline_aligned; 5859 5860#endif /* CONFIG_NO_HZ_COMMON */ 5861 5862static unsigned long cpu_load(struct rq *rq) 5863{ 5864 return cfs_rq_load_avg(&rq->cfs); 5865} 5866 5867/* 5868 * cpu_load_without - compute CPU load without any contributions from *p 5869 * @cpu: the CPU which load is requested 5870 * @p: the task which load should be discounted 5871 * 5872 * The load of a CPU is defined by the load of tasks currently enqueued on that 5873 * CPU as well as tasks which are currently sleeping after an execution on that 5874 * CPU. 5875 * 5876 * This method returns the load of the specified CPU by discounting the load of 5877 * the specified task, whenever the task is currently contributing to the CPU 5878 * load. 5879 */ 5880static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5881{ 5882 struct cfs_rq *cfs_rq; 5883 unsigned int load; 5884 5885 /* Task has no contribution or is new */ 5886 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5887 return cpu_load(rq); 5888 5889 cfs_rq = &rq->cfs; 5890 load = READ_ONCE(cfs_rq->avg.load_avg); 5891 5892 /* Discount task's util from CPU's util */ 5893 lsub_positive(&load, task_h_load(p)); 5894 5895 return load; 5896} 5897 5898static unsigned long cpu_runnable(struct rq *rq) 5899{ 5900 return cfs_rq_runnable_avg(&rq->cfs); 5901} 5902 5903static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5904{ 5905 struct cfs_rq *cfs_rq; 5906 unsigned int runnable; 5907 5908 /* Task has no contribution or is new */ 5909 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5910 return cpu_runnable(rq); 5911 5912 cfs_rq = &rq->cfs; 5913 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5914 5915 /* Discount task's runnable from CPU's runnable */ 5916 lsub_positive(&runnable, p->se.avg.runnable_avg); 5917 5918 return runnable; 5919} 5920 5921static unsigned long capacity_of(int cpu) 5922{ 5923 return cpu_rq(cpu)->cpu_capacity; 5924} 5925 5926static void record_wakee(struct task_struct *p) 5927{ 5928 /* 5929 * Only decay a single time; tasks that have less then 1 wakeup per 5930 * jiffy will not have built up many flips. 5931 */ 5932 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5933 current->wakee_flips >>= 1; 5934 current->wakee_flip_decay_ts = jiffies; 5935 } 5936 5937 if (current->last_wakee != p) { 5938 current->last_wakee = p; 5939 current->wakee_flips++; 5940 } 5941} 5942 5943/* 5944 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5945 * 5946 * A waker of many should wake a different task than the one last awakened 5947 * at a frequency roughly N times higher than one of its wakees. 5948 * 5949 * In order to determine whether we should let the load spread vs consolidating 5950 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5951 * partner, and a factor of lls_size higher frequency in the other. 5952 * 5953 * With both conditions met, we can be relatively sure that the relationship is 5954 * non-monogamous, with partner count exceeding socket size. 5955 * 5956 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5957 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5958 * socket size. 5959 */ 5960static int wake_wide(struct task_struct *p) 5961{ 5962 unsigned int master = current->wakee_flips; 5963 unsigned int slave = p->wakee_flips; 5964 int factor = __this_cpu_read(sd_llc_size); 5965 5966 if (master < slave) 5967 swap(master, slave); 5968 if (slave < factor || master < slave * factor) 5969 return 0; 5970 return 1; 5971} 5972 5973/* 5974 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5975 * soonest. For the purpose of speed we only consider the waking and previous 5976 * CPU. 5977 * 5978 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5979 * cache-affine and is (or will be) idle. 5980 * 5981 * wake_affine_weight() - considers the weight to reflect the average 5982 * scheduling latency of the CPUs. This seems to work 5983 * for the overloaded case. 5984 */ 5985static int 5986wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5987{ 5988 /* 5989 * If this_cpu is idle, it implies the wakeup is from interrupt 5990 * context. Only allow the move if cache is shared. Otherwise an 5991 * interrupt intensive workload could force all tasks onto one 5992 * node depending on the IO topology or IRQ affinity settings. 5993 * 5994 * If the prev_cpu is idle and cache affine then avoid a migration. 5995 * There is no guarantee that the cache hot data from an interrupt 5996 * is more important than cache hot data on the prev_cpu and from 5997 * a cpufreq perspective, it's better to have higher utilisation 5998 * on one CPU. 5999 */ 6000 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6001 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6002 6003 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6004 return this_cpu; 6005 6006 if (available_idle_cpu(prev_cpu)) 6007 return prev_cpu; 6008 6009 return nr_cpumask_bits; 6010} 6011 6012static int 6013wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6014 int this_cpu, int prev_cpu, int sync) 6015{ 6016 s64 this_eff_load, prev_eff_load; 6017 unsigned long task_load; 6018 6019 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6020 6021 if (sync) { 6022 unsigned long current_load = task_h_load(current); 6023 6024 if (current_load > this_eff_load) 6025 return this_cpu; 6026 6027 this_eff_load -= current_load; 6028 } 6029 6030 task_load = task_h_load(p); 6031 6032 this_eff_load += task_load; 6033 if (sched_feat(WA_BIAS)) 6034 this_eff_load *= 100; 6035 this_eff_load *= capacity_of(prev_cpu); 6036 6037 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6038 prev_eff_load -= task_load; 6039 if (sched_feat(WA_BIAS)) 6040 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6041 prev_eff_load *= capacity_of(this_cpu); 6042 6043 /* 6044 * If sync, adjust the weight of prev_eff_load such that if 6045 * prev_eff == this_eff that select_idle_sibling() will consider 6046 * stacking the wakee on top of the waker if no other CPU is 6047 * idle. 6048 */ 6049 if (sync) 6050 prev_eff_load += 1; 6051 6052 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6053} 6054 6055static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6056 int this_cpu, int prev_cpu, int sync) 6057{ 6058 int target = nr_cpumask_bits; 6059 6060 if (sched_feat(WA_IDLE)) 6061 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6062 6063 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6064 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6065 6066 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6067 if (target == nr_cpumask_bits) 6068 return prev_cpu; 6069 6070 schedstat_inc(sd->ttwu_move_affine); 6071 schedstat_inc(p->stats.nr_wakeups_affine); 6072 return target; 6073} 6074 6075static struct sched_group * 6076find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6077 6078/* 6079 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6080 */ 6081static int 6082find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6083{ 6084 unsigned long load, min_load = ULONG_MAX; 6085 unsigned int min_exit_latency = UINT_MAX; 6086 u64 latest_idle_timestamp = 0; 6087 int least_loaded_cpu = this_cpu; 6088 int shallowest_idle_cpu = -1; 6089 int i; 6090 6091 /* Check if we have any choice: */ 6092 if (group->group_weight == 1) 6093 return cpumask_first(sched_group_span(group)); 6094 6095 /* Traverse only the allowed CPUs */ 6096 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6097 struct rq *rq = cpu_rq(i); 6098 6099 if (!sched_core_cookie_match(rq, p)) 6100 continue; 6101 6102 if (sched_idle_cpu(i)) 6103 return i; 6104 6105 if (available_idle_cpu(i)) { 6106 struct cpuidle_state *idle = idle_get_state(rq); 6107 if (idle && idle->exit_latency < min_exit_latency) { 6108 /* 6109 * We give priority to a CPU whose idle state 6110 * has the smallest exit latency irrespective 6111 * of any idle timestamp. 6112 */ 6113 min_exit_latency = idle->exit_latency; 6114 latest_idle_timestamp = rq->idle_stamp; 6115 shallowest_idle_cpu = i; 6116 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6117 rq->idle_stamp > latest_idle_timestamp) { 6118 /* 6119 * If equal or no active idle state, then 6120 * the most recently idled CPU might have 6121 * a warmer cache. 6122 */ 6123 latest_idle_timestamp = rq->idle_stamp; 6124 shallowest_idle_cpu = i; 6125 } 6126 } else if (shallowest_idle_cpu == -1) { 6127 load = cpu_load(cpu_rq(i)); 6128 if (load < min_load) { 6129 min_load = load; 6130 least_loaded_cpu = i; 6131 } 6132 } 6133 } 6134 6135 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6136} 6137 6138static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6139 int cpu, int prev_cpu, int sd_flag) 6140{ 6141 int new_cpu = cpu; 6142 6143 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6144 return prev_cpu; 6145 6146 /* 6147 * We need task's util for cpu_util_without, sync it up to 6148 * prev_cpu's last_update_time. 6149 */ 6150 if (!(sd_flag & SD_BALANCE_FORK)) 6151 sync_entity_load_avg(&p->se); 6152 6153 while (sd) { 6154 struct sched_group *group; 6155 struct sched_domain *tmp; 6156 int weight; 6157 6158 if (!(sd->flags & sd_flag)) { 6159 sd = sd->child; 6160 continue; 6161 } 6162 6163 group = find_idlest_group(sd, p, cpu); 6164 if (!group) { 6165 sd = sd->child; 6166 continue; 6167 } 6168 6169 new_cpu = find_idlest_group_cpu(group, p, cpu); 6170 if (new_cpu == cpu) { 6171 /* Now try balancing at a lower domain level of 'cpu': */ 6172 sd = sd->child; 6173 continue; 6174 } 6175 6176 /* Now try balancing at a lower domain level of 'new_cpu': */ 6177 cpu = new_cpu; 6178 weight = sd->span_weight; 6179 sd = NULL; 6180 for_each_domain(cpu, tmp) { 6181 if (weight <= tmp->span_weight) 6182 break; 6183 if (tmp->flags & sd_flag) 6184 sd = tmp; 6185 } 6186 } 6187 6188 return new_cpu; 6189} 6190 6191static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6192{ 6193 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6194 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6195 return cpu; 6196 6197 return -1; 6198} 6199 6200#ifdef CONFIG_SCHED_SMT 6201DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6202EXPORT_SYMBOL_GPL(sched_smt_present); 6203 6204static inline void set_idle_cores(int cpu, int val) 6205{ 6206 struct sched_domain_shared *sds; 6207 6208 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6209 if (sds) 6210 WRITE_ONCE(sds->has_idle_cores, val); 6211} 6212 6213static inline bool test_idle_cores(int cpu, bool def) 6214{ 6215 struct sched_domain_shared *sds; 6216 6217 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6218 if (sds) 6219 return READ_ONCE(sds->has_idle_cores); 6220 6221 return def; 6222} 6223 6224/* 6225 * Scans the local SMT mask to see if the entire core is idle, and records this 6226 * information in sd_llc_shared->has_idle_cores. 6227 * 6228 * Since SMT siblings share all cache levels, inspecting this limited remote 6229 * state should be fairly cheap. 6230 */ 6231void __update_idle_core(struct rq *rq) 6232{ 6233 int core = cpu_of(rq); 6234 int cpu; 6235 6236 rcu_read_lock(); 6237 if (test_idle_cores(core, true)) 6238 goto unlock; 6239 6240 for_each_cpu(cpu, cpu_smt_mask(core)) { 6241 if (cpu == core) 6242 continue; 6243 6244 if (!available_idle_cpu(cpu)) 6245 goto unlock; 6246 } 6247 6248 set_idle_cores(core, 1); 6249unlock: 6250 rcu_read_unlock(); 6251} 6252 6253/* 6254 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6255 * there are no idle cores left in the system; tracked through 6256 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6257 */ 6258static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6259{ 6260 bool idle = true; 6261 int cpu; 6262 6263 if (!static_branch_likely(&sched_smt_present)) 6264 return __select_idle_cpu(core, p); 6265 6266 for_each_cpu(cpu, cpu_smt_mask(core)) { 6267 if (!available_idle_cpu(cpu)) { 6268 idle = false; 6269 if (*idle_cpu == -1) { 6270 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6271 *idle_cpu = cpu; 6272 break; 6273 } 6274 continue; 6275 } 6276 break; 6277 } 6278 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6279 *idle_cpu = cpu; 6280 } 6281 6282 if (idle) 6283 return core; 6284 6285 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6286 return -1; 6287} 6288 6289/* 6290 * Scan the local SMT mask for idle CPUs. 6291 */ 6292static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6293{ 6294 int cpu; 6295 6296 for_each_cpu(cpu, cpu_smt_mask(target)) { 6297 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6298 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6299 continue; 6300 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6301 return cpu; 6302 } 6303 6304 return -1; 6305} 6306 6307#else /* CONFIG_SCHED_SMT */ 6308 6309static inline void set_idle_cores(int cpu, int val) 6310{ 6311} 6312 6313static inline bool test_idle_cores(int cpu, bool def) 6314{ 6315 return def; 6316} 6317 6318static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6319{ 6320 return __select_idle_cpu(core, p); 6321} 6322 6323static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6324{ 6325 return -1; 6326} 6327 6328#endif /* CONFIG_SCHED_SMT */ 6329 6330/* 6331 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6332 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6333 * average idle time for this rq (as found in rq->avg_idle). 6334 */ 6335static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6336{ 6337 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6338 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6339 struct rq *this_rq = this_rq(); 6340 int this = smp_processor_id(); 6341 struct sched_domain *this_sd; 6342 u64 time = 0; 6343 6344 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6345 if (!this_sd) 6346 return -1; 6347 6348 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6349 6350 if (sched_feat(SIS_PROP) && !has_idle_core) { 6351 u64 avg_cost, avg_idle, span_avg; 6352 unsigned long now = jiffies; 6353 6354 /* 6355 * If we're busy, the assumption that the last idle period 6356 * predicts the future is flawed; age away the remaining 6357 * predicted idle time. 6358 */ 6359 if (unlikely(this_rq->wake_stamp < now)) { 6360 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6361 this_rq->wake_stamp++; 6362 this_rq->wake_avg_idle >>= 1; 6363 } 6364 } 6365 6366 avg_idle = this_rq->wake_avg_idle; 6367 avg_cost = this_sd->avg_scan_cost + 1; 6368 6369 span_avg = sd->span_weight * avg_idle; 6370 if (span_avg > 4*avg_cost) 6371 nr = div_u64(span_avg, avg_cost); 6372 else 6373 nr = 4; 6374 6375 time = cpu_clock(this); 6376 } 6377 6378 for_each_cpu_wrap(cpu, cpus, target + 1) { 6379 if (has_idle_core) { 6380 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6381 if ((unsigned int)i < nr_cpumask_bits) 6382 return i; 6383 6384 } else { 6385 if (!--nr) 6386 return -1; 6387 idle_cpu = __select_idle_cpu(cpu, p); 6388 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6389 break; 6390 } 6391 } 6392 6393 if (has_idle_core) 6394 set_idle_cores(target, false); 6395 6396 if (sched_feat(SIS_PROP) && !has_idle_core) { 6397 time = cpu_clock(this) - time; 6398 6399 /* 6400 * Account for the scan cost of wakeups against the average 6401 * idle time. 6402 */ 6403 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6404 6405 update_avg(&this_sd->avg_scan_cost, time); 6406 } 6407 6408 return idle_cpu; 6409} 6410 6411/* 6412 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6413 * the task fits. If no CPU is big enough, but there are idle ones, try to 6414 * maximize capacity. 6415 */ 6416static int 6417select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6418{ 6419 unsigned long task_util, best_cap = 0; 6420 int cpu, best_cpu = -1; 6421 struct cpumask *cpus; 6422 6423 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6424 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6425 6426 task_util = uclamp_task_util(p); 6427 6428 for_each_cpu_wrap(cpu, cpus, target) { 6429 unsigned long cpu_cap = capacity_of(cpu); 6430 6431 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6432 continue; 6433 if (fits_capacity(task_util, cpu_cap)) 6434 return cpu; 6435 6436 if (cpu_cap > best_cap) { 6437 best_cap = cpu_cap; 6438 best_cpu = cpu; 6439 } 6440 } 6441 6442 return best_cpu; 6443} 6444 6445static inline bool asym_fits_capacity(unsigned long task_util, int cpu) 6446{ 6447 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6448 return fits_capacity(task_util, capacity_of(cpu)); 6449 6450 return true; 6451} 6452 6453/* 6454 * Try and locate an idle core/thread in the LLC cache domain. 6455 */ 6456static int select_idle_sibling(struct task_struct *p, int prev, int target) 6457{ 6458 bool has_idle_core = false; 6459 struct sched_domain *sd; 6460 unsigned long task_util; 6461 int i, recent_used_cpu; 6462 6463 /* 6464 * On asymmetric system, update task utilization because we will check 6465 * that the task fits with cpu's capacity. 6466 */ 6467 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6468 sync_entity_load_avg(&p->se); 6469 task_util = uclamp_task_util(p); 6470 } 6471 6472 /* 6473 * per-cpu select_idle_mask usage 6474 */ 6475 lockdep_assert_irqs_disabled(); 6476 6477 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6478 asym_fits_capacity(task_util, target)) 6479 return target; 6480 6481 /* 6482 * If the previous CPU is cache affine and idle, don't be stupid: 6483 */ 6484 if (prev != target && cpus_share_cache(prev, target) && 6485 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6486 asym_fits_capacity(task_util, prev)) 6487 return prev; 6488 6489 /* 6490 * Allow a per-cpu kthread to stack with the wakee if the 6491 * kworker thread and the tasks previous CPUs are the same. 6492 * The assumption is that the wakee queued work for the 6493 * per-cpu kthread that is now complete and the wakeup is 6494 * essentially a sync wakeup. An obvious example of this 6495 * pattern is IO completions. 6496 */ 6497 if (is_per_cpu_kthread(current) && 6498 in_task() && 6499 prev == smp_processor_id() && 6500 this_rq()->nr_running <= 1 && 6501 asym_fits_capacity(task_util, prev)) { 6502 return prev; 6503 } 6504 6505 /* Check a recently used CPU as a potential idle candidate: */ 6506 recent_used_cpu = p->recent_used_cpu; 6507 p->recent_used_cpu = prev; 6508 if (recent_used_cpu != prev && 6509 recent_used_cpu != target && 6510 cpus_share_cache(recent_used_cpu, target) && 6511 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6512 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6513 asym_fits_capacity(task_util, recent_used_cpu)) { 6514 return recent_used_cpu; 6515 } 6516 6517 /* 6518 * For asymmetric CPU capacity systems, our domain of interest is 6519 * sd_asym_cpucapacity rather than sd_llc. 6520 */ 6521 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6522 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6523 /* 6524 * On an asymmetric CPU capacity system where an exclusive 6525 * cpuset defines a symmetric island (i.e. one unique 6526 * capacity_orig value through the cpuset), the key will be set 6527 * but the CPUs within that cpuset will not have a domain with 6528 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6529 * capacity path. 6530 */ 6531 if (sd) { 6532 i = select_idle_capacity(p, sd, target); 6533 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6534 } 6535 } 6536 6537 sd = rcu_dereference(per_cpu(sd_llc, target)); 6538 if (!sd) 6539 return target; 6540 6541 if (sched_smt_active()) { 6542 has_idle_core = test_idle_cores(target, false); 6543 6544 if (!has_idle_core && cpus_share_cache(prev, target)) { 6545 i = select_idle_smt(p, sd, prev); 6546 if ((unsigned int)i < nr_cpumask_bits) 6547 return i; 6548 } 6549 } 6550 6551 i = select_idle_cpu(p, sd, has_idle_core, target); 6552 if ((unsigned)i < nr_cpumask_bits) 6553 return i; 6554 6555 return target; 6556} 6557 6558/* 6559 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 6560 * (@dst_cpu = -1) or migrated to @dst_cpu. 6561 */ 6562static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6563{ 6564 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6565 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 6566 6567 /* 6568 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 6569 * contribution. If @p migrates from another CPU to @cpu add its 6570 * contribution. In all the other cases @cpu is not impacted by the 6571 * migration so its util_avg is already correct. 6572 */ 6573 if (task_cpu(p) == cpu && dst_cpu != cpu) 6574 lsub_positive(&util, task_util(p)); 6575 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6576 util += task_util(p); 6577 6578 if (sched_feat(UTIL_EST)) { 6579 unsigned long util_est; 6580 6581 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6582 6583 /* 6584 * During wake-up @p isn't enqueued yet and doesn't contribute 6585 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 6586 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 6587 * has been enqueued. 6588 * 6589 * During exec (@dst_cpu = -1) @p is enqueued and does 6590 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 6591 * Remove it to "simulate" cpu_util without @p's contribution. 6592 * 6593 * Despite the task_on_rq_queued(@p) check there is still a 6594 * small window for a possible race when an exec 6595 * select_task_rq_fair() races with LB's detach_task(). 6596 * 6597 * detach_task() 6598 * deactivate_task() 6599 * p->on_rq = TASK_ON_RQ_MIGRATING; 6600 * -------------------------------- A 6601 * dequeue_task() \ 6602 * dequeue_task_fair() + Race Time 6603 * util_est_dequeue() / 6604 * -------------------------------- B 6605 * 6606 * The additional check "current == p" is required to further 6607 * reduce the race window. 6608 */ 6609 if (dst_cpu == cpu) 6610 util_est += _task_util_est(p); 6611 else if (unlikely(task_on_rq_queued(p) || current == p)) 6612 lsub_positive(&util_est, _task_util_est(p)); 6613 6614 util = max(util, util_est); 6615 } 6616 6617 return min(util, capacity_orig_of(cpu)); 6618} 6619 6620/* 6621 * cpu_util_without: compute cpu utilization without any contributions from *p 6622 * @cpu: the CPU which utilization is requested 6623 * @p: the task which utilization should be discounted 6624 * 6625 * The utilization of a CPU is defined by the utilization of tasks currently 6626 * enqueued on that CPU as well as tasks which are currently sleeping after an 6627 * execution on that CPU. 6628 * 6629 * This method returns the utilization of the specified CPU by discounting the 6630 * utilization of the specified task, whenever the task is currently 6631 * contributing to the CPU utilization. 6632 */ 6633static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6634{ 6635 /* Task has no contribution or is new */ 6636 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6637 return cpu_util_cfs(cpu); 6638 6639 return cpu_util_next(cpu, p, -1); 6640} 6641 6642/* 6643 * compute_energy(): Estimates the energy that @pd would consume if @p was 6644 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6645 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6646 * to compute what would be the energy if we decided to actually migrate that 6647 * task. 6648 */ 6649static long 6650compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6651{ 6652 struct cpumask *pd_mask = perf_domain_span(pd); 6653 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6654 unsigned long max_util = 0, sum_util = 0; 6655 unsigned long _cpu_cap = cpu_cap; 6656 int cpu; 6657 6658 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask)); 6659 6660 /* 6661 * The capacity state of CPUs of the current rd can be driven by CPUs 6662 * of another rd if they belong to the same pd. So, account for the 6663 * utilization of these CPUs too by masking pd with cpu_online_mask 6664 * instead of the rd span. 6665 * 6666 * If an entire pd is outside of the current rd, it will not appear in 6667 * its pd list and will not be accounted by compute_energy(). 6668 */ 6669 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6670 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6671 unsigned long cpu_util, util_running = util_freq; 6672 struct task_struct *tsk = NULL; 6673 6674 /* 6675 * When @p is placed on @cpu: 6676 * 6677 * util_running = max(cpu_util, cpu_util_est) + 6678 * max(task_util, _task_util_est) 6679 * 6680 * while cpu_util_next is: max(cpu_util + task_util, 6681 * cpu_util_est + _task_util_est) 6682 */ 6683 if (cpu == dst_cpu) { 6684 tsk = p; 6685 util_running = 6686 cpu_util_next(cpu, p, -1) + task_util_est(p); 6687 } 6688 6689 /* 6690 * Busy time computation: utilization clamping is not 6691 * required since the ratio (sum_util / cpu_capacity) 6692 * is already enough to scale the EM reported power 6693 * consumption at the (eventually clamped) cpu_capacity. 6694 */ 6695 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap, 6696 ENERGY_UTIL, NULL); 6697 6698 sum_util += min(cpu_util, _cpu_cap); 6699 6700 /* 6701 * Performance domain frequency: utilization clamping 6702 * must be considered since it affects the selection 6703 * of the performance domain frequency. 6704 * NOTE: in case RT tasks are running, by default the 6705 * FREQUENCY_UTIL's utilization can be max OPP. 6706 */ 6707 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6708 FREQUENCY_UTIL, tsk); 6709 max_util = max(max_util, min(cpu_util, _cpu_cap)); 6710 } 6711 6712 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap); 6713} 6714 6715/* 6716 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6717 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6718 * spare capacity in each performance domain and uses it as a potential 6719 * candidate to execute the task. Then, it uses the Energy Model to figure 6720 * out which of the CPU candidates is the most energy-efficient. 6721 * 6722 * The rationale for this heuristic is as follows. In a performance domain, 6723 * all the most energy efficient CPU candidates (according to the Energy 6724 * Model) are those for which we'll request a low frequency. When there are 6725 * several CPUs for which the frequency request will be the same, we don't 6726 * have enough data to break the tie between them, because the Energy Model 6727 * only includes active power costs. With this model, if we assume that 6728 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6729 * the maximum spare capacity in a performance domain is guaranteed to be among 6730 * the best candidates of the performance domain. 6731 * 6732 * In practice, it could be preferable from an energy standpoint to pack 6733 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6734 * but that could also hurt our chances to go cluster idle, and we have no 6735 * ways to tell with the current Energy Model if this is actually a good 6736 * idea or not. So, find_energy_efficient_cpu() basically favors 6737 * cluster-packing, and spreading inside a cluster. That should at least be 6738 * a good thing for latency, and this is consistent with the idea that most 6739 * of the energy savings of EAS come from the asymmetry of the system, and 6740 * not so much from breaking the tie between identical CPUs. That's also the 6741 * reason why EAS is enabled in the topology code only for systems where 6742 * SD_ASYM_CPUCAPACITY is set. 6743 * 6744 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6745 * they don't have any useful utilization data yet and it's not possible to 6746 * forecast their impact on energy consumption. Consequently, they will be 6747 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6748 * to be energy-inefficient in some use-cases. The alternative would be to 6749 * bias new tasks towards specific types of CPUs first, or to try to infer 6750 * their util_avg from the parent task, but those heuristics could hurt 6751 * other use-cases too. So, until someone finds a better way to solve this, 6752 * let's keep things simple by re-using the existing slow path. 6753 */ 6754static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6755{ 6756 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6757 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6758 int cpu, best_energy_cpu = prev_cpu, target = -1; 6759 unsigned long cpu_cap, util, base_energy = 0; 6760 struct sched_domain *sd; 6761 struct perf_domain *pd; 6762 6763 rcu_read_lock(); 6764 pd = rcu_dereference(rd->pd); 6765 if (!pd || READ_ONCE(rd->overutilized)) 6766 goto unlock; 6767 6768 /* 6769 * Energy-aware wake-up happens on the lowest sched_domain starting 6770 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6771 */ 6772 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6773 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6774 sd = sd->parent; 6775 if (!sd) 6776 goto unlock; 6777 6778 target = prev_cpu; 6779 6780 sync_entity_load_avg(&p->se); 6781 if (!task_util_est(p)) 6782 goto unlock; 6783 6784 for (; pd; pd = pd->next) { 6785 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6786 bool compute_prev_delta = false; 6787 unsigned long base_energy_pd; 6788 int max_spare_cap_cpu = -1; 6789 6790 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6791 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6792 continue; 6793 6794 util = cpu_util_next(cpu, p, cpu); 6795 cpu_cap = capacity_of(cpu); 6796 spare_cap = cpu_cap; 6797 lsub_positive(&spare_cap, util); 6798 6799 /* 6800 * Skip CPUs that cannot satisfy the capacity request. 6801 * IOW, placing the task there would make the CPU 6802 * overutilized. Take uclamp into account to see how 6803 * much capacity we can get out of the CPU; this is 6804 * aligned with sched_cpu_util(). 6805 */ 6806 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6807 if (!fits_capacity(util, cpu_cap)) 6808 continue; 6809 6810 if (cpu == prev_cpu) { 6811 /* Always use prev_cpu as a candidate. */ 6812 compute_prev_delta = true; 6813 } else if (spare_cap > max_spare_cap) { 6814 /* 6815 * Find the CPU with the maximum spare capacity 6816 * in the performance domain. 6817 */ 6818 max_spare_cap = spare_cap; 6819 max_spare_cap_cpu = cpu; 6820 } 6821 } 6822 6823 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6824 continue; 6825 6826 /* Compute the 'base' energy of the pd, without @p */ 6827 base_energy_pd = compute_energy(p, -1, pd); 6828 base_energy += base_energy_pd; 6829 6830 /* Evaluate the energy impact of using prev_cpu. */ 6831 if (compute_prev_delta) { 6832 prev_delta = compute_energy(p, prev_cpu, pd); 6833 if (prev_delta < base_energy_pd) 6834 goto unlock; 6835 prev_delta -= base_energy_pd; 6836 best_delta = min(best_delta, prev_delta); 6837 } 6838 6839 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6840 if (max_spare_cap_cpu >= 0) { 6841 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6842 if (cur_delta < base_energy_pd) 6843 goto unlock; 6844 cur_delta -= base_energy_pd; 6845 if (cur_delta < best_delta) { 6846 best_delta = cur_delta; 6847 best_energy_cpu = max_spare_cap_cpu; 6848 } 6849 } 6850 } 6851 rcu_read_unlock(); 6852 6853 /* 6854 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6855 * least 6% of the energy used by prev_cpu. 6856 */ 6857 if ((prev_delta == ULONG_MAX) || 6858 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6859 target = best_energy_cpu; 6860 6861 return target; 6862 6863unlock: 6864 rcu_read_unlock(); 6865 6866 return target; 6867} 6868 6869/* 6870 * select_task_rq_fair: Select target runqueue for the waking task in domains 6871 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6872 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6873 * 6874 * Balances load by selecting the idlest CPU in the idlest group, or under 6875 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6876 * 6877 * Returns the target CPU number. 6878 */ 6879static int 6880select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6881{ 6882 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6883 struct sched_domain *tmp, *sd = NULL; 6884 int cpu = smp_processor_id(); 6885 int new_cpu = prev_cpu; 6886 int want_affine = 0; 6887 /* SD_flags and WF_flags share the first nibble */ 6888 int sd_flag = wake_flags & 0xF; 6889 6890 /* 6891 * required for stable ->cpus_allowed 6892 */ 6893 lockdep_assert_held(&p->pi_lock); 6894 if (wake_flags & WF_TTWU) { 6895 record_wakee(p); 6896 6897 if (sched_energy_enabled()) { 6898 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6899 if (new_cpu >= 0) 6900 return new_cpu; 6901 new_cpu = prev_cpu; 6902 } 6903 6904 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6905 } 6906 6907 rcu_read_lock(); 6908 for_each_domain(cpu, tmp) { 6909 /* 6910 * If both 'cpu' and 'prev_cpu' are part of this domain, 6911 * cpu is a valid SD_WAKE_AFFINE target. 6912 */ 6913 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6914 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6915 if (cpu != prev_cpu) 6916 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6917 6918 sd = NULL; /* Prefer wake_affine over balance flags */ 6919 break; 6920 } 6921 6922 /* 6923 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 6924 * usually do not have SD_BALANCE_WAKE set. That means wakeup 6925 * will usually go to the fast path. 6926 */ 6927 if (tmp->flags & sd_flag) 6928 sd = tmp; 6929 else if (!want_affine) 6930 break; 6931 } 6932 6933 if (unlikely(sd)) { 6934 /* Slow path */ 6935 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6936 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6937 /* Fast path */ 6938 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6939 } 6940 rcu_read_unlock(); 6941 6942 return new_cpu; 6943} 6944 6945static void detach_entity_cfs_rq(struct sched_entity *se); 6946 6947/* 6948 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6949 * cfs_rq_of(p) references at time of call are still valid and identify the 6950 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6951 */ 6952static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6953{ 6954 /* 6955 * As blocked tasks retain absolute vruntime the migration needs to 6956 * deal with this by subtracting the old and adding the new 6957 * min_vruntime -- the latter is done by enqueue_entity() when placing 6958 * the task on the new runqueue. 6959 */ 6960 if (READ_ONCE(p->__state) == TASK_WAKING) { 6961 struct sched_entity *se = &p->se; 6962 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6963 u64 min_vruntime; 6964 6965#ifndef CONFIG_64BIT 6966 u64 min_vruntime_copy; 6967 6968 do { 6969 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6970 smp_rmb(); 6971 min_vruntime = cfs_rq->min_vruntime; 6972 } while (min_vruntime != min_vruntime_copy); 6973#else 6974 min_vruntime = cfs_rq->min_vruntime; 6975#endif 6976 6977 se->vruntime -= min_vruntime; 6978 } 6979 6980 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6981 /* 6982 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6983 * rq->lock and can modify state directly. 6984 */ 6985 lockdep_assert_rq_held(task_rq(p)); 6986 detach_entity_cfs_rq(&p->se); 6987 6988 } else { 6989 /* 6990 * We are supposed to update the task to "current" time, then 6991 * its up to date and ready to go to new CPU/cfs_rq. But we 6992 * have difficulty in getting what current time is, so simply 6993 * throw away the out-of-date time. This will result in the 6994 * wakee task is less decayed, but giving the wakee more load 6995 * sounds not bad. 6996 */ 6997 remove_entity_load_avg(&p->se); 6998 } 6999 7000 /* Tell new CPU we are migrated */ 7001 p->se.avg.last_update_time = 0; 7002 7003 /* We have migrated, no longer consider this task hot */ 7004 p->se.exec_start = 0; 7005 7006 update_scan_period(p, new_cpu); 7007} 7008 7009static void task_dead_fair(struct task_struct *p) 7010{ 7011 remove_entity_load_avg(&p->se); 7012} 7013 7014static int 7015balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7016{ 7017 if (rq->nr_running) 7018 return 1; 7019 7020 return newidle_balance(rq, rf) != 0; 7021} 7022#endif /* CONFIG_SMP */ 7023 7024static unsigned long wakeup_gran(struct sched_entity *se) 7025{ 7026 unsigned long gran = sysctl_sched_wakeup_granularity; 7027 7028 /* 7029 * Since its curr running now, convert the gran from real-time 7030 * to virtual-time in his units. 7031 * 7032 * By using 'se' instead of 'curr' we penalize light tasks, so 7033 * they get preempted easier. That is, if 'se' < 'curr' then 7034 * the resulting gran will be larger, therefore penalizing the 7035 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7036 * be smaller, again penalizing the lighter task. 7037 * 7038 * This is especially important for buddies when the leftmost 7039 * task is higher priority than the buddy. 7040 */ 7041 return calc_delta_fair(gran, se); 7042} 7043 7044/* 7045 * Should 'se' preempt 'curr'. 7046 * 7047 * |s1 7048 * |s2 7049 * |s3 7050 * g 7051 * |<--->|c 7052 * 7053 * w(c, s1) = -1 7054 * w(c, s2) = 0 7055 * w(c, s3) = 1 7056 * 7057 */ 7058static int 7059wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7060{ 7061 s64 gran, vdiff = curr->vruntime - se->vruntime; 7062 7063 if (vdiff <= 0) 7064 return -1; 7065 7066 gran = wakeup_gran(se); 7067 if (vdiff > gran) 7068 return 1; 7069 7070 return 0; 7071} 7072 7073static void set_last_buddy(struct sched_entity *se) 7074{ 7075 for_each_sched_entity(se) { 7076 if (SCHED_WARN_ON(!se->on_rq)) 7077 return; 7078 if (se_is_idle(se)) 7079 return; 7080 cfs_rq_of(se)->last = se; 7081 } 7082} 7083 7084static void set_next_buddy(struct sched_entity *se) 7085{ 7086 for_each_sched_entity(se) { 7087 if (SCHED_WARN_ON(!se->on_rq)) 7088 return; 7089 if (se_is_idle(se)) 7090 return; 7091 cfs_rq_of(se)->next = se; 7092 } 7093} 7094 7095static void set_skip_buddy(struct sched_entity *se) 7096{ 7097 for_each_sched_entity(se) 7098 cfs_rq_of(se)->skip = se; 7099} 7100 7101/* 7102 * Preempt the current task with a newly woken task if needed: 7103 */ 7104static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7105{ 7106 struct task_struct *curr = rq->curr; 7107 struct sched_entity *se = &curr->se, *pse = &p->se; 7108 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7109 int scale = cfs_rq->nr_running >= sched_nr_latency; 7110 int next_buddy_marked = 0; 7111 int cse_is_idle, pse_is_idle; 7112 7113 if (unlikely(se == pse)) 7114 return; 7115 7116 /* 7117 * This is possible from callers such as attach_tasks(), in which we 7118 * unconditionally check_preempt_curr() after an enqueue (which may have 7119 * lead to a throttle). This both saves work and prevents false 7120 * next-buddy nomination below. 7121 */ 7122 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7123 return; 7124 7125 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7126 set_next_buddy(pse); 7127 next_buddy_marked = 1; 7128 } 7129 7130 /* 7131 * We can come here with TIF_NEED_RESCHED already set from new task 7132 * wake up path. 7133 * 7134 * Note: this also catches the edge-case of curr being in a throttled 7135 * group (e.g. via set_curr_task), since update_curr() (in the 7136 * enqueue of curr) will have resulted in resched being set. This 7137 * prevents us from potentially nominating it as a false LAST_BUDDY 7138 * below. 7139 */ 7140 if (test_tsk_need_resched(curr)) 7141 return; 7142 7143 /* Idle tasks are by definition preempted by non-idle tasks. */ 7144 if (unlikely(task_has_idle_policy(curr)) && 7145 likely(!task_has_idle_policy(p))) 7146 goto preempt; 7147 7148 /* 7149 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7150 * is driven by the tick): 7151 */ 7152 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7153 return; 7154 7155 find_matching_se(&se, &pse); 7156 BUG_ON(!pse); 7157 7158 cse_is_idle = se_is_idle(se); 7159 pse_is_idle = se_is_idle(pse); 7160 7161 /* 7162 * Preempt an idle group in favor of a non-idle group (and don't preempt 7163 * in the inverse case). 7164 */ 7165 if (cse_is_idle && !pse_is_idle) 7166 goto preempt; 7167 if (cse_is_idle != pse_is_idle) 7168 return; 7169 7170 update_curr(cfs_rq_of(se)); 7171 if (wakeup_preempt_entity(se, pse) == 1) { 7172 /* 7173 * Bias pick_next to pick the sched entity that is 7174 * triggering this preemption. 7175 */ 7176 if (!next_buddy_marked) 7177 set_next_buddy(pse); 7178 goto preempt; 7179 } 7180 7181 return; 7182 7183preempt: 7184 resched_curr(rq); 7185 /* 7186 * Only set the backward buddy when the current task is still 7187 * on the rq. This can happen when a wakeup gets interleaved 7188 * with schedule on the ->pre_schedule() or idle_balance() 7189 * point, either of which can * drop the rq lock. 7190 * 7191 * Also, during early boot the idle thread is in the fair class, 7192 * for obvious reasons its a bad idea to schedule back to it. 7193 */ 7194 if (unlikely(!se->on_rq || curr == rq->idle)) 7195 return; 7196 7197 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7198 set_last_buddy(se); 7199} 7200 7201#ifdef CONFIG_SMP 7202static struct task_struct *pick_task_fair(struct rq *rq) 7203{ 7204 struct sched_entity *se; 7205 struct cfs_rq *cfs_rq; 7206 7207again: 7208 cfs_rq = &rq->cfs; 7209 if (!cfs_rq->nr_running) 7210 return NULL; 7211 7212 do { 7213 struct sched_entity *curr = cfs_rq->curr; 7214 7215 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7216 if (curr) { 7217 if (curr->on_rq) 7218 update_curr(cfs_rq); 7219 else 7220 curr = NULL; 7221 7222 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7223 goto again; 7224 } 7225 7226 se = pick_next_entity(cfs_rq, curr); 7227 cfs_rq = group_cfs_rq(se); 7228 } while (cfs_rq); 7229 7230 return task_of(se); 7231} 7232#endif 7233 7234struct task_struct * 7235pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7236{ 7237 struct cfs_rq *cfs_rq = &rq->cfs; 7238 struct sched_entity *se; 7239 struct task_struct *p; 7240 int new_tasks; 7241 7242again: 7243 if (!sched_fair_runnable(rq)) 7244 goto idle; 7245 7246#ifdef CONFIG_FAIR_GROUP_SCHED 7247 if (!prev || prev->sched_class != &fair_sched_class) 7248 goto simple; 7249 7250 /* 7251 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7252 * likely that a next task is from the same cgroup as the current. 7253 * 7254 * Therefore attempt to avoid putting and setting the entire cgroup 7255 * hierarchy, only change the part that actually changes. 7256 */ 7257 7258 do { 7259 struct sched_entity *curr = cfs_rq->curr; 7260 7261 /* 7262 * Since we got here without doing put_prev_entity() we also 7263 * have to consider cfs_rq->curr. If it is still a runnable 7264 * entity, update_curr() will update its vruntime, otherwise 7265 * forget we've ever seen it. 7266 */ 7267 if (curr) { 7268 if (curr->on_rq) 7269 update_curr(cfs_rq); 7270 else 7271 curr = NULL; 7272 7273 /* 7274 * This call to check_cfs_rq_runtime() will do the 7275 * throttle and dequeue its entity in the parent(s). 7276 * Therefore the nr_running test will indeed 7277 * be correct. 7278 */ 7279 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7280 cfs_rq = &rq->cfs; 7281 7282 if (!cfs_rq->nr_running) 7283 goto idle; 7284 7285 goto simple; 7286 } 7287 } 7288 7289 se = pick_next_entity(cfs_rq, curr); 7290 cfs_rq = group_cfs_rq(se); 7291 } while (cfs_rq); 7292 7293 p = task_of(se); 7294 7295 /* 7296 * Since we haven't yet done put_prev_entity and if the selected task 7297 * is a different task than we started out with, try and touch the 7298 * least amount of cfs_rqs. 7299 */ 7300 if (prev != p) { 7301 struct sched_entity *pse = &prev->se; 7302 7303 while (!(cfs_rq = is_same_group(se, pse))) { 7304 int se_depth = se->depth; 7305 int pse_depth = pse->depth; 7306 7307 if (se_depth <= pse_depth) { 7308 put_prev_entity(cfs_rq_of(pse), pse); 7309 pse = parent_entity(pse); 7310 } 7311 if (se_depth >= pse_depth) { 7312 set_next_entity(cfs_rq_of(se), se); 7313 se = parent_entity(se); 7314 } 7315 } 7316 7317 put_prev_entity(cfs_rq, pse); 7318 set_next_entity(cfs_rq, se); 7319 } 7320 7321 goto done; 7322simple: 7323#endif 7324 if (prev) 7325 put_prev_task(rq, prev); 7326 7327 do { 7328 se = pick_next_entity(cfs_rq, NULL); 7329 set_next_entity(cfs_rq, se); 7330 cfs_rq = group_cfs_rq(se); 7331 } while (cfs_rq); 7332 7333 p = task_of(se); 7334 7335done: __maybe_unused; 7336#ifdef CONFIG_SMP 7337 /* 7338 * Move the next running task to the front of 7339 * the list, so our cfs_tasks list becomes MRU 7340 * one. 7341 */ 7342 list_move(&p->se.group_node, &rq->cfs_tasks); 7343#endif 7344 7345 if (hrtick_enabled_fair(rq)) 7346 hrtick_start_fair(rq, p); 7347 7348 update_misfit_status(p, rq); 7349 7350 return p; 7351 7352idle: 7353 if (!rf) 7354 return NULL; 7355 7356 new_tasks = newidle_balance(rq, rf); 7357 7358 /* 7359 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7360 * possible for any higher priority task to appear. In that case we 7361 * must re-start the pick_next_entity() loop. 7362 */ 7363 if (new_tasks < 0) 7364 return RETRY_TASK; 7365 7366 if (new_tasks > 0) 7367 goto again; 7368 7369 /* 7370 * rq is about to be idle, check if we need to update the 7371 * lost_idle_time of clock_pelt 7372 */ 7373 update_idle_rq_clock_pelt(rq); 7374 7375 return NULL; 7376} 7377 7378static struct task_struct *__pick_next_task_fair(struct rq *rq) 7379{ 7380 return pick_next_task_fair(rq, NULL, NULL); 7381} 7382 7383/* 7384 * Account for a descheduled task: 7385 */ 7386static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7387{ 7388 struct sched_entity *se = &prev->se; 7389 struct cfs_rq *cfs_rq; 7390 7391 for_each_sched_entity(se) { 7392 cfs_rq = cfs_rq_of(se); 7393 put_prev_entity(cfs_rq, se); 7394 } 7395} 7396 7397/* 7398 * sched_yield() is very simple 7399 * 7400 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7401 */ 7402static void yield_task_fair(struct rq *rq) 7403{ 7404 struct task_struct *curr = rq->curr; 7405 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7406 struct sched_entity *se = &curr->se; 7407 7408 /* 7409 * Are we the only task in the tree? 7410 */ 7411 if (unlikely(rq->nr_running == 1)) 7412 return; 7413 7414 clear_buddies(cfs_rq, se); 7415 7416 if (curr->policy != SCHED_BATCH) { 7417 update_rq_clock(rq); 7418 /* 7419 * Update run-time statistics of the 'current'. 7420 */ 7421 update_curr(cfs_rq); 7422 /* 7423 * Tell update_rq_clock() that we've just updated, 7424 * so we don't do microscopic update in schedule() 7425 * and double the fastpath cost. 7426 */ 7427 rq_clock_skip_update(rq); 7428 } 7429 7430 set_skip_buddy(se); 7431} 7432 7433static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7434{ 7435 struct sched_entity *se = &p->se; 7436 7437 /* throttled hierarchies are not runnable */ 7438 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7439 return false; 7440 7441 /* Tell the scheduler that we'd really like pse to run next. */ 7442 set_next_buddy(se); 7443 7444 yield_task_fair(rq); 7445 7446 return true; 7447} 7448 7449#ifdef CONFIG_SMP 7450/************************************************** 7451 * Fair scheduling class load-balancing methods. 7452 * 7453 * BASICS 7454 * 7455 * The purpose of load-balancing is to achieve the same basic fairness the 7456 * per-CPU scheduler provides, namely provide a proportional amount of compute 7457 * time to each task. This is expressed in the following equation: 7458 * 7459 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7460 * 7461 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7462 * W_i,0 is defined as: 7463 * 7464 * W_i,0 = \Sum_j w_i,j (2) 7465 * 7466 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7467 * is derived from the nice value as per sched_prio_to_weight[]. 7468 * 7469 * The weight average is an exponential decay average of the instantaneous 7470 * weight: 7471 * 7472 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7473 * 7474 * C_i is the compute capacity of CPU i, typically it is the 7475 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7476 * can also include other factors [XXX]. 7477 * 7478 * To achieve this balance we define a measure of imbalance which follows 7479 * directly from (1): 7480 * 7481 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7482 * 7483 * We them move tasks around to minimize the imbalance. In the continuous 7484 * function space it is obvious this converges, in the discrete case we get 7485 * a few fun cases generally called infeasible weight scenarios. 7486 * 7487 * [XXX expand on: 7488 * - infeasible weights; 7489 * - local vs global optima in the discrete case. ] 7490 * 7491 * 7492 * SCHED DOMAINS 7493 * 7494 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7495 * for all i,j solution, we create a tree of CPUs that follows the hardware 7496 * topology where each level pairs two lower groups (or better). This results 7497 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7498 * tree to only the first of the previous level and we decrease the frequency 7499 * of load-balance at each level inv. proportional to the number of CPUs in 7500 * the groups. 7501 * 7502 * This yields: 7503 * 7504 * log_2 n 1 n 7505 * \Sum { --- * --- * 2^i } = O(n) (5) 7506 * i = 0 2^i 2^i 7507 * `- size of each group 7508 * | | `- number of CPUs doing load-balance 7509 * | `- freq 7510 * `- sum over all levels 7511 * 7512 * Coupled with a limit on how many tasks we can migrate every balance pass, 7513 * this makes (5) the runtime complexity of the balancer. 7514 * 7515 * An important property here is that each CPU is still (indirectly) connected 7516 * to every other CPU in at most O(log n) steps: 7517 * 7518 * The adjacency matrix of the resulting graph is given by: 7519 * 7520 * log_2 n 7521 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7522 * k = 0 7523 * 7524 * And you'll find that: 7525 * 7526 * A^(log_2 n)_i,j != 0 for all i,j (7) 7527 * 7528 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7529 * The task movement gives a factor of O(m), giving a convergence complexity 7530 * of: 7531 * 7532 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7533 * 7534 * 7535 * WORK CONSERVING 7536 * 7537 * In order to avoid CPUs going idle while there's still work to do, new idle 7538 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7539 * tree itself instead of relying on other CPUs to bring it work. 7540 * 7541 * This adds some complexity to both (5) and (8) but it reduces the total idle 7542 * time. 7543 * 7544 * [XXX more?] 7545 * 7546 * 7547 * CGROUPS 7548 * 7549 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7550 * 7551 * s_k,i 7552 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7553 * S_k 7554 * 7555 * Where 7556 * 7557 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7558 * 7559 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7560 * 7561 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7562 * property. 7563 * 7564 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7565 * rewrite all of this once again.] 7566 */ 7567 7568static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7569 7570enum fbq_type { regular, remote, all }; 7571 7572/* 7573 * 'group_type' describes the group of CPUs at the moment of load balancing. 7574 * 7575 * The enum is ordered by pulling priority, with the group with lowest priority 7576 * first so the group_type can simply be compared when selecting the busiest 7577 * group. See update_sd_pick_busiest(). 7578 */ 7579enum group_type { 7580 /* The group has spare capacity that can be used to run more tasks. */ 7581 group_has_spare = 0, 7582 /* 7583 * The group is fully used and the tasks don't compete for more CPU 7584 * cycles. Nevertheless, some tasks might wait before running. 7585 */ 7586 group_fully_busy, 7587 /* 7588 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7589 * and must be migrated to a more powerful CPU. 7590 */ 7591 group_misfit_task, 7592 /* 7593 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7594 * and the task should be migrated to it instead of running on the 7595 * current CPU. 7596 */ 7597 group_asym_packing, 7598 /* 7599 * The tasks' affinity constraints previously prevented the scheduler 7600 * from balancing the load across the system. 7601 */ 7602 group_imbalanced, 7603 /* 7604 * The CPU is overloaded and can't provide expected CPU cycles to all 7605 * tasks. 7606 */ 7607 group_overloaded 7608}; 7609 7610enum migration_type { 7611 migrate_load = 0, 7612 migrate_util, 7613 migrate_task, 7614 migrate_misfit 7615}; 7616 7617#define LBF_ALL_PINNED 0x01 7618#define LBF_NEED_BREAK 0x02 7619#define LBF_DST_PINNED 0x04 7620#define LBF_SOME_PINNED 0x08 7621#define LBF_ACTIVE_LB 0x10 7622 7623struct lb_env { 7624 struct sched_domain *sd; 7625 7626 struct rq *src_rq; 7627 int src_cpu; 7628 7629 int dst_cpu; 7630 struct rq *dst_rq; 7631 7632 struct cpumask *dst_grpmask; 7633 int new_dst_cpu; 7634 enum cpu_idle_type idle; 7635 long imbalance; 7636 /* The set of CPUs under consideration for load-balancing */ 7637 struct cpumask *cpus; 7638 7639 unsigned int flags; 7640 7641 unsigned int loop; 7642 unsigned int loop_break; 7643 unsigned int loop_max; 7644 7645 enum fbq_type fbq_type; 7646 enum migration_type migration_type; 7647 struct list_head tasks; 7648}; 7649 7650/* 7651 * Is this task likely cache-hot: 7652 */ 7653static int task_hot(struct task_struct *p, struct lb_env *env) 7654{ 7655 s64 delta; 7656 7657 lockdep_assert_rq_held(env->src_rq); 7658 7659 if (p->sched_class != &fair_sched_class) 7660 return 0; 7661 7662 if (unlikely(task_has_idle_policy(p))) 7663 return 0; 7664 7665 /* SMT siblings share cache */ 7666 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7667 return 0; 7668 7669 /* 7670 * Buddy candidates are cache hot: 7671 */ 7672 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7673 (&p->se == cfs_rq_of(&p->se)->next || 7674 &p->se == cfs_rq_of(&p->se)->last)) 7675 return 1; 7676 7677 if (sysctl_sched_migration_cost == -1) 7678 return 1; 7679 7680 /* 7681 * Don't migrate task if the task's cookie does not match 7682 * with the destination CPU's core cookie. 7683 */ 7684 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7685 return 1; 7686 7687 if (sysctl_sched_migration_cost == 0) 7688 return 0; 7689 7690 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7691 7692 return delta < (s64)sysctl_sched_migration_cost; 7693} 7694 7695#ifdef CONFIG_NUMA_BALANCING 7696/* 7697 * Returns 1, if task migration degrades locality 7698 * Returns 0, if task migration improves locality i.e migration preferred. 7699 * Returns -1, if task migration is not affected by locality. 7700 */ 7701static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7702{ 7703 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7704 unsigned long src_weight, dst_weight; 7705 int src_nid, dst_nid, dist; 7706 7707 if (!static_branch_likely(&sched_numa_balancing)) 7708 return -1; 7709 7710 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7711 return -1; 7712 7713 src_nid = cpu_to_node(env->src_cpu); 7714 dst_nid = cpu_to_node(env->dst_cpu); 7715 7716 if (src_nid == dst_nid) 7717 return -1; 7718 7719 /* Migrating away from the preferred node is always bad. */ 7720 if (src_nid == p->numa_preferred_nid) { 7721 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7722 return 1; 7723 else 7724 return -1; 7725 } 7726 7727 /* Encourage migration to the preferred node. */ 7728 if (dst_nid == p->numa_preferred_nid) 7729 return 0; 7730 7731 /* Leaving a core idle is often worse than degrading locality. */ 7732 if (env->idle == CPU_IDLE) 7733 return -1; 7734 7735 dist = node_distance(src_nid, dst_nid); 7736 if (numa_group) { 7737 src_weight = group_weight(p, src_nid, dist); 7738 dst_weight = group_weight(p, dst_nid, dist); 7739 } else { 7740 src_weight = task_weight(p, src_nid, dist); 7741 dst_weight = task_weight(p, dst_nid, dist); 7742 } 7743 7744 return dst_weight < src_weight; 7745} 7746 7747#else 7748static inline int migrate_degrades_locality(struct task_struct *p, 7749 struct lb_env *env) 7750{ 7751 return -1; 7752} 7753#endif 7754 7755/* 7756 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7757 */ 7758static 7759int can_migrate_task(struct task_struct *p, struct lb_env *env) 7760{ 7761 int tsk_cache_hot; 7762 7763 lockdep_assert_rq_held(env->src_rq); 7764 7765 /* 7766 * We do not migrate tasks that are: 7767 * 1) throttled_lb_pair, or 7768 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7769 * 3) running (obviously), or 7770 * 4) are cache-hot on their current CPU. 7771 */ 7772 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7773 return 0; 7774 7775 /* Disregard pcpu kthreads; they are where they need to be. */ 7776 if (kthread_is_per_cpu(p)) 7777 return 0; 7778 7779 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7780 int cpu; 7781 7782 schedstat_inc(p->stats.nr_failed_migrations_affine); 7783 7784 env->flags |= LBF_SOME_PINNED; 7785 7786 /* 7787 * Remember if this task can be migrated to any other CPU in 7788 * our sched_group. We may want to revisit it if we couldn't 7789 * meet load balance goals by pulling other tasks on src_cpu. 7790 * 7791 * Avoid computing new_dst_cpu 7792 * - for NEWLY_IDLE 7793 * - if we have already computed one in current iteration 7794 * - if it's an active balance 7795 */ 7796 if (env->idle == CPU_NEWLY_IDLE || 7797 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7798 return 0; 7799 7800 /* Prevent to re-select dst_cpu via env's CPUs: */ 7801 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7802 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7803 env->flags |= LBF_DST_PINNED; 7804 env->new_dst_cpu = cpu; 7805 break; 7806 } 7807 } 7808 7809 return 0; 7810 } 7811 7812 /* Record that we found at least one task that could run on dst_cpu */ 7813 env->flags &= ~LBF_ALL_PINNED; 7814 7815 if (task_running(env->src_rq, p)) { 7816 schedstat_inc(p->stats.nr_failed_migrations_running); 7817 return 0; 7818 } 7819 7820 /* 7821 * Aggressive migration if: 7822 * 1) active balance 7823 * 2) destination numa is preferred 7824 * 3) task is cache cold, or 7825 * 4) too many balance attempts have failed. 7826 */ 7827 if (env->flags & LBF_ACTIVE_LB) 7828 return 1; 7829 7830 tsk_cache_hot = migrate_degrades_locality(p, env); 7831 if (tsk_cache_hot == -1) 7832 tsk_cache_hot = task_hot(p, env); 7833 7834 if (tsk_cache_hot <= 0 || 7835 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7836 if (tsk_cache_hot == 1) { 7837 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7838 schedstat_inc(p->stats.nr_forced_migrations); 7839 } 7840 return 1; 7841 } 7842 7843 schedstat_inc(p->stats.nr_failed_migrations_hot); 7844 return 0; 7845} 7846 7847/* 7848 * detach_task() -- detach the task for the migration specified in env 7849 */ 7850static void detach_task(struct task_struct *p, struct lb_env *env) 7851{ 7852 lockdep_assert_rq_held(env->src_rq); 7853 7854 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7855 set_task_cpu(p, env->dst_cpu); 7856} 7857 7858/* 7859 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7860 * part of active balancing operations within "domain". 7861 * 7862 * Returns a task if successful and NULL otherwise. 7863 */ 7864static struct task_struct *detach_one_task(struct lb_env *env) 7865{ 7866 struct task_struct *p; 7867 7868 lockdep_assert_rq_held(env->src_rq); 7869 7870 list_for_each_entry_reverse(p, 7871 &env->src_rq->cfs_tasks, se.group_node) { 7872 if (!can_migrate_task(p, env)) 7873 continue; 7874 7875 detach_task(p, env); 7876 7877 /* 7878 * Right now, this is only the second place where 7879 * lb_gained[env->idle] is updated (other is detach_tasks) 7880 * so we can safely collect stats here rather than 7881 * inside detach_tasks(). 7882 */ 7883 schedstat_inc(env->sd->lb_gained[env->idle]); 7884 return p; 7885 } 7886 return NULL; 7887} 7888 7889static const unsigned int sched_nr_migrate_break = 32; 7890 7891/* 7892 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7893 * busiest_rq, as part of a balancing operation within domain "sd". 7894 * 7895 * Returns number of detached tasks if successful and 0 otherwise. 7896 */ 7897static int detach_tasks(struct lb_env *env) 7898{ 7899 struct list_head *tasks = &env->src_rq->cfs_tasks; 7900 unsigned long util, load; 7901 struct task_struct *p; 7902 int detached = 0; 7903 7904 lockdep_assert_rq_held(env->src_rq); 7905 7906 /* 7907 * Source run queue has been emptied by another CPU, clear 7908 * LBF_ALL_PINNED flag as we will not test any task. 7909 */ 7910 if (env->src_rq->nr_running <= 1) { 7911 env->flags &= ~LBF_ALL_PINNED; 7912 return 0; 7913 } 7914 7915 if (env->imbalance <= 0) 7916 return 0; 7917 7918 while (!list_empty(tasks)) { 7919 /* 7920 * We don't want to steal all, otherwise we may be treated likewise, 7921 * which could at worst lead to a livelock crash. 7922 */ 7923 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7924 break; 7925 7926 p = list_last_entry(tasks, struct task_struct, se.group_node); 7927 7928 env->loop++; 7929 /* We've more or less seen every task there is, call it quits */ 7930 if (env->loop > env->loop_max) 7931 break; 7932 7933 /* take a breather every nr_migrate tasks */ 7934 if (env->loop > env->loop_break) { 7935 env->loop_break += sched_nr_migrate_break; 7936 env->flags |= LBF_NEED_BREAK; 7937 break; 7938 } 7939 7940 if (!can_migrate_task(p, env)) 7941 goto next; 7942 7943 switch (env->migration_type) { 7944 case migrate_load: 7945 /* 7946 * Depending of the number of CPUs and tasks and the 7947 * cgroup hierarchy, task_h_load() can return a null 7948 * value. Make sure that env->imbalance decreases 7949 * otherwise detach_tasks() will stop only after 7950 * detaching up to loop_max tasks. 7951 */ 7952 load = max_t(unsigned long, task_h_load(p), 1); 7953 7954 if (sched_feat(LB_MIN) && 7955 load < 16 && !env->sd->nr_balance_failed) 7956 goto next; 7957 7958 /* 7959 * Make sure that we don't migrate too much load. 7960 * Nevertheless, let relax the constraint if 7961 * scheduler fails to find a good waiting task to 7962 * migrate. 7963 */ 7964 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7965 goto next; 7966 7967 env->imbalance -= load; 7968 break; 7969 7970 case migrate_util: 7971 util = task_util_est(p); 7972 7973 if (util > env->imbalance) 7974 goto next; 7975 7976 env->imbalance -= util; 7977 break; 7978 7979 case migrate_task: 7980 env->imbalance--; 7981 break; 7982 7983 case migrate_misfit: 7984 /* This is not a misfit task */ 7985 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7986 goto next; 7987 7988 env->imbalance = 0; 7989 break; 7990 } 7991 7992 detach_task(p, env); 7993 list_add(&p->se.group_node, &env->tasks); 7994 7995 detached++; 7996 7997#ifdef CONFIG_PREEMPTION 7998 /* 7999 * NEWIDLE balancing is a source of latency, so preemptible 8000 * kernels will stop after the first task is detached to minimize 8001 * the critical section. 8002 */ 8003 if (env->idle == CPU_NEWLY_IDLE) 8004 break; 8005#endif 8006 8007 /* 8008 * We only want to steal up to the prescribed amount of 8009 * load/util/tasks. 8010 */ 8011 if (env->imbalance <= 0) 8012 break; 8013 8014 continue; 8015next: 8016 list_move(&p->se.group_node, tasks); 8017 } 8018 8019 /* 8020 * Right now, this is one of only two places we collect this stat 8021 * so we can safely collect detach_one_task() stats here rather 8022 * than inside detach_one_task(). 8023 */ 8024 schedstat_add(env->sd->lb_gained[env->idle], detached); 8025 8026 return detached; 8027} 8028 8029/* 8030 * attach_task() -- attach the task detached by detach_task() to its new rq. 8031 */ 8032static void attach_task(struct rq *rq, struct task_struct *p) 8033{ 8034 lockdep_assert_rq_held(rq); 8035 8036 BUG_ON(task_rq(p) != rq); 8037 activate_task(rq, p, ENQUEUE_NOCLOCK); 8038 check_preempt_curr(rq, p, 0); 8039} 8040 8041/* 8042 * attach_one_task() -- attaches the task returned from detach_one_task() to 8043 * its new rq. 8044 */ 8045static void attach_one_task(struct rq *rq, struct task_struct *p) 8046{ 8047 struct rq_flags rf; 8048 8049 rq_lock(rq, &rf); 8050 update_rq_clock(rq); 8051 attach_task(rq, p); 8052 rq_unlock(rq, &rf); 8053} 8054 8055/* 8056 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8057 * new rq. 8058 */ 8059static void attach_tasks(struct lb_env *env) 8060{ 8061 struct list_head *tasks = &env->tasks; 8062 struct task_struct *p; 8063 struct rq_flags rf; 8064 8065 rq_lock(env->dst_rq, &rf); 8066 update_rq_clock(env->dst_rq); 8067 8068 while (!list_empty(tasks)) { 8069 p = list_first_entry(tasks, struct task_struct, se.group_node); 8070 list_del_init(&p->se.group_node); 8071 8072 attach_task(env->dst_rq, p); 8073 } 8074 8075 rq_unlock(env->dst_rq, &rf); 8076} 8077 8078#ifdef CONFIG_NO_HZ_COMMON 8079static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8080{ 8081 if (cfs_rq->avg.load_avg) 8082 return true; 8083 8084 if (cfs_rq->avg.util_avg) 8085 return true; 8086 8087 return false; 8088} 8089 8090static inline bool others_have_blocked(struct rq *rq) 8091{ 8092 if (READ_ONCE(rq->avg_rt.util_avg)) 8093 return true; 8094 8095 if (READ_ONCE(rq->avg_dl.util_avg)) 8096 return true; 8097 8098 if (thermal_load_avg(rq)) 8099 return true; 8100 8101#ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8102 if (READ_ONCE(rq->avg_irq.util_avg)) 8103 return true; 8104#endif 8105 8106 return false; 8107} 8108 8109static inline void update_blocked_load_tick(struct rq *rq) 8110{ 8111 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8112} 8113 8114static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8115{ 8116 if (!has_blocked) 8117 rq->has_blocked_load = 0; 8118} 8119#else 8120static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8121static inline bool others_have_blocked(struct rq *rq) { return false; } 8122static inline void update_blocked_load_tick(struct rq *rq) {} 8123static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8124#endif 8125 8126static bool __update_blocked_others(struct rq *rq, bool *done) 8127{ 8128 const struct sched_class *curr_class; 8129 u64 now = rq_clock_pelt(rq); 8130 unsigned long thermal_pressure; 8131 bool decayed; 8132 8133 /* 8134 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8135 * DL and IRQ signals have been updated before updating CFS. 8136 */ 8137 curr_class = rq->curr->sched_class; 8138 8139 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8140 8141 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8142 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8143 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8144 update_irq_load_avg(rq, 0); 8145 8146 if (others_have_blocked(rq)) 8147 *done = false; 8148 8149 return decayed; 8150} 8151 8152#ifdef CONFIG_FAIR_GROUP_SCHED 8153 8154static bool __update_blocked_fair(struct rq *rq, bool *done) 8155{ 8156 struct cfs_rq *cfs_rq, *pos; 8157 bool decayed = false; 8158 int cpu = cpu_of(rq); 8159 8160 /* 8161 * Iterates the task_group tree in a bottom up fashion, see 8162 * list_add_leaf_cfs_rq() for details. 8163 */ 8164 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8165 struct sched_entity *se; 8166 8167 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8168 update_tg_load_avg(cfs_rq); 8169 8170 if (cfs_rq == &rq->cfs) 8171 decayed = true; 8172 } 8173 8174 /* Propagate pending load changes to the parent, if any: */ 8175 se = cfs_rq->tg->se[cpu]; 8176 if (se && !skip_blocked_update(se)) 8177 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8178 8179 /* 8180 * There can be a lot of idle CPU cgroups. Don't let fully 8181 * decayed cfs_rqs linger on the list. 8182 */ 8183 if (cfs_rq_is_decayed(cfs_rq)) 8184 list_del_leaf_cfs_rq(cfs_rq); 8185 8186 /* Don't need periodic decay once load/util_avg are null */ 8187 if (cfs_rq_has_blocked(cfs_rq)) 8188 *done = false; 8189 } 8190 8191 return decayed; 8192} 8193 8194/* 8195 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8196 * This needs to be done in a top-down fashion because the load of a child 8197 * group is a fraction of its parents load. 8198 */ 8199static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8200{ 8201 struct rq *rq = rq_of(cfs_rq); 8202 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8203 unsigned long now = jiffies; 8204 unsigned long load; 8205 8206 if (cfs_rq->last_h_load_update == now) 8207 return; 8208 8209 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8210 for_each_sched_entity(se) { 8211 cfs_rq = cfs_rq_of(se); 8212 WRITE_ONCE(cfs_rq->h_load_next, se); 8213 if (cfs_rq->last_h_load_update == now) 8214 break; 8215 } 8216 8217 if (!se) { 8218 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8219 cfs_rq->last_h_load_update = now; 8220 } 8221 8222 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8223 load = cfs_rq->h_load; 8224 load = div64_ul(load * se->avg.load_avg, 8225 cfs_rq_load_avg(cfs_rq) + 1); 8226 cfs_rq = group_cfs_rq(se); 8227 cfs_rq->h_load = load; 8228 cfs_rq->last_h_load_update = now; 8229 } 8230} 8231 8232static unsigned long task_h_load(struct task_struct *p) 8233{ 8234 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8235 8236 update_cfs_rq_h_load(cfs_rq); 8237 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8238 cfs_rq_load_avg(cfs_rq) + 1); 8239} 8240#else 8241static bool __update_blocked_fair(struct rq *rq, bool *done) 8242{ 8243 struct cfs_rq *cfs_rq = &rq->cfs; 8244 bool decayed; 8245 8246 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8247 if (cfs_rq_has_blocked(cfs_rq)) 8248 *done = false; 8249 8250 return decayed; 8251} 8252 8253static unsigned long task_h_load(struct task_struct *p) 8254{ 8255 return p->se.avg.load_avg; 8256} 8257#endif 8258 8259static void update_blocked_averages(int cpu) 8260{ 8261 bool decayed = false, done = true; 8262 struct rq *rq = cpu_rq(cpu); 8263 struct rq_flags rf; 8264 8265 rq_lock_irqsave(rq, &rf); 8266 update_blocked_load_tick(rq); 8267 update_rq_clock(rq); 8268 8269 decayed |= __update_blocked_others(rq, &done); 8270 decayed |= __update_blocked_fair(rq, &done); 8271 8272 update_blocked_load_status(rq, !done); 8273 if (decayed) 8274 cpufreq_update_util(rq, 0); 8275 rq_unlock_irqrestore(rq, &rf); 8276} 8277 8278/********** Helpers for find_busiest_group ************************/ 8279 8280/* 8281 * sg_lb_stats - stats of a sched_group required for load_balancing 8282 */ 8283struct sg_lb_stats { 8284 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8285 unsigned long group_load; /* Total load over the CPUs of the group */ 8286 unsigned long group_capacity; 8287 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8288 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8289 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8290 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8291 unsigned int idle_cpus; 8292 unsigned int group_weight; 8293 enum group_type group_type; 8294 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8295 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8296#ifdef CONFIG_NUMA_BALANCING 8297 unsigned int nr_numa_running; 8298 unsigned int nr_preferred_running; 8299#endif 8300}; 8301 8302/* 8303 * sd_lb_stats - Structure to store the statistics of a sched_domain 8304 * during load balancing. 8305 */ 8306struct sd_lb_stats { 8307 struct sched_group *busiest; /* Busiest group in this sd */ 8308 struct sched_group *local; /* Local group in this sd */ 8309 unsigned long total_load; /* Total load of all groups in sd */ 8310 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8311 unsigned long avg_load; /* Average load across all groups in sd */ 8312 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8313 8314 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8315 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8316}; 8317 8318static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8319{ 8320 /* 8321 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8322 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8323 * We must however set busiest_stat::group_type and 8324 * busiest_stat::idle_cpus to the worst busiest group because 8325 * update_sd_pick_busiest() reads these before assignment. 8326 */ 8327 *sds = (struct sd_lb_stats){ 8328 .busiest = NULL, 8329 .local = NULL, 8330 .total_load = 0UL, 8331 .total_capacity = 0UL, 8332 .busiest_stat = { 8333 .idle_cpus = UINT_MAX, 8334 .group_type = group_has_spare, 8335 }, 8336 }; 8337} 8338 8339static unsigned long scale_rt_capacity(int cpu) 8340{ 8341 struct rq *rq = cpu_rq(cpu); 8342 unsigned long max = arch_scale_cpu_capacity(cpu); 8343 unsigned long used, free; 8344 unsigned long irq; 8345 8346 irq = cpu_util_irq(rq); 8347 8348 if (unlikely(irq >= max)) 8349 return 1; 8350 8351 /* 8352 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8353 * (running and not running) with weights 0 and 1024 respectively. 8354 * avg_thermal.load_avg tracks thermal pressure and the weighted 8355 * average uses the actual delta max capacity(load). 8356 */ 8357 used = READ_ONCE(rq->avg_rt.util_avg); 8358 used += READ_ONCE(rq->avg_dl.util_avg); 8359 used += thermal_load_avg(rq); 8360 8361 if (unlikely(used >= max)) 8362 return 1; 8363 8364 free = max - used; 8365 8366 return scale_irq_capacity(free, irq, max); 8367} 8368 8369static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8370{ 8371 unsigned long capacity = scale_rt_capacity(cpu); 8372 struct sched_group *sdg = sd->groups; 8373 8374 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8375 8376 if (!capacity) 8377 capacity = 1; 8378 8379 cpu_rq(cpu)->cpu_capacity = capacity; 8380 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8381 8382 sdg->sgc->capacity = capacity; 8383 sdg->sgc->min_capacity = capacity; 8384 sdg->sgc->max_capacity = capacity; 8385} 8386 8387void update_group_capacity(struct sched_domain *sd, int cpu) 8388{ 8389 struct sched_domain *child = sd->child; 8390 struct sched_group *group, *sdg = sd->groups; 8391 unsigned long capacity, min_capacity, max_capacity; 8392 unsigned long interval; 8393 8394 interval = msecs_to_jiffies(sd->balance_interval); 8395 interval = clamp(interval, 1UL, max_load_balance_interval); 8396 sdg->sgc->next_update = jiffies + interval; 8397 8398 if (!child) { 8399 update_cpu_capacity(sd, cpu); 8400 return; 8401 } 8402 8403 capacity = 0; 8404 min_capacity = ULONG_MAX; 8405 max_capacity = 0; 8406 8407 if (child->flags & SD_OVERLAP) { 8408 /* 8409 * SD_OVERLAP domains cannot assume that child groups 8410 * span the current group. 8411 */ 8412 8413 for_each_cpu(cpu, sched_group_span(sdg)) { 8414 unsigned long cpu_cap = capacity_of(cpu); 8415 8416 capacity += cpu_cap; 8417 min_capacity = min(cpu_cap, min_capacity); 8418 max_capacity = max(cpu_cap, max_capacity); 8419 } 8420 } else { 8421 /* 8422 * !SD_OVERLAP domains can assume that child groups 8423 * span the current group. 8424 */ 8425 8426 group = child->groups; 8427 do { 8428 struct sched_group_capacity *sgc = group->sgc; 8429 8430 capacity += sgc->capacity; 8431 min_capacity = min(sgc->min_capacity, min_capacity); 8432 max_capacity = max(sgc->max_capacity, max_capacity); 8433 group = group->next; 8434 } while (group != child->groups); 8435 } 8436 8437 sdg->sgc->capacity = capacity; 8438 sdg->sgc->min_capacity = min_capacity; 8439 sdg->sgc->max_capacity = max_capacity; 8440} 8441 8442/* 8443 * Check whether the capacity of the rq has been noticeably reduced by side 8444 * activity. The imbalance_pct is used for the threshold. 8445 * Return true is the capacity is reduced 8446 */ 8447static inline int 8448check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8449{ 8450 return ((rq->cpu_capacity * sd->imbalance_pct) < 8451 (rq->cpu_capacity_orig * 100)); 8452} 8453 8454/* 8455 * Check whether a rq has a misfit task and if it looks like we can actually 8456 * help that task: we can migrate the task to a CPU of higher capacity, or 8457 * the task's current CPU is heavily pressured. 8458 */ 8459static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8460{ 8461 return rq->misfit_task_load && 8462 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8463 check_cpu_capacity(rq, sd)); 8464} 8465 8466/* 8467 * Group imbalance indicates (and tries to solve) the problem where balancing 8468 * groups is inadequate due to ->cpus_ptr constraints. 8469 * 8470 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8471 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8472 * Something like: 8473 * 8474 * { 0 1 2 3 } { 4 5 6 7 } 8475 * * * * * 8476 * 8477 * If we were to balance group-wise we'd place two tasks in the first group and 8478 * two tasks in the second group. Clearly this is undesired as it will overload 8479 * cpu 3 and leave one of the CPUs in the second group unused. 8480 * 8481 * The current solution to this issue is detecting the skew in the first group 8482 * by noticing the lower domain failed to reach balance and had difficulty 8483 * moving tasks due to affinity constraints. 8484 * 8485 * When this is so detected; this group becomes a candidate for busiest; see 8486 * update_sd_pick_busiest(). And calculate_imbalance() and 8487 * find_busiest_group() avoid some of the usual balance conditions to allow it 8488 * to create an effective group imbalance. 8489 * 8490 * This is a somewhat tricky proposition since the next run might not find the 8491 * group imbalance and decide the groups need to be balanced again. A most 8492 * subtle and fragile situation. 8493 */ 8494 8495static inline int sg_imbalanced(struct sched_group *group) 8496{ 8497 return group->sgc->imbalance; 8498} 8499 8500/* 8501 * group_has_capacity returns true if the group has spare capacity that could 8502 * be used by some tasks. 8503 * We consider that a group has spare capacity if the * number of task is 8504 * smaller than the number of CPUs or if the utilization is lower than the 8505 * available capacity for CFS tasks. 8506 * For the latter, we use a threshold to stabilize the state, to take into 8507 * account the variance of the tasks' load and to return true if the available 8508 * capacity in meaningful for the load balancer. 8509 * As an example, an available capacity of 1% can appear but it doesn't make 8510 * any benefit for the load balance. 8511 */ 8512static inline bool 8513group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8514{ 8515 if (sgs->sum_nr_running < sgs->group_weight) 8516 return true; 8517 8518 if ((sgs->group_capacity * imbalance_pct) < 8519 (sgs->group_runnable * 100)) 8520 return false; 8521 8522 if ((sgs->group_capacity * 100) > 8523 (sgs->group_util * imbalance_pct)) 8524 return true; 8525 8526 return false; 8527} 8528 8529/* 8530 * group_is_overloaded returns true if the group has more tasks than it can 8531 * handle. 8532 * group_is_overloaded is not equals to !group_has_capacity because a group 8533 * with the exact right number of tasks, has no more spare capacity but is not 8534 * overloaded so both group_has_capacity and group_is_overloaded return 8535 * false. 8536 */ 8537static inline bool 8538group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8539{ 8540 if (sgs->sum_nr_running <= sgs->group_weight) 8541 return false; 8542 8543 if ((sgs->group_capacity * 100) < 8544 (sgs->group_util * imbalance_pct)) 8545 return true; 8546 8547 if ((sgs->group_capacity * imbalance_pct) < 8548 (sgs->group_runnable * 100)) 8549 return true; 8550 8551 return false; 8552} 8553 8554static inline enum 8555group_type group_classify(unsigned int imbalance_pct, 8556 struct sched_group *group, 8557 struct sg_lb_stats *sgs) 8558{ 8559 if (group_is_overloaded(imbalance_pct, sgs)) 8560 return group_overloaded; 8561 8562 if (sg_imbalanced(group)) 8563 return group_imbalanced; 8564 8565 if (sgs->group_asym_packing) 8566 return group_asym_packing; 8567 8568 if (sgs->group_misfit_task_load) 8569 return group_misfit_task; 8570 8571 if (!group_has_capacity(imbalance_pct, sgs)) 8572 return group_fully_busy; 8573 8574 return group_has_spare; 8575} 8576 8577/** 8578 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 8579 * @dst_cpu: Destination CPU of the load balancing 8580 * @sds: Load-balancing data with statistics of the local group 8581 * @sgs: Load-balancing statistics of the candidate busiest group 8582 * @sg: The candidate busiest group 8583 * 8584 * Check the state of the SMT siblings of both @sds::local and @sg and decide 8585 * if @dst_cpu can pull tasks. 8586 * 8587 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 8588 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 8589 * only if @dst_cpu has higher priority. 8590 * 8591 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 8592 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 8593 * Bigger imbalances in the number of busy CPUs will be dealt with in 8594 * update_sd_pick_busiest(). 8595 * 8596 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 8597 * of @dst_cpu are idle and @sg has lower priority. 8598 * 8599 * Return: true if @dst_cpu can pull tasks, false otherwise. 8600 */ 8601static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 8602 struct sg_lb_stats *sgs, 8603 struct sched_group *sg) 8604{ 8605#ifdef CONFIG_SCHED_SMT 8606 bool local_is_smt, sg_is_smt; 8607 int sg_busy_cpus; 8608 8609 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 8610 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 8611 8612 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 8613 8614 if (!local_is_smt) { 8615 /* 8616 * If we are here, @dst_cpu is idle and does not have SMT 8617 * siblings. Pull tasks if candidate group has two or more 8618 * busy CPUs. 8619 */ 8620 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 8621 return true; 8622 8623 /* 8624 * @dst_cpu does not have SMT siblings. @sg may have SMT 8625 * siblings and only one is busy. In such case, @dst_cpu 8626 * can help if it has higher priority and is idle (i.e., 8627 * it has no running tasks). 8628 */ 8629 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8630 } 8631 8632 /* @dst_cpu has SMT siblings. */ 8633 8634 if (sg_is_smt) { 8635 int local_busy_cpus = sds->local->group_weight - 8636 sds->local_stat.idle_cpus; 8637 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 8638 8639 if (busy_cpus_delta == 1) 8640 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8641 8642 return false; 8643 } 8644 8645 /* 8646 * @sg does not have SMT siblings. Ensure that @sds::local does not end 8647 * up with more than one busy SMT sibling and only pull tasks if there 8648 * are not busy CPUs (i.e., no CPU has running tasks). 8649 */ 8650 if (!sds->local_stat.sum_nr_running) 8651 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8652 8653 return false; 8654#else 8655 /* Always return false so that callers deal with non-SMT cases. */ 8656 return false; 8657#endif 8658} 8659 8660static inline bool 8661sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 8662 struct sched_group *group) 8663{ 8664 /* Only do SMT checks if either local or candidate have SMT siblings */ 8665 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 8666 (group->flags & SD_SHARE_CPUCAPACITY)) 8667 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 8668 8669 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 8670} 8671 8672/** 8673 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8674 * @env: The load balancing environment. 8675 * @sds: Load-balancing data with statistics of the local group. 8676 * @group: sched_group whose statistics are to be updated. 8677 * @sgs: variable to hold the statistics for this group. 8678 * @sg_status: Holds flag indicating the status of the sched_group 8679 */ 8680static inline void update_sg_lb_stats(struct lb_env *env, 8681 struct sd_lb_stats *sds, 8682 struct sched_group *group, 8683 struct sg_lb_stats *sgs, 8684 int *sg_status) 8685{ 8686 int i, nr_running, local_group; 8687 8688 memset(sgs, 0, sizeof(*sgs)); 8689 8690 local_group = group == sds->local; 8691 8692 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8693 struct rq *rq = cpu_rq(i); 8694 8695 sgs->group_load += cpu_load(rq); 8696 sgs->group_util += cpu_util_cfs(i); 8697 sgs->group_runnable += cpu_runnable(rq); 8698 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8699 8700 nr_running = rq->nr_running; 8701 sgs->sum_nr_running += nr_running; 8702 8703 if (nr_running > 1) 8704 *sg_status |= SG_OVERLOAD; 8705 8706 if (cpu_overutilized(i)) 8707 *sg_status |= SG_OVERUTILIZED; 8708 8709#ifdef CONFIG_NUMA_BALANCING 8710 sgs->nr_numa_running += rq->nr_numa_running; 8711 sgs->nr_preferred_running += rq->nr_preferred_running; 8712#endif 8713 /* 8714 * No need to call idle_cpu() if nr_running is not 0 8715 */ 8716 if (!nr_running && idle_cpu(i)) { 8717 sgs->idle_cpus++; 8718 /* Idle cpu can't have misfit task */ 8719 continue; 8720 } 8721 8722 if (local_group) 8723 continue; 8724 8725 /* Check for a misfit task on the cpu */ 8726 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8727 sgs->group_misfit_task_load < rq->misfit_task_load) { 8728 sgs->group_misfit_task_load = rq->misfit_task_load; 8729 *sg_status |= SG_OVERLOAD; 8730 } 8731 } 8732 8733 sgs->group_capacity = group->sgc->capacity; 8734 8735 sgs->group_weight = group->group_weight; 8736 8737 /* Check if dst CPU is idle and preferred to this group */ 8738 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 8739 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 8740 sched_asym(env, sds, sgs, group)) { 8741 sgs->group_asym_packing = 1; 8742 } 8743 8744 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8745 8746 /* Computing avg_load makes sense only when group is overloaded */ 8747 if (sgs->group_type == group_overloaded) 8748 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8749 sgs->group_capacity; 8750} 8751 8752/** 8753 * update_sd_pick_busiest - return 1 on busiest group 8754 * @env: The load balancing environment. 8755 * @sds: sched_domain statistics 8756 * @sg: sched_group candidate to be checked for being the busiest 8757 * @sgs: sched_group statistics 8758 * 8759 * Determine if @sg is a busier group than the previously selected 8760 * busiest group. 8761 * 8762 * Return: %true if @sg is a busier group than the previously selected 8763 * busiest group. %false otherwise. 8764 */ 8765static bool update_sd_pick_busiest(struct lb_env *env, 8766 struct sd_lb_stats *sds, 8767 struct sched_group *sg, 8768 struct sg_lb_stats *sgs) 8769{ 8770 struct sg_lb_stats *busiest = &sds->busiest_stat; 8771 8772 /* Make sure that there is at least one task to pull */ 8773 if (!sgs->sum_h_nr_running) 8774 return false; 8775 8776 /* 8777 * Don't try to pull misfit tasks we can't help. 8778 * We can use max_capacity here as reduction in capacity on some 8779 * CPUs in the group should either be possible to resolve 8780 * internally or be covered by avg_load imbalance (eventually). 8781 */ 8782 if (sgs->group_type == group_misfit_task && 8783 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8784 sds->local_stat.group_type != group_has_spare)) 8785 return false; 8786 8787 if (sgs->group_type > busiest->group_type) 8788 return true; 8789 8790 if (sgs->group_type < busiest->group_type) 8791 return false; 8792 8793 /* 8794 * The candidate and the current busiest group are the same type of 8795 * group. Let check which one is the busiest according to the type. 8796 */ 8797 8798 switch (sgs->group_type) { 8799 case group_overloaded: 8800 /* Select the overloaded group with highest avg_load. */ 8801 if (sgs->avg_load <= busiest->avg_load) 8802 return false; 8803 break; 8804 8805 case group_imbalanced: 8806 /* 8807 * Select the 1st imbalanced group as we don't have any way to 8808 * choose one more than another. 8809 */ 8810 return false; 8811 8812 case group_asym_packing: 8813 /* Prefer to move from lowest priority CPU's work */ 8814 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8815 return false; 8816 break; 8817 8818 case group_misfit_task: 8819 /* 8820 * If we have more than one misfit sg go with the biggest 8821 * misfit. 8822 */ 8823 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8824 return false; 8825 break; 8826 8827 case group_fully_busy: 8828 /* 8829 * Select the fully busy group with highest avg_load. In 8830 * theory, there is no need to pull task from such kind of 8831 * group because tasks have all compute capacity that they need 8832 * but we can still improve the overall throughput by reducing 8833 * contention when accessing shared HW resources. 8834 * 8835 * XXX for now avg_load is not computed and always 0 so we 8836 * select the 1st one. 8837 */ 8838 if (sgs->avg_load <= busiest->avg_load) 8839 return false; 8840 break; 8841 8842 case group_has_spare: 8843 /* 8844 * Select not overloaded group with lowest number of idle cpus 8845 * and highest number of running tasks. We could also compare 8846 * the spare capacity which is more stable but it can end up 8847 * that the group has less spare capacity but finally more idle 8848 * CPUs which means less opportunity to pull tasks. 8849 */ 8850 if (sgs->idle_cpus > busiest->idle_cpus) 8851 return false; 8852 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8853 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8854 return false; 8855 8856 break; 8857 } 8858 8859 /* 8860 * Candidate sg has no more than one task per CPU and has higher 8861 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8862 * throughput. Maximize throughput, power/energy consequences are not 8863 * considered. 8864 */ 8865 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8866 (sgs->group_type <= group_fully_busy) && 8867 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8868 return false; 8869 8870 return true; 8871} 8872 8873#ifdef CONFIG_NUMA_BALANCING 8874static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8875{ 8876 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8877 return regular; 8878 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8879 return remote; 8880 return all; 8881} 8882 8883static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8884{ 8885 if (rq->nr_running > rq->nr_numa_running) 8886 return regular; 8887 if (rq->nr_running > rq->nr_preferred_running) 8888 return remote; 8889 return all; 8890} 8891#else 8892static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8893{ 8894 return all; 8895} 8896 8897static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8898{ 8899 return regular; 8900} 8901#endif /* CONFIG_NUMA_BALANCING */ 8902 8903 8904struct sg_lb_stats; 8905 8906/* 8907 * task_running_on_cpu - return 1 if @p is running on @cpu. 8908 */ 8909 8910static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8911{ 8912 /* Task has no contribution or is new */ 8913 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8914 return 0; 8915 8916 if (task_on_rq_queued(p)) 8917 return 1; 8918 8919 return 0; 8920} 8921 8922/** 8923 * idle_cpu_without - would a given CPU be idle without p ? 8924 * @cpu: the processor on which idleness is tested. 8925 * @p: task which should be ignored. 8926 * 8927 * Return: 1 if the CPU would be idle. 0 otherwise. 8928 */ 8929static int idle_cpu_without(int cpu, struct task_struct *p) 8930{ 8931 struct rq *rq = cpu_rq(cpu); 8932 8933 if (rq->curr != rq->idle && rq->curr != p) 8934 return 0; 8935 8936 /* 8937 * rq->nr_running can't be used but an updated version without the 8938 * impact of p on cpu must be used instead. The updated nr_running 8939 * be computed and tested before calling idle_cpu_without(). 8940 */ 8941 8942#ifdef CONFIG_SMP 8943 if (rq->ttwu_pending) 8944 return 0; 8945#endif 8946 8947 return 1; 8948} 8949 8950/* 8951 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8952 * @sd: The sched_domain level to look for idlest group. 8953 * @group: sched_group whose statistics are to be updated. 8954 * @sgs: variable to hold the statistics for this group. 8955 * @p: The task for which we look for the idlest group/CPU. 8956 */ 8957static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8958 struct sched_group *group, 8959 struct sg_lb_stats *sgs, 8960 struct task_struct *p) 8961{ 8962 int i, nr_running; 8963 8964 memset(sgs, 0, sizeof(*sgs)); 8965 8966 for_each_cpu(i, sched_group_span(group)) { 8967 struct rq *rq = cpu_rq(i); 8968 unsigned int local; 8969 8970 sgs->group_load += cpu_load_without(rq, p); 8971 sgs->group_util += cpu_util_without(i, p); 8972 sgs->group_runnable += cpu_runnable_without(rq, p); 8973 local = task_running_on_cpu(i, p); 8974 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8975 8976 nr_running = rq->nr_running - local; 8977 sgs->sum_nr_running += nr_running; 8978 8979 /* 8980 * No need to call idle_cpu_without() if nr_running is not 0 8981 */ 8982 if (!nr_running && idle_cpu_without(i, p)) 8983 sgs->idle_cpus++; 8984 8985 } 8986 8987 /* Check if task fits in the group */ 8988 if (sd->flags & SD_ASYM_CPUCAPACITY && 8989 !task_fits_capacity(p, group->sgc->max_capacity)) { 8990 sgs->group_misfit_task_load = 1; 8991 } 8992 8993 sgs->group_capacity = group->sgc->capacity; 8994 8995 sgs->group_weight = group->group_weight; 8996 8997 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8998 8999 /* 9000 * Computing avg_load makes sense only when group is fully busy or 9001 * overloaded 9002 */ 9003 if (sgs->group_type == group_fully_busy || 9004 sgs->group_type == group_overloaded) 9005 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9006 sgs->group_capacity; 9007} 9008 9009static bool update_pick_idlest(struct sched_group *idlest, 9010 struct sg_lb_stats *idlest_sgs, 9011 struct sched_group *group, 9012 struct sg_lb_stats *sgs) 9013{ 9014 if (sgs->group_type < idlest_sgs->group_type) 9015 return true; 9016 9017 if (sgs->group_type > idlest_sgs->group_type) 9018 return false; 9019 9020 /* 9021 * The candidate and the current idlest group are the same type of 9022 * group. Let check which one is the idlest according to the type. 9023 */ 9024 9025 switch (sgs->group_type) { 9026 case group_overloaded: 9027 case group_fully_busy: 9028 /* Select the group with lowest avg_load. */ 9029 if (idlest_sgs->avg_load <= sgs->avg_load) 9030 return false; 9031 break; 9032 9033 case group_imbalanced: 9034 case group_asym_packing: 9035 /* Those types are not used in the slow wakeup path */ 9036 return false; 9037 9038 case group_misfit_task: 9039 /* Select group with the highest max capacity */ 9040 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9041 return false; 9042 break; 9043 9044 case group_has_spare: 9045 /* Select group with most idle CPUs */ 9046 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9047 return false; 9048 9049 /* Select group with lowest group_util */ 9050 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9051 idlest_sgs->group_util <= sgs->group_util) 9052 return false; 9053 9054 break; 9055 } 9056 9057 return true; 9058} 9059 9060/* 9061 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 9062 * This is an approximation as the number of running tasks may not be 9063 * related to the number of busy CPUs due to sched_setaffinity. 9064 */ 9065static inline bool allow_numa_imbalance(int running, int imb_numa_nr) 9066{ 9067 return running <= imb_numa_nr; 9068} 9069 9070/* 9071 * find_idlest_group() finds and returns the least busy CPU group within the 9072 * domain. 9073 * 9074 * Assumes p is allowed on at least one CPU in sd. 9075 */ 9076static struct sched_group * 9077find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9078{ 9079 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9080 struct sg_lb_stats local_sgs, tmp_sgs; 9081 struct sg_lb_stats *sgs; 9082 unsigned long imbalance; 9083 struct sg_lb_stats idlest_sgs = { 9084 .avg_load = UINT_MAX, 9085 .group_type = group_overloaded, 9086 }; 9087 9088 do { 9089 int local_group; 9090 9091 /* Skip over this group if it has no CPUs allowed */ 9092 if (!cpumask_intersects(sched_group_span(group), 9093 p->cpus_ptr)) 9094 continue; 9095 9096 /* Skip over this group if no cookie matched */ 9097 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9098 continue; 9099 9100 local_group = cpumask_test_cpu(this_cpu, 9101 sched_group_span(group)); 9102 9103 if (local_group) { 9104 sgs = &local_sgs; 9105 local = group; 9106 } else { 9107 sgs = &tmp_sgs; 9108 } 9109 9110 update_sg_wakeup_stats(sd, group, sgs, p); 9111 9112 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9113 idlest = group; 9114 idlest_sgs = *sgs; 9115 } 9116 9117 } while (group = group->next, group != sd->groups); 9118 9119 9120 /* There is no idlest group to push tasks to */ 9121 if (!idlest) 9122 return NULL; 9123 9124 /* The local group has been skipped because of CPU affinity */ 9125 if (!local) 9126 return idlest; 9127 9128 /* 9129 * If the local group is idler than the selected idlest group 9130 * don't try and push the task. 9131 */ 9132 if (local_sgs.group_type < idlest_sgs.group_type) 9133 return NULL; 9134 9135 /* 9136 * If the local group is busier than the selected idlest group 9137 * try and push the task. 9138 */ 9139 if (local_sgs.group_type > idlest_sgs.group_type) 9140 return idlest; 9141 9142 switch (local_sgs.group_type) { 9143 case group_overloaded: 9144 case group_fully_busy: 9145 9146 /* Calculate allowed imbalance based on load */ 9147 imbalance = scale_load_down(NICE_0_LOAD) * 9148 (sd->imbalance_pct-100) / 100; 9149 9150 /* 9151 * When comparing groups across NUMA domains, it's possible for 9152 * the local domain to be very lightly loaded relative to the 9153 * remote domains but "imbalance" skews the comparison making 9154 * remote CPUs look much more favourable. When considering 9155 * cross-domain, add imbalance to the load on the remote node 9156 * and consider staying local. 9157 */ 9158 9159 if ((sd->flags & SD_NUMA) && 9160 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9161 return NULL; 9162 9163 /* 9164 * If the local group is less loaded than the selected 9165 * idlest group don't try and push any tasks. 9166 */ 9167 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9168 return NULL; 9169 9170 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9171 return NULL; 9172 break; 9173 9174 case group_imbalanced: 9175 case group_asym_packing: 9176 /* Those type are not used in the slow wakeup path */ 9177 return NULL; 9178 9179 case group_misfit_task: 9180 /* Select group with the highest max capacity */ 9181 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9182 return NULL; 9183 break; 9184 9185 case group_has_spare: 9186 if (sd->flags & SD_NUMA) { 9187#ifdef CONFIG_NUMA_BALANCING 9188 int idlest_cpu; 9189 /* 9190 * If there is spare capacity at NUMA, try to select 9191 * the preferred node 9192 */ 9193 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9194 return NULL; 9195 9196 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9197 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9198 return idlest; 9199#endif 9200 /* 9201 * Otherwise, keep the task close to the wakeup source 9202 * and improve locality if the number of running tasks 9203 * would remain below threshold where an imbalance is 9204 * allowed. If there is a real need of migration, 9205 * periodic load balance will take care of it. 9206 */ 9207 if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr)) 9208 return NULL; 9209 } 9210 9211 /* 9212 * Select group with highest number of idle CPUs. We could also 9213 * compare the utilization which is more stable but it can end 9214 * up that the group has less spare capacity but finally more 9215 * idle CPUs which means more opportunity to run task. 9216 */ 9217 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9218 return NULL; 9219 break; 9220 } 9221 9222 return idlest; 9223} 9224 9225/** 9226 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9227 * @env: The load balancing environment. 9228 * @sds: variable to hold the statistics for this sched_domain. 9229 */ 9230 9231static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9232{ 9233 struct sched_domain *child = env->sd->child; 9234 struct sched_group *sg = env->sd->groups; 9235 struct sg_lb_stats *local = &sds->local_stat; 9236 struct sg_lb_stats tmp_sgs; 9237 int sg_status = 0; 9238 9239 do { 9240 struct sg_lb_stats *sgs = &tmp_sgs; 9241 int local_group; 9242 9243 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9244 if (local_group) { 9245 sds->local = sg; 9246 sgs = local; 9247 9248 if (env->idle != CPU_NEWLY_IDLE || 9249 time_after_eq(jiffies, sg->sgc->next_update)) 9250 update_group_capacity(env->sd, env->dst_cpu); 9251 } 9252 9253 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9254 9255 if (local_group) 9256 goto next_group; 9257 9258 9259 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9260 sds->busiest = sg; 9261 sds->busiest_stat = *sgs; 9262 } 9263 9264next_group: 9265 /* Now, start updating sd_lb_stats */ 9266 sds->total_load += sgs->group_load; 9267 sds->total_capacity += sgs->group_capacity; 9268 9269 sg = sg->next; 9270 } while (sg != env->sd->groups); 9271 9272 /* Tag domain that child domain prefers tasks go to siblings first */ 9273 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9274 9275 9276 if (env->sd->flags & SD_NUMA) 9277 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9278 9279 if (!env->sd->parent) { 9280 struct root_domain *rd = env->dst_rq->rd; 9281 9282 /* update overload indicator if we are at root domain */ 9283 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9284 9285 /* Update over-utilization (tipping point, U >= 0) indicator */ 9286 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9287 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9288 } else if (sg_status & SG_OVERUTILIZED) { 9289 struct root_domain *rd = env->dst_rq->rd; 9290 9291 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9292 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9293 } 9294} 9295 9296#define NUMA_IMBALANCE_MIN 2 9297 9298static inline long adjust_numa_imbalance(int imbalance, 9299 int dst_running, int imb_numa_nr) 9300{ 9301 if (!allow_numa_imbalance(dst_running, imb_numa_nr)) 9302 return imbalance; 9303 9304 /* 9305 * Allow a small imbalance based on a simple pair of communicating 9306 * tasks that remain local when the destination is lightly loaded. 9307 */ 9308 if (imbalance <= NUMA_IMBALANCE_MIN) 9309 return 0; 9310 9311 return imbalance; 9312} 9313 9314/** 9315 * calculate_imbalance - Calculate the amount of imbalance present within the 9316 * groups of a given sched_domain during load balance. 9317 * @env: load balance environment 9318 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9319 */ 9320static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9321{ 9322 struct sg_lb_stats *local, *busiest; 9323 9324 local = &sds->local_stat; 9325 busiest = &sds->busiest_stat; 9326 9327 if (busiest->group_type == group_misfit_task) { 9328 /* Set imbalance to allow misfit tasks to be balanced. */ 9329 env->migration_type = migrate_misfit; 9330 env->imbalance = 1; 9331 return; 9332 } 9333 9334 if (busiest->group_type == group_asym_packing) { 9335 /* 9336 * In case of asym capacity, we will try to migrate all load to 9337 * the preferred CPU. 9338 */ 9339 env->migration_type = migrate_task; 9340 env->imbalance = busiest->sum_h_nr_running; 9341 return; 9342 } 9343 9344 if (busiest->group_type == group_imbalanced) { 9345 /* 9346 * In the group_imb case we cannot rely on group-wide averages 9347 * to ensure CPU-load equilibrium, try to move any task to fix 9348 * the imbalance. The next load balance will take care of 9349 * balancing back the system. 9350 */ 9351 env->migration_type = migrate_task; 9352 env->imbalance = 1; 9353 return; 9354 } 9355 9356 /* 9357 * Try to use spare capacity of local group without overloading it or 9358 * emptying busiest. 9359 */ 9360 if (local->group_type == group_has_spare) { 9361 if ((busiest->group_type > group_fully_busy) && 9362 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9363 /* 9364 * If busiest is overloaded, try to fill spare 9365 * capacity. This might end up creating spare capacity 9366 * in busiest or busiest still being overloaded but 9367 * there is no simple way to directly compute the 9368 * amount of load to migrate in order to balance the 9369 * system. 9370 */ 9371 env->migration_type = migrate_util; 9372 env->imbalance = max(local->group_capacity, local->group_util) - 9373 local->group_util; 9374 9375 /* 9376 * In some cases, the group's utilization is max or even 9377 * higher than capacity because of migrations but the 9378 * local CPU is (newly) idle. There is at least one 9379 * waiting task in this overloaded busiest group. Let's 9380 * try to pull it. 9381 */ 9382 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9383 env->migration_type = migrate_task; 9384 env->imbalance = 1; 9385 } 9386 9387 return; 9388 } 9389 9390 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9391 unsigned int nr_diff = busiest->sum_nr_running; 9392 /* 9393 * When prefer sibling, evenly spread running tasks on 9394 * groups. 9395 */ 9396 env->migration_type = migrate_task; 9397 lsub_positive(&nr_diff, local->sum_nr_running); 9398 env->imbalance = nr_diff >> 1; 9399 } else { 9400 9401 /* 9402 * If there is no overload, we just want to even the number of 9403 * idle cpus. 9404 */ 9405 env->migration_type = migrate_task; 9406 env->imbalance = max_t(long, 0, (local->idle_cpus - 9407 busiest->idle_cpus) >> 1); 9408 } 9409 9410 /* Consider allowing a small imbalance between NUMA groups */ 9411 if (env->sd->flags & SD_NUMA) { 9412 env->imbalance = adjust_numa_imbalance(env->imbalance, 9413 local->sum_nr_running + 1, env->sd->imb_numa_nr); 9414 } 9415 9416 return; 9417 } 9418 9419 /* 9420 * Local is fully busy but has to take more load to relieve the 9421 * busiest group 9422 */ 9423 if (local->group_type < group_overloaded) { 9424 /* 9425 * Local will become overloaded so the avg_load metrics are 9426 * finally needed. 9427 */ 9428 9429 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9430 local->group_capacity; 9431 9432 /* 9433 * If the local group is more loaded than the selected 9434 * busiest group don't try to pull any tasks. 9435 */ 9436 if (local->avg_load >= busiest->avg_load) { 9437 env->imbalance = 0; 9438 return; 9439 } 9440 9441 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9442 sds->total_capacity; 9443 } 9444 9445 /* 9446 * Both group are or will become overloaded and we're trying to get all 9447 * the CPUs to the average_load, so we don't want to push ourselves 9448 * above the average load, nor do we wish to reduce the max loaded CPU 9449 * below the average load. At the same time, we also don't want to 9450 * reduce the group load below the group capacity. Thus we look for 9451 * the minimum possible imbalance. 9452 */ 9453 env->migration_type = migrate_load; 9454 env->imbalance = min( 9455 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9456 (sds->avg_load - local->avg_load) * local->group_capacity 9457 ) / SCHED_CAPACITY_SCALE; 9458} 9459 9460/******* find_busiest_group() helpers end here *********************/ 9461 9462/* 9463 * Decision matrix according to the local and busiest group type: 9464 * 9465 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9466 * has_spare nr_idle balanced N/A N/A balanced balanced 9467 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9468 * misfit_task force N/A N/A N/A N/A N/A 9469 * asym_packing force force N/A N/A force force 9470 * imbalanced force force N/A N/A force force 9471 * overloaded force force N/A N/A force avg_load 9472 * 9473 * N/A : Not Applicable because already filtered while updating 9474 * statistics. 9475 * balanced : The system is balanced for these 2 groups. 9476 * force : Calculate the imbalance as load migration is probably needed. 9477 * avg_load : Only if imbalance is significant enough. 9478 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9479 * different in groups. 9480 */ 9481 9482/** 9483 * find_busiest_group - Returns the busiest group within the sched_domain 9484 * if there is an imbalance. 9485 * @env: The load balancing environment. 9486 * 9487 * Also calculates the amount of runnable load which should be moved 9488 * to restore balance. 9489 * 9490 * Return: - The busiest group if imbalance exists. 9491 */ 9492static struct sched_group *find_busiest_group(struct lb_env *env) 9493{ 9494 struct sg_lb_stats *local, *busiest; 9495 struct sd_lb_stats sds; 9496 9497 init_sd_lb_stats(&sds); 9498 9499 /* 9500 * Compute the various statistics relevant for load balancing at 9501 * this level. 9502 */ 9503 update_sd_lb_stats(env, &sds); 9504 9505 if (sched_energy_enabled()) { 9506 struct root_domain *rd = env->dst_rq->rd; 9507 9508 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9509 goto out_balanced; 9510 } 9511 9512 local = &sds.local_stat; 9513 busiest = &sds.busiest_stat; 9514 9515 /* There is no busy sibling group to pull tasks from */ 9516 if (!sds.busiest) 9517 goto out_balanced; 9518 9519 /* Misfit tasks should be dealt with regardless of the avg load */ 9520 if (busiest->group_type == group_misfit_task) 9521 goto force_balance; 9522 9523 /* ASYM feature bypasses nice load balance check */ 9524 if (busiest->group_type == group_asym_packing) 9525 goto force_balance; 9526 9527 /* 9528 * If the busiest group is imbalanced the below checks don't 9529 * work because they assume all things are equal, which typically 9530 * isn't true due to cpus_ptr constraints and the like. 9531 */ 9532 if (busiest->group_type == group_imbalanced) 9533 goto force_balance; 9534 9535 /* 9536 * If the local group is busier than the selected busiest group 9537 * don't try and pull any tasks. 9538 */ 9539 if (local->group_type > busiest->group_type) 9540 goto out_balanced; 9541 9542 /* 9543 * When groups are overloaded, use the avg_load to ensure fairness 9544 * between tasks. 9545 */ 9546 if (local->group_type == group_overloaded) { 9547 /* 9548 * If the local group is more loaded than the selected 9549 * busiest group don't try to pull any tasks. 9550 */ 9551 if (local->avg_load >= busiest->avg_load) 9552 goto out_balanced; 9553 9554 /* XXX broken for overlapping NUMA groups */ 9555 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9556 sds.total_capacity; 9557 9558 /* 9559 * Don't pull any tasks if this group is already above the 9560 * domain average load. 9561 */ 9562 if (local->avg_load >= sds.avg_load) 9563 goto out_balanced; 9564 9565 /* 9566 * If the busiest group is more loaded, use imbalance_pct to be 9567 * conservative. 9568 */ 9569 if (100 * busiest->avg_load <= 9570 env->sd->imbalance_pct * local->avg_load) 9571 goto out_balanced; 9572 } 9573 9574 /* Try to move all excess tasks to child's sibling domain */ 9575 if (sds.prefer_sibling && local->group_type == group_has_spare && 9576 busiest->sum_nr_running > local->sum_nr_running + 1) 9577 goto force_balance; 9578 9579 if (busiest->group_type != group_overloaded) { 9580 if (env->idle == CPU_NOT_IDLE) 9581 /* 9582 * If the busiest group is not overloaded (and as a 9583 * result the local one too) but this CPU is already 9584 * busy, let another idle CPU try to pull task. 9585 */ 9586 goto out_balanced; 9587 9588 if (busiest->group_weight > 1 && 9589 local->idle_cpus <= (busiest->idle_cpus + 1)) 9590 /* 9591 * If the busiest group is not overloaded 9592 * and there is no imbalance between this and busiest 9593 * group wrt idle CPUs, it is balanced. The imbalance 9594 * becomes significant if the diff is greater than 1 9595 * otherwise we might end up to just move the imbalance 9596 * on another group. Of course this applies only if 9597 * there is more than 1 CPU per group. 9598 */ 9599 goto out_balanced; 9600 9601 if (busiest->sum_h_nr_running == 1) 9602 /* 9603 * busiest doesn't have any tasks waiting to run 9604 */ 9605 goto out_balanced; 9606 } 9607 9608force_balance: 9609 /* Looks like there is an imbalance. Compute it */ 9610 calculate_imbalance(env, &sds); 9611 return env->imbalance ? sds.busiest : NULL; 9612 9613out_balanced: 9614 env->imbalance = 0; 9615 return NULL; 9616} 9617 9618/* 9619 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9620 */ 9621static struct rq *find_busiest_queue(struct lb_env *env, 9622 struct sched_group *group) 9623{ 9624 struct rq *busiest = NULL, *rq; 9625 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9626 unsigned int busiest_nr = 0; 9627 int i; 9628 9629 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9630 unsigned long capacity, load, util; 9631 unsigned int nr_running; 9632 enum fbq_type rt; 9633 9634 rq = cpu_rq(i); 9635 rt = fbq_classify_rq(rq); 9636 9637 /* 9638 * We classify groups/runqueues into three groups: 9639 * - regular: there are !numa tasks 9640 * - remote: there are numa tasks that run on the 'wrong' node 9641 * - all: there is no distinction 9642 * 9643 * In order to avoid migrating ideally placed numa tasks, 9644 * ignore those when there's better options. 9645 * 9646 * If we ignore the actual busiest queue to migrate another 9647 * task, the next balance pass can still reduce the busiest 9648 * queue by moving tasks around inside the node. 9649 * 9650 * If we cannot move enough load due to this classification 9651 * the next pass will adjust the group classification and 9652 * allow migration of more tasks. 9653 * 9654 * Both cases only affect the total convergence complexity. 9655 */ 9656 if (rt > env->fbq_type) 9657 continue; 9658 9659 nr_running = rq->cfs.h_nr_running; 9660 if (!nr_running) 9661 continue; 9662 9663 capacity = capacity_of(i); 9664 9665 /* 9666 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9667 * eventually lead to active_balancing high->low capacity. 9668 * Higher per-CPU capacity is considered better than balancing 9669 * average load. 9670 */ 9671 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9672 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9673 nr_running == 1) 9674 continue; 9675 9676 /* Make sure we only pull tasks from a CPU of lower priority */ 9677 if ((env->sd->flags & SD_ASYM_PACKING) && 9678 sched_asym_prefer(i, env->dst_cpu) && 9679 nr_running == 1) 9680 continue; 9681 9682 switch (env->migration_type) { 9683 case migrate_load: 9684 /* 9685 * When comparing with load imbalance, use cpu_load() 9686 * which is not scaled with the CPU capacity. 9687 */ 9688 load = cpu_load(rq); 9689 9690 if (nr_running == 1 && load > env->imbalance && 9691 !check_cpu_capacity(rq, env->sd)) 9692 break; 9693 9694 /* 9695 * For the load comparisons with the other CPUs, 9696 * consider the cpu_load() scaled with the CPU 9697 * capacity, so that the load can be moved away 9698 * from the CPU that is potentially running at a 9699 * lower capacity. 9700 * 9701 * Thus we're looking for max(load_i / capacity_i), 9702 * crosswise multiplication to rid ourselves of the 9703 * division works out to: 9704 * load_i * capacity_j > load_j * capacity_i; 9705 * where j is our previous maximum. 9706 */ 9707 if (load * busiest_capacity > busiest_load * capacity) { 9708 busiest_load = load; 9709 busiest_capacity = capacity; 9710 busiest = rq; 9711 } 9712 break; 9713 9714 case migrate_util: 9715 util = cpu_util_cfs(i); 9716 9717 /* 9718 * Don't try to pull utilization from a CPU with one 9719 * running task. Whatever its utilization, we will fail 9720 * detach the task. 9721 */ 9722 if (nr_running <= 1) 9723 continue; 9724 9725 if (busiest_util < util) { 9726 busiest_util = util; 9727 busiest = rq; 9728 } 9729 break; 9730 9731 case migrate_task: 9732 if (busiest_nr < nr_running) { 9733 busiest_nr = nr_running; 9734 busiest = rq; 9735 } 9736 break; 9737 9738 case migrate_misfit: 9739 /* 9740 * For ASYM_CPUCAPACITY domains with misfit tasks we 9741 * simply seek the "biggest" misfit task. 9742 */ 9743 if (rq->misfit_task_load > busiest_load) { 9744 busiest_load = rq->misfit_task_load; 9745 busiest = rq; 9746 } 9747 9748 break; 9749 9750 } 9751 } 9752 9753 return busiest; 9754} 9755 9756/* 9757 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9758 * so long as it is large enough. 9759 */ 9760#define MAX_PINNED_INTERVAL 512 9761 9762static inline bool 9763asym_active_balance(struct lb_env *env) 9764{ 9765 /* 9766 * ASYM_PACKING needs to force migrate tasks from busy but 9767 * lower priority CPUs in order to pack all tasks in the 9768 * highest priority CPUs. 9769 */ 9770 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9771 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9772} 9773 9774static inline bool 9775imbalanced_active_balance(struct lb_env *env) 9776{ 9777 struct sched_domain *sd = env->sd; 9778 9779 /* 9780 * The imbalanced case includes the case of pinned tasks preventing a fair 9781 * distribution of the load on the system but also the even distribution of the 9782 * threads on a system with spare capacity 9783 */ 9784 if ((env->migration_type == migrate_task) && 9785 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9786 return 1; 9787 9788 return 0; 9789} 9790 9791static int need_active_balance(struct lb_env *env) 9792{ 9793 struct sched_domain *sd = env->sd; 9794 9795 if (asym_active_balance(env)) 9796 return 1; 9797 9798 if (imbalanced_active_balance(env)) 9799 return 1; 9800 9801 /* 9802 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9803 * It's worth migrating the task if the src_cpu's capacity is reduced 9804 * because of other sched_class or IRQs if more capacity stays 9805 * available on dst_cpu. 9806 */ 9807 if ((env->idle != CPU_NOT_IDLE) && 9808 (env->src_rq->cfs.h_nr_running == 1)) { 9809 if ((check_cpu_capacity(env->src_rq, sd)) && 9810 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9811 return 1; 9812 } 9813 9814 if (env->migration_type == migrate_misfit) 9815 return 1; 9816 9817 return 0; 9818} 9819 9820static int active_load_balance_cpu_stop(void *data); 9821 9822static int should_we_balance(struct lb_env *env) 9823{ 9824 struct sched_group *sg = env->sd->groups; 9825 int cpu; 9826 9827 /* 9828 * Ensure the balancing environment is consistent; can happen 9829 * when the softirq triggers 'during' hotplug. 9830 */ 9831 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9832 return 0; 9833 9834 /* 9835 * In the newly idle case, we will allow all the CPUs 9836 * to do the newly idle load balance. 9837 */ 9838 if (env->idle == CPU_NEWLY_IDLE) 9839 return 1; 9840 9841 /* Try to find first idle CPU */ 9842 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9843 if (!idle_cpu(cpu)) 9844 continue; 9845 9846 /* Are we the first idle CPU? */ 9847 return cpu == env->dst_cpu; 9848 } 9849 9850 /* Are we the first CPU of this group ? */ 9851 return group_balance_cpu(sg) == env->dst_cpu; 9852} 9853 9854/* 9855 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9856 * tasks if there is an imbalance. 9857 */ 9858static int load_balance(int this_cpu, struct rq *this_rq, 9859 struct sched_domain *sd, enum cpu_idle_type idle, 9860 int *continue_balancing) 9861{ 9862 int ld_moved, cur_ld_moved, active_balance = 0; 9863 struct sched_domain *sd_parent = sd->parent; 9864 struct sched_group *group; 9865 struct rq *busiest; 9866 struct rq_flags rf; 9867 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9868 9869 struct lb_env env = { 9870 .sd = sd, 9871 .dst_cpu = this_cpu, 9872 .dst_rq = this_rq, 9873 .dst_grpmask = sched_group_span(sd->groups), 9874 .idle = idle, 9875 .loop_break = sched_nr_migrate_break, 9876 .cpus = cpus, 9877 .fbq_type = all, 9878 .tasks = LIST_HEAD_INIT(env.tasks), 9879 }; 9880 9881 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9882 9883 schedstat_inc(sd->lb_count[idle]); 9884 9885redo: 9886 if (!should_we_balance(&env)) { 9887 *continue_balancing = 0; 9888 goto out_balanced; 9889 } 9890 9891 group = find_busiest_group(&env); 9892 if (!group) { 9893 schedstat_inc(sd->lb_nobusyg[idle]); 9894 goto out_balanced; 9895 } 9896 9897 busiest = find_busiest_queue(&env, group); 9898 if (!busiest) { 9899 schedstat_inc(sd->lb_nobusyq[idle]); 9900 goto out_balanced; 9901 } 9902 9903 BUG_ON(busiest == env.dst_rq); 9904 9905 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9906 9907 env.src_cpu = busiest->cpu; 9908 env.src_rq = busiest; 9909 9910 ld_moved = 0; 9911 /* Clear this flag as soon as we find a pullable task */ 9912 env.flags |= LBF_ALL_PINNED; 9913 if (busiest->nr_running > 1) { 9914 /* 9915 * Attempt to move tasks. If find_busiest_group has found 9916 * an imbalance but busiest->nr_running <= 1, the group is 9917 * still unbalanced. ld_moved simply stays zero, so it is 9918 * correctly treated as an imbalance. 9919 */ 9920 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9921 9922more_balance: 9923 rq_lock_irqsave(busiest, &rf); 9924 update_rq_clock(busiest); 9925 9926 /* 9927 * cur_ld_moved - load moved in current iteration 9928 * ld_moved - cumulative load moved across iterations 9929 */ 9930 cur_ld_moved = detach_tasks(&env); 9931 9932 /* 9933 * We've detached some tasks from busiest_rq. Every 9934 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9935 * unlock busiest->lock, and we are able to be sure 9936 * that nobody can manipulate the tasks in parallel. 9937 * See task_rq_lock() family for the details. 9938 */ 9939 9940 rq_unlock(busiest, &rf); 9941 9942 if (cur_ld_moved) { 9943 attach_tasks(&env); 9944 ld_moved += cur_ld_moved; 9945 } 9946 9947 local_irq_restore(rf.flags); 9948 9949 if (env.flags & LBF_NEED_BREAK) { 9950 env.flags &= ~LBF_NEED_BREAK; 9951 goto more_balance; 9952 } 9953 9954 /* 9955 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9956 * us and move them to an alternate dst_cpu in our sched_group 9957 * where they can run. The upper limit on how many times we 9958 * iterate on same src_cpu is dependent on number of CPUs in our 9959 * sched_group. 9960 * 9961 * This changes load balance semantics a bit on who can move 9962 * load to a given_cpu. In addition to the given_cpu itself 9963 * (or a ilb_cpu acting on its behalf where given_cpu is 9964 * nohz-idle), we now have balance_cpu in a position to move 9965 * load to given_cpu. In rare situations, this may cause 9966 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9967 * _independently_ and at _same_ time to move some load to 9968 * given_cpu) causing excess load to be moved to given_cpu. 9969 * This however should not happen so much in practice and 9970 * moreover subsequent load balance cycles should correct the 9971 * excess load moved. 9972 */ 9973 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9974 9975 /* Prevent to re-select dst_cpu via env's CPUs */ 9976 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9977 9978 env.dst_rq = cpu_rq(env.new_dst_cpu); 9979 env.dst_cpu = env.new_dst_cpu; 9980 env.flags &= ~LBF_DST_PINNED; 9981 env.loop = 0; 9982 env.loop_break = sched_nr_migrate_break; 9983 9984 /* 9985 * Go back to "more_balance" rather than "redo" since we 9986 * need to continue with same src_cpu. 9987 */ 9988 goto more_balance; 9989 } 9990 9991 /* 9992 * We failed to reach balance because of affinity. 9993 */ 9994 if (sd_parent) { 9995 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9996 9997 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9998 *group_imbalance = 1; 9999 } 10000 10001 /* All tasks on this runqueue were pinned by CPU affinity */ 10002 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10003 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10004 /* 10005 * Attempting to continue load balancing at the current 10006 * sched_domain level only makes sense if there are 10007 * active CPUs remaining as possible busiest CPUs to 10008 * pull load from which are not contained within the 10009 * destination group that is receiving any migrated 10010 * load. 10011 */ 10012 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10013 env.loop = 0; 10014 env.loop_break = sched_nr_migrate_break; 10015 goto redo; 10016 } 10017 goto out_all_pinned; 10018 } 10019 } 10020 10021 if (!ld_moved) { 10022 schedstat_inc(sd->lb_failed[idle]); 10023 /* 10024 * Increment the failure counter only on periodic balance. 10025 * We do not want newidle balance, which can be very 10026 * frequent, pollute the failure counter causing 10027 * excessive cache_hot migrations and active balances. 10028 */ 10029 if (idle != CPU_NEWLY_IDLE) 10030 sd->nr_balance_failed++; 10031 10032 if (need_active_balance(&env)) { 10033 unsigned long flags; 10034 10035 raw_spin_rq_lock_irqsave(busiest, flags); 10036 10037 /* 10038 * Don't kick the active_load_balance_cpu_stop, 10039 * if the curr task on busiest CPU can't be 10040 * moved to this_cpu: 10041 */ 10042 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10043 raw_spin_rq_unlock_irqrestore(busiest, flags); 10044 goto out_one_pinned; 10045 } 10046 10047 /* Record that we found at least one task that could run on this_cpu */ 10048 env.flags &= ~LBF_ALL_PINNED; 10049 10050 /* 10051 * ->active_balance synchronizes accesses to 10052 * ->active_balance_work. Once set, it's cleared 10053 * only after active load balance is finished. 10054 */ 10055 if (!busiest->active_balance) { 10056 busiest->active_balance = 1; 10057 busiest->push_cpu = this_cpu; 10058 active_balance = 1; 10059 } 10060 raw_spin_rq_unlock_irqrestore(busiest, flags); 10061 10062 if (active_balance) { 10063 stop_one_cpu_nowait(cpu_of(busiest), 10064 active_load_balance_cpu_stop, busiest, 10065 &busiest->active_balance_work); 10066 } 10067 } 10068 } else { 10069 sd->nr_balance_failed = 0; 10070 } 10071 10072 if (likely(!active_balance) || need_active_balance(&env)) { 10073 /* We were unbalanced, so reset the balancing interval */ 10074 sd->balance_interval = sd->min_interval; 10075 } 10076 10077 goto out; 10078 10079out_balanced: 10080 /* 10081 * We reach balance although we may have faced some affinity 10082 * constraints. Clear the imbalance flag only if other tasks got 10083 * a chance to move and fix the imbalance. 10084 */ 10085 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10086 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10087 10088 if (*group_imbalance) 10089 *group_imbalance = 0; 10090 } 10091 10092out_all_pinned: 10093 /* 10094 * We reach balance because all tasks are pinned at this level so 10095 * we can't migrate them. Let the imbalance flag set so parent level 10096 * can try to migrate them. 10097 */ 10098 schedstat_inc(sd->lb_balanced[idle]); 10099 10100 sd->nr_balance_failed = 0; 10101 10102out_one_pinned: 10103 ld_moved = 0; 10104 10105 /* 10106 * newidle_balance() disregards balance intervals, so we could 10107 * repeatedly reach this code, which would lead to balance_interval 10108 * skyrocketing in a short amount of time. Skip the balance_interval 10109 * increase logic to avoid that. 10110 */ 10111 if (env.idle == CPU_NEWLY_IDLE) 10112 goto out; 10113 10114 /* tune up the balancing interval */ 10115 if ((env.flags & LBF_ALL_PINNED && 10116 sd->balance_interval < MAX_PINNED_INTERVAL) || 10117 sd->balance_interval < sd->max_interval) 10118 sd->balance_interval *= 2; 10119out: 10120 return ld_moved; 10121} 10122 10123static inline unsigned long 10124get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10125{ 10126 unsigned long interval = sd->balance_interval; 10127 10128 if (cpu_busy) 10129 interval *= sd->busy_factor; 10130 10131 /* scale ms to jiffies */ 10132 interval = msecs_to_jiffies(interval); 10133 10134 /* 10135 * Reduce likelihood of busy balancing at higher domains racing with 10136 * balancing at lower domains by preventing their balancing periods 10137 * from being multiples of each other. 10138 */ 10139 if (cpu_busy) 10140 interval -= 1; 10141 10142 interval = clamp(interval, 1UL, max_load_balance_interval); 10143 10144 return interval; 10145} 10146 10147static inline void 10148update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10149{ 10150 unsigned long interval, next; 10151 10152 /* used by idle balance, so cpu_busy = 0 */ 10153 interval = get_sd_balance_interval(sd, 0); 10154 next = sd->last_balance + interval; 10155 10156 if (time_after(*next_balance, next)) 10157 *next_balance = next; 10158} 10159 10160/* 10161 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10162 * running tasks off the busiest CPU onto idle CPUs. It requires at 10163 * least 1 task to be running on each physical CPU where possible, and 10164 * avoids physical / logical imbalances. 10165 */ 10166static int active_load_balance_cpu_stop(void *data) 10167{ 10168 struct rq *busiest_rq = data; 10169 int busiest_cpu = cpu_of(busiest_rq); 10170 int target_cpu = busiest_rq->push_cpu; 10171 struct rq *target_rq = cpu_rq(target_cpu); 10172 struct sched_domain *sd; 10173 struct task_struct *p = NULL; 10174 struct rq_flags rf; 10175 10176 rq_lock_irq(busiest_rq, &rf); 10177 /* 10178 * Between queueing the stop-work and running it is a hole in which 10179 * CPUs can become inactive. We should not move tasks from or to 10180 * inactive CPUs. 10181 */ 10182 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10183 goto out_unlock; 10184 10185 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10186 if (unlikely(busiest_cpu != smp_processor_id() || 10187 !busiest_rq->active_balance)) 10188 goto out_unlock; 10189 10190 /* Is there any task to move? */ 10191 if (busiest_rq->nr_running <= 1) 10192 goto out_unlock; 10193 10194 /* 10195 * This condition is "impossible", if it occurs 10196 * we need to fix it. Originally reported by 10197 * Bjorn Helgaas on a 128-CPU setup. 10198 */ 10199 BUG_ON(busiest_rq == target_rq); 10200 10201 /* Search for an sd spanning us and the target CPU. */ 10202 rcu_read_lock(); 10203 for_each_domain(target_cpu, sd) { 10204 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10205 break; 10206 } 10207 10208 if (likely(sd)) { 10209 struct lb_env env = { 10210 .sd = sd, 10211 .dst_cpu = target_cpu, 10212 .dst_rq = target_rq, 10213 .src_cpu = busiest_rq->cpu, 10214 .src_rq = busiest_rq, 10215 .idle = CPU_IDLE, 10216 .flags = LBF_ACTIVE_LB, 10217 }; 10218 10219 schedstat_inc(sd->alb_count); 10220 update_rq_clock(busiest_rq); 10221 10222 p = detach_one_task(&env); 10223 if (p) { 10224 schedstat_inc(sd->alb_pushed); 10225 /* Active balancing done, reset the failure counter. */ 10226 sd->nr_balance_failed = 0; 10227 } else { 10228 schedstat_inc(sd->alb_failed); 10229 } 10230 } 10231 rcu_read_unlock(); 10232out_unlock: 10233 busiest_rq->active_balance = 0; 10234 rq_unlock(busiest_rq, &rf); 10235 10236 if (p) 10237 attach_one_task(target_rq, p); 10238 10239 local_irq_enable(); 10240 10241 return 0; 10242} 10243 10244static DEFINE_SPINLOCK(balancing); 10245 10246/* 10247 * Scale the max load_balance interval with the number of CPUs in the system. 10248 * This trades load-balance latency on larger machines for less cross talk. 10249 */ 10250void update_max_interval(void) 10251{ 10252 max_load_balance_interval = HZ*num_online_cpus()/10; 10253} 10254 10255static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10256{ 10257 if (cost > sd->max_newidle_lb_cost) { 10258 /* 10259 * Track max cost of a domain to make sure to not delay the 10260 * next wakeup on the CPU. 10261 */ 10262 sd->max_newidle_lb_cost = cost; 10263 sd->last_decay_max_lb_cost = jiffies; 10264 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10265 /* 10266 * Decay the newidle max times by ~1% per second to ensure that 10267 * it is not outdated and the current max cost is actually 10268 * shorter. 10269 */ 10270 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10271 sd->last_decay_max_lb_cost = jiffies; 10272 10273 return true; 10274 } 10275 10276 return false; 10277} 10278 10279/* 10280 * It checks each scheduling domain to see if it is due to be balanced, 10281 * and initiates a balancing operation if so. 10282 * 10283 * Balancing parameters are set up in init_sched_domains. 10284 */ 10285static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10286{ 10287 int continue_balancing = 1; 10288 int cpu = rq->cpu; 10289 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10290 unsigned long interval; 10291 struct sched_domain *sd; 10292 /* Earliest time when we have to do rebalance again */ 10293 unsigned long next_balance = jiffies + 60*HZ; 10294 int update_next_balance = 0; 10295 int need_serialize, need_decay = 0; 10296 u64 max_cost = 0; 10297 10298 rcu_read_lock(); 10299 for_each_domain(cpu, sd) { 10300 /* 10301 * Decay the newidle max times here because this is a regular 10302 * visit to all the domains. 10303 */ 10304 need_decay = update_newidle_cost(sd, 0); 10305 max_cost += sd->max_newidle_lb_cost; 10306 10307 /* 10308 * Stop the load balance at this level. There is another 10309 * CPU in our sched group which is doing load balancing more 10310 * actively. 10311 */ 10312 if (!continue_balancing) { 10313 if (need_decay) 10314 continue; 10315 break; 10316 } 10317 10318 interval = get_sd_balance_interval(sd, busy); 10319 10320 need_serialize = sd->flags & SD_SERIALIZE; 10321 if (need_serialize) { 10322 if (!spin_trylock(&balancing)) 10323 goto out; 10324 } 10325 10326 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10327 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10328 /* 10329 * The LBF_DST_PINNED logic could have changed 10330 * env->dst_cpu, so we can't know our idle 10331 * state even if we migrated tasks. Update it. 10332 */ 10333 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10334 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10335 } 10336 sd->last_balance = jiffies; 10337 interval = get_sd_balance_interval(sd, busy); 10338 } 10339 if (need_serialize) 10340 spin_unlock(&balancing); 10341out: 10342 if (time_after(next_balance, sd->last_balance + interval)) { 10343 next_balance = sd->last_balance + interval; 10344 update_next_balance = 1; 10345 } 10346 } 10347 if (need_decay) { 10348 /* 10349 * Ensure the rq-wide value also decays but keep it at a 10350 * reasonable floor to avoid funnies with rq->avg_idle. 10351 */ 10352 rq->max_idle_balance_cost = 10353 max((u64)sysctl_sched_migration_cost, max_cost); 10354 } 10355 rcu_read_unlock(); 10356 10357 /* 10358 * next_balance will be updated only when there is a need. 10359 * When the cpu is attached to null domain for ex, it will not be 10360 * updated. 10361 */ 10362 if (likely(update_next_balance)) 10363 rq->next_balance = next_balance; 10364 10365} 10366 10367static inline int on_null_domain(struct rq *rq) 10368{ 10369 return unlikely(!rcu_dereference_sched(rq->sd)); 10370} 10371 10372#ifdef CONFIG_NO_HZ_COMMON 10373/* 10374 * idle load balancing details 10375 * - When one of the busy CPUs notice that there may be an idle rebalancing 10376 * needed, they will kick the idle load balancer, which then does idle 10377 * load balancing for all the idle CPUs. 10378 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 10379 * anywhere yet. 10380 */ 10381 10382static inline int find_new_ilb(void) 10383{ 10384 int ilb; 10385 const struct cpumask *hk_mask; 10386 10387 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 10388 10389 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10390 10391 if (ilb == smp_processor_id()) 10392 continue; 10393 10394 if (idle_cpu(ilb)) 10395 return ilb; 10396 } 10397 10398 return nr_cpu_ids; 10399} 10400 10401/* 10402 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10403 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 10404 */ 10405static void kick_ilb(unsigned int flags) 10406{ 10407 int ilb_cpu; 10408 10409 /* 10410 * Increase nohz.next_balance only when if full ilb is triggered but 10411 * not if we only update stats. 10412 */ 10413 if (flags & NOHZ_BALANCE_KICK) 10414 nohz.next_balance = jiffies+1; 10415 10416 ilb_cpu = find_new_ilb(); 10417 10418 if (ilb_cpu >= nr_cpu_ids) 10419 return; 10420 10421 /* 10422 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10423 * the first flag owns it; cleared by nohz_csd_func(). 10424 */ 10425 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10426 if (flags & NOHZ_KICK_MASK) 10427 return; 10428 10429 /* 10430 * This way we generate an IPI on the target CPU which 10431 * is idle. And the softirq performing nohz idle load balance 10432 * will be run before returning from the IPI. 10433 */ 10434 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10435} 10436 10437/* 10438 * Current decision point for kicking the idle load balancer in the presence 10439 * of idle CPUs in the system. 10440 */ 10441static void nohz_balancer_kick(struct rq *rq) 10442{ 10443 unsigned long now = jiffies; 10444 struct sched_domain_shared *sds; 10445 struct sched_domain *sd; 10446 int nr_busy, i, cpu = rq->cpu; 10447 unsigned int flags = 0; 10448 10449 if (unlikely(rq->idle_balance)) 10450 return; 10451 10452 /* 10453 * We may be recently in ticked or tickless idle mode. At the first 10454 * busy tick after returning from idle, we will update the busy stats. 10455 */ 10456 nohz_balance_exit_idle(rq); 10457 10458 /* 10459 * None are in tickless mode and hence no need for NOHZ idle load 10460 * balancing. 10461 */ 10462 if (likely(!atomic_read(&nohz.nr_cpus))) 10463 return; 10464 10465 if (READ_ONCE(nohz.has_blocked) && 10466 time_after(now, READ_ONCE(nohz.next_blocked))) 10467 flags = NOHZ_STATS_KICK; 10468 10469 if (time_before(now, nohz.next_balance)) 10470 goto out; 10471 10472 if (rq->nr_running >= 2) { 10473 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10474 goto out; 10475 } 10476 10477 rcu_read_lock(); 10478 10479 sd = rcu_dereference(rq->sd); 10480 if (sd) { 10481 /* 10482 * If there's a CFS task and the current CPU has reduced 10483 * capacity; kick the ILB to see if there's a better CPU to run 10484 * on. 10485 */ 10486 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10487 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10488 goto unlock; 10489 } 10490 } 10491 10492 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10493 if (sd) { 10494 /* 10495 * When ASYM_PACKING; see if there's a more preferred CPU 10496 * currently idle; in which case, kick the ILB to move tasks 10497 * around. 10498 */ 10499 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10500 if (sched_asym_prefer(i, cpu)) { 10501 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10502 goto unlock; 10503 } 10504 } 10505 } 10506 10507 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10508 if (sd) { 10509 /* 10510 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10511 * to run the misfit task on. 10512 */ 10513 if (check_misfit_status(rq, sd)) { 10514 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10515 goto unlock; 10516 } 10517 10518 /* 10519 * For asymmetric systems, we do not want to nicely balance 10520 * cache use, instead we want to embrace asymmetry and only 10521 * ensure tasks have enough CPU capacity. 10522 * 10523 * Skip the LLC logic because it's not relevant in that case. 10524 */ 10525 goto unlock; 10526 } 10527 10528 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10529 if (sds) { 10530 /* 10531 * If there is an imbalance between LLC domains (IOW we could 10532 * increase the overall cache use), we need some less-loaded LLC 10533 * domain to pull some load. Likewise, we may need to spread 10534 * load within the current LLC domain (e.g. packed SMT cores but 10535 * other CPUs are idle). We can't really know from here how busy 10536 * the others are - so just get a nohz balance going if it looks 10537 * like this LLC domain has tasks we could move. 10538 */ 10539 nr_busy = atomic_read(&sds->nr_busy_cpus); 10540 if (nr_busy > 1) { 10541 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10542 goto unlock; 10543 } 10544 } 10545unlock: 10546 rcu_read_unlock(); 10547out: 10548 if (READ_ONCE(nohz.needs_update)) 10549 flags |= NOHZ_NEXT_KICK; 10550 10551 if (flags) 10552 kick_ilb(flags); 10553} 10554 10555static void set_cpu_sd_state_busy(int cpu) 10556{ 10557 struct sched_domain *sd; 10558 10559 rcu_read_lock(); 10560 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10561 10562 if (!sd || !sd->nohz_idle) 10563 goto unlock; 10564 sd->nohz_idle = 0; 10565 10566 atomic_inc(&sd->shared->nr_busy_cpus); 10567unlock: 10568 rcu_read_unlock(); 10569} 10570 10571void nohz_balance_exit_idle(struct rq *rq) 10572{ 10573 SCHED_WARN_ON(rq != this_rq()); 10574 10575 if (likely(!rq->nohz_tick_stopped)) 10576 return; 10577 10578 rq->nohz_tick_stopped = 0; 10579 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10580 atomic_dec(&nohz.nr_cpus); 10581 10582 set_cpu_sd_state_busy(rq->cpu); 10583} 10584 10585static void set_cpu_sd_state_idle(int cpu) 10586{ 10587 struct sched_domain *sd; 10588 10589 rcu_read_lock(); 10590 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10591 10592 if (!sd || sd->nohz_idle) 10593 goto unlock; 10594 sd->nohz_idle = 1; 10595 10596 atomic_dec(&sd->shared->nr_busy_cpus); 10597unlock: 10598 rcu_read_unlock(); 10599} 10600 10601/* 10602 * This routine will record that the CPU is going idle with tick stopped. 10603 * This info will be used in performing idle load balancing in the future. 10604 */ 10605void nohz_balance_enter_idle(int cpu) 10606{ 10607 struct rq *rq = cpu_rq(cpu); 10608 10609 SCHED_WARN_ON(cpu != smp_processor_id()); 10610 10611 /* If this CPU is going down, then nothing needs to be done: */ 10612 if (!cpu_active(cpu)) 10613 return; 10614 10615 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10616 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 10617 return; 10618 10619 /* 10620 * Can be set safely without rq->lock held 10621 * If a clear happens, it will have evaluated last additions because 10622 * rq->lock is held during the check and the clear 10623 */ 10624 rq->has_blocked_load = 1; 10625 10626 /* 10627 * The tick is still stopped but load could have been added in the 10628 * meantime. We set the nohz.has_blocked flag to trig a check of the 10629 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10630 * of nohz.has_blocked can only happen after checking the new load 10631 */ 10632 if (rq->nohz_tick_stopped) 10633 goto out; 10634 10635 /* If we're a completely isolated CPU, we don't play: */ 10636 if (on_null_domain(rq)) 10637 return; 10638 10639 rq->nohz_tick_stopped = 1; 10640 10641 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10642 atomic_inc(&nohz.nr_cpus); 10643 10644 /* 10645 * Ensures that if nohz_idle_balance() fails to observe our 10646 * @idle_cpus_mask store, it must observe the @has_blocked 10647 * and @needs_update stores. 10648 */ 10649 smp_mb__after_atomic(); 10650 10651 set_cpu_sd_state_idle(cpu); 10652 10653 WRITE_ONCE(nohz.needs_update, 1); 10654out: 10655 /* 10656 * Each time a cpu enter idle, we assume that it has blocked load and 10657 * enable the periodic update of the load of idle cpus 10658 */ 10659 WRITE_ONCE(nohz.has_blocked, 1); 10660} 10661 10662static bool update_nohz_stats(struct rq *rq) 10663{ 10664 unsigned int cpu = rq->cpu; 10665 10666 if (!rq->has_blocked_load) 10667 return false; 10668 10669 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10670 return false; 10671 10672 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10673 return true; 10674 10675 update_blocked_averages(cpu); 10676 10677 return rq->has_blocked_load; 10678} 10679 10680/* 10681 * Internal function that runs load balance for all idle cpus. The load balance 10682 * can be a simple update of blocked load or a complete load balance with 10683 * tasks movement depending of flags. 10684 */ 10685static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10686 enum cpu_idle_type idle) 10687{ 10688 /* Earliest time when we have to do rebalance again */ 10689 unsigned long now = jiffies; 10690 unsigned long next_balance = now + 60*HZ; 10691 bool has_blocked_load = false; 10692 int update_next_balance = 0; 10693 int this_cpu = this_rq->cpu; 10694 int balance_cpu; 10695 struct rq *rq; 10696 10697 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10698 10699 /* 10700 * We assume there will be no idle load after this update and clear 10701 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10702 * set the has_blocked flag and trigger another update of idle load. 10703 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10704 * setting the flag, we are sure to not clear the state and not 10705 * check the load of an idle cpu. 10706 * 10707 * Same applies to idle_cpus_mask vs needs_update. 10708 */ 10709 if (flags & NOHZ_STATS_KICK) 10710 WRITE_ONCE(nohz.has_blocked, 0); 10711 if (flags & NOHZ_NEXT_KICK) 10712 WRITE_ONCE(nohz.needs_update, 0); 10713 10714 /* 10715 * Ensures that if we miss the CPU, we must see the has_blocked 10716 * store from nohz_balance_enter_idle(). 10717 */ 10718 smp_mb(); 10719 10720 /* 10721 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10722 * chance for other idle cpu to pull load. 10723 */ 10724 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10725 if (!idle_cpu(balance_cpu)) 10726 continue; 10727 10728 /* 10729 * If this CPU gets work to do, stop the load balancing 10730 * work being done for other CPUs. Next load 10731 * balancing owner will pick it up. 10732 */ 10733 if (need_resched()) { 10734 if (flags & NOHZ_STATS_KICK) 10735 has_blocked_load = true; 10736 if (flags & NOHZ_NEXT_KICK) 10737 WRITE_ONCE(nohz.needs_update, 1); 10738 goto abort; 10739 } 10740 10741 rq = cpu_rq(balance_cpu); 10742 10743 if (flags & NOHZ_STATS_KICK) 10744 has_blocked_load |= update_nohz_stats(rq); 10745 10746 /* 10747 * If time for next balance is due, 10748 * do the balance. 10749 */ 10750 if (time_after_eq(jiffies, rq->next_balance)) { 10751 struct rq_flags rf; 10752 10753 rq_lock_irqsave(rq, &rf); 10754 update_rq_clock(rq); 10755 rq_unlock_irqrestore(rq, &rf); 10756 10757 if (flags & NOHZ_BALANCE_KICK) 10758 rebalance_domains(rq, CPU_IDLE); 10759 } 10760 10761 if (time_after(next_balance, rq->next_balance)) { 10762 next_balance = rq->next_balance; 10763 update_next_balance = 1; 10764 } 10765 } 10766 10767 /* 10768 * next_balance will be updated only when there is a need. 10769 * When the CPU is attached to null domain for ex, it will not be 10770 * updated. 10771 */ 10772 if (likely(update_next_balance)) 10773 nohz.next_balance = next_balance; 10774 10775 if (flags & NOHZ_STATS_KICK) 10776 WRITE_ONCE(nohz.next_blocked, 10777 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10778 10779abort: 10780 /* There is still blocked load, enable periodic update */ 10781 if (has_blocked_load) 10782 WRITE_ONCE(nohz.has_blocked, 1); 10783} 10784 10785/* 10786 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10787 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10788 */ 10789static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10790{ 10791 unsigned int flags = this_rq->nohz_idle_balance; 10792 10793 if (!flags) 10794 return false; 10795 10796 this_rq->nohz_idle_balance = 0; 10797 10798 if (idle != CPU_IDLE) 10799 return false; 10800 10801 _nohz_idle_balance(this_rq, flags, idle); 10802 10803 return true; 10804} 10805 10806/* 10807 * Check if we need to run the ILB for updating blocked load before entering 10808 * idle state. 10809 */ 10810void nohz_run_idle_balance(int cpu) 10811{ 10812 unsigned int flags; 10813 10814 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10815 10816 /* 10817 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10818 * (ie NOHZ_STATS_KICK set) and will do the same. 10819 */ 10820 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10821 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10822} 10823 10824static void nohz_newidle_balance(struct rq *this_rq) 10825{ 10826 int this_cpu = this_rq->cpu; 10827 10828 /* 10829 * This CPU doesn't want to be disturbed by scheduler 10830 * housekeeping 10831 */ 10832 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 10833 return; 10834 10835 /* Will wake up very soon. No time for doing anything else*/ 10836 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10837 return; 10838 10839 /* Don't need to update blocked load of idle CPUs*/ 10840 if (!READ_ONCE(nohz.has_blocked) || 10841 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10842 return; 10843 10844 /* 10845 * Set the need to trigger ILB in order to update blocked load 10846 * before entering idle state. 10847 */ 10848 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10849} 10850 10851#else /* !CONFIG_NO_HZ_COMMON */ 10852static inline void nohz_balancer_kick(struct rq *rq) { } 10853 10854static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10855{ 10856 return false; 10857} 10858 10859static inline void nohz_newidle_balance(struct rq *this_rq) { } 10860#endif /* CONFIG_NO_HZ_COMMON */ 10861 10862/* 10863 * newidle_balance is called by schedule() if this_cpu is about to become 10864 * idle. Attempts to pull tasks from other CPUs. 10865 * 10866 * Returns: 10867 * < 0 - we released the lock and there are !fair tasks present 10868 * 0 - failed, no new tasks 10869 * > 0 - success, new (fair) tasks present 10870 */ 10871static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10872{ 10873 unsigned long next_balance = jiffies + HZ; 10874 int this_cpu = this_rq->cpu; 10875 u64 t0, t1, curr_cost = 0; 10876 struct sched_domain *sd; 10877 int pulled_task = 0; 10878 10879 update_misfit_status(NULL, this_rq); 10880 10881 /* 10882 * There is a task waiting to run. No need to search for one. 10883 * Return 0; the task will be enqueued when switching to idle. 10884 */ 10885 if (this_rq->ttwu_pending) 10886 return 0; 10887 10888 /* 10889 * We must set idle_stamp _before_ calling idle_balance(), such that we 10890 * measure the duration of idle_balance() as idle time. 10891 */ 10892 this_rq->idle_stamp = rq_clock(this_rq); 10893 10894 /* 10895 * Do not pull tasks towards !active CPUs... 10896 */ 10897 if (!cpu_active(this_cpu)) 10898 return 0; 10899 10900 /* 10901 * This is OK, because current is on_cpu, which avoids it being picked 10902 * for load-balance and preemption/IRQs are still disabled avoiding 10903 * further scheduler activity on it and we're being very careful to 10904 * re-start the picking loop. 10905 */ 10906 rq_unpin_lock(this_rq, rf); 10907 10908 rcu_read_lock(); 10909 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10910 10911 if (!READ_ONCE(this_rq->rd->overload) || 10912 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 10913 10914 if (sd) 10915 update_next_balance(sd, &next_balance); 10916 rcu_read_unlock(); 10917 10918 goto out; 10919 } 10920 rcu_read_unlock(); 10921 10922 raw_spin_rq_unlock(this_rq); 10923 10924 t0 = sched_clock_cpu(this_cpu); 10925 update_blocked_averages(this_cpu); 10926 10927 rcu_read_lock(); 10928 for_each_domain(this_cpu, sd) { 10929 int continue_balancing = 1; 10930 u64 domain_cost; 10931 10932 update_next_balance(sd, &next_balance); 10933 10934 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 10935 break; 10936 10937 if (sd->flags & SD_BALANCE_NEWIDLE) { 10938 10939 pulled_task = load_balance(this_cpu, this_rq, 10940 sd, CPU_NEWLY_IDLE, 10941 &continue_balancing); 10942 10943 t1 = sched_clock_cpu(this_cpu); 10944 domain_cost = t1 - t0; 10945 update_newidle_cost(sd, domain_cost); 10946 10947 curr_cost += domain_cost; 10948 t0 = t1; 10949 } 10950 10951 /* 10952 * Stop searching for tasks to pull if there are 10953 * now runnable tasks on this rq. 10954 */ 10955 if (pulled_task || this_rq->nr_running > 0 || 10956 this_rq->ttwu_pending) 10957 break; 10958 } 10959 rcu_read_unlock(); 10960 10961 raw_spin_rq_lock(this_rq); 10962 10963 if (curr_cost > this_rq->max_idle_balance_cost) 10964 this_rq->max_idle_balance_cost = curr_cost; 10965 10966 /* 10967 * While browsing the domains, we released the rq lock, a task could 10968 * have been enqueued in the meantime. Since we're not going idle, 10969 * pretend we pulled a task. 10970 */ 10971 if (this_rq->cfs.h_nr_running && !pulled_task) 10972 pulled_task = 1; 10973 10974 /* Is there a task of a high priority class? */ 10975 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10976 pulled_task = -1; 10977 10978out: 10979 /* Move the next balance forward */ 10980 if (time_after(this_rq->next_balance, next_balance)) 10981 this_rq->next_balance = next_balance; 10982 10983 if (pulled_task) 10984 this_rq->idle_stamp = 0; 10985 else 10986 nohz_newidle_balance(this_rq); 10987 10988 rq_repin_lock(this_rq, rf); 10989 10990 return pulled_task; 10991} 10992 10993/* 10994 * run_rebalance_domains is triggered when needed from the scheduler tick. 10995 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10996 */ 10997static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10998{ 10999 struct rq *this_rq = this_rq(); 11000 enum cpu_idle_type idle = this_rq->idle_balance ? 11001 CPU_IDLE : CPU_NOT_IDLE; 11002 11003 /* 11004 * If this CPU has a pending nohz_balance_kick, then do the 11005 * balancing on behalf of the other idle CPUs whose ticks are 11006 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11007 * give the idle CPUs a chance to load balance. Else we may 11008 * load balance only within the local sched_domain hierarchy 11009 * and abort nohz_idle_balance altogether if we pull some load. 11010 */ 11011 if (nohz_idle_balance(this_rq, idle)) 11012 return; 11013 11014 /* normal load balance */ 11015 update_blocked_averages(this_rq->cpu); 11016 rebalance_domains(this_rq, idle); 11017} 11018 11019/* 11020 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11021 */ 11022void trigger_load_balance(struct rq *rq) 11023{ 11024 /* 11025 * Don't need to rebalance while attached to NULL domain or 11026 * runqueue CPU is not active 11027 */ 11028 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11029 return; 11030 11031 if (time_after_eq(jiffies, rq->next_balance)) 11032 raise_softirq(SCHED_SOFTIRQ); 11033 11034 nohz_balancer_kick(rq); 11035} 11036 11037static void rq_online_fair(struct rq *rq) 11038{ 11039 update_sysctl(); 11040 11041 update_runtime_enabled(rq); 11042} 11043 11044static void rq_offline_fair(struct rq *rq) 11045{ 11046 update_sysctl(); 11047 11048 /* Ensure any throttled groups are reachable by pick_next_task */ 11049 unthrottle_offline_cfs_rqs(rq); 11050} 11051 11052#endif /* CONFIG_SMP */ 11053 11054#ifdef CONFIG_SCHED_CORE 11055static inline bool 11056__entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11057{ 11058 u64 slice = sched_slice(cfs_rq_of(se), se); 11059 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11060 11061 return (rtime * min_nr_tasks > slice); 11062} 11063 11064#define MIN_NR_TASKS_DURING_FORCEIDLE 2 11065static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11066{ 11067 if (!sched_core_enabled(rq)) 11068 return; 11069 11070 /* 11071 * If runqueue has only one task which used up its slice and 11072 * if the sibling is forced idle, then trigger schedule to 11073 * give forced idle task a chance. 11074 * 11075 * sched_slice() considers only this active rq and it gets the 11076 * whole slice. But during force idle, we have siblings acting 11077 * like a single runqueue and hence we need to consider runnable 11078 * tasks on this CPU and the forced idle CPU. Ideally, we should 11079 * go through the forced idle rq, but that would be a perf hit. 11080 * We can assume that the forced idle CPU has at least 11081 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11082 * if we need to give up the CPU. 11083 */ 11084 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11085 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11086 resched_curr(rq); 11087} 11088 11089/* 11090 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11091 */ 11092static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11093{ 11094 for_each_sched_entity(se) { 11095 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11096 11097 if (forceidle) { 11098 if (cfs_rq->forceidle_seq == fi_seq) 11099 break; 11100 cfs_rq->forceidle_seq = fi_seq; 11101 } 11102 11103 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11104 } 11105} 11106 11107void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11108{ 11109 struct sched_entity *se = &p->se; 11110 11111 if (p->sched_class != &fair_sched_class) 11112 return; 11113 11114 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11115} 11116 11117bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11118{ 11119 struct rq *rq = task_rq(a); 11120 struct sched_entity *sea = &a->se; 11121 struct sched_entity *seb = &b->se; 11122 struct cfs_rq *cfs_rqa; 11123 struct cfs_rq *cfs_rqb; 11124 s64 delta; 11125 11126 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11127 11128#ifdef CONFIG_FAIR_GROUP_SCHED 11129 /* 11130 * Find an se in the hierarchy for tasks a and b, such that the se's 11131 * are immediate siblings. 11132 */ 11133 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11134 int sea_depth = sea->depth; 11135 int seb_depth = seb->depth; 11136 11137 if (sea_depth >= seb_depth) 11138 sea = parent_entity(sea); 11139 if (sea_depth <= seb_depth) 11140 seb = parent_entity(seb); 11141 } 11142 11143 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11144 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11145 11146 cfs_rqa = sea->cfs_rq; 11147 cfs_rqb = seb->cfs_rq; 11148#else 11149 cfs_rqa = &task_rq(a)->cfs; 11150 cfs_rqb = &task_rq(b)->cfs; 11151#endif 11152 11153 /* 11154 * Find delta after normalizing se's vruntime with its cfs_rq's 11155 * min_vruntime_fi, which would have been updated in prior calls 11156 * to se_fi_update(). 11157 */ 11158 delta = (s64)(sea->vruntime - seb->vruntime) + 11159 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11160 11161 return delta > 0; 11162} 11163#else 11164static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11165#endif 11166 11167/* 11168 * scheduler tick hitting a task of our scheduling class. 11169 * 11170 * NOTE: This function can be called remotely by the tick offload that 11171 * goes along full dynticks. Therefore no local assumption can be made 11172 * and everything must be accessed through the @rq and @curr passed in 11173 * parameters. 11174 */ 11175static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11176{ 11177 struct cfs_rq *cfs_rq; 11178 struct sched_entity *se = &curr->se; 11179 11180 for_each_sched_entity(se) { 11181 cfs_rq = cfs_rq_of(se); 11182 entity_tick(cfs_rq, se, queued); 11183 } 11184 11185 if (static_branch_unlikely(&sched_numa_balancing)) 11186 task_tick_numa(rq, curr); 11187 11188 update_misfit_status(curr, rq); 11189 update_overutilized_status(task_rq(curr)); 11190 11191 task_tick_core(rq, curr); 11192} 11193 11194/* 11195 * called on fork with the child task as argument from the parent's context 11196 * - child not yet on the tasklist 11197 * - preemption disabled 11198 */ 11199static void task_fork_fair(struct task_struct *p) 11200{ 11201 struct cfs_rq *cfs_rq; 11202 struct sched_entity *se = &p->se, *curr; 11203 struct rq *rq = this_rq(); 11204 struct rq_flags rf; 11205 11206 rq_lock(rq, &rf); 11207 update_rq_clock(rq); 11208 11209 cfs_rq = task_cfs_rq(current); 11210 curr = cfs_rq->curr; 11211 if (curr) { 11212 update_curr(cfs_rq); 11213 se->vruntime = curr->vruntime; 11214 } 11215 place_entity(cfs_rq, se, 1); 11216 11217 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11218 /* 11219 * Upon rescheduling, sched_class::put_prev_task() will place 11220 * 'current' within the tree based on its new key value. 11221 */ 11222 swap(curr->vruntime, se->vruntime); 11223 resched_curr(rq); 11224 } 11225 11226 se->vruntime -= cfs_rq->min_vruntime; 11227 rq_unlock(rq, &rf); 11228} 11229 11230/* 11231 * Priority of the task has changed. Check to see if we preempt 11232 * the current task. 11233 */ 11234static void 11235prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11236{ 11237 if (!task_on_rq_queued(p)) 11238 return; 11239 11240 if (rq->cfs.nr_running == 1) 11241 return; 11242 11243 /* 11244 * Reschedule if we are currently running on this runqueue and 11245 * our priority decreased, or if we are not currently running on 11246 * this runqueue and our priority is higher than the current's 11247 */ 11248 if (task_current(rq, p)) { 11249 if (p->prio > oldprio) 11250 resched_curr(rq); 11251 } else 11252 check_preempt_curr(rq, p, 0); 11253} 11254 11255static inline bool vruntime_normalized(struct task_struct *p) 11256{ 11257 struct sched_entity *se = &p->se; 11258 11259 /* 11260 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11261 * the dequeue_entity(.flags=0) will already have normalized the 11262 * vruntime. 11263 */ 11264 if (p->on_rq) 11265 return true; 11266 11267 /* 11268 * When !on_rq, vruntime of the task has usually NOT been normalized. 11269 * But there are some cases where it has already been normalized: 11270 * 11271 * - A forked child which is waiting for being woken up by 11272 * wake_up_new_task(). 11273 * - A task which has been woken up by try_to_wake_up() and 11274 * waiting for actually being woken up by sched_ttwu_pending(). 11275 */ 11276 if (!se->sum_exec_runtime || 11277 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11278 return true; 11279 11280 return false; 11281} 11282 11283#ifdef CONFIG_FAIR_GROUP_SCHED 11284/* 11285 * Propagate the changes of the sched_entity across the tg tree to make it 11286 * visible to the root 11287 */ 11288static void propagate_entity_cfs_rq(struct sched_entity *se) 11289{ 11290 struct cfs_rq *cfs_rq; 11291 11292 list_add_leaf_cfs_rq(cfs_rq_of(se)); 11293 11294 /* Start to propagate at parent */ 11295 se = se->parent; 11296 11297 for_each_sched_entity(se) { 11298 cfs_rq = cfs_rq_of(se); 11299 11300 if (!cfs_rq_throttled(cfs_rq)){ 11301 update_load_avg(cfs_rq, se, UPDATE_TG); 11302 list_add_leaf_cfs_rq(cfs_rq); 11303 continue; 11304 } 11305 11306 if (list_add_leaf_cfs_rq(cfs_rq)) 11307 break; 11308 } 11309} 11310#else 11311static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11312#endif 11313 11314static void detach_entity_cfs_rq(struct sched_entity *se) 11315{ 11316 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11317 11318 /* Catch up with the cfs_rq and remove our load when we leave */ 11319 update_load_avg(cfs_rq, se, 0); 11320 detach_entity_load_avg(cfs_rq, se); 11321 update_tg_load_avg(cfs_rq); 11322 propagate_entity_cfs_rq(se); 11323} 11324 11325static void attach_entity_cfs_rq(struct sched_entity *se) 11326{ 11327 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11328 11329#ifdef CONFIG_FAIR_GROUP_SCHED 11330 /* 11331 * Since the real-depth could have been changed (only FAIR 11332 * class maintain depth value), reset depth properly. 11333 */ 11334 se->depth = se->parent ? se->parent->depth + 1 : 0; 11335#endif 11336 11337 /* Synchronize entity with its cfs_rq */ 11338 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11339 attach_entity_load_avg(cfs_rq, se); 11340 update_tg_load_avg(cfs_rq); 11341 propagate_entity_cfs_rq(se); 11342} 11343 11344static void detach_task_cfs_rq(struct task_struct *p) 11345{ 11346 struct sched_entity *se = &p->se; 11347 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11348 11349 if (!vruntime_normalized(p)) { 11350 /* 11351 * Fix up our vruntime so that the current sleep doesn't 11352 * cause 'unlimited' sleep bonus. 11353 */ 11354 place_entity(cfs_rq, se, 0); 11355 se->vruntime -= cfs_rq->min_vruntime; 11356 } 11357 11358 detach_entity_cfs_rq(se); 11359} 11360 11361static void attach_task_cfs_rq(struct task_struct *p) 11362{ 11363 struct sched_entity *se = &p->se; 11364 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11365 11366 attach_entity_cfs_rq(se); 11367 11368 if (!vruntime_normalized(p)) 11369 se->vruntime += cfs_rq->min_vruntime; 11370} 11371 11372static void switched_from_fair(struct rq *rq, struct task_struct *p) 11373{ 11374 detach_task_cfs_rq(p); 11375} 11376 11377static void switched_to_fair(struct rq *rq, struct task_struct *p) 11378{ 11379 attach_task_cfs_rq(p); 11380 11381 if (task_on_rq_queued(p)) { 11382 /* 11383 * We were most likely switched from sched_rt, so 11384 * kick off the schedule if running, otherwise just see 11385 * if we can still preempt the current task. 11386 */ 11387 if (task_current(rq, p)) 11388 resched_curr(rq); 11389 else 11390 check_preempt_curr(rq, p, 0); 11391 } 11392} 11393 11394/* Account for a task changing its policy or group. 11395 * 11396 * This routine is mostly called to set cfs_rq->curr field when a task 11397 * migrates between groups/classes. 11398 */ 11399static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11400{ 11401 struct sched_entity *se = &p->se; 11402 11403#ifdef CONFIG_SMP 11404 if (task_on_rq_queued(p)) { 11405 /* 11406 * Move the next running task to the front of the list, so our 11407 * cfs_tasks list becomes MRU one. 11408 */ 11409 list_move(&se->group_node, &rq->cfs_tasks); 11410 } 11411#endif 11412 11413 for_each_sched_entity(se) { 11414 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11415 11416 set_next_entity(cfs_rq, se); 11417 /* ensure bandwidth has been allocated on our new cfs_rq */ 11418 account_cfs_rq_runtime(cfs_rq, 0); 11419 } 11420} 11421 11422void init_cfs_rq(struct cfs_rq *cfs_rq) 11423{ 11424 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11425 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11426#ifndef CONFIG_64BIT 11427 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11428#endif 11429#ifdef CONFIG_SMP 11430 raw_spin_lock_init(&cfs_rq->removed.lock); 11431#endif 11432} 11433 11434#ifdef CONFIG_FAIR_GROUP_SCHED 11435static void task_set_group_fair(struct task_struct *p) 11436{ 11437 struct sched_entity *se = &p->se; 11438 11439 set_task_rq(p, task_cpu(p)); 11440 se->depth = se->parent ? se->parent->depth + 1 : 0; 11441} 11442 11443static void task_move_group_fair(struct task_struct *p) 11444{ 11445 detach_task_cfs_rq(p); 11446 set_task_rq(p, task_cpu(p)); 11447 11448#ifdef CONFIG_SMP 11449 /* Tell se's cfs_rq has been changed -- migrated */ 11450 p->se.avg.last_update_time = 0; 11451#endif 11452 attach_task_cfs_rq(p); 11453} 11454 11455static void task_change_group_fair(struct task_struct *p, int type) 11456{ 11457 switch (type) { 11458 case TASK_SET_GROUP: 11459 task_set_group_fair(p); 11460 break; 11461 11462 case TASK_MOVE_GROUP: 11463 task_move_group_fair(p); 11464 break; 11465 } 11466} 11467 11468void free_fair_sched_group(struct task_group *tg) 11469{ 11470 int i; 11471 11472 for_each_possible_cpu(i) { 11473 if (tg->cfs_rq) 11474 kfree(tg->cfs_rq[i]); 11475 if (tg->se) 11476 kfree(tg->se[i]); 11477 } 11478 11479 kfree(tg->cfs_rq); 11480 kfree(tg->se); 11481} 11482 11483int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11484{ 11485 struct sched_entity *se; 11486 struct cfs_rq *cfs_rq; 11487 int i; 11488 11489 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11490 if (!tg->cfs_rq) 11491 goto err; 11492 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11493 if (!tg->se) 11494 goto err; 11495 11496 tg->shares = NICE_0_LOAD; 11497 11498 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11499 11500 for_each_possible_cpu(i) { 11501 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11502 GFP_KERNEL, cpu_to_node(i)); 11503 if (!cfs_rq) 11504 goto err; 11505 11506 se = kzalloc_node(sizeof(struct sched_entity_stats), 11507 GFP_KERNEL, cpu_to_node(i)); 11508 if (!se) 11509 goto err_free_rq; 11510 11511 init_cfs_rq(cfs_rq); 11512 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11513 init_entity_runnable_average(se); 11514 } 11515 11516 return 1; 11517 11518err_free_rq: 11519 kfree(cfs_rq); 11520err: 11521 return 0; 11522} 11523 11524void online_fair_sched_group(struct task_group *tg) 11525{ 11526 struct sched_entity *se; 11527 struct rq_flags rf; 11528 struct rq *rq; 11529 int i; 11530 11531 for_each_possible_cpu(i) { 11532 rq = cpu_rq(i); 11533 se = tg->se[i]; 11534 rq_lock_irq(rq, &rf); 11535 update_rq_clock(rq); 11536 attach_entity_cfs_rq(se); 11537 sync_throttle(tg, i); 11538 rq_unlock_irq(rq, &rf); 11539 } 11540} 11541 11542void unregister_fair_sched_group(struct task_group *tg) 11543{ 11544 unsigned long flags; 11545 struct rq *rq; 11546 int cpu; 11547 11548 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11549 11550 for_each_possible_cpu(cpu) { 11551 if (tg->se[cpu]) 11552 remove_entity_load_avg(tg->se[cpu]); 11553 11554 /* 11555 * Only empty task groups can be destroyed; so we can speculatively 11556 * check on_list without danger of it being re-added. 11557 */ 11558 if (!tg->cfs_rq[cpu]->on_list) 11559 continue; 11560 11561 rq = cpu_rq(cpu); 11562 11563 raw_spin_rq_lock_irqsave(rq, flags); 11564 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11565 raw_spin_rq_unlock_irqrestore(rq, flags); 11566 } 11567} 11568 11569void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11570 struct sched_entity *se, int cpu, 11571 struct sched_entity *parent) 11572{ 11573 struct rq *rq = cpu_rq(cpu); 11574 11575 cfs_rq->tg = tg; 11576 cfs_rq->rq = rq; 11577 init_cfs_rq_runtime(cfs_rq); 11578 11579 tg->cfs_rq[cpu] = cfs_rq; 11580 tg->se[cpu] = se; 11581 11582 /* se could be NULL for root_task_group */ 11583 if (!se) 11584 return; 11585 11586 if (!parent) { 11587 se->cfs_rq = &rq->cfs; 11588 se->depth = 0; 11589 } else { 11590 se->cfs_rq = parent->my_q; 11591 se->depth = parent->depth + 1; 11592 } 11593 11594 se->my_q = cfs_rq; 11595 /* guarantee group entities always have weight */ 11596 update_load_set(&se->load, NICE_0_LOAD); 11597 se->parent = parent; 11598} 11599 11600static DEFINE_MUTEX(shares_mutex); 11601 11602static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11603{ 11604 int i; 11605 11606 lockdep_assert_held(&shares_mutex); 11607 11608 /* 11609 * We can't change the weight of the root cgroup. 11610 */ 11611 if (!tg->se[0]) 11612 return -EINVAL; 11613 11614 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11615 11616 if (tg->shares == shares) 11617 return 0; 11618 11619 tg->shares = shares; 11620 for_each_possible_cpu(i) { 11621 struct rq *rq = cpu_rq(i); 11622 struct sched_entity *se = tg->se[i]; 11623 struct rq_flags rf; 11624 11625 /* Propagate contribution to hierarchy */ 11626 rq_lock_irqsave(rq, &rf); 11627 update_rq_clock(rq); 11628 for_each_sched_entity(se) { 11629 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11630 update_cfs_group(se); 11631 } 11632 rq_unlock_irqrestore(rq, &rf); 11633 } 11634 11635 return 0; 11636} 11637 11638int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11639{ 11640 int ret; 11641 11642 mutex_lock(&shares_mutex); 11643 if (tg_is_idle(tg)) 11644 ret = -EINVAL; 11645 else 11646 ret = __sched_group_set_shares(tg, shares); 11647 mutex_unlock(&shares_mutex); 11648 11649 return ret; 11650} 11651 11652int sched_group_set_idle(struct task_group *tg, long idle) 11653{ 11654 int i; 11655 11656 if (tg == &root_task_group) 11657 return -EINVAL; 11658 11659 if (idle < 0 || idle > 1) 11660 return -EINVAL; 11661 11662 mutex_lock(&shares_mutex); 11663 11664 if (tg->idle == idle) { 11665 mutex_unlock(&shares_mutex); 11666 return 0; 11667 } 11668 11669 tg->idle = idle; 11670 11671 for_each_possible_cpu(i) { 11672 struct rq *rq = cpu_rq(i); 11673 struct sched_entity *se = tg->se[i]; 11674 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 11675 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11676 long idle_task_delta; 11677 struct rq_flags rf; 11678 11679 rq_lock_irqsave(rq, &rf); 11680 11681 grp_cfs_rq->idle = idle; 11682 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11683 goto next_cpu; 11684 11685 if (se->on_rq) { 11686 parent_cfs_rq = cfs_rq_of(se); 11687 if (cfs_rq_is_idle(grp_cfs_rq)) 11688 parent_cfs_rq->idle_nr_running++; 11689 else 11690 parent_cfs_rq->idle_nr_running--; 11691 } 11692 11693 idle_task_delta = grp_cfs_rq->h_nr_running - 11694 grp_cfs_rq->idle_h_nr_running; 11695 if (!cfs_rq_is_idle(grp_cfs_rq)) 11696 idle_task_delta *= -1; 11697 11698 for_each_sched_entity(se) { 11699 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11700 11701 if (!se->on_rq) 11702 break; 11703 11704 cfs_rq->idle_h_nr_running += idle_task_delta; 11705 11706 /* Already accounted at parent level and above. */ 11707 if (cfs_rq_is_idle(cfs_rq)) 11708 break; 11709 } 11710 11711next_cpu: 11712 rq_unlock_irqrestore(rq, &rf); 11713 } 11714 11715 /* Idle groups have minimum weight. */ 11716 if (tg_is_idle(tg)) 11717 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11718 else 11719 __sched_group_set_shares(tg, NICE_0_LOAD); 11720 11721 mutex_unlock(&shares_mutex); 11722 return 0; 11723} 11724 11725#else /* CONFIG_FAIR_GROUP_SCHED */ 11726 11727void free_fair_sched_group(struct task_group *tg) { } 11728 11729int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11730{ 11731 return 1; 11732} 11733 11734void online_fair_sched_group(struct task_group *tg) { } 11735 11736void unregister_fair_sched_group(struct task_group *tg) { } 11737 11738#endif /* CONFIG_FAIR_GROUP_SCHED */ 11739 11740 11741static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11742{ 11743 struct sched_entity *se = &task->se; 11744 unsigned int rr_interval = 0; 11745 11746 /* 11747 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11748 * idle runqueue: 11749 */ 11750 if (rq->cfs.load.weight) 11751 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11752 11753 return rr_interval; 11754} 11755 11756/* 11757 * All the scheduling class methods: 11758 */ 11759DEFINE_SCHED_CLASS(fair) = { 11760 11761 .enqueue_task = enqueue_task_fair, 11762 .dequeue_task = dequeue_task_fair, 11763 .yield_task = yield_task_fair, 11764 .yield_to_task = yield_to_task_fair, 11765 11766 .check_preempt_curr = check_preempt_wakeup, 11767 11768 .pick_next_task = __pick_next_task_fair, 11769 .put_prev_task = put_prev_task_fair, 11770 .set_next_task = set_next_task_fair, 11771 11772#ifdef CONFIG_SMP 11773 .balance = balance_fair, 11774 .pick_task = pick_task_fair, 11775 .select_task_rq = select_task_rq_fair, 11776 .migrate_task_rq = migrate_task_rq_fair, 11777 11778 .rq_online = rq_online_fair, 11779 .rq_offline = rq_offline_fair, 11780 11781 .task_dead = task_dead_fair, 11782 .set_cpus_allowed = set_cpus_allowed_common, 11783#endif 11784 11785 .task_tick = task_tick_fair, 11786 .task_fork = task_fork_fair, 11787 11788 .prio_changed = prio_changed_fair, 11789 .switched_from = switched_from_fair, 11790 .switched_to = switched_to_fair, 11791 11792 .get_rr_interval = get_rr_interval_fair, 11793 11794 .update_curr = update_curr_fair, 11795 11796#ifdef CONFIG_FAIR_GROUP_SCHED 11797 .task_change_group = task_change_group_fair, 11798#endif 11799 11800#ifdef CONFIG_UCLAMP_TASK 11801 .uclamp_enabled = 1, 11802#endif 11803}; 11804 11805#ifdef CONFIG_SCHED_DEBUG 11806void print_cfs_stats(struct seq_file *m, int cpu) 11807{ 11808 struct cfs_rq *cfs_rq, *pos; 11809 11810 rcu_read_lock(); 11811 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11812 print_cfs_rq(m, cpu, cfs_rq); 11813 rcu_read_unlock(); 11814} 11815 11816#ifdef CONFIG_NUMA_BALANCING 11817void show_numa_stats(struct task_struct *p, struct seq_file *m) 11818{ 11819 int node; 11820 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11821 struct numa_group *ng; 11822 11823 rcu_read_lock(); 11824 ng = rcu_dereference(p->numa_group); 11825 for_each_online_node(node) { 11826 if (p->numa_faults) { 11827 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11828 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11829 } 11830 if (ng) { 11831 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11832 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11833 } 11834 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11835 } 11836 rcu_read_unlock(); 11837} 11838#endif /* CONFIG_NUMA_BALANCING */ 11839#endif /* CONFIG_SCHED_DEBUG */ 11840 11841__init void init_sched_fair_class(void) 11842{ 11843#ifdef CONFIG_SMP 11844 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11845 11846#ifdef CONFIG_NO_HZ_COMMON 11847 nohz.next_balance = jiffies; 11848 nohz.next_blocked = jiffies; 11849 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11850#endif 11851#endif /* SMP */ 11852 11853}