cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

loadavg.c (11499B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * kernel/sched/loadavg.c
      4 *
      5 * This file contains the magic bits required to compute the global loadavg
      6 * figure. Its a silly number but people think its important. We go through
      7 * great pains to make it work on big machines and tickless kernels.
      8 */
      9
     10/*
     11 * Global load-average calculations
     12 *
     13 * We take a distributed and async approach to calculating the global load-avg
     14 * in order to minimize overhead.
     15 *
     16 * The global load average is an exponentially decaying average of nr_running +
     17 * nr_uninterruptible.
     18 *
     19 * Once every LOAD_FREQ:
     20 *
     21 *   nr_active = 0;
     22 *   for_each_possible_cpu(cpu)
     23 *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
     24 *
     25 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
     26 *
     27 * Due to a number of reasons the above turns in the mess below:
     28 *
     29 *  - for_each_possible_cpu() is prohibitively expensive on machines with
     30 *    serious number of CPUs, therefore we need to take a distributed approach
     31 *    to calculating nr_active.
     32 *
     33 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
     34 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
     35 *
     36 *    So assuming nr_active := 0 when we start out -- true per definition, we
     37 *    can simply take per-CPU deltas and fold those into a global accumulate
     38 *    to obtain the same result. See calc_load_fold_active().
     39 *
     40 *    Furthermore, in order to avoid synchronizing all per-CPU delta folding
     41 *    across the machine, we assume 10 ticks is sufficient time for every
     42 *    CPU to have completed this task.
     43 *
     44 *    This places an upper-bound on the IRQ-off latency of the machine. Then
     45 *    again, being late doesn't loose the delta, just wrecks the sample.
     46 *
     47 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
     48 *    this would add another cross-CPU cacheline miss and atomic operation
     49 *    to the wakeup path. Instead we increment on whatever CPU the task ran
     50 *    when it went into uninterruptible state and decrement on whatever CPU
     51 *    did the wakeup. This means that only the sum of nr_uninterruptible over
     52 *    all CPUs yields the correct result.
     53 *
     54 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
     55 */
     56
     57/* Variables and functions for calc_load */
     58atomic_long_t calc_load_tasks;
     59unsigned long calc_load_update;
     60unsigned long avenrun[3];
     61EXPORT_SYMBOL(avenrun); /* should be removed */
     62
     63/**
     64 * get_avenrun - get the load average array
     65 * @loads:	pointer to dest load array
     66 * @offset:	offset to add
     67 * @shift:	shift count to shift the result left
     68 *
     69 * These values are estimates at best, so no need for locking.
     70 */
     71void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
     72{
     73	loads[0] = (avenrun[0] + offset) << shift;
     74	loads[1] = (avenrun[1] + offset) << shift;
     75	loads[2] = (avenrun[2] + offset) << shift;
     76}
     77
     78long calc_load_fold_active(struct rq *this_rq, long adjust)
     79{
     80	long nr_active, delta = 0;
     81
     82	nr_active = this_rq->nr_running - adjust;
     83	nr_active += (int)this_rq->nr_uninterruptible;
     84
     85	if (nr_active != this_rq->calc_load_active) {
     86		delta = nr_active - this_rq->calc_load_active;
     87		this_rq->calc_load_active = nr_active;
     88	}
     89
     90	return delta;
     91}
     92
     93/**
     94 * fixed_power_int - compute: x^n, in O(log n) time
     95 *
     96 * @x:         base of the power
     97 * @frac_bits: fractional bits of @x
     98 * @n:         power to raise @x to.
     99 *
    100 * By exploiting the relation between the definition of the natural power
    101 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
    102 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
    103 * (where: n_i \elem {0, 1}, the binary vector representing n),
    104 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
    105 * of course trivially computable in O(log_2 n), the length of our binary
    106 * vector.
    107 */
    108static unsigned long
    109fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
    110{
    111	unsigned long result = 1UL << frac_bits;
    112
    113	if (n) {
    114		for (;;) {
    115			if (n & 1) {
    116				result *= x;
    117				result += 1UL << (frac_bits - 1);
    118				result >>= frac_bits;
    119			}
    120			n >>= 1;
    121			if (!n)
    122				break;
    123			x *= x;
    124			x += 1UL << (frac_bits - 1);
    125			x >>= frac_bits;
    126		}
    127	}
    128
    129	return result;
    130}
    131
    132/*
    133 * a1 = a0 * e + a * (1 - e)
    134 *
    135 * a2 = a1 * e + a * (1 - e)
    136 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
    137 *    = a0 * e^2 + a * (1 - e) * (1 + e)
    138 *
    139 * a3 = a2 * e + a * (1 - e)
    140 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
    141 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
    142 *
    143 *  ...
    144 *
    145 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
    146 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
    147 *    = a0 * e^n + a * (1 - e^n)
    148 *
    149 * [1] application of the geometric series:
    150 *
    151 *              n         1 - x^(n+1)
    152 *     S_n := \Sum x^i = -------------
    153 *             i=0          1 - x
    154 */
    155unsigned long
    156calc_load_n(unsigned long load, unsigned long exp,
    157	    unsigned long active, unsigned int n)
    158{
    159	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
    160}
    161
    162#ifdef CONFIG_NO_HZ_COMMON
    163/*
    164 * Handle NO_HZ for the global load-average.
    165 *
    166 * Since the above described distributed algorithm to compute the global
    167 * load-average relies on per-CPU sampling from the tick, it is affected by
    168 * NO_HZ.
    169 *
    170 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
    171 * entering NO_HZ state such that we can include this as an 'extra' CPU delta
    172 * when we read the global state.
    173 *
    174 * Obviously reality has to ruin such a delightfully simple scheme:
    175 *
    176 *  - When we go NO_HZ idle during the window, we can negate our sample
    177 *    contribution, causing under-accounting.
    178 *
    179 *    We avoid this by keeping two NO_HZ-delta counters and flipping them
    180 *    when the window starts, thus separating old and new NO_HZ load.
    181 *
    182 *    The only trick is the slight shift in index flip for read vs write.
    183 *
    184 *        0s            5s            10s           15s
    185 *          +10           +10           +10           +10
    186 *        |-|-----------|-|-----------|-|-----------|-|
    187 *    r:0 0 1           1 0           0 1           1 0
    188 *    w:0 1 1           0 0           1 1           0 0
    189 *
    190 *    This ensures we'll fold the old NO_HZ contribution in this window while
    191 *    accumulating the new one.
    192 *
    193 *  - When we wake up from NO_HZ during the window, we push up our
    194 *    contribution, since we effectively move our sample point to a known
    195 *    busy state.
    196 *
    197 *    This is solved by pushing the window forward, and thus skipping the
    198 *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
    199 *    was in effect at the time the window opened). This also solves the issue
    200 *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
    201 *    intervals.
    202 *
    203 * When making the ILB scale, we should try to pull this in as well.
    204 */
    205static atomic_long_t calc_load_nohz[2];
    206static int calc_load_idx;
    207
    208static inline int calc_load_write_idx(void)
    209{
    210	int idx = calc_load_idx;
    211
    212	/*
    213	 * See calc_global_nohz(), if we observe the new index, we also
    214	 * need to observe the new update time.
    215	 */
    216	smp_rmb();
    217
    218	/*
    219	 * If the folding window started, make sure we start writing in the
    220	 * next NO_HZ-delta.
    221	 */
    222	if (!time_before(jiffies, READ_ONCE(calc_load_update)))
    223		idx++;
    224
    225	return idx & 1;
    226}
    227
    228static inline int calc_load_read_idx(void)
    229{
    230	return calc_load_idx & 1;
    231}
    232
    233static void calc_load_nohz_fold(struct rq *rq)
    234{
    235	long delta;
    236
    237	delta = calc_load_fold_active(rq, 0);
    238	if (delta) {
    239		int idx = calc_load_write_idx();
    240
    241		atomic_long_add(delta, &calc_load_nohz[idx]);
    242	}
    243}
    244
    245void calc_load_nohz_start(void)
    246{
    247	/*
    248	 * We're going into NO_HZ mode, if there's any pending delta, fold it
    249	 * into the pending NO_HZ delta.
    250	 */
    251	calc_load_nohz_fold(this_rq());
    252}
    253
    254/*
    255 * Keep track of the load for NOHZ_FULL, must be called between
    256 * calc_load_nohz_{start,stop}().
    257 */
    258void calc_load_nohz_remote(struct rq *rq)
    259{
    260	calc_load_nohz_fold(rq);
    261}
    262
    263void calc_load_nohz_stop(void)
    264{
    265	struct rq *this_rq = this_rq();
    266
    267	/*
    268	 * If we're still before the pending sample window, we're done.
    269	 */
    270	this_rq->calc_load_update = READ_ONCE(calc_load_update);
    271	if (time_before(jiffies, this_rq->calc_load_update))
    272		return;
    273
    274	/*
    275	 * We woke inside or after the sample window, this means we're already
    276	 * accounted through the nohz accounting, so skip the entire deal and
    277	 * sync up for the next window.
    278	 */
    279	if (time_before(jiffies, this_rq->calc_load_update + 10))
    280		this_rq->calc_load_update += LOAD_FREQ;
    281}
    282
    283static long calc_load_nohz_read(void)
    284{
    285	int idx = calc_load_read_idx();
    286	long delta = 0;
    287
    288	if (atomic_long_read(&calc_load_nohz[idx]))
    289		delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
    290
    291	return delta;
    292}
    293
    294/*
    295 * NO_HZ can leave us missing all per-CPU ticks calling
    296 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
    297 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
    298 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
    299 *
    300 * Once we've updated the global active value, we need to apply the exponential
    301 * weights adjusted to the number of cycles missed.
    302 */
    303static void calc_global_nohz(void)
    304{
    305	unsigned long sample_window;
    306	long delta, active, n;
    307
    308	sample_window = READ_ONCE(calc_load_update);
    309	if (!time_before(jiffies, sample_window + 10)) {
    310		/*
    311		 * Catch-up, fold however many we are behind still
    312		 */
    313		delta = jiffies - sample_window - 10;
    314		n = 1 + (delta / LOAD_FREQ);
    315
    316		active = atomic_long_read(&calc_load_tasks);
    317		active = active > 0 ? active * FIXED_1 : 0;
    318
    319		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
    320		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
    321		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
    322
    323		WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
    324	}
    325
    326	/*
    327	 * Flip the NO_HZ index...
    328	 *
    329	 * Make sure we first write the new time then flip the index, so that
    330	 * calc_load_write_idx() will see the new time when it reads the new
    331	 * index, this avoids a double flip messing things up.
    332	 */
    333	smp_wmb();
    334	calc_load_idx++;
    335}
    336#else /* !CONFIG_NO_HZ_COMMON */
    337
    338static inline long calc_load_nohz_read(void) { return 0; }
    339static inline void calc_global_nohz(void) { }
    340
    341#endif /* CONFIG_NO_HZ_COMMON */
    342
    343/*
    344 * calc_load - update the avenrun load estimates 10 ticks after the
    345 * CPUs have updated calc_load_tasks.
    346 *
    347 * Called from the global timer code.
    348 */
    349void calc_global_load(void)
    350{
    351	unsigned long sample_window;
    352	long active, delta;
    353
    354	sample_window = READ_ONCE(calc_load_update);
    355	if (time_before(jiffies, sample_window + 10))
    356		return;
    357
    358	/*
    359	 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
    360	 */
    361	delta = calc_load_nohz_read();
    362	if (delta)
    363		atomic_long_add(delta, &calc_load_tasks);
    364
    365	active = atomic_long_read(&calc_load_tasks);
    366	active = active > 0 ? active * FIXED_1 : 0;
    367
    368	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
    369	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
    370	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
    371
    372	WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
    373
    374	/*
    375	 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
    376	 * catch up in bulk.
    377	 */
    378	calc_global_nohz();
    379}
    380
    381/*
    382 * Called from scheduler_tick() to periodically update this CPU's
    383 * active count.
    384 */
    385void calc_global_load_tick(struct rq *this_rq)
    386{
    387	long delta;
    388
    389	if (time_before(jiffies, this_rq->calc_load_update))
    390		return;
    391
    392	delta  = calc_load_fold_active(this_rq, 0);
    393	if (delta)
    394		atomic_long_add(delta, &calc_load_tasks);
    395
    396	this_rq->calc_load_update += LOAD_FREQ;
    397}