cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pelt.h (5459B)


      1#ifdef CONFIG_SMP
      2#include "sched-pelt.h"
      3
      4int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
      5int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
      6int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
      7int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
      8int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
      9
     10#ifdef CONFIG_SCHED_THERMAL_PRESSURE
     11int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
     12
     13static inline u64 thermal_load_avg(struct rq *rq)
     14{
     15	return READ_ONCE(rq->avg_thermal.load_avg);
     16}
     17#else
     18static inline int
     19update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
     20{
     21	return 0;
     22}
     23
     24static inline u64 thermal_load_avg(struct rq *rq)
     25{
     26	return 0;
     27}
     28#endif
     29
     30#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
     31int update_irq_load_avg(struct rq *rq, u64 running);
     32#else
     33static inline int
     34update_irq_load_avg(struct rq *rq, u64 running)
     35{
     36	return 0;
     37}
     38#endif
     39
     40#define PELT_MIN_DIVIDER	(LOAD_AVG_MAX - 1024)
     41
     42static inline u32 get_pelt_divider(struct sched_avg *avg)
     43{
     44	return PELT_MIN_DIVIDER + avg->period_contrib;
     45}
     46
     47static inline void cfs_se_util_change(struct sched_avg *avg)
     48{
     49	unsigned int enqueued;
     50
     51	if (!sched_feat(UTIL_EST))
     52		return;
     53
     54	/* Avoid store if the flag has been already reset */
     55	enqueued = avg->util_est.enqueued;
     56	if (!(enqueued & UTIL_AVG_UNCHANGED))
     57		return;
     58
     59	/* Reset flag to report util_avg has been updated */
     60	enqueued &= ~UTIL_AVG_UNCHANGED;
     61	WRITE_ONCE(avg->util_est.enqueued, enqueued);
     62}
     63
     64/*
     65 * The clock_pelt scales the time to reflect the effective amount of
     66 * computation done during the running delta time but then sync back to
     67 * clock_task when rq is idle.
     68 *
     69 *
     70 * absolute time   | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
     71 * @ max capacity  ------******---------------******---------------
     72 * @ half capacity ------************---------************---------
     73 * clock pelt      | 1| 2|    3|    4| 7| 8| 9|   10|   11|14|15|16
     74 *
     75 */
     76static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
     77{
     78	if (unlikely(is_idle_task(rq->curr))) {
     79		/* The rq is idle, we can sync to clock_task */
     80		rq->clock_pelt  = rq_clock_task(rq);
     81		return;
     82	}
     83
     84	/*
     85	 * When a rq runs at a lower compute capacity, it will need
     86	 * more time to do the same amount of work than at max
     87	 * capacity. In order to be invariant, we scale the delta to
     88	 * reflect how much work has been really done.
     89	 * Running longer results in stealing idle time that will
     90	 * disturb the load signal compared to max capacity. This
     91	 * stolen idle time will be automatically reflected when the
     92	 * rq will be idle and the clock will be synced with
     93	 * rq_clock_task.
     94	 */
     95
     96	/*
     97	 * Scale the elapsed time to reflect the real amount of
     98	 * computation
     99	 */
    100	delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
    101	delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
    102
    103	rq->clock_pelt += delta;
    104}
    105
    106/*
    107 * When rq becomes idle, we have to check if it has lost idle time
    108 * because it was fully busy. A rq is fully used when the /Sum util_sum
    109 * is greater or equal to:
    110 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
    111 * For optimization and computing rounding purpose, we don't take into account
    112 * the position in the current window (period_contrib) and we use the higher
    113 * bound of util_sum to decide.
    114 */
    115static inline void update_idle_rq_clock_pelt(struct rq *rq)
    116{
    117	u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
    118	u32 util_sum = rq->cfs.avg.util_sum;
    119	util_sum += rq->avg_rt.util_sum;
    120	util_sum += rq->avg_dl.util_sum;
    121
    122	/*
    123	 * Reflecting stolen time makes sense only if the idle
    124	 * phase would be present at max capacity. As soon as the
    125	 * utilization of a rq has reached the maximum value, it is
    126	 * considered as an always running rq without idle time to
    127	 * steal. This potential idle time is considered as lost in
    128	 * this case. We keep track of this lost idle time compare to
    129	 * rq's clock_task.
    130	 */
    131	if (util_sum >= divider)
    132		rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
    133}
    134
    135static inline u64 rq_clock_pelt(struct rq *rq)
    136{
    137	lockdep_assert_rq_held(rq);
    138	assert_clock_updated(rq);
    139
    140	return rq->clock_pelt - rq->lost_idle_time;
    141}
    142
    143#ifdef CONFIG_CFS_BANDWIDTH
    144/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
    145static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
    146{
    147	if (unlikely(cfs_rq->throttle_count))
    148		return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time;
    149
    150	return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
    151}
    152#else
    153static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
    154{
    155	return rq_clock_pelt(rq_of(cfs_rq));
    156}
    157#endif
    158
    159#else
    160
    161static inline int
    162update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
    163{
    164	return 0;
    165}
    166
    167static inline int
    168update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
    169{
    170	return 0;
    171}
    172
    173static inline int
    174update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
    175{
    176	return 0;
    177}
    178
    179static inline int
    180update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
    181{
    182	return 0;
    183}
    184
    185static inline u64 thermal_load_avg(struct rq *rq)
    186{
    187	return 0;
    188}
    189
    190static inline int
    191update_irq_load_avg(struct rq *rq, u64 running)
    192{
    193	return 0;
    194}
    195
    196static inline u64 rq_clock_pelt(struct rq *rq)
    197{
    198	return rq_clock_task(rq);
    199}
    200
    201static inline void
    202update_rq_clock_pelt(struct rq *rq, s64 delta) { }
    203
    204static inline void
    205update_idle_rq_clock_pelt(struct rq *rq) { }
    206
    207#endif
    208
    209