cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

psi.c (39560B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Pressure stall information for CPU, memory and IO
      4 *
      5 * Copyright (c) 2018 Facebook, Inc.
      6 * Author: Johannes Weiner <hannes@cmpxchg.org>
      7 *
      8 * Polling support by Suren Baghdasaryan <surenb@google.com>
      9 * Copyright (c) 2018 Google, Inc.
     10 *
     11 * When CPU, memory and IO are contended, tasks experience delays that
     12 * reduce throughput and introduce latencies into the workload. Memory
     13 * and IO contention, in addition, can cause a full loss of forward
     14 * progress in which the CPU goes idle.
     15 *
     16 * This code aggregates individual task delays into resource pressure
     17 * metrics that indicate problems with both workload health and
     18 * resource utilization.
     19 *
     20 *			Model
     21 *
     22 * The time in which a task can execute on a CPU is our baseline for
     23 * productivity. Pressure expresses the amount of time in which this
     24 * potential cannot be realized due to resource contention.
     25 *
     26 * This concept of productivity has two components: the workload and
     27 * the CPU. To measure the impact of pressure on both, we define two
     28 * contention states for a resource: SOME and FULL.
     29 *
     30 * In the SOME state of a given resource, one or more tasks are
     31 * delayed on that resource. This affects the workload's ability to
     32 * perform work, but the CPU may still be executing other tasks.
     33 *
     34 * In the FULL state of a given resource, all non-idle tasks are
     35 * delayed on that resource such that nobody is advancing and the CPU
     36 * goes idle. This leaves both workload and CPU unproductive.
     37 *
     38 *	SOME = nr_delayed_tasks != 0
     39 *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
     40 *
     41 * What it means for a task to be productive is defined differently
     42 * for each resource. For IO, productive means a running task. For
     43 * memory, productive means a running task that isn't a reclaimer. For
     44 * CPU, productive means an oncpu task.
     45 *
     46 * Naturally, the FULL state doesn't exist for the CPU resource at the
     47 * system level, but exist at the cgroup level. At the cgroup level,
     48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
     49 * resource which is being used by others outside of the cgroup or
     50 * throttled by the cgroup cpu.max configuration.
     51 *
     52 * The percentage of wallclock time spent in those compound stall
     53 * states gives pressure numbers between 0 and 100 for each resource,
     54 * where the SOME percentage indicates workload slowdowns and the FULL
     55 * percentage indicates reduced CPU utilization:
     56 *
     57 *	%SOME = time(SOME) / period
     58 *	%FULL = time(FULL) / period
     59 *
     60 *			Multiple CPUs
     61 *
     62 * The more tasks and available CPUs there are, the more work can be
     63 * performed concurrently. This means that the potential that can go
     64 * unrealized due to resource contention *also* scales with non-idle
     65 * tasks and CPUs.
     66 *
     67 * Consider a scenario where 257 number crunching tasks are trying to
     68 * run concurrently on 256 CPUs. If we simply aggregated the task
     69 * states, we would have to conclude a CPU SOME pressure number of
     70 * 100%, since *somebody* is waiting on a runqueue at all
     71 * times. However, that is clearly not the amount of contention the
     72 * workload is experiencing: only one out of 256 possible execution
     73 * threads will be contended at any given time, or about 0.4%.
     74 *
     75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
     76 * given time *one* of the tasks is delayed due to a lack of memory.
     77 * Again, looking purely at the task state would yield a memory FULL
     78 * pressure number of 0%, since *somebody* is always making forward
     79 * progress. But again this wouldn't capture the amount of execution
     80 * potential lost, which is 1 out of 4 CPUs, or 25%.
     81 *
     82 * To calculate wasted potential (pressure) with multiple processors,
     83 * we have to base our calculation on the number of non-idle tasks in
     84 * conjunction with the number of available CPUs, which is the number
     85 * of potential execution threads. SOME becomes then the proportion of
     86 * delayed tasks to possible threads, and FULL is the share of possible
     87 * threads that are unproductive due to delays:
     88 *
     89 *	threads = min(nr_nonidle_tasks, nr_cpus)
     90 *	   SOME = min(nr_delayed_tasks / threads, 1)
     91 *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
     92 *
     93 * For the 257 number crunchers on 256 CPUs, this yields:
     94 *
     95 *	threads = min(257, 256)
     96 *	   SOME = min(1 / 256, 1)             = 0.4%
     97 *	   FULL = (256 - min(256, 256)) / 256 = 0%
     98 *
     99 * For the 1 out of 4 memory-delayed tasks, this yields:
    100 *
    101 *	threads = min(4, 4)
    102 *	   SOME = min(1 / 4, 1)               = 25%
    103 *	   FULL = (4 - min(3, 4)) / 4         = 25%
    104 *
    105 * [ Substitute nr_cpus with 1, and you can see that it's a natural
    106 *   extension of the single-CPU model. ]
    107 *
    108 *			Implementation
    109 *
    110 * To assess the precise time spent in each such state, we would have
    111 * to freeze the system on task changes and start/stop the state
    112 * clocks accordingly. Obviously that doesn't scale in practice.
    113 *
    114 * Because the scheduler aims to distribute the compute load evenly
    115 * among the available CPUs, we can track task state locally to each
    116 * CPU and, at much lower frequency, extrapolate the global state for
    117 * the cumulative stall times and the running averages.
    118 *
    119 * For each runqueue, we track:
    120 *
    121 *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
    122 *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
    123 *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
    124 *
    125 * and then periodically aggregate:
    126 *
    127 *	tNONIDLE = sum(tNONIDLE[i])
    128 *
    129 *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
    130 *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
    131 *
    132 *	   %SOME = tSOME / period
    133 *	   %FULL = tFULL / period
    134 *
    135 * This gives us an approximation of pressure that is practical
    136 * cost-wise, yet way more sensitive and accurate than periodic
    137 * sampling of the aggregate task states would be.
    138 */
    139
    140static int psi_bug __read_mostly;
    141
    142DEFINE_STATIC_KEY_FALSE(psi_disabled);
    143DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
    144
    145#ifdef CONFIG_PSI_DEFAULT_DISABLED
    146static bool psi_enable;
    147#else
    148static bool psi_enable = true;
    149#endif
    150static int __init setup_psi(char *str)
    151{
    152	return kstrtobool(str, &psi_enable) == 0;
    153}
    154__setup("psi=", setup_psi);
    155
    156/* Running averages - we need to be higher-res than loadavg */
    157#define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
    158#define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
    159#define EXP_60s		1981		/* 1/exp(2s/60s) */
    160#define EXP_300s	2034		/* 1/exp(2s/300s) */
    161
    162/* PSI trigger definitions */
    163#define WINDOW_MIN_US 500000	/* Min window size is 500ms */
    164#define WINDOW_MAX_US 10000000	/* Max window size is 10s */
    165#define UPDATES_PER_WINDOW 10	/* 10 updates per window */
    166
    167/* Sampling frequency in nanoseconds */
    168static u64 psi_period __read_mostly;
    169
    170/* System-level pressure and stall tracking */
    171static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
    172struct psi_group psi_system = {
    173	.pcpu = &system_group_pcpu,
    174};
    175
    176static void psi_avgs_work(struct work_struct *work);
    177
    178static void poll_timer_fn(struct timer_list *t);
    179
    180static void group_init(struct psi_group *group)
    181{
    182	int cpu;
    183
    184	for_each_possible_cpu(cpu)
    185		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
    186	group->avg_last_update = sched_clock();
    187	group->avg_next_update = group->avg_last_update + psi_period;
    188	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
    189	mutex_init(&group->avgs_lock);
    190	/* Init trigger-related members */
    191	mutex_init(&group->trigger_lock);
    192	INIT_LIST_HEAD(&group->triggers);
    193	memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
    194	group->poll_states = 0;
    195	group->poll_min_period = U32_MAX;
    196	memset(group->polling_total, 0, sizeof(group->polling_total));
    197	group->polling_next_update = ULLONG_MAX;
    198	group->polling_until = 0;
    199	init_waitqueue_head(&group->poll_wait);
    200	timer_setup(&group->poll_timer, poll_timer_fn, 0);
    201	rcu_assign_pointer(group->poll_task, NULL);
    202}
    203
    204void __init psi_init(void)
    205{
    206	if (!psi_enable) {
    207		static_branch_enable(&psi_disabled);
    208		return;
    209	}
    210
    211	if (!cgroup_psi_enabled())
    212		static_branch_disable(&psi_cgroups_enabled);
    213
    214	psi_period = jiffies_to_nsecs(PSI_FREQ);
    215	group_init(&psi_system);
    216}
    217
    218static bool test_state(unsigned int *tasks, enum psi_states state)
    219{
    220	switch (state) {
    221	case PSI_IO_SOME:
    222		return unlikely(tasks[NR_IOWAIT]);
    223	case PSI_IO_FULL:
    224		return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]);
    225	case PSI_MEM_SOME:
    226		return unlikely(tasks[NR_MEMSTALL]);
    227	case PSI_MEM_FULL:
    228		return unlikely(tasks[NR_MEMSTALL] &&
    229			tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]);
    230	case PSI_CPU_SOME:
    231		return unlikely(tasks[NR_RUNNING] > tasks[NR_ONCPU]);
    232	case PSI_CPU_FULL:
    233		return unlikely(tasks[NR_RUNNING] && !tasks[NR_ONCPU]);
    234	case PSI_NONIDLE:
    235		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
    236			tasks[NR_RUNNING];
    237	default:
    238		return false;
    239	}
    240}
    241
    242static void get_recent_times(struct psi_group *group, int cpu,
    243			     enum psi_aggregators aggregator, u32 *times,
    244			     u32 *pchanged_states)
    245{
    246	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
    247	u64 now, state_start;
    248	enum psi_states s;
    249	unsigned int seq;
    250	u32 state_mask;
    251
    252	*pchanged_states = 0;
    253
    254	/* Snapshot a coherent view of the CPU state */
    255	do {
    256		seq = read_seqcount_begin(&groupc->seq);
    257		now = cpu_clock(cpu);
    258		memcpy(times, groupc->times, sizeof(groupc->times));
    259		state_mask = groupc->state_mask;
    260		state_start = groupc->state_start;
    261	} while (read_seqcount_retry(&groupc->seq, seq));
    262
    263	/* Calculate state time deltas against the previous snapshot */
    264	for (s = 0; s < NR_PSI_STATES; s++) {
    265		u32 delta;
    266		/*
    267		 * In addition to already concluded states, we also
    268		 * incorporate currently active states on the CPU,
    269		 * since states may last for many sampling periods.
    270		 *
    271		 * This way we keep our delta sampling buckets small
    272		 * (u32) and our reported pressure close to what's
    273		 * actually happening.
    274		 */
    275		if (state_mask & (1 << s))
    276			times[s] += now - state_start;
    277
    278		delta = times[s] - groupc->times_prev[aggregator][s];
    279		groupc->times_prev[aggregator][s] = times[s];
    280
    281		times[s] = delta;
    282		if (delta)
    283			*pchanged_states |= (1 << s);
    284	}
    285}
    286
    287static void calc_avgs(unsigned long avg[3], int missed_periods,
    288		      u64 time, u64 period)
    289{
    290	unsigned long pct;
    291
    292	/* Fill in zeroes for periods of no activity */
    293	if (missed_periods) {
    294		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
    295		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
    296		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
    297	}
    298
    299	/* Sample the most recent active period */
    300	pct = div_u64(time * 100, period);
    301	pct *= FIXED_1;
    302	avg[0] = calc_load(avg[0], EXP_10s, pct);
    303	avg[1] = calc_load(avg[1], EXP_60s, pct);
    304	avg[2] = calc_load(avg[2], EXP_300s, pct);
    305}
    306
    307static void collect_percpu_times(struct psi_group *group,
    308				 enum psi_aggregators aggregator,
    309				 u32 *pchanged_states)
    310{
    311	u64 deltas[NR_PSI_STATES - 1] = { 0, };
    312	unsigned long nonidle_total = 0;
    313	u32 changed_states = 0;
    314	int cpu;
    315	int s;
    316
    317	/*
    318	 * Collect the per-cpu time buckets and average them into a
    319	 * single time sample that is normalized to wallclock time.
    320	 *
    321	 * For averaging, each CPU is weighted by its non-idle time in
    322	 * the sampling period. This eliminates artifacts from uneven
    323	 * loading, or even entirely idle CPUs.
    324	 */
    325	for_each_possible_cpu(cpu) {
    326		u32 times[NR_PSI_STATES];
    327		u32 nonidle;
    328		u32 cpu_changed_states;
    329
    330		get_recent_times(group, cpu, aggregator, times,
    331				&cpu_changed_states);
    332		changed_states |= cpu_changed_states;
    333
    334		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
    335		nonidle_total += nonidle;
    336
    337		for (s = 0; s < PSI_NONIDLE; s++)
    338			deltas[s] += (u64)times[s] * nonidle;
    339	}
    340
    341	/*
    342	 * Integrate the sample into the running statistics that are
    343	 * reported to userspace: the cumulative stall times and the
    344	 * decaying averages.
    345	 *
    346	 * Pressure percentages are sampled at PSI_FREQ. We might be
    347	 * called more often when the user polls more frequently than
    348	 * that; we might be called less often when there is no task
    349	 * activity, thus no data, and clock ticks are sporadic. The
    350	 * below handles both.
    351	 */
    352
    353	/* total= */
    354	for (s = 0; s < NR_PSI_STATES - 1; s++)
    355		group->total[aggregator][s] +=
    356				div_u64(deltas[s], max(nonidle_total, 1UL));
    357
    358	if (pchanged_states)
    359		*pchanged_states = changed_states;
    360}
    361
    362static u64 update_averages(struct psi_group *group, u64 now)
    363{
    364	unsigned long missed_periods = 0;
    365	u64 expires, period;
    366	u64 avg_next_update;
    367	int s;
    368
    369	/* avgX= */
    370	expires = group->avg_next_update;
    371	if (now - expires >= psi_period)
    372		missed_periods = div_u64(now - expires, psi_period);
    373
    374	/*
    375	 * The periodic clock tick can get delayed for various
    376	 * reasons, especially on loaded systems. To avoid clock
    377	 * drift, we schedule the clock in fixed psi_period intervals.
    378	 * But the deltas we sample out of the per-cpu buckets above
    379	 * are based on the actual time elapsing between clock ticks.
    380	 */
    381	avg_next_update = expires + ((1 + missed_periods) * psi_period);
    382	period = now - (group->avg_last_update + (missed_periods * psi_period));
    383	group->avg_last_update = now;
    384
    385	for (s = 0; s < NR_PSI_STATES - 1; s++) {
    386		u32 sample;
    387
    388		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
    389		/*
    390		 * Due to the lockless sampling of the time buckets,
    391		 * recorded time deltas can slip into the next period,
    392		 * which under full pressure can result in samples in
    393		 * excess of the period length.
    394		 *
    395		 * We don't want to report non-sensical pressures in
    396		 * excess of 100%, nor do we want to drop such events
    397		 * on the floor. Instead we punt any overage into the
    398		 * future until pressure subsides. By doing this we
    399		 * don't underreport the occurring pressure curve, we
    400		 * just report it delayed by one period length.
    401		 *
    402		 * The error isn't cumulative. As soon as another
    403		 * delta slips from a period P to P+1, by definition
    404		 * it frees up its time T in P.
    405		 */
    406		if (sample > period)
    407			sample = period;
    408		group->avg_total[s] += sample;
    409		calc_avgs(group->avg[s], missed_periods, sample, period);
    410	}
    411
    412	return avg_next_update;
    413}
    414
    415static void psi_avgs_work(struct work_struct *work)
    416{
    417	struct delayed_work *dwork;
    418	struct psi_group *group;
    419	u32 changed_states;
    420	bool nonidle;
    421	u64 now;
    422
    423	dwork = to_delayed_work(work);
    424	group = container_of(dwork, struct psi_group, avgs_work);
    425
    426	mutex_lock(&group->avgs_lock);
    427
    428	now = sched_clock();
    429
    430	collect_percpu_times(group, PSI_AVGS, &changed_states);
    431	nonidle = changed_states & (1 << PSI_NONIDLE);
    432	/*
    433	 * If there is task activity, periodically fold the per-cpu
    434	 * times and feed samples into the running averages. If things
    435	 * are idle and there is no data to process, stop the clock.
    436	 * Once restarted, we'll catch up the running averages in one
    437	 * go - see calc_avgs() and missed_periods.
    438	 */
    439	if (now >= group->avg_next_update)
    440		group->avg_next_update = update_averages(group, now);
    441
    442	if (nonidle) {
    443		schedule_delayed_work(dwork, nsecs_to_jiffies(
    444				group->avg_next_update - now) + 1);
    445	}
    446
    447	mutex_unlock(&group->avgs_lock);
    448}
    449
    450/* Trigger tracking window manipulations */
    451static void window_reset(struct psi_window *win, u64 now, u64 value,
    452			 u64 prev_growth)
    453{
    454	win->start_time = now;
    455	win->start_value = value;
    456	win->prev_growth = prev_growth;
    457}
    458
    459/*
    460 * PSI growth tracking window update and growth calculation routine.
    461 *
    462 * This approximates a sliding tracking window by interpolating
    463 * partially elapsed windows using historical growth data from the
    464 * previous intervals. This minimizes memory requirements (by not storing
    465 * all the intermediate values in the previous window) and simplifies
    466 * the calculations. It works well because PSI signal changes only in
    467 * positive direction and over relatively small window sizes the growth
    468 * is close to linear.
    469 */
    470static u64 window_update(struct psi_window *win, u64 now, u64 value)
    471{
    472	u64 elapsed;
    473	u64 growth;
    474
    475	elapsed = now - win->start_time;
    476	growth = value - win->start_value;
    477	/*
    478	 * After each tracking window passes win->start_value and
    479	 * win->start_time get reset and win->prev_growth stores
    480	 * the average per-window growth of the previous window.
    481	 * win->prev_growth is then used to interpolate additional
    482	 * growth from the previous window assuming it was linear.
    483	 */
    484	if (elapsed > win->size)
    485		window_reset(win, now, value, growth);
    486	else {
    487		u32 remaining;
    488
    489		remaining = win->size - elapsed;
    490		growth += div64_u64(win->prev_growth * remaining, win->size);
    491	}
    492
    493	return growth;
    494}
    495
    496static void init_triggers(struct psi_group *group, u64 now)
    497{
    498	struct psi_trigger *t;
    499
    500	list_for_each_entry(t, &group->triggers, node)
    501		window_reset(&t->win, now,
    502				group->total[PSI_POLL][t->state], 0);
    503	memcpy(group->polling_total, group->total[PSI_POLL],
    504		   sizeof(group->polling_total));
    505	group->polling_next_update = now + group->poll_min_period;
    506}
    507
    508static u64 update_triggers(struct psi_group *group, u64 now)
    509{
    510	struct psi_trigger *t;
    511	bool update_total = false;
    512	u64 *total = group->total[PSI_POLL];
    513
    514	/*
    515	 * On subsequent updates, calculate growth deltas and let
    516	 * watchers know when their specified thresholds are exceeded.
    517	 */
    518	list_for_each_entry(t, &group->triggers, node) {
    519		u64 growth;
    520		bool new_stall;
    521
    522		new_stall = group->polling_total[t->state] != total[t->state];
    523
    524		/* Check for stall activity or a previous threshold breach */
    525		if (!new_stall && !t->pending_event)
    526			continue;
    527		/*
    528		 * Check for new stall activity, as well as deferred
    529		 * events that occurred in the last window after the
    530		 * trigger had already fired (we want to ratelimit
    531		 * events without dropping any).
    532		 */
    533		if (new_stall) {
    534			/*
    535			 * Multiple triggers might be looking at the same state,
    536			 * remember to update group->polling_total[] once we've
    537			 * been through all of them. Also remember to extend the
    538			 * polling time if we see new stall activity.
    539			 */
    540			update_total = true;
    541
    542			/* Calculate growth since last update */
    543			growth = window_update(&t->win, now, total[t->state]);
    544			if (growth < t->threshold)
    545				continue;
    546
    547			t->pending_event = true;
    548		}
    549		/* Limit event signaling to once per window */
    550		if (now < t->last_event_time + t->win.size)
    551			continue;
    552
    553		/* Generate an event */
    554		if (cmpxchg(&t->event, 0, 1) == 0)
    555			wake_up_interruptible(&t->event_wait);
    556		t->last_event_time = now;
    557		/* Reset threshold breach flag once event got generated */
    558		t->pending_event = false;
    559	}
    560
    561	if (update_total)
    562		memcpy(group->polling_total, total,
    563				sizeof(group->polling_total));
    564
    565	return now + group->poll_min_period;
    566}
    567
    568/* Schedule polling if it's not already scheduled. */
    569static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
    570{
    571	struct task_struct *task;
    572
    573	/*
    574	 * Do not reschedule if already scheduled.
    575	 * Possible race with a timer scheduled after this check but before
    576	 * mod_timer below can be tolerated because group->polling_next_update
    577	 * will keep updates on schedule.
    578	 */
    579	if (timer_pending(&group->poll_timer))
    580		return;
    581
    582	rcu_read_lock();
    583
    584	task = rcu_dereference(group->poll_task);
    585	/*
    586	 * kworker might be NULL in case psi_trigger_destroy races with
    587	 * psi_task_change (hotpath) which can't use locks
    588	 */
    589	if (likely(task))
    590		mod_timer(&group->poll_timer, jiffies + delay);
    591
    592	rcu_read_unlock();
    593}
    594
    595static void psi_poll_work(struct psi_group *group)
    596{
    597	u32 changed_states;
    598	u64 now;
    599
    600	mutex_lock(&group->trigger_lock);
    601
    602	now = sched_clock();
    603
    604	collect_percpu_times(group, PSI_POLL, &changed_states);
    605
    606	if (changed_states & group->poll_states) {
    607		/* Initialize trigger windows when entering polling mode */
    608		if (now > group->polling_until)
    609			init_triggers(group, now);
    610
    611		/*
    612		 * Keep the monitor active for at least the duration of the
    613		 * minimum tracking window as long as monitor states are
    614		 * changing.
    615		 */
    616		group->polling_until = now +
    617			group->poll_min_period * UPDATES_PER_WINDOW;
    618	}
    619
    620	if (now > group->polling_until) {
    621		group->polling_next_update = ULLONG_MAX;
    622		goto out;
    623	}
    624
    625	if (now >= group->polling_next_update)
    626		group->polling_next_update = update_triggers(group, now);
    627
    628	psi_schedule_poll_work(group,
    629		nsecs_to_jiffies(group->polling_next_update - now) + 1);
    630
    631out:
    632	mutex_unlock(&group->trigger_lock);
    633}
    634
    635static int psi_poll_worker(void *data)
    636{
    637	struct psi_group *group = (struct psi_group *)data;
    638
    639	sched_set_fifo_low(current);
    640
    641	while (true) {
    642		wait_event_interruptible(group->poll_wait,
    643				atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
    644				kthread_should_stop());
    645		if (kthread_should_stop())
    646			break;
    647
    648		psi_poll_work(group);
    649	}
    650	return 0;
    651}
    652
    653static void poll_timer_fn(struct timer_list *t)
    654{
    655	struct psi_group *group = from_timer(group, t, poll_timer);
    656
    657	atomic_set(&group->poll_wakeup, 1);
    658	wake_up_interruptible(&group->poll_wait);
    659}
    660
    661static void record_times(struct psi_group_cpu *groupc, u64 now)
    662{
    663	u32 delta;
    664
    665	delta = now - groupc->state_start;
    666	groupc->state_start = now;
    667
    668	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
    669		groupc->times[PSI_IO_SOME] += delta;
    670		if (groupc->state_mask & (1 << PSI_IO_FULL))
    671			groupc->times[PSI_IO_FULL] += delta;
    672	}
    673
    674	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
    675		groupc->times[PSI_MEM_SOME] += delta;
    676		if (groupc->state_mask & (1 << PSI_MEM_FULL))
    677			groupc->times[PSI_MEM_FULL] += delta;
    678	}
    679
    680	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
    681		groupc->times[PSI_CPU_SOME] += delta;
    682		if (groupc->state_mask & (1 << PSI_CPU_FULL))
    683			groupc->times[PSI_CPU_FULL] += delta;
    684	}
    685
    686	if (groupc->state_mask & (1 << PSI_NONIDLE))
    687		groupc->times[PSI_NONIDLE] += delta;
    688}
    689
    690static void psi_group_change(struct psi_group *group, int cpu,
    691			     unsigned int clear, unsigned int set, u64 now,
    692			     bool wake_clock)
    693{
    694	struct psi_group_cpu *groupc;
    695	u32 state_mask = 0;
    696	unsigned int t, m;
    697	enum psi_states s;
    698
    699	groupc = per_cpu_ptr(group->pcpu, cpu);
    700
    701	/*
    702	 * First we assess the aggregate resource states this CPU's
    703	 * tasks have been in since the last change, and account any
    704	 * SOME and FULL time these may have resulted in.
    705	 *
    706	 * Then we update the task counts according to the state
    707	 * change requested through the @clear and @set bits.
    708	 */
    709	write_seqcount_begin(&groupc->seq);
    710
    711	record_times(groupc, now);
    712
    713	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
    714		if (!(m & (1 << t)))
    715			continue;
    716		if (groupc->tasks[t]) {
    717			groupc->tasks[t]--;
    718		} else if (!psi_bug) {
    719			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u %u] clear=%x set=%x\n",
    720					cpu, t, groupc->tasks[0],
    721					groupc->tasks[1], groupc->tasks[2],
    722					groupc->tasks[3], groupc->tasks[4],
    723					clear, set);
    724			psi_bug = 1;
    725		}
    726	}
    727
    728	for (t = 0; set; set &= ~(1 << t), t++)
    729		if (set & (1 << t))
    730			groupc->tasks[t]++;
    731
    732	/* Calculate state mask representing active states */
    733	for (s = 0; s < NR_PSI_STATES; s++) {
    734		if (test_state(groupc->tasks, s))
    735			state_mask |= (1 << s);
    736	}
    737
    738	/*
    739	 * Since we care about lost potential, a memstall is FULL
    740	 * when there are no other working tasks, but also when
    741	 * the CPU is actively reclaiming and nothing productive
    742	 * could run even if it were runnable. So when the current
    743	 * task in a cgroup is in_memstall, the corresponding groupc
    744	 * on that cpu is in PSI_MEM_FULL state.
    745	 */
    746	if (unlikely(groupc->tasks[NR_ONCPU] && cpu_curr(cpu)->in_memstall))
    747		state_mask |= (1 << PSI_MEM_FULL);
    748
    749	groupc->state_mask = state_mask;
    750
    751	write_seqcount_end(&groupc->seq);
    752
    753	if (state_mask & group->poll_states)
    754		psi_schedule_poll_work(group, 1);
    755
    756	if (wake_clock && !delayed_work_pending(&group->avgs_work))
    757		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
    758}
    759
    760static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
    761{
    762	if (*iter == &psi_system)
    763		return NULL;
    764
    765#ifdef CONFIG_CGROUPS
    766	if (static_branch_likely(&psi_cgroups_enabled)) {
    767		struct cgroup *cgroup = NULL;
    768
    769		if (!*iter)
    770			cgroup = task->cgroups->dfl_cgrp;
    771		else
    772			cgroup = cgroup_parent(*iter);
    773
    774		if (cgroup && cgroup_parent(cgroup)) {
    775			*iter = cgroup;
    776			return cgroup_psi(cgroup);
    777		}
    778	}
    779#endif
    780	*iter = &psi_system;
    781	return &psi_system;
    782}
    783
    784static void psi_flags_change(struct task_struct *task, int clear, int set)
    785{
    786	if (((task->psi_flags & set) ||
    787	     (task->psi_flags & clear) != clear) &&
    788	    !psi_bug) {
    789		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
    790				task->pid, task->comm, task_cpu(task),
    791				task->psi_flags, clear, set);
    792		psi_bug = 1;
    793	}
    794
    795	task->psi_flags &= ~clear;
    796	task->psi_flags |= set;
    797}
    798
    799void psi_task_change(struct task_struct *task, int clear, int set)
    800{
    801	int cpu = task_cpu(task);
    802	struct psi_group *group;
    803	bool wake_clock = true;
    804	void *iter = NULL;
    805	u64 now;
    806
    807	if (!task->pid)
    808		return;
    809
    810	psi_flags_change(task, clear, set);
    811
    812	now = cpu_clock(cpu);
    813	/*
    814	 * Periodic aggregation shuts off if there is a period of no
    815	 * task changes, so we wake it back up if necessary. However,
    816	 * don't do this if the task change is the aggregation worker
    817	 * itself going to sleep, or we'll ping-pong forever.
    818	 */
    819	if (unlikely((clear & TSK_RUNNING) &&
    820		     (task->flags & PF_WQ_WORKER) &&
    821		     wq_worker_last_func(task) == psi_avgs_work))
    822		wake_clock = false;
    823
    824	while ((group = iterate_groups(task, &iter)))
    825		psi_group_change(group, cpu, clear, set, now, wake_clock);
    826}
    827
    828void psi_task_switch(struct task_struct *prev, struct task_struct *next,
    829		     bool sleep)
    830{
    831	struct psi_group *group, *common = NULL;
    832	int cpu = task_cpu(prev);
    833	void *iter;
    834	u64 now = cpu_clock(cpu);
    835
    836	if (next->pid) {
    837		bool identical_state;
    838
    839		psi_flags_change(next, 0, TSK_ONCPU);
    840		/*
    841		 * When switching between tasks that have an identical
    842		 * runtime state, the cgroup that contains both tasks
    843		 * we reach the first common ancestor. Iterate @next's
    844		 * ancestors only until we encounter @prev's ONCPU.
    845		 */
    846		identical_state = prev->psi_flags == next->psi_flags;
    847		iter = NULL;
    848		while ((group = iterate_groups(next, &iter))) {
    849			if (identical_state &&
    850			    per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
    851				common = group;
    852				break;
    853			}
    854
    855			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
    856		}
    857	}
    858
    859	if (prev->pid) {
    860		int clear = TSK_ONCPU, set = 0;
    861
    862		/*
    863		 * When we're going to sleep, psi_dequeue() lets us
    864		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
    865		 * TSK_IOWAIT here, where we can combine it with
    866		 * TSK_ONCPU and save walking common ancestors twice.
    867		 */
    868		if (sleep) {
    869			clear |= TSK_RUNNING;
    870			if (prev->in_memstall)
    871				clear |= TSK_MEMSTALL_RUNNING;
    872			if (prev->in_iowait)
    873				set |= TSK_IOWAIT;
    874		}
    875
    876		psi_flags_change(prev, clear, set);
    877
    878		iter = NULL;
    879		while ((group = iterate_groups(prev, &iter)) && group != common)
    880			psi_group_change(group, cpu, clear, set, now, true);
    881
    882		/*
    883		 * TSK_ONCPU is handled up to the common ancestor. If we're tasked
    884		 * with dequeuing too, finish that for the rest of the hierarchy.
    885		 */
    886		if (sleep) {
    887			clear &= ~TSK_ONCPU;
    888			for (; group; group = iterate_groups(prev, &iter))
    889				psi_group_change(group, cpu, clear, set, now, true);
    890		}
    891	}
    892}
    893
    894/**
    895 * psi_memstall_enter - mark the beginning of a memory stall section
    896 * @flags: flags to handle nested sections
    897 *
    898 * Marks the calling task as being stalled due to a lack of memory,
    899 * such as waiting for a refault or performing reclaim.
    900 */
    901void psi_memstall_enter(unsigned long *flags)
    902{
    903	struct rq_flags rf;
    904	struct rq *rq;
    905
    906	if (static_branch_likely(&psi_disabled))
    907		return;
    908
    909	*flags = current->in_memstall;
    910	if (*flags)
    911		return;
    912	/*
    913	 * in_memstall setting & accounting needs to be atomic wrt
    914	 * changes to the task's scheduling state, otherwise we can
    915	 * race with CPU migration.
    916	 */
    917	rq = this_rq_lock_irq(&rf);
    918
    919	current->in_memstall = 1;
    920	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
    921
    922	rq_unlock_irq(rq, &rf);
    923}
    924
    925/**
    926 * psi_memstall_leave - mark the end of an memory stall section
    927 * @flags: flags to handle nested memdelay sections
    928 *
    929 * Marks the calling task as no longer stalled due to lack of memory.
    930 */
    931void psi_memstall_leave(unsigned long *flags)
    932{
    933	struct rq_flags rf;
    934	struct rq *rq;
    935
    936	if (static_branch_likely(&psi_disabled))
    937		return;
    938
    939	if (*flags)
    940		return;
    941	/*
    942	 * in_memstall clearing & accounting needs to be atomic wrt
    943	 * changes to the task's scheduling state, otherwise we could
    944	 * race with CPU migration.
    945	 */
    946	rq = this_rq_lock_irq(&rf);
    947
    948	current->in_memstall = 0;
    949	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
    950
    951	rq_unlock_irq(rq, &rf);
    952}
    953
    954#ifdef CONFIG_CGROUPS
    955int psi_cgroup_alloc(struct cgroup *cgroup)
    956{
    957	if (static_branch_likely(&psi_disabled))
    958		return 0;
    959
    960	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
    961	if (!cgroup->psi.pcpu)
    962		return -ENOMEM;
    963	group_init(&cgroup->psi);
    964	return 0;
    965}
    966
    967void psi_cgroup_free(struct cgroup *cgroup)
    968{
    969	if (static_branch_likely(&psi_disabled))
    970		return;
    971
    972	cancel_delayed_work_sync(&cgroup->psi.avgs_work);
    973	free_percpu(cgroup->psi.pcpu);
    974	/* All triggers must be removed by now */
    975	WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
    976}
    977
    978/**
    979 * cgroup_move_task - move task to a different cgroup
    980 * @task: the task
    981 * @to: the target css_set
    982 *
    983 * Move task to a new cgroup and safely migrate its associated stall
    984 * state between the different groups.
    985 *
    986 * This function acquires the task's rq lock to lock out concurrent
    987 * changes to the task's scheduling state and - in case the task is
    988 * running - concurrent changes to its stall state.
    989 */
    990void cgroup_move_task(struct task_struct *task, struct css_set *to)
    991{
    992	unsigned int task_flags;
    993	struct rq_flags rf;
    994	struct rq *rq;
    995
    996	if (static_branch_likely(&psi_disabled)) {
    997		/*
    998		 * Lame to do this here, but the scheduler cannot be locked
    999		 * from the outside, so we move cgroups from inside sched/.
   1000		 */
   1001		rcu_assign_pointer(task->cgroups, to);
   1002		return;
   1003	}
   1004
   1005	rq = task_rq_lock(task, &rf);
   1006
   1007	/*
   1008	 * We may race with schedule() dropping the rq lock between
   1009	 * deactivating prev and switching to next. Because the psi
   1010	 * updates from the deactivation are deferred to the switch
   1011	 * callback to save cgroup tree updates, the task's scheduling
   1012	 * state here is not coherent with its psi state:
   1013	 *
   1014	 * schedule()                   cgroup_move_task()
   1015	 *   rq_lock()
   1016	 *   deactivate_task()
   1017	 *     p->on_rq = 0
   1018	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
   1019	 *   pick_next_task()
   1020	 *     rq_unlock()
   1021	 *                                rq_lock()
   1022	 *                                psi_task_change() // old cgroup
   1023	 *                                task->cgroups = to
   1024	 *                                psi_task_change() // new cgroup
   1025	 *                                rq_unlock()
   1026	 *     rq_lock()
   1027	 *   psi_sched_switch() // does deferred updates in new cgroup
   1028	 *
   1029	 * Don't rely on the scheduling state. Use psi_flags instead.
   1030	 */
   1031	task_flags = task->psi_flags;
   1032
   1033	if (task_flags)
   1034		psi_task_change(task, task_flags, 0);
   1035
   1036	/* See comment above */
   1037	rcu_assign_pointer(task->cgroups, to);
   1038
   1039	if (task_flags)
   1040		psi_task_change(task, 0, task_flags);
   1041
   1042	task_rq_unlock(rq, task, &rf);
   1043}
   1044#endif /* CONFIG_CGROUPS */
   1045
   1046int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
   1047{
   1048	int full;
   1049	u64 now;
   1050
   1051	if (static_branch_likely(&psi_disabled))
   1052		return -EOPNOTSUPP;
   1053
   1054	/* Update averages before reporting them */
   1055	mutex_lock(&group->avgs_lock);
   1056	now = sched_clock();
   1057	collect_percpu_times(group, PSI_AVGS, NULL);
   1058	if (now >= group->avg_next_update)
   1059		group->avg_next_update = update_averages(group, now);
   1060	mutex_unlock(&group->avgs_lock);
   1061
   1062	for (full = 0; full < 2; full++) {
   1063		unsigned long avg[3] = { 0, };
   1064		u64 total = 0;
   1065		int w;
   1066
   1067		/* CPU FULL is undefined at the system level */
   1068		if (!(group == &psi_system && res == PSI_CPU && full)) {
   1069			for (w = 0; w < 3; w++)
   1070				avg[w] = group->avg[res * 2 + full][w];
   1071			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
   1072					NSEC_PER_USEC);
   1073		}
   1074
   1075		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
   1076			   full ? "full" : "some",
   1077			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
   1078			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
   1079			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
   1080			   total);
   1081	}
   1082
   1083	return 0;
   1084}
   1085
   1086struct psi_trigger *psi_trigger_create(struct psi_group *group,
   1087			char *buf, size_t nbytes, enum psi_res res)
   1088{
   1089	struct psi_trigger *t;
   1090	enum psi_states state;
   1091	u32 threshold_us;
   1092	u32 window_us;
   1093
   1094	if (static_branch_likely(&psi_disabled))
   1095		return ERR_PTR(-EOPNOTSUPP);
   1096
   1097	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
   1098		state = PSI_IO_SOME + res * 2;
   1099	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
   1100		state = PSI_IO_FULL + res * 2;
   1101	else
   1102		return ERR_PTR(-EINVAL);
   1103
   1104	if (state >= PSI_NONIDLE)
   1105		return ERR_PTR(-EINVAL);
   1106
   1107	if (window_us < WINDOW_MIN_US ||
   1108		window_us > WINDOW_MAX_US)
   1109		return ERR_PTR(-EINVAL);
   1110
   1111	/* Check threshold */
   1112	if (threshold_us == 0 || threshold_us > window_us)
   1113		return ERR_PTR(-EINVAL);
   1114
   1115	t = kmalloc(sizeof(*t), GFP_KERNEL);
   1116	if (!t)
   1117		return ERR_PTR(-ENOMEM);
   1118
   1119	t->group = group;
   1120	t->state = state;
   1121	t->threshold = threshold_us * NSEC_PER_USEC;
   1122	t->win.size = window_us * NSEC_PER_USEC;
   1123	window_reset(&t->win, sched_clock(),
   1124			group->total[PSI_POLL][t->state], 0);
   1125
   1126	t->event = 0;
   1127	t->last_event_time = 0;
   1128	init_waitqueue_head(&t->event_wait);
   1129	t->pending_event = false;
   1130
   1131	mutex_lock(&group->trigger_lock);
   1132
   1133	if (!rcu_access_pointer(group->poll_task)) {
   1134		struct task_struct *task;
   1135
   1136		task = kthread_create(psi_poll_worker, group, "psimon");
   1137		if (IS_ERR(task)) {
   1138			kfree(t);
   1139			mutex_unlock(&group->trigger_lock);
   1140			return ERR_CAST(task);
   1141		}
   1142		atomic_set(&group->poll_wakeup, 0);
   1143		wake_up_process(task);
   1144		rcu_assign_pointer(group->poll_task, task);
   1145	}
   1146
   1147	list_add(&t->node, &group->triggers);
   1148	group->poll_min_period = min(group->poll_min_period,
   1149		div_u64(t->win.size, UPDATES_PER_WINDOW));
   1150	group->nr_triggers[t->state]++;
   1151	group->poll_states |= (1 << t->state);
   1152
   1153	mutex_unlock(&group->trigger_lock);
   1154
   1155	return t;
   1156}
   1157
   1158void psi_trigger_destroy(struct psi_trigger *t)
   1159{
   1160	struct psi_group *group;
   1161	struct task_struct *task_to_destroy = NULL;
   1162
   1163	/*
   1164	 * We do not check psi_disabled since it might have been disabled after
   1165	 * the trigger got created.
   1166	 */
   1167	if (!t)
   1168		return;
   1169
   1170	group = t->group;
   1171	/*
   1172	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
   1173	 * from under a polling process.
   1174	 */
   1175	wake_up_interruptible(&t->event_wait);
   1176
   1177	mutex_lock(&group->trigger_lock);
   1178
   1179	if (!list_empty(&t->node)) {
   1180		struct psi_trigger *tmp;
   1181		u64 period = ULLONG_MAX;
   1182
   1183		list_del(&t->node);
   1184		group->nr_triggers[t->state]--;
   1185		if (!group->nr_triggers[t->state])
   1186			group->poll_states &= ~(1 << t->state);
   1187		/* reset min update period for the remaining triggers */
   1188		list_for_each_entry(tmp, &group->triggers, node)
   1189			period = min(period, div_u64(tmp->win.size,
   1190					UPDATES_PER_WINDOW));
   1191		group->poll_min_period = period;
   1192		/* Destroy poll_task when the last trigger is destroyed */
   1193		if (group->poll_states == 0) {
   1194			group->polling_until = 0;
   1195			task_to_destroy = rcu_dereference_protected(
   1196					group->poll_task,
   1197					lockdep_is_held(&group->trigger_lock));
   1198			rcu_assign_pointer(group->poll_task, NULL);
   1199			del_timer(&group->poll_timer);
   1200		}
   1201	}
   1202
   1203	mutex_unlock(&group->trigger_lock);
   1204
   1205	/*
   1206	 * Wait for psi_schedule_poll_work RCU to complete its read-side
   1207	 * critical section before destroying the trigger and optionally the
   1208	 * poll_task.
   1209	 */
   1210	synchronize_rcu();
   1211	/*
   1212	 * Stop kthread 'psimon' after releasing trigger_lock to prevent a
   1213	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
   1214	 */
   1215	if (task_to_destroy) {
   1216		/*
   1217		 * After the RCU grace period has expired, the worker
   1218		 * can no longer be found through group->poll_task.
   1219		 */
   1220		kthread_stop(task_to_destroy);
   1221	}
   1222	kfree(t);
   1223}
   1224
   1225__poll_t psi_trigger_poll(void **trigger_ptr,
   1226				struct file *file, poll_table *wait)
   1227{
   1228	__poll_t ret = DEFAULT_POLLMASK;
   1229	struct psi_trigger *t;
   1230
   1231	if (static_branch_likely(&psi_disabled))
   1232		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
   1233
   1234	t = smp_load_acquire(trigger_ptr);
   1235	if (!t)
   1236		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
   1237
   1238	poll_wait(file, &t->event_wait, wait);
   1239
   1240	if (cmpxchg(&t->event, 1, 0) == 1)
   1241		ret |= EPOLLPRI;
   1242
   1243	return ret;
   1244}
   1245
   1246#ifdef CONFIG_PROC_FS
   1247static int psi_io_show(struct seq_file *m, void *v)
   1248{
   1249	return psi_show(m, &psi_system, PSI_IO);
   1250}
   1251
   1252static int psi_memory_show(struct seq_file *m, void *v)
   1253{
   1254	return psi_show(m, &psi_system, PSI_MEM);
   1255}
   1256
   1257static int psi_cpu_show(struct seq_file *m, void *v)
   1258{
   1259	return psi_show(m, &psi_system, PSI_CPU);
   1260}
   1261
   1262static int psi_open(struct file *file, int (*psi_show)(struct seq_file *, void *))
   1263{
   1264	if (file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE))
   1265		return -EPERM;
   1266
   1267	return single_open(file, psi_show, NULL);
   1268}
   1269
   1270static int psi_io_open(struct inode *inode, struct file *file)
   1271{
   1272	return psi_open(file, psi_io_show);
   1273}
   1274
   1275static int psi_memory_open(struct inode *inode, struct file *file)
   1276{
   1277	return psi_open(file, psi_memory_show);
   1278}
   1279
   1280static int psi_cpu_open(struct inode *inode, struct file *file)
   1281{
   1282	return psi_open(file, psi_cpu_show);
   1283}
   1284
   1285static ssize_t psi_write(struct file *file, const char __user *user_buf,
   1286			 size_t nbytes, enum psi_res res)
   1287{
   1288	char buf[32];
   1289	size_t buf_size;
   1290	struct seq_file *seq;
   1291	struct psi_trigger *new;
   1292
   1293	if (static_branch_likely(&psi_disabled))
   1294		return -EOPNOTSUPP;
   1295
   1296	if (!nbytes)
   1297		return -EINVAL;
   1298
   1299	buf_size = min(nbytes, sizeof(buf));
   1300	if (copy_from_user(buf, user_buf, buf_size))
   1301		return -EFAULT;
   1302
   1303	buf[buf_size - 1] = '\0';
   1304
   1305	seq = file->private_data;
   1306
   1307	/* Take seq->lock to protect seq->private from concurrent writes */
   1308	mutex_lock(&seq->lock);
   1309
   1310	/* Allow only one trigger per file descriptor */
   1311	if (seq->private) {
   1312		mutex_unlock(&seq->lock);
   1313		return -EBUSY;
   1314	}
   1315
   1316	new = psi_trigger_create(&psi_system, buf, nbytes, res);
   1317	if (IS_ERR(new)) {
   1318		mutex_unlock(&seq->lock);
   1319		return PTR_ERR(new);
   1320	}
   1321
   1322	smp_store_release(&seq->private, new);
   1323	mutex_unlock(&seq->lock);
   1324
   1325	return nbytes;
   1326}
   1327
   1328static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
   1329			    size_t nbytes, loff_t *ppos)
   1330{
   1331	return psi_write(file, user_buf, nbytes, PSI_IO);
   1332}
   1333
   1334static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
   1335				size_t nbytes, loff_t *ppos)
   1336{
   1337	return psi_write(file, user_buf, nbytes, PSI_MEM);
   1338}
   1339
   1340static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
   1341			     size_t nbytes, loff_t *ppos)
   1342{
   1343	return psi_write(file, user_buf, nbytes, PSI_CPU);
   1344}
   1345
   1346static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
   1347{
   1348	struct seq_file *seq = file->private_data;
   1349
   1350	return psi_trigger_poll(&seq->private, file, wait);
   1351}
   1352
   1353static int psi_fop_release(struct inode *inode, struct file *file)
   1354{
   1355	struct seq_file *seq = file->private_data;
   1356
   1357	psi_trigger_destroy(seq->private);
   1358	return single_release(inode, file);
   1359}
   1360
   1361static const struct proc_ops psi_io_proc_ops = {
   1362	.proc_open	= psi_io_open,
   1363	.proc_read	= seq_read,
   1364	.proc_lseek	= seq_lseek,
   1365	.proc_write	= psi_io_write,
   1366	.proc_poll	= psi_fop_poll,
   1367	.proc_release	= psi_fop_release,
   1368};
   1369
   1370static const struct proc_ops psi_memory_proc_ops = {
   1371	.proc_open	= psi_memory_open,
   1372	.proc_read	= seq_read,
   1373	.proc_lseek	= seq_lseek,
   1374	.proc_write	= psi_memory_write,
   1375	.proc_poll	= psi_fop_poll,
   1376	.proc_release	= psi_fop_release,
   1377};
   1378
   1379static const struct proc_ops psi_cpu_proc_ops = {
   1380	.proc_open	= psi_cpu_open,
   1381	.proc_read	= seq_read,
   1382	.proc_lseek	= seq_lseek,
   1383	.proc_write	= psi_cpu_write,
   1384	.proc_poll	= psi_fop_poll,
   1385	.proc_release	= psi_fop_release,
   1386};
   1387
   1388static int __init psi_proc_init(void)
   1389{
   1390	if (psi_enable) {
   1391		proc_mkdir("pressure", NULL);
   1392		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
   1393		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
   1394		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
   1395	}
   1396	return 0;
   1397}
   1398module_init(psi_proc_init);
   1399
   1400#endif /* CONFIG_PROC_FS */