cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

membarrier.c (19490B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
      4 *
      5 * membarrier system call
      6 */
      7
      8/*
      9 * For documentation purposes, here are some membarrier ordering
     10 * scenarios to keep in mind:
     11 *
     12 * A) Userspace thread execution after IPI vs membarrier's memory
     13 *    barrier before sending the IPI
     14 *
     15 * Userspace variables:
     16 *
     17 * int x = 0, y = 0;
     18 *
     19 * The memory barrier at the start of membarrier() on CPU0 is necessary in
     20 * order to enforce the guarantee that any writes occurring on CPU0 before
     21 * the membarrier() is executed will be visible to any code executing on
     22 * CPU1 after the IPI-induced memory barrier:
     23 *
     24 *         CPU0                              CPU1
     25 *
     26 *         x = 1
     27 *         membarrier():
     28 *           a: smp_mb()
     29 *           b: send IPI                       IPI-induced mb
     30 *           c: smp_mb()
     31 *         r2 = y
     32 *                                           y = 1
     33 *                                           barrier()
     34 *                                           r1 = x
     35 *
     36 *                     BUG_ON(r1 == 0 && r2 == 0)
     37 *
     38 * The write to y and load from x by CPU1 are unordered by the hardware,
     39 * so it's possible to have "r1 = x" reordered before "y = 1" at any
     40 * point after (b).  If the memory barrier at (a) is omitted, then "x = 1"
     41 * can be reordered after (a) (although not after (c)), so we get r1 == 0
     42 * and r2 == 0.  This violates the guarantee that membarrier() is
     43 * supposed by provide.
     44 *
     45 * The timing of the memory barrier at (a) has to ensure that it executes
     46 * before the IPI-induced memory barrier on CPU1.
     47 *
     48 * B) Userspace thread execution before IPI vs membarrier's memory
     49 *    barrier after completing the IPI
     50 *
     51 * Userspace variables:
     52 *
     53 * int x = 0, y = 0;
     54 *
     55 * The memory barrier at the end of membarrier() on CPU0 is necessary in
     56 * order to enforce the guarantee that any writes occurring on CPU1 before
     57 * the membarrier() is executed will be visible to any code executing on
     58 * CPU0 after the membarrier():
     59 *
     60 *         CPU0                              CPU1
     61 *
     62 *                                           x = 1
     63 *                                           barrier()
     64 *                                           y = 1
     65 *         r2 = y
     66 *         membarrier():
     67 *           a: smp_mb()
     68 *           b: send IPI                       IPI-induced mb
     69 *           c: smp_mb()
     70 *         r1 = x
     71 *         BUG_ON(r1 == 0 && r2 == 1)
     72 *
     73 * The writes to x and y are unordered by the hardware, so it's possible to
     74 * have "r2 = 1" even though the write to x doesn't execute until (b).  If
     75 * the memory barrier at (c) is omitted then "r1 = x" can be reordered
     76 * before (b) (although not before (a)), so we get "r1 = 0".  This violates
     77 * the guarantee that membarrier() is supposed to provide.
     78 *
     79 * The timing of the memory barrier at (c) has to ensure that it executes
     80 * after the IPI-induced memory barrier on CPU1.
     81 *
     82 * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
     83 *
     84 *           CPU0                            CPU1
     85 *
     86 *           membarrier():
     87 *           a: smp_mb()
     88 *                                           d: switch to kthread (includes mb)
     89 *           b: read rq->curr->mm == NULL
     90 *                                           e: switch to user (includes mb)
     91 *           c: smp_mb()
     92 *
     93 * Using the scenario from (A), we can show that (a) needs to be paired
     94 * with (e). Using the scenario from (B), we can show that (c) needs to
     95 * be paired with (d).
     96 *
     97 * D) exit_mm vs membarrier
     98 *
     99 * Two thread groups are created, A and B.  Thread group B is created by
    100 * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
    101 * Let's assume we have a single thread within each thread group (Thread A
    102 * and Thread B).  Thread A runs on CPU0, Thread B runs on CPU1.
    103 *
    104 *           CPU0                            CPU1
    105 *
    106 *           membarrier():
    107 *             a: smp_mb()
    108 *                                           exit_mm():
    109 *                                             d: smp_mb()
    110 *                                             e: current->mm = NULL
    111 *             b: read rq->curr->mm == NULL
    112 *             c: smp_mb()
    113 *
    114 * Using scenario (B), we can show that (c) needs to be paired with (d).
    115 *
    116 * E) kthread_{use,unuse}_mm vs membarrier
    117 *
    118 *           CPU0                            CPU1
    119 *
    120 *           membarrier():
    121 *           a: smp_mb()
    122 *                                           kthread_unuse_mm()
    123 *                                             d: smp_mb()
    124 *                                             e: current->mm = NULL
    125 *           b: read rq->curr->mm == NULL
    126 *                                           kthread_use_mm()
    127 *                                             f: current->mm = mm
    128 *                                             g: smp_mb()
    129 *           c: smp_mb()
    130 *
    131 * Using the scenario from (A), we can show that (a) needs to be paired
    132 * with (g). Using the scenario from (B), we can show that (c) needs to
    133 * be paired with (d).
    134 */
    135
    136/*
    137 * Bitmask made from a "or" of all commands within enum membarrier_cmd,
    138 * except MEMBARRIER_CMD_QUERY.
    139 */
    140#ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
    141#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK			\
    142	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE			\
    143	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
    144#else
    145#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	0
    146#endif
    147
    148#ifdef CONFIG_RSEQ
    149#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK		\
    150	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ			\
    151	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
    152#else
    153#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK	0
    154#endif
    155
    156#define MEMBARRIER_CMD_BITMASK						\
    157	(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED	\
    158	| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED			\
    159	| MEMBARRIER_CMD_PRIVATE_EXPEDITED				\
    160	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED			\
    161	| MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK		\
    162	| MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
    163
    164static void ipi_mb(void *info)
    165{
    166	smp_mb();	/* IPIs should be serializing but paranoid. */
    167}
    168
    169static void ipi_sync_core(void *info)
    170{
    171	/*
    172	 * The smp_mb() in membarrier after all the IPIs is supposed to
    173	 * ensure that memory on remote CPUs that occur before the IPI
    174	 * become visible to membarrier()'s caller -- see scenario B in
    175	 * the big comment at the top of this file.
    176	 *
    177	 * A sync_core() would provide this guarantee, but
    178	 * sync_core_before_usermode() might end up being deferred until
    179	 * after membarrier()'s smp_mb().
    180	 */
    181	smp_mb();	/* IPIs should be serializing but paranoid. */
    182
    183	sync_core_before_usermode();
    184}
    185
    186static void ipi_rseq(void *info)
    187{
    188	/*
    189	 * Ensure that all stores done by the calling thread are visible
    190	 * to the current task before the current task resumes.  We could
    191	 * probably optimize this away on most architectures, but by the
    192	 * time we've already sent an IPI, the cost of the extra smp_mb()
    193	 * is negligible.
    194	 */
    195	smp_mb();
    196	rseq_preempt(current);
    197}
    198
    199static void ipi_sync_rq_state(void *info)
    200{
    201	struct mm_struct *mm = (struct mm_struct *) info;
    202
    203	if (current->mm != mm)
    204		return;
    205	this_cpu_write(runqueues.membarrier_state,
    206		       atomic_read(&mm->membarrier_state));
    207	/*
    208	 * Issue a memory barrier after setting
    209	 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
    210	 * guarantee that no memory access following registration is reordered
    211	 * before registration.
    212	 */
    213	smp_mb();
    214}
    215
    216void membarrier_exec_mmap(struct mm_struct *mm)
    217{
    218	/*
    219	 * Issue a memory barrier before clearing membarrier_state to
    220	 * guarantee that no memory access prior to exec is reordered after
    221	 * clearing this state.
    222	 */
    223	smp_mb();
    224	atomic_set(&mm->membarrier_state, 0);
    225	/*
    226	 * Keep the runqueue membarrier_state in sync with this mm
    227	 * membarrier_state.
    228	 */
    229	this_cpu_write(runqueues.membarrier_state, 0);
    230}
    231
    232void membarrier_update_current_mm(struct mm_struct *next_mm)
    233{
    234	struct rq *rq = this_rq();
    235	int membarrier_state = 0;
    236
    237	if (next_mm)
    238		membarrier_state = atomic_read(&next_mm->membarrier_state);
    239	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
    240		return;
    241	WRITE_ONCE(rq->membarrier_state, membarrier_state);
    242}
    243
    244static int membarrier_global_expedited(void)
    245{
    246	int cpu;
    247	cpumask_var_t tmpmask;
    248
    249	if (num_online_cpus() == 1)
    250		return 0;
    251
    252	/*
    253	 * Matches memory barriers around rq->curr modification in
    254	 * scheduler.
    255	 */
    256	smp_mb();	/* system call entry is not a mb. */
    257
    258	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
    259		return -ENOMEM;
    260
    261	cpus_read_lock();
    262	rcu_read_lock();
    263	for_each_online_cpu(cpu) {
    264		struct task_struct *p;
    265
    266		/*
    267		 * Skipping the current CPU is OK even through we can be
    268		 * migrated at any point. The current CPU, at the point
    269		 * where we read raw_smp_processor_id(), is ensured to
    270		 * be in program order with respect to the caller
    271		 * thread. Therefore, we can skip this CPU from the
    272		 * iteration.
    273		 */
    274		if (cpu == raw_smp_processor_id())
    275			continue;
    276
    277		if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
    278		    MEMBARRIER_STATE_GLOBAL_EXPEDITED))
    279			continue;
    280
    281		/*
    282		 * Skip the CPU if it runs a kernel thread which is not using
    283		 * a task mm.
    284		 */
    285		p = rcu_dereference(cpu_rq(cpu)->curr);
    286		if (!p->mm)
    287			continue;
    288
    289		__cpumask_set_cpu(cpu, tmpmask);
    290	}
    291	rcu_read_unlock();
    292
    293	preempt_disable();
    294	smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
    295	preempt_enable();
    296
    297	free_cpumask_var(tmpmask);
    298	cpus_read_unlock();
    299
    300	/*
    301	 * Memory barrier on the caller thread _after_ we finished
    302	 * waiting for the last IPI. Matches memory barriers around
    303	 * rq->curr modification in scheduler.
    304	 */
    305	smp_mb();	/* exit from system call is not a mb */
    306	return 0;
    307}
    308
    309static int membarrier_private_expedited(int flags, int cpu_id)
    310{
    311	cpumask_var_t tmpmask;
    312	struct mm_struct *mm = current->mm;
    313	smp_call_func_t ipi_func = ipi_mb;
    314
    315	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
    316		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
    317			return -EINVAL;
    318		if (!(atomic_read(&mm->membarrier_state) &
    319		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
    320			return -EPERM;
    321		ipi_func = ipi_sync_core;
    322	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
    323		if (!IS_ENABLED(CONFIG_RSEQ))
    324			return -EINVAL;
    325		if (!(atomic_read(&mm->membarrier_state) &
    326		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
    327			return -EPERM;
    328		ipi_func = ipi_rseq;
    329	} else {
    330		WARN_ON_ONCE(flags);
    331		if (!(atomic_read(&mm->membarrier_state) &
    332		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
    333			return -EPERM;
    334	}
    335
    336	if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
    337	    (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
    338		return 0;
    339
    340	/*
    341	 * Matches memory barriers around rq->curr modification in
    342	 * scheduler.
    343	 */
    344	smp_mb();	/* system call entry is not a mb. */
    345
    346	if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
    347		return -ENOMEM;
    348
    349	cpus_read_lock();
    350
    351	if (cpu_id >= 0) {
    352		struct task_struct *p;
    353
    354		if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
    355			goto out;
    356		rcu_read_lock();
    357		p = rcu_dereference(cpu_rq(cpu_id)->curr);
    358		if (!p || p->mm != mm) {
    359			rcu_read_unlock();
    360			goto out;
    361		}
    362		rcu_read_unlock();
    363	} else {
    364		int cpu;
    365
    366		rcu_read_lock();
    367		for_each_online_cpu(cpu) {
    368			struct task_struct *p;
    369
    370			p = rcu_dereference(cpu_rq(cpu)->curr);
    371			if (p && p->mm == mm)
    372				__cpumask_set_cpu(cpu, tmpmask);
    373		}
    374		rcu_read_unlock();
    375	}
    376
    377	if (cpu_id >= 0) {
    378		/*
    379		 * smp_call_function_single() will call ipi_func() if cpu_id
    380		 * is the calling CPU.
    381		 */
    382		smp_call_function_single(cpu_id, ipi_func, NULL, 1);
    383	} else {
    384		/*
    385		 * For regular membarrier, we can save a few cycles by
    386		 * skipping the current cpu -- we're about to do smp_mb()
    387		 * below, and if we migrate to a different cpu, this cpu
    388		 * and the new cpu will execute a full barrier in the
    389		 * scheduler.
    390		 *
    391		 * For SYNC_CORE, we do need a barrier on the current cpu --
    392		 * otherwise, if we are migrated and replaced by a different
    393		 * task in the same mm just before, during, or after
    394		 * membarrier, we will end up with some thread in the mm
    395		 * running without a core sync.
    396		 *
    397		 * For RSEQ, don't rseq_preempt() the caller.  User code
    398		 * is not supposed to issue syscalls at all from inside an
    399		 * rseq critical section.
    400		 */
    401		if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
    402			preempt_disable();
    403			smp_call_function_many(tmpmask, ipi_func, NULL, true);
    404			preempt_enable();
    405		} else {
    406			on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
    407		}
    408	}
    409
    410out:
    411	if (cpu_id < 0)
    412		free_cpumask_var(tmpmask);
    413	cpus_read_unlock();
    414
    415	/*
    416	 * Memory barrier on the caller thread _after_ we finished
    417	 * waiting for the last IPI. Matches memory barriers around
    418	 * rq->curr modification in scheduler.
    419	 */
    420	smp_mb();	/* exit from system call is not a mb */
    421
    422	return 0;
    423}
    424
    425static int sync_runqueues_membarrier_state(struct mm_struct *mm)
    426{
    427	int membarrier_state = atomic_read(&mm->membarrier_state);
    428	cpumask_var_t tmpmask;
    429	int cpu;
    430
    431	if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
    432		this_cpu_write(runqueues.membarrier_state, membarrier_state);
    433
    434		/*
    435		 * For single mm user, we can simply issue a memory barrier
    436		 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
    437		 * mm and in the current runqueue to guarantee that no memory
    438		 * access following registration is reordered before
    439		 * registration.
    440		 */
    441		smp_mb();
    442		return 0;
    443	}
    444
    445	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
    446		return -ENOMEM;
    447
    448	/*
    449	 * For mm with multiple users, we need to ensure all future
    450	 * scheduler executions will observe @mm's new membarrier
    451	 * state.
    452	 */
    453	synchronize_rcu();
    454
    455	/*
    456	 * For each cpu runqueue, if the task's mm match @mm, ensure that all
    457	 * @mm's membarrier state set bits are also set in the runqueue's
    458	 * membarrier state. This ensures that a runqueue scheduling
    459	 * between threads which are users of @mm has its membarrier state
    460	 * updated.
    461	 */
    462	cpus_read_lock();
    463	rcu_read_lock();
    464	for_each_online_cpu(cpu) {
    465		struct rq *rq = cpu_rq(cpu);
    466		struct task_struct *p;
    467
    468		p = rcu_dereference(rq->curr);
    469		if (p && p->mm == mm)
    470			__cpumask_set_cpu(cpu, tmpmask);
    471	}
    472	rcu_read_unlock();
    473
    474	on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
    475
    476	free_cpumask_var(tmpmask);
    477	cpus_read_unlock();
    478
    479	return 0;
    480}
    481
    482static int membarrier_register_global_expedited(void)
    483{
    484	struct task_struct *p = current;
    485	struct mm_struct *mm = p->mm;
    486	int ret;
    487
    488	if (atomic_read(&mm->membarrier_state) &
    489	    MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
    490		return 0;
    491	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
    492	ret = sync_runqueues_membarrier_state(mm);
    493	if (ret)
    494		return ret;
    495	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
    496		  &mm->membarrier_state);
    497
    498	return 0;
    499}
    500
    501static int membarrier_register_private_expedited(int flags)
    502{
    503	struct task_struct *p = current;
    504	struct mm_struct *mm = p->mm;
    505	int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
    506	    set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
    507	    ret;
    508
    509	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
    510		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
    511			return -EINVAL;
    512		ready_state =
    513			MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
    514	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
    515		if (!IS_ENABLED(CONFIG_RSEQ))
    516			return -EINVAL;
    517		ready_state =
    518			MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
    519	} else {
    520		WARN_ON_ONCE(flags);
    521	}
    522
    523	/*
    524	 * We need to consider threads belonging to different thread
    525	 * groups, which use the same mm. (CLONE_VM but not
    526	 * CLONE_THREAD).
    527	 */
    528	if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
    529		return 0;
    530	if (flags & MEMBARRIER_FLAG_SYNC_CORE)
    531		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
    532	if (flags & MEMBARRIER_FLAG_RSEQ)
    533		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
    534	atomic_or(set_state, &mm->membarrier_state);
    535	ret = sync_runqueues_membarrier_state(mm);
    536	if (ret)
    537		return ret;
    538	atomic_or(ready_state, &mm->membarrier_state);
    539
    540	return 0;
    541}
    542
    543/**
    544 * sys_membarrier - issue memory barriers on a set of threads
    545 * @cmd:    Takes command values defined in enum membarrier_cmd.
    546 * @flags:  Currently needs to be 0 for all commands other than
    547 *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
    548 *          case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
    549 *          contains the CPU on which to interrupt (= restart)
    550 *          the RSEQ critical section.
    551 * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
    552 *          RSEQ CS should be interrupted (@cmd must be
    553 *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
    554 *
    555 * If this system call is not implemented, -ENOSYS is returned. If the
    556 * command specified does not exist, not available on the running
    557 * kernel, or if the command argument is invalid, this system call
    558 * returns -EINVAL. For a given command, with flags argument set to 0,
    559 * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
    560 * always return the same value until reboot. In addition, it can return
    561 * -ENOMEM if there is not enough memory available to perform the system
    562 * call.
    563 *
    564 * All memory accesses performed in program order from each targeted thread
    565 * is guaranteed to be ordered with respect to sys_membarrier(). If we use
    566 * the semantic "barrier()" to represent a compiler barrier forcing memory
    567 * accesses to be performed in program order across the barrier, and
    568 * smp_mb() to represent explicit memory barriers forcing full memory
    569 * ordering across the barrier, we have the following ordering table for
    570 * each pair of barrier(), sys_membarrier() and smp_mb():
    571 *
    572 * The pair ordering is detailed as (O: ordered, X: not ordered):
    573 *
    574 *                        barrier()   smp_mb() sys_membarrier()
    575 *        barrier()          X           X            O
    576 *        smp_mb()           X           O            O
    577 *        sys_membarrier()   O           O            O
    578 */
    579SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
    580{
    581	switch (cmd) {
    582	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
    583		if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
    584			return -EINVAL;
    585		break;
    586	default:
    587		if (unlikely(flags))
    588			return -EINVAL;
    589	}
    590
    591	if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
    592		cpu_id = -1;
    593
    594	switch (cmd) {
    595	case MEMBARRIER_CMD_QUERY:
    596	{
    597		int cmd_mask = MEMBARRIER_CMD_BITMASK;
    598
    599		if (tick_nohz_full_enabled())
    600			cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
    601		return cmd_mask;
    602	}
    603	case MEMBARRIER_CMD_GLOBAL:
    604		/* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
    605		if (tick_nohz_full_enabled())
    606			return -EINVAL;
    607		if (num_online_cpus() > 1)
    608			synchronize_rcu();
    609		return 0;
    610	case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
    611		return membarrier_global_expedited();
    612	case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
    613		return membarrier_register_global_expedited();
    614	case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
    615		return membarrier_private_expedited(0, cpu_id);
    616	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
    617		return membarrier_register_private_expedited(0);
    618	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
    619		return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
    620	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
    621		return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
    622	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
    623		return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
    624	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
    625		return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
    626	default:
    627		return -EINVAL;
    628	}
    629}