cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pelt.c (12519B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Per Entity Load Tracking
      4 *
      5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
      6 *
      7 *  Interactivity improvements by Mike Galbraith
      8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
      9 *
     10 *  Various enhancements by Dmitry Adamushko.
     11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
     12 *
     13 *  Group scheduling enhancements by Srivatsa Vaddagiri
     14 *  Copyright IBM Corporation, 2007
     15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
     16 *
     17 *  Scaled math optimizations by Thomas Gleixner
     18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
     19 *
     20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
     21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
     22 *
     23 *  Move PELT related code from fair.c into this pelt.c file
     24 *  Author: Vincent Guittot <vincent.guittot@linaro.org>
     25 */
     26
     27/*
     28 * Approximate:
     29 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
     30 */
     31static u64 decay_load(u64 val, u64 n)
     32{
     33	unsigned int local_n;
     34
     35	if (unlikely(n > LOAD_AVG_PERIOD * 63))
     36		return 0;
     37
     38	/* after bounds checking we can collapse to 32-bit */
     39	local_n = n;
     40
     41	/*
     42	 * As y^PERIOD = 1/2, we can combine
     43	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
     44	 * With a look-up table which covers y^n (n<PERIOD)
     45	 *
     46	 * To achieve constant time decay_load.
     47	 */
     48	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
     49		val >>= local_n / LOAD_AVG_PERIOD;
     50		local_n %= LOAD_AVG_PERIOD;
     51	}
     52
     53	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
     54	return val;
     55}
     56
     57static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
     58{
     59	u32 c1, c2, c3 = d3; /* y^0 == 1 */
     60
     61	/*
     62	 * c1 = d1 y^p
     63	 */
     64	c1 = decay_load((u64)d1, periods);
     65
     66	/*
     67	 *            p-1
     68	 * c2 = 1024 \Sum y^n
     69	 *            n=1
     70	 *
     71	 *              inf        inf
     72	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
     73	 *              n=0        n=p
     74	 */
     75	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
     76
     77	return c1 + c2 + c3;
     78}
     79
     80/*
     81 * Accumulate the three separate parts of the sum; d1 the remainder
     82 * of the last (incomplete) period, d2 the span of full periods and d3
     83 * the remainder of the (incomplete) current period.
     84 *
     85 *           d1          d2           d3
     86 *           ^           ^            ^
     87 *           |           |            |
     88 *         |<->|<----------------->|<--->|
     89 * ... |---x---|------| ... |------|-----x (now)
     90 *
     91 *                           p-1
     92 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
     93 *                           n=1
     94 *
     95 *    = u y^p +					(Step 1)
     96 *
     97 *                     p-1
     98 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
     99 *                     n=1
    100 */
    101static __always_inline u32
    102accumulate_sum(u64 delta, struct sched_avg *sa,
    103	       unsigned long load, unsigned long runnable, int running)
    104{
    105	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
    106	u64 periods;
    107
    108	delta += sa->period_contrib;
    109	periods = delta / 1024; /* A period is 1024us (~1ms) */
    110
    111	/*
    112	 * Step 1: decay old *_sum if we crossed period boundaries.
    113	 */
    114	if (periods) {
    115		sa->load_sum = decay_load(sa->load_sum, periods);
    116		sa->runnable_sum =
    117			decay_load(sa->runnable_sum, periods);
    118		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
    119
    120		/*
    121		 * Step 2
    122		 */
    123		delta %= 1024;
    124		if (load) {
    125			/*
    126			 * This relies on the:
    127			 *
    128			 * if (!load)
    129			 *	runnable = running = 0;
    130			 *
    131			 * clause from ___update_load_sum(); this results in
    132			 * the below usage of @contrib to disappear entirely,
    133			 * so no point in calculating it.
    134			 */
    135			contrib = __accumulate_pelt_segments(periods,
    136					1024 - sa->period_contrib, delta);
    137		}
    138	}
    139	sa->period_contrib = delta;
    140
    141	if (load)
    142		sa->load_sum += load * contrib;
    143	if (runnable)
    144		sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT;
    145	if (running)
    146		sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
    147
    148	return periods;
    149}
    150
    151/*
    152 * We can represent the historical contribution to runnable average as the
    153 * coefficients of a geometric series.  To do this we sub-divide our runnable
    154 * history into segments of approximately 1ms (1024us); label the segment that
    155 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
    156 *
    157 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
    158 *      p0            p1           p2
    159 *     (now)       (~1ms ago)  (~2ms ago)
    160 *
    161 * Let u_i denote the fraction of p_i that the entity was runnable.
    162 *
    163 * We then designate the fractions u_i as our co-efficients, yielding the
    164 * following representation of historical load:
    165 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
    166 *
    167 * We choose y based on the with of a reasonably scheduling period, fixing:
    168 *   y^32 = 0.5
    169 *
    170 * This means that the contribution to load ~32ms ago (u_32) will be weighted
    171 * approximately half as much as the contribution to load within the last ms
    172 * (u_0).
    173 *
    174 * When a period "rolls over" and we have new u_0`, multiplying the previous
    175 * sum again by y is sufficient to update:
    176 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
    177 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
    178 */
    179static __always_inline int
    180___update_load_sum(u64 now, struct sched_avg *sa,
    181		  unsigned long load, unsigned long runnable, int running)
    182{
    183	u64 delta;
    184
    185	delta = now - sa->last_update_time;
    186	/*
    187	 * This should only happen when time goes backwards, which it
    188	 * unfortunately does during sched clock init when we swap over to TSC.
    189	 */
    190	if ((s64)delta < 0) {
    191		sa->last_update_time = now;
    192		return 0;
    193	}
    194
    195	/*
    196	 * Use 1024ns as the unit of measurement since it's a reasonable
    197	 * approximation of 1us and fast to compute.
    198	 */
    199	delta >>= 10;
    200	if (!delta)
    201		return 0;
    202
    203	sa->last_update_time += delta << 10;
    204
    205	/*
    206	 * running is a subset of runnable (weight) so running can't be set if
    207	 * runnable is clear. But there are some corner cases where the current
    208	 * se has been already dequeued but cfs_rq->curr still points to it.
    209	 * This means that weight will be 0 but not running for a sched_entity
    210	 * but also for a cfs_rq if the latter becomes idle. As an example,
    211	 * this happens during idle_balance() which calls
    212	 * update_blocked_averages().
    213	 *
    214	 * Also see the comment in accumulate_sum().
    215	 */
    216	if (!load)
    217		runnable = running = 0;
    218
    219	/*
    220	 * Now we know we crossed measurement unit boundaries. The *_avg
    221	 * accrues by two steps:
    222	 *
    223	 * Step 1: accumulate *_sum since last_update_time. If we haven't
    224	 * crossed period boundaries, finish.
    225	 */
    226	if (!accumulate_sum(delta, sa, load, runnable, running))
    227		return 0;
    228
    229	return 1;
    230}
    231
    232/*
    233 * When syncing *_avg with *_sum, we must take into account the current
    234 * position in the PELT segment otherwise the remaining part of the segment
    235 * will be considered as idle time whereas it's not yet elapsed and this will
    236 * generate unwanted oscillation in the range [1002..1024[.
    237 *
    238 * The max value of *_sum varies with the position in the time segment and is
    239 * equals to :
    240 *
    241 *   LOAD_AVG_MAX*y + sa->period_contrib
    242 *
    243 * which can be simplified into:
    244 *
    245 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
    246 *
    247 * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024
    248 *
    249 * The same care must be taken when a sched entity is added, updated or
    250 * removed from a cfs_rq and we need to update sched_avg. Scheduler entities
    251 * and the cfs rq, to which they are attached, have the same position in the
    252 * time segment because they use the same clock. This means that we can use
    253 * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity
    254 * if it's more convenient.
    255 */
    256static __always_inline void
    257___update_load_avg(struct sched_avg *sa, unsigned long load)
    258{
    259	u32 divider = get_pelt_divider(sa);
    260
    261	/*
    262	 * Step 2: update *_avg.
    263	 */
    264	sa->load_avg = div_u64(load * sa->load_sum, divider);
    265	sa->runnable_avg = div_u64(sa->runnable_sum, divider);
    266	WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
    267}
    268
    269/*
    270 * sched_entity:
    271 *
    272 *   task:
    273 *     se_weight()   = se->load.weight
    274 *     se_runnable() = !!on_rq
    275 *
    276 *   group: [ see update_cfs_group() ]
    277 *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
    278 *     se_runnable() = grq->h_nr_running
    279 *
    280 *   runnable_sum = se_runnable() * runnable = grq->runnable_sum
    281 *   runnable_avg = runnable_sum
    282 *
    283 *   load_sum := runnable
    284 *   load_avg = se_weight(se) * load_sum
    285 *
    286 * cfq_rq:
    287 *
    288 *   runnable_sum = \Sum se->avg.runnable_sum
    289 *   runnable_avg = \Sum se->avg.runnable_avg
    290 *
    291 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
    292 *   load_avg = \Sum se->avg.load_avg
    293 */
    294
    295int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
    296{
    297	if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
    298		___update_load_avg(&se->avg, se_weight(se));
    299		trace_pelt_se_tp(se);
    300		return 1;
    301	}
    302
    303	return 0;
    304}
    305
    306int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
    307{
    308	if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se),
    309				cfs_rq->curr == se)) {
    310
    311		___update_load_avg(&se->avg, se_weight(se));
    312		cfs_se_util_change(&se->avg);
    313		trace_pelt_se_tp(se);
    314		return 1;
    315	}
    316
    317	return 0;
    318}
    319
    320int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
    321{
    322	if (___update_load_sum(now, &cfs_rq->avg,
    323				scale_load_down(cfs_rq->load.weight),
    324				cfs_rq->h_nr_running,
    325				cfs_rq->curr != NULL)) {
    326
    327		___update_load_avg(&cfs_rq->avg, 1);
    328		trace_pelt_cfs_tp(cfs_rq);
    329		return 1;
    330	}
    331
    332	return 0;
    333}
    334
    335/*
    336 * rt_rq:
    337 *
    338 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
    339 *   util_sum = cpu_scale * load_sum
    340 *   runnable_sum = util_sum
    341 *
    342 *   load_avg and runnable_avg are not supported and meaningless.
    343 *
    344 */
    345
    346int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
    347{
    348	if (___update_load_sum(now, &rq->avg_rt,
    349				running,
    350				running,
    351				running)) {
    352
    353		___update_load_avg(&rq->avg_rt, 1);
    354		trace_pelt_rt_tp(rq);
    355		return 1;
    356	}
    357
    358	return 0;
    359}
    360
    361/*
    362 * dl_rq:
    363 *
    364 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
    365 *   util_sum = cpu_scale * load_sum
    366 *   runnable_sum = util_sum
    367 *
    368 *   load_avg and runnable_avg are not supported and meaningless.
    369 *
    370 */
    371
    372int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
    373{
    374	if (___update_load_sum(now, &rq->avg_dl,
    375				running,
    376				running,
    377				running)) {
    378
    379		___update_load_avg(&rq->avg_dl, 1);
    380		trace_pelt_dl_tp(rq);
    381		return 1;
    382	}
    383
    384	return 0;
    385}
    386
    387#ifdef CONFIG_SCHED_THERMAL_PRESSURE
    388/*
    389 * thermal:
    390 *
    391 *   load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked
    392 *
    393 *   util_avg and runnable_load_avg are not supported and meaningless.
    394 *
    395 * Unlike rt/dl utilization tracking that track time spent by a cpu
    396 * running a rt/dl task through util_avg, the average thermal pressure is
    397 * tracked through load_avg. This is because thermal pressure signal is
    398 * time weighted "delta" capacity unlike util_avg which is binary.
    399 * "delta capacity" =  actual capacity  -
    400 *			capped capacity a cpu due to a thermal event.
    401 */
    402
    403int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
    404{
    405	if (___update_load_sum(now, &rq->avg_thermal,
    406			       capacity,
    407			       capacity,
    408			       capacity)) {
    409		___update_load_avg(&rq->avg_thermal, 1);
    410		trace_pelt_thermal_tp(rq);
    411		return 1;
    412	}
    413
    414	return 0;
    415}
    416#endif
    417
    418#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
    419/*
    420 * irq:
    421 *
    422 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
    423 *   util_sum = cpu_scale * load_sum
    424 *   runnable_sum = util_sum
    425 *
    426 *   load_avg and runnable_avg are not supported and meaningless.
    427 *
    428 */
    429
    430int update_irq_load_avg(struct rq *rq, u64 running)
    431{
    432	int ret = 0;
    433
    434	/*
    435	 * We can't use clock_pelt because irq time is not accounted in
    436	 * clock_task. Instead we directly scale the running time to
    437	 * reflect the real amount of computation
    438	 */
    439	running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
    440	running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq)));
    441
    442	/*
    443	 * We know the time that has been used by interrupt since last update
    444	 * but we don't when. Let be pessimistic and assume that interrupt has
    445	 * happened just before the update. This is not so far from reality
    446	 * because interrupt will most probably wake up task and trig an update
    447	 * of rq clock during which the metric is updated.
    448	 * We start to decay with normal context time and then we add the
    449	 * interrupt context time.
    450	 * We can safely remove running from rq->clock because
    451	 * rq->clock += delta with delta >= running
    452	 */
    453	ret = ___update_load_sum(rq->clock - running, &rq->avg_irq,
    454				0,
    455				0,
    456				0);
    457	ret += ___update_load_sum(rq->clock, &rq->avg_irq,
    458				1,
    459				1,
    460				1);
    461
    462	if (ret) {
    463		___update_load_avg(&rq->avg_irq, 1);
    464		trace_pelt_irq_tp(rq);
    465	}
    466
    467	return ret;
    468}
    469#endif