cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sched.h (83414B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Scheduler internal types and methods:
      4 */
      5#ifndef _KERNEL_SCHED_SCHED_H
      6#define _KERNEL_SCHED_SCHED_H
      7
      8#include <linux/sched/affinity.h>
      9#include <linux/sched/autogroup.h>
     10#include <linux/sched/cpufreq.h>
     11#include <linux/sched/deadline.h>
     12#include <linux/sched.h>
     13#include <linux/sched/loadavg.h>
     14#include <linux/sched/mm.h>
     15#include <linux/sched/rseq_api.h>
     16#include <linux/sched/signal.h>
     17#include <linux/sched/smt.h>
     18#include <linux/sched/stat.h>
     19#include <linux/sched/sysctl.h>
     20#include <linux/sched/task_flags.h>
     21#include <linux/sched/task.h>
     22#include <linux/sched/topology.h>
     23
     24#include <linux/atomic.h>
     25#include <linux/bitmap.h>
     26#include <linux/bug.h>
     27#include <linux/capability.h>
     28#include <linux/cgroup_api.h>
     29#include <linux/cgroup.h>
     30#include <linux/cpufreq.h>
     31#include <linux/cpumask_api.h>
     32#include <linux/ctype.h>
     33#include <linux/file.h>
     34#include <linux/fs_api.h>
     35#include <linux/hrtimer_api.h>
     36#include <linux/interrupt.h>
     37#include <linux/irq_work.h>
     38#include <linux/jiffies.h>
     39#include <linux/kref_api.h>
     40#include <linux/kthread.h>
     41#include <linux/ktime_api.h>
     42#include <linux/lockdep_api.h>
     43#include <linux/lockdep.h>
     44#include <linux/minmax.h>
     45#include <linux/mm.h>
     46#include <linux/module.h>
     47#include <linux/mutex_api.h>
     48#include <linux/plist.h>
     49#include <linux/poll.h>
     50#include <linux/proc_fs.h>
     51#include <linux/profile.h>
     52#include <linux/psi.h>
     53#include <linux/rcupdate.h>
     54#include <linux/seq_file.h>
     55#include <linux/seqlock.h>
     56#include <linux/softirq.h>
     57#include <linux/spinlock_api.h>
     58#include <linux/static_key.h>
     59#include <linux/stop_machine.h>
     60#include <linux/syscalls_api.h>
     61#include <linux/syscalls.h>
     62#include <linux/tick.h>
     63#include <linux/topology.h>
     64#include <linux/types.h>
     65#include <linux/u64_stats_sync_api.h>
     66#include <linux/uaccess.h>
     67#include <linux/wait_api.h>
     68#include <linux/wait_bit.h>
     69#include <linux/workqueue_api.h>
     70
     71#include <trace/events/power.h>
     72#include <trace/events/sched.h>
     73
     74#include "../workqueue_internal.h"
     75
     76#ifdef CONFIG_CGROUP_SCHED
     77#include <linux/cgroup.h>
     78#include <linux/psi.h>
     79#endif
     80
     81#ifdef CONFIG_SCHED_DEBUG
     82# include <linux/static_key.h>
     83#endif
     84
     85#ifdef CONFIG_PARAVIRT
     86# include <asm/paravirt.h>
     87# include <asm/paravirt_api_clock.h>
     88#endif
     89
     90#include "cpupri.h"
     91#include "cpudeadline.h"
     92
     93#ifdef CONFIG_SCHED_DEBUG
     94# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
     95#else
     96# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
     97#endif
     98
     99struct rq;
    100struct cpuidle_state;
    101
    102/* task_struct::on_rq states: */
    103#define TASK_ON_RQ_QUEUED	1
    104#define TASK_ON_RQ_MIGRATING	2
    105
    106extern __read_mostly int scheduler_running;
    107
    108extern unsigned long calc_load_update;
    109extern atomic_long_t calc_load_tasks;
    110
    111extern unsigned int sysctl_sched_child_runs_first;
    112
    113extern void calc_global_load_tick(struct rq *this_rq);
    114extern long calc_load_fold_active(struct rq *this_rq, long adjust);
    115
    116extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
    117
    118extern unsigned int sysctl_sched_rt_period;
    119extern int sysctl_sched_rt_runtime;
    120extern int sched_rr_timeslice;
    121
    122/*
    123 * Helpers for converting nanosecond timing to jiffy resolution
    124 */
    125#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
    126
    127/*
    128 * Increase resolution of nice-level calculations for 64-bit architectures.
    129 * The extra resolution improves shares distribution and load balancing of
    130 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
    131 * hierarchies, especially on larger systems. This is not a user-visible change
    132 * and does not change the user-interface for setting shares/weights.
    133 *
    134 * We increase resolution only if we have enough bits to allow this increased
    135 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
    136 * are pretty high and the returns do not justify the increased costs.
    137 *
    138 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
    139 * increase coverage and consistency always enable it on 64-bit platforms.
    140 */
    141#ifdef CONFIG_64BIT
    142# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
    143# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
    144# define scale_load_down(w) \
    145({ \
    146	unsigned long __w = (w); \
    147	if (__w) \
    148		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
    149	__w; \
    150})
    151#else
    152# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
    153# define scale_load(w)		(w)
    154# define scale_load_down(w)	(w)
    155#endif
    156
    157/*
    158 * Task weight (visible to users) and its load (invisible to users) have
    159 * independent resolution, but they should be well calibrated. We use
    160 * scale_load() and scale_load_down(w) to convert between them. The
    161 * following must be true:
    162 *
    163 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
    164 *
    165 */
    166#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
    167
    168/*
    169 * Single value that decides SCHED_DEADLINE internal math precision.
    170 * 10 -> just above 1us
    171 * 9  -> just above 0.5us
    172 */
    173#define DL_SCALE		10
    174
    175/*
    176 * Single value that denotes runtime == period, ie unlimited time.
    177 */
    178#define RUNTIME_INF		((u64)~0ULL)
    179
    180static inline int idle_policy(int policy)
    181{
    182	return policy == SCHED_IDLE;
    183}
    184static inline int fair_policy(int policy)
    185{
    186	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
    187}
    188
    189static inline int rt_policy(int policy)
    190{
    191	return policy == SCHED_FIFO || policy == SCHED_RR;
    192}
    193
    194static inline int dl_policy(int policy)
    195{
    196	return policy == SCHED_DEADLINE;
    197}
    198static inline bool valid_policy(int policy)
    199{
    200	return idle_policy(policy) || fair_policy(policy) ||
    201		rt_policy(policy) || dl_policy(policy);
    202}
    203
    204static inline int task_has_idle_policy(struct task_struct *p)
    205{
    206	return idle_policy(p->policy);
    207}
    208
    209static inline int task_has_rt_policy(struct task_struct *p)
    210{
    211	return rt_policy(p->policy);
    212}
    213
    214static inline int task_has_dl_policy(struct task_struct *p)
    215{
    216	return dl_policy(p->policy);
    217}
    218
    219#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
    220
    221static inline void update_avg(u64 *avg, u64 sample)
    222{
    223	s64 diff = sample - *avg;
    224	*avg += diff / 8;
    225}
    226
    227/*
    228 * Shifting a value by an exponent greater *or equal* to the size of said value
    229 * is UB; cap at size-1.
    230 */
    231#define shr_bound(val, shift)							\
    232	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
    233
    234/*
    235 * !! For sched_setattr_nocheck() (kernel) only !!
    236 *
    237 * This is actually gross. :(
    238 *
    239 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
    240 * tasks, but still be able to sleep. We need this on platforms that cannot
    241 * atomically change clock frequency. Remove once fast switching will be
    242 * available on such platforms.
    243 *
    244 * SUGOV stands for SchedUtil GOVernor.
    245 */
    246#define SCHED_FLAG_SUGOV	0x10000000
    247
    248#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
    249
    250static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
    251{
    252#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
    253	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
    254#else
    255	return false;
    256#endif
    257}
    258
    259/*
    260 * Tells if entity @a should preempt entity @b.
    261 */
    262static inline bool
    263dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
    264{
    265	return dl_entity_is_special(a) ||
    266	       dl_time_before(a->deadline, b->deadline);
    267}
    268
    269/*
    270 * This is the priority-queue data structure of the RT scheduling class:
    271 */
    272struct rt_prio_array {
    273	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
    274	struct list_head queue[MAX_RT_PRIO];
    275};
    276
    277struct rt_bandwidth {
    278	/* nests inside the rq lock: */
    279	raw_spinlock_t		rt_runtime_lock;
    280	ktime_t			rt_period;
    281	u64			rt_runtime;
    282	struct hrtimer		rt_period_timer;
    283	unsigned int		rt_period_active;
    284};
    285
    286void __dl_clear_params(struct task_struct *p);
    287
    288struct dl_bandwidth {
    289	raw_spinlock_t		dl_runtime_lock;
    290	u64			dl_runtime;
    291	u64			dl_period;
    292};
    293
    294static inline int dl_bandwidth_enabled(void)
    295{
    296	return sysctl_sched_rt_runtime >= 0;
    297}
    298
    299/*
    300 * To keep the bandwidth of -deadline tasks under control
    301 * we need some place where:
    302 *  - store the maximum -deadline bandwidth of each cpu;
    303 *  - cache the fraction of bandwidth that is currently allocated in
    304 *    each root domain;
    305 *
    306 * This is all done in the data structure below. It is similar to the
    307 * one used for RT-throttling (rt_bandwidth), with the main difference
    308 * that, since here we are only interested in admission control, we
    309 * do not decrease any runtime while the group "executes", neither we
    310 * need a timer to replenish it.
    311 *
    312 * With respect to SMP, bandwidth is given on a per root domain basis,
    313 * meaning that:
    314 *  - bw (< 100%) is the deadline bandwidth of each CPU;
    315 *  - total_bw is the currently allocated bandwidth in each root domain;
    316 */
    317struct dl_bw {
    318	raw_spinlock_t		lock;
    319	u64			bw;
    320	u64			total_bw;
    321};
    322
    323/*
    324 * Verify the fitness of task @p to run on @cpu taking into account the
    325 * CPU original capacity and the runtime/deadline ratio of the task.
    326 *
    327 * The function will return true if the CPU original capacity of the
    328 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
    329 * task and false otherwise.
    330 */
    331static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
    332{
    333	unsigned long cap = arch_scale_cpu_capacity(cpu);
    334
    335	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
    336}
    337
    338extern void init_dl_bw(struct dl_bw *dl_b);
    339extern int  sched_dl_global_validate(void);
    340extern void sched_dl_do_global(void);
    341extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
    342extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
    343extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
    344extern bool __checkparam_dl(const struct sched_attr *attr);
    345extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
    346extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
    347extern int  dl_cpu_busy(int cpu, struct task_struct *p);
    348
    349#ifdef CONFIG_CGROUP_SCHED
    350
    351struct cfs_rq;
    352struct rt_rq;
    353
    354extern struct list_head task_groups;
    355
    356struct cfs_bandwidth {
    357#ifdef CONFIG_CFS_BANDWIDTH
    358	raw_spinlock_t		lock;
    359	ktime_t			period;
    360	u64			quota;
    361	u64			runtime;
    362	u64			burst;
    363	u64			runtime_snap;
    364	s64			hierarchical_quota;
    365
    366	u8			idle;
    367	u8			period_active;
    368	u8			slack_started;
    369	struct hrtimer		period_timer;
    370	struct hrtimer		slack_timer;
    371	struct list_head	throttled_cfs_rq;
    372
    373	/* Statistics: */
    374	int			nr_periods;
    375	int			nr_throttled;
    376	int			nr_burst;
    377	u64			throttled_time;
    378	u64			burst_time;
    379#endif
    380};
    381
    382/* Task group related information */
    383struct task_group {
    384	struct cgroup_subsys_state css;
    385
    386#ifdef CONFIG_FAIR_GROUP_SCHED
    387	/* schedulable entities of this group on each CPU */
    388	struct sched_entity	**se;
    389	/* runqueue "owned" by this group on each CPU */
    390	struct cfs_rq		**cfs_rq;
    391	unsigned long		shares;
    392
    393	/* A positive value indicates that this is a SCHED_IDLE group. */
    394	int			idle;
    395
    396#ifdef	CONFIG_SMP
    397	/*
    398	 * load_avg can be heavily contended at clock tick time, so put
    399	 * it in its own cacheline separated from the fields above which
    400	 * will also be accessed at each tick.
    401	 */
    402	atomic_long_t		load_avg ____cacheline_aligned;
    403#endif
    404#endif
    405
    406#ifdef CONFIG_RT_GROUP_SCHED
    407	struct sched_rt_entity	**rt_se;
    408	struct rt_rq		**rt_rq;
    409
    410	struct rt_bandwidth	rt_bandwidth;
    411#endif
    412
    413	struct rcu_head		rcu;
    414	struct list_head	list;
    415
    416	struct task_group	*parent;
    417	struct list_head	siblings;
    418	struct list_head	children;
    419
    420#ifdef CONFIG_SCHED_AUTOGROUP
    421	struct autogroup	*autogroup;
    422#endif
    423
    424	struct cfs_bandwidth	cfs_bandwidth;
    425
    426#ifdef CONFIG_UCLAMP_TASK_GROUP
    427	/* The two decimal precision [%] value requested from user-space */
    428	unsigned int		uclamp_pct[UCLAMP_CNT];
    429	/* Clamp values requested for a task group */
    430	struct uclamp_se	uclamp_req[UCLAMP_CNT];
    431	/* Effective clamp values used for a task group */
    432	struct uclamp_se	uclamp[UCLAMP_CNT];
    433#endif
    434
    435};
    436
    437#ifdef CONFIG_FAIR_GROUP_SCHED
    438#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
    439
    440/*
    441 * A weight of 0 or 1 can cause arithmetics problems.
    442 * A weight of a cfs_rq is the sum of weights of which entities
    443 * are queued on this cfs_rq, so a weight of a entity should not be
    444 * too large, so as the shares value of a task group.
    445 * (The default weight is 1024 - so there's no practical
    446 *  limitation from this.)
    447 */
    448#define MIN_SHARES		(1UL <<  1)
    449#define MAX_SHARES		(1UL << 18)
    450#endif
    451
    452typedef int (*tg_visitor)(struct task_group *, void *);
    453
    454extern int walk_tg_tree_from(struct task_group *from,
    455			     tg_visitor down, tg_visitor up, void *data);
    456
    457/*
    458 * Iterate the full tree, calling @down when first entering a node and @up when
    459 * leaving it for the final time.
    460 *
    461 * Caller must hold rcu_lock or sufficient equivalent.
    462 */
    463static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
    464{
    465	return walk_tg_tree_from(&root_task_group, down, up, data);
    466}
    467
    468extern int tg_nop(struct task_group *tg, void *data);
    469
    470extern void free_fair_sched_group(struct task_group *tg);
    471extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
    472extern void online_fair_sched_group(struct task_group *tg);
    473extern void unregister_fair_sched_group(struct task_group *tg);
    474extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
    475			struct sched_entity *se, int cpu,
    476			struct sched_entity *parent);
    477extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
    478
    479extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
    480extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
    481extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
    482
    483extern void unregister_rt_sched_group(struct task_group *tg);
    484extern void free_rt_sched_group(struct task_group *tg);
    485extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
    486extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
    487		struct sched_rt_entity *rt_se, int cpu,
    488		struct sched_rt_entity *parent);
    489extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
    490extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
    491extern long sched_group_rt_runtime(struct task_group *tg);
    492extern long sched_group_rt_period(struct task_group *tg);
    493extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
    494
    495extern struct task_group *sched_create_group(struct task_group *parent);
    496extern void sched_online_group(struct task_group *tg,
    497			       struct task_group *parent);
    498extern void sched_destroy_group(struct task_group *tg);
    499extern void sched_release_group(struct task_group *tg);
    500
    501extern void sched_move_task(struct task_struct *tsk);
    502
    503#ifdef CONFIG_FAIR_GROUP_SCHED
    504extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
    505
    506extern int sched_group_set_idle(struct task_group *tg, long idle);
    507
    508#ifdef CONFIG_SMP
    509extern void set_task_rq_fair(struct sched_entity *se,
    510			     struct cfs_rq *prev, struct cfs_rq *next);
    511#else /* !CONFIG_SMP */
    512static inline void set_task_rq_fair(struct sched_entity *se,
    513			     struct cfs_rq *prev, struct cfs_rq *next) { }
    514#endif /* CONFIG_SMP */
    515#endif /* CONFIG_FAIR_GROUP_SCHED */
    516
    517#else /* CONFIG_CGROUP_SCHED */
    518
    519struct cfs_bandwidth { };
    520
    521#endif	/* CONFIG_CGROUP_SCHED */
    522
    523/* CFS-related fields in a runqueue */
    524struct cfs_rq {
    525	struct load_weight	load;
    526	unsigned int		nr_running;
    527	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
    528	unsigned int		idle_nr_running;   /* SCHED_IDLE */
    529	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
    530
    531	u64			exec_clock;
    532	u64			min_vruntime;
    533#ifdef CONFIG_SCHED_CORE
    534	unsigned int		forceidle_seq;
    535	u64			min_vruntime_fi;
    536#endif
    537
    538#ifndef CONFIG_64BIT
    539	u64			min_vruntime_copy;
    540#endif
    541
    542	struct rb_root_cached	tasks_timeline;
    543
    544	/*
    545	 * 'curr' points to currently running entity on this cfs_rq.
    546	 * It is set to NULL otherwise (i.e when none are currently running).
    547	 */
    548	struct sched_entity	*curr;
    549	struct sched_entity	*next;
    550	struct sched_entity	*last;
    551	struct sched_entity	*skip;
    552
    553#ifdef	CONFIG_SCHED_DEBUG
    554	unsigned int		nr_spread_over;
    555#endif
    556
    557#ifdef CONFIG_SMP
    558	/*
    559	 * CFS load tracking
    560	 */
    561	struct sched_avg	avg;
    562#ifndef CONFIG_64BIT
    563	u64			load_last_update_time_copy;
    564#endif
    565	struct {
    566		raw_spinlock_t	lock ____cacheline_aligned;
    567		int		nr;
    568		unsigned long	load_avg;
    569		unsigned long	util_avg;
    570		unsigned long	runnable_avg;
    571	} removed;
    572
    573#ifdef CONFIG_FAIR_GROUP_SCHED
    574	unsigned long		tg_load_avg_contrib;
    575	long			propagate;
    576	long			prop_runnable_sum;
    577
    578	/*
    579	 *   h_load = weight * f(tg)
    580	 *
    581	 * Where f(tg) is the recursive weight fraction assigned to
    582	 * this group.
    583	 */
    584	unsigned long		h_load;
    585	u64			last_h_load_update;
    586	struct sched_entity	*h_load_next;
    587#endif /* CONFIG_FAIR_GROUP_SCHED */
    588#endif /* CONFIG_SMP */
    589
    590#ifdef CONFIG_FAIR_GROUP_SCHED
    591	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
    592
    593	/*
    594	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
    595	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
    596	 * (like users, containers etc.)
    597	 *
    598	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
    599	 * This list is used during load balance.
    600	 */
    601	int			on_list;
    602	struct list_head	leaf_cfs_rq_list;
    603	struct task_group	*tg;	/* group that "owns" this runqueue */
    604
    605	/* Locally cached copy of our task_group's idle value */
    606	int			idle;
    607
    608#ifdef CONFIG_CFS_BANDWIDTH
    609	int			runtime_enabled;
    610	s64			runtime_remaining;
    611
    612	u64			throttled_clock;
    613	u64			throttled_clock_pelt;
    614	u64			throttled_clock_pelt_time;
    615	int			throttled;
    616	int			throttle_count;
    617	struct list_head	throttled_list;
    618#endif /* CONFIG_CFS_BANDWIDTH */
    619#endif /* CONFIG_FAIR_GROUP_SCHED */
    620};
    621
    622static inline int rt_bandwidth_enabled(void)
    623{
    624	return sysctl_sched_rt_runtime >= 0;
    625}
    626
    627/* RT IPI pull logic requires IRQ_WORK */
    628#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
    629# define HAVE_RT_PUSH_IPI
    630#endif
    631
    632/* Real-Time classes' related field in a runqueue: */
    633struct rt_rq {
    634	struct rt_prio_array	active;
    635	unsigned int		rt_nr_running;
    636	unsigned int		rr_nr_running;
    637#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
    638	struct {
    639		int		curr; /* highest queued rt task prio */
    640#ifdef CONFIG_SMP
    641		int		next; /* next highest */
    642#endif
    643	} highest_prio;
    644#endif
    645#ifdef CONFIG_SMP
    646	unsigned int		rt_nr_migratory;
    647	unsigned int		rt_nr_total;
    648	int			overloaded;
    649	struct plist_head	pushable_tasks;
    650
    651#endif /* CONFIG_SMP */
    652	int			rt_queued;
    653
    654	int			rt_throttled;
    655	u64			rt_time;
    656	u64			rt_runtime;
    657	/* Nests inside the rq lock: */
    658	raw_spinlock_t		rt_runtime_lock;
    659
    660#ifdef CONFIG_RT_GROUP_SCHED
    661	unsigned int		rt_nr_boosted;
    662
    663	struct rq		*rq;
    664	struct task_group	*tg;
    665#endif
    666};
    667
    668static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
    669{
    670	return rt_rq->rt_queued && rt_rq->rt_nr_running;
    671}
    672
    673/* Deadline class' related fields in a runqueue */
    674struct dl_rq {
    675	/* runqueue is an rbtree, ordered by deadline */
    676	struct rb_root_cached	root;
    677
    678	unsigned int		dl_nr_running;
    679
    680#ifdef CONFIG_SMP
    681	/*
    682	 * Deadline values of the currently executing and the
    683	 * earliest ready task on this rq. Caching these facilitates
    684	 * the decision whether or not a ready but not running task
    685	 * should migrate somewhere else.
    686	 */
    687	struct {
    688		u64		curr;
    689		u64		next;
    690	} earliest_dl;
    691
    692	unsigned int		dl_nr_migratory;
    693	int			overloaded;
    694
    695	/*
    696	 * Tasks on this rq that can be pushed away. They are kept in
    697	 * an rb-tree, ordered by tasks' deadlines, with caching
    698	 * of the leftmost (earliest deadline) element.
    699	 */
    700	struct rb_root_cached	pushable_dl_tasks_root;
    701#else
    702	struct dl_bw		dl_bw;
    703#endif
    704	/*
    705	 * "Active utilization" for this runqueue: increased when a
    706	 * task wakes up (becomes TASK_RUNNING) and decreased when a
    707	 * task blocks
    708	 */
    709	u64			running_bw;
    710
    711	/*
    712	 * Utilization of the tasks "assigned" to this runqueue (including
    713	 * the tasks that are in runqueue and the tasks that executed on this
    714	 * CPU and blocked). Increased when a task moves to this runqueue, and
    715	 * decreased when the task moves away (migrates, changes scheduling
    716	 * policy, or terminates).
    717	 * This is needed to compute the "inactive utilization" for the
    718	 * runqueue (inactive utilization = this_bw - running_bw).
    719	 */
    720	u64			this_bw;
    721	u64			extra_bw;
    722
    723	/*
    724	 * Inverse of the fraction of CPU utilization that can be reclaimed
    725	 * by the GRUB algorithm.
    726	 */
    727	u64			bw_ratio;
    728};
    729
    730#ifdef CONFIG_FAIR_GROUP_SCHED
    731/* An entity is a task if it doesn't "own" a runqueue */
    732#define entity_is_task(se)	(!se->my_q)
    733
    734static inline void se_update_runnable(struct sched_entity *se)
    735{
    736	if (!entity_is_task(se))
    737		se->runnable_weight = se->my_q->h_nr_running;
    738}
    739
    740static inline long se_runnable(struct sched_entity *se)
    741{
    742	if (entity_is_task(se))
    743		return !!se->on_rq;
    744	else
    745		return se->runnable_weight;
    746}
    747
    748#else
    749#define entity_is_task(se)	1
    750
    751static inline void se_update_runnable(struct sched_entity *se) {}
    752
    753static inline long se_runnable(struct sched_entity *se)
    754{
    755	return !!se->on_rq;
    756}
    757#endif
    758
    759#ifdef CONFIG_SMP
    760/*
    761 * XXX we want to get rid of these helpers and use the full load resolution.
    762 */
    763static inline long se_weight(struct sched_entity *se)
    764{
    765	return scale_load_down(se->load.weight);
    766}
    767
    768
    769static inline bool sched_asym_prefer(int a, int b)
    770{
    771	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
    772}
    773
    774struct perf_domain {
    775	struct em_perf_domain *em_pd;
    776	struct perf_domain *next;
    777	struct rcu_head rcu;
    778};
    779
    780/* Scheduling group status flags */
    781#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
    782#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
    783
    784/*
    785 * We add the notion of a root-domain which will be used to define per-domain
    786 * variables. Each exclusive cpuset essentially defines an island domain by
    787 * fully partitioning the member CPUs from any other cpuset. Whenever a new
    788 * exclusive cpuset is created, we also create and attach a new root-domain
    789 * object.
    790 *
    791 */
    792struct root_domain {
    793	atomic_t		refcount;
    794	atomic_t		rto_count;
    795	struct rcu_head		rcu;
    796	cpumask_var_t		span;
    797	cpumask_var_t		online;
    798
    799	/*
    800	 * Indicate pullable load on at least one CPU, e.g:
    801	 * - More than one runnable task
    802	 * - Running task is misfit
    803	 */
    804	int			overload;
    805
    806	/* Indicate one or more cpus over-utilized (tipping point) */
    807	int			overutilized;
    808
    809	/*
    810	 * The bit corresponding to a CPU gets set here if such CPU has more
    811	 * than one runnable -deadline task (as it is below for RT tasks).
    812	 */
    813	cpumask_var_t		dlo_mask;
    814	atomic_t		dlo_count;
    815	struct dl_bw		dl_bw;
    816	struct cpudl		cpudl;
    817
    818	/*
    819	 * Indicate whether a root_domain's dl_bw has been checked or
    820	 * updated. It's monotonously increasing value.
    821	 *
    822	 * Also, some corner cases, like 'wrap around' is dangerous, but given
    823	 * that u64 is 'big enough'. So that shouldn't be a concern.
    824	 */
    825	u64 visit_gen;
    826
    827#ifdef HAVE_RT_PUSH_IPI
    828	/*
    829	 * For IPI pull requests, loop across the rto_mask.
    830	 */
    831	struct irq_work		rto_push_work;
    832	raw_spinlock_t		rto_lock;
    833	/* These are only updated and read within rto_lock */
    834	int			rto_loop;
    835	int			rto_cpu;
    836	/* These atomics are updated outside of a lock */
    837	atomic_t		rto_loop_next;
    838	atomic_t		rto_loop_start;
    839#endif
    840	/*
    841	 * The "RT overload" flag: it gets set if a CPU has more than
    842	 * one runnable RT task.
    843	 */
    844	cpumask_var_t		rto_mask;
    845	struct cpupri		cpupri;
    846
    847	unsigned long		max_cpu_capacity;
    848
    849	/*
    850	 * NULL-terminated list of performance domains intersecting with the
    851	 * CPUs of the rd. Protected by RCU.
    852	 */
    853	struct perf_domain __rcu *pd;
    854};
    855
    856extern void init_defrootdomain(void);
    857extern int sched_init_domains(const struct cpumask *cpu_map);
    858extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
    859extern void sched_get_rd(struct root_domain *rd);
    860extern void sched_put_rd(struct root_domain *rd);
    861
    862#ifdef HAVE_RT_PUSH_IPI
    863extern void rto_push_irq_work_func(struct irq_work *work);
    864#endif
    865#endif /* CONFIG_SMP */
    866
    867#ifdef CONFIG_UCLAMP_TASK
    868/*
    869 * struct uclamp_bucket - Utilization clamp bucket
    870 * @value: utilization clamp value for tasks on this clamp bucket
    871 * @tasks: number of RUNNABLE tasks on this clamp bucket
    872 *
    873 * Keep track of how many tasks are RUNNABLE for a given utilization
    874 * clamp value.
    875 */
    876struct uclamp_bucket {
    877	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
    878	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
    879};
    880
    881/*
    882 * struct uclamp_rq - rq's utilization clamp
    883 * @value: currently active clamp values for a rq
    884 * @bucket: utilization clamp buckets affecting a rq
    885 *
    886 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
    887 * A clamp value is affecting a rq when there is at least one task RUNNABLE
    888 * (or actually running) with that value.
    889 *
    890 * There are up to UCLAMP_CNT possible different clamp values, currently there
    891 * are only two: minimum utilization and maximum utilization.
    892 *
    893 * All utilization clamping values are MAX aggregated, since:
    894 * - for util_min: we want to run the CPU at least at the max of the minimum
    895 *   utilization required by its currently RUNNABLE tasks.
    896 * - for util_max: we want to allow the CPU to run up to the max of the
    897 *   maximum utilization allowed by its currently RUNNABLE tasks.
    898 *
    899 * Since on each system we expect only a limited number of different
    900 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
    901 * the metrics required to compute all the per-rq utilization clamp values.
    902 */
    903struct uclamp_rq {
    904	unsigned int value;
    905	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
    906};
    907
    908DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
    909#endif /* CONFIG_UCLAMP_TASK */
    910
    911/*
    912 * This is the main, per-CPU runqueue data structure.
    913 *
    914 * Locking rule: those places that want to lock multiple runqueues
    915 * (such as the load balancing or the thread migration code), lock
    916 * acquire operations must be ordered by ascending &runqueue.
    917 */
    918struct rq {
    919	/* runqueue lock: */
    920	raw_spinlock_t		__lock;
    921
    922	/*
    923	 * nr_running and cpu_load should be in the same cacheline because
    924	 * remote CPUs use both these fields when doing load calculation.
    925	 */
    926	unsigned int		nr_running;
    927#ifdef CONFIG_NUMA_BALANCING
    928	unsigned int		nr_numa_running;
    929	unsigned int		nr_preferred_running;
    930	unsigned int		numa_migrate_on;
    931#endif
    932#ifdef CONFIG_NO_HZ_COMMON
    933#ifdef CONFIG_SMP
    934	unsigned long		last_blocked_load_update_tick;
    935	unsigned int		has_blocked_load;
    936	call_single_data_t	nohz_csd;
    937#endif /* CONFIG_SMP */
    938	unsigned int		nohz_tick_stopped;
    939	atomic_t		nohz_flags;
    940#endif /* CONFIG_NO_HZ_COMMON */
    941
    942#ifdef CONFIG_SMP
    943	unsigned int		ttwu_pending;
    944#endif
    945	u64			nr_switches;
    946
    947#ifdef CONFIG_UCLAMP_TASK
    948	/* Utilization clamp values based on CPU's RUNNABLE tasks */
    949	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
    950	unsigned int		uclamp_flags;
    951#define UCLAMP_FLAG_IDLE 0x01
    952#endif
    953
    954	struct cfs_rq		cfs;
    955	struct rt_rq		rt;
    956	struct dl_rq		dl;
    957
    958#ifdef CONFIG_FAIR_GROUP_SCHED
    959	/* list of leaf cfs_rq on this CPU: */
    960	struct list_head	leaf_cfs_rq_list;
    961	struct list_head	*tmp_alone_branch;
    962#endif /* CONFIG_FAIR_GROUP_SCHED */
    963
    964	/*
    965	 * This is part of a global counter where only the total sum
    966	 * over all CPUs matters. A task can increase this counter on
    967	 * one CPU and if it got migrated afterwards it may decrease
    968	 * it on another CPU. Always updated under the runqueue lock:
    969	 */
    970	unsigned int		nr_uninterruptible;
    971
    972	struct task_struct __rcu	*curr;
    973	struct task_struct	*idle;
    974	struct task_struct	*stop;
    975	unsigned long		next_balance;
    976	struct mm_struct	*prev_mm;
    977
    978	unsigned int		clock_update_flags;
    979	u64			clock;
    980	/* Ensure that all clocks are in the same cache line */
    981	u64			clock_task ____cacheline_aligned;
    982	u64			clock_pelt;
    983	unsigned long		lost_idle_time;
    984
    985	atomic_t		nr_iowait;
    986
    987#ifdef CONFIG_SCHED_DEBUG
    988	u64 last_seen_need_resched_ns;
    989	int ticks_without_resched;
    990#endif
    991
    992#ifdef CONFIG_MEMBARRIER
    993	int membarrier_state;
    994#endif
    995
    996#ifdef CONFIG_SMP
    997	struct root_domain		*rd;
    998	struct sched_domain __rcu	*sd;
    999
   1000	unsigned long		cpu_capacity;
   1001	unsigned long		cpu_capacity_orig;
   1002
   1003	struct callback_head	*balance_callback;
   1004
   1005	unsigned char		nohz_idle_balance;
   1006	unsigned char		idle_balance;
   1007
   1008	unsigned long		misfit_task_load;
   1009
   1010	/* For active balancing */
   1011	int			active_balance;
   1012	int			push_cpu;
   1013	struct cpu_stop_work	active_balance_work;
   1014
   1015	/* CPU of this runqueue: */
   1016	int			cpu;
   1017	int			online;
   1018
   1019	struct list_head cfs_tasks;
   1020
   1021	struct sched_avg	avg_rt;
   1022	struct sched_avg	avg_dl;
   1023#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
   1024	struct sched_avg	avg_irq;
   1025#endif
   1026#ifdef CONFIG_SCHED_THERMAL_PRESSURE
   1027	struct sched_avg	avg_thermal;
   1028#endif
   1029	u64			idle_stamp;
   1030	u64			avg_idle;
   1031
   1032	unsigned long		wake_stamp;
   1033	u64			wake_avg_idle;
   1034
   1035	/* This is used to determine avg_idle's max value */
   1036	u64			max_idle_balance_cost;
   1037
   1038#ifdef CONFIG_HOTPLUG_CPU
   1039	struct rcuwait		hotplug_wait;
   1040#endif
   1041#endif /* CONFIG_SMP */
   1042
   1043#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   1044	u64			prev_irq_time;
   1045#endif
   1046#ifdef CONFIG_PARAVIRT
   1047	u64			prev_steal_time;
   1048#endif
   1049#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
   1050	u64			prev_steal_time_rq;
   1051#endif
   1052
   1053	/* calc_load related fields */
   1054	unsigned long		calc_load_update;
   1055	long			calc_load_active;
   1056
   1057#ifdef CONFIG_SCHED_HRTICK
   1058#ifdef CONFIG_SMP
   1059	call_single_data_t	hrtick_csd;
   1060#endif
   1061	struct hrtimer		hrtick_timer;
   1062	ktime_t 		hrtick_time;
   1063#endif
   1064
   1065#ifdef CONFIG_SCHEDSTATS
   1066	/* latency stats */
   1067	struct sched_info	rq_sched_info;
   1068	unsigned long long	rq_cpu_time;
   1069	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
   1070
   1071	/* sys_sched_yield() stats */
   1072	unsigned int		yld_count;
   1073
   1074	/* schedule() stats */
   1075	unsigned int		sched_count;
   1076	unsigned int		sched_goidle;
   1077
   1078	/* try_to_wake_up() stats */
   1079	unsigned int		ttwu_count;
   1080	unsigned int		ttwu_local;
   1081#endif
   1082
   1083#ifdef CONFIG_CPU_IDLE
   1084	/* Must be inspected within a rcu lock section */
   1085	struct cpuidle_state	*idle_state;
   1086#endif
   1087
   1088#ifdef CONFIG_SMP
   1089	unsigned int		nr_pinned;
   1090#endif
   1091	unsigned int		push_busy;
   1092	struct cpu_stop_work	push_work;
   1093
   1094#ifdef CONFIG_SCHED_CORE
   1095	/* per rq */
   1096	struct rq		*core;
   1097	struct task_struct	*core_pick;
   1098	unsigned int		core_enabled;
   1099	unsigned int		core_sched_seq;
   1100	struct rb_root		core_tree;
   1101
   1102	/* shared state -- careful with sched_core_cpu_deactivate() */
   1103	unsigned int		core_task_seq;
   1104	unsigned int		core_pick_seq;
   1105	unsigned long		core_cookie;
   1106	unsigned int		core_forceidle_count;
   1107	unsigned int		core_forceidle_seq;
   1108	unsigned int		core_forceidle_occupation;
   1109	u64			core_forceidle_start;
   1110#endif
   1111};
   1112
   1113#ifdef CONFIG_FAIR_GROUP_SCHED
   1114
   1115/* CPU runqueue to which this cfs_rq is attached */
   1116static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
   1117{
   1118	return cfs_rq->rq;
   1119}
   1120
   1121#else
   1122
   1123static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
   1124{
   1125	return container_of(cfs_rq, struct rq, cfs);
   1126}
   1127#endif
   1128
   1129static inline int cpu_of(struct rq *rq)
   1130{
   1131#ifdef CONFIG_SMP
   1132	return rq->cpu;
   1133#else
   1134	return 0;
   1135#endif
   1136}
   1137
   1138#define MDF_PUSH	0x01
   1139
   1140static inline bool is_migration_disabled(struct task_struct *p)
   1141{
   1142#ifdef CONFIG_SMP
   1143	return p->migration_disabled;
   1144#else
   1145	return false;
   1146#endif
   1147}
   1148
   1149struct sched_group;
   1150#ifdef CONFIG_SCHED_CORE
   1151static inline struct cpumask *sched_group_span(struct sched_group *sg);
   1152
   1153DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
   1154
   1155static inline bool sched_core_enabled(struct rq *rq)
   1156{
   1157	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
   1158}
   1159
   1160static inline bool sched_core_disabled(void)
   1161{
   1162	return !static_branch_unlikely(&__sched_core_enabled);
   1163}
   1164
   1165/*
   1166 * Be careful with this function; not for general use. The return value isn't
   1167 * stable unless you actually hold a relevant rq->__lock.
   1168 */
   1169static inline raw_spinlock_t *rq_lockp(struct rq *rq)
   1170{
   1171	if (sched_core_enabled(rq))
   1172		return &rq->core->__lock;
   1173
   1174	return &rq->__lock;
   1175}
   1176
   1177static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
   1178{
   1179	if (rq->core_enabled)
   1180		return &rq->core->__lock;
   1181
   1182	return &rq->__lock;
   1183}
   1184
   1185bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
   1186
   1187/*
   1188 * Helpers to check if the CPU's core cookie matches with the task's cookie
   1189 * when core scheduling is enabled.
   1190 * A special case is that the task's cookie always matches with CPU's core
   1191 * cookie if the CPU is in an idle core.
   1192 */
   1193static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
   1194{
   1195	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
   1196	if (!sched_core_enabled(rq))
   1197		return true;
   1198
   1199	return rq->core->core_cookie == p->core_cookie;
   1200}
   1201
   1202static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
   1203{
   1204	bool idle_core = true;
   1205	int cpu;
   1206
   1207	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
   1208	if (!sched_core_enabled(rq))
   1209		return true;
   1210
   1211	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
   1212		if (!available_idle_cpu(cpu)) {
   1213			idle_core = false;
   1214			break;
   1215		}
   1216	}
   1217
   1218	/*
   1219	 * A CPU in an idle core is always the best choice for tasks with
   1220	 * cookies.
   1221	 */
   1222	return idle_core || rq->core->core_cookie == p->core_cookie;
   1223}
   1224
   1225static inline bool sched_group_cookie_match(struct rq *rq,
   1226					    struct task_struct *p,
   1227					    struct sched_group *group)
   1228{
   1229	int cpu;
   1230
   1231	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
   1232	if (!sched_core_enabled(rq))
   1233		return true;
   1234
   1235	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
   1236		if (sched_core_cookie_match(rq, p))
   1237			return true;
   1238	}
   1239	return false;
   1240}
   1241
   1242static inline bool sched_core_enqueued(struct task_struct *p)
   1243{
   1244	return !RB_EMPTY_NODE(&p->core_node);
   1245}
   1246
   1247extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
   1248extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
   1249
   1250extern void sched_core_get(void);
   1251extern void sched_core_put(void);
   1252
   1253#else /* !CONFIG_SCHED_CORE */
   1254
   1255static inline bool sched_core_enabled(struct rq *rq)
   1256{
   1257	return false;
   1258}
   1259
   1260static inline bool sched_core_disabled(void)
   1261{
   1262	return true;
   1263}
   1264
   1265static inline raw_spinlock_t *rq_lockp(struct rq *rq)
   1266{
   1267	return &rq->__lock;
   1268}
   1269
   1270static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
   1271{
   1272	return &rq->__lock;
   1273}
   1274
   1275static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
   1276{
   1277	return true;
   1278}
   1279
   1280static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
   1281{
   1282	return true;
   1283}
   1284
   1285static inline bool sched_group_cookie_match(struct rq *rq,
   1286					    struct task_struct *p,
   1287					    struct sched_group *group)
   1288{
   1289	return true;
   1290}
   1291#endif /* CONFIG_SCHED_CORE */
   1292
   1293static inline void lockdep_assert_rq_held(struct rq *rq)
   1294{
   1295	lockdep_assert_held(__rq_lockp(rq));
   1296}
   1297
   1298extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
   1299extern bool raw_spin_rq_trylock(struct rq *rq);
   1300extern void raw_spin_rq_unlock(struct rq *rq);
   1301
   1302static inline void raw_spin_rq_lock(struct rq *rq)
   1303{
   1304	raw_spin_rq_lock_nested(rq, 0);
   1305}
   1306
   1307static inline void raw_spin_rq_lock_irq(struct rq *rq)
   1308{
   1309	local_irq_disable();
   1310	raw_spin_rq_lock(rq);
   1311}
   1312
   1313static inline void raw_spin_rq_unlock_irq(struct rq *rq)
   1314{
   1315	raw_spin_rq_unlock(rq);
   1316	local_irq_enable();
   1317}
   1318
   1319static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
   1320{
   1321	unsigned long flags;
   1322	local_irq_save(flags);
   1323	raw_spin_rq_lock(rq);
   1324	return flags;
   1325}
   1326
   1327static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
   1328{
   1329	raw_spin_rq_unlock(rq);
   1330	local_irq_restore(flags);
   1331}
   1332
   1333#define raw_spin_rq_lock_irqsave(rq, flags)	\
   1334do {						\
   1335	flags = _raw_spin_rq_lock_irqsave(rq);	\
   1336} while (0)
   1337
   1338#ifdef CONFIG_SCHED_SMT
   1339extern void __update_idle_core(struct rq *rq);
   1340
   1341static inline void update_idle_core(struct rq *rq)
   1342{
   1343	if (static_branch_unlikely(&sched_smt_present))
   1344		__update_idle_core(rq);
   1345}
   1346
   1347#else
   1348static inline void update_idle_core(struct rq *rq) { }
   1349#endif
   1350
   1351DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
   1352
   1353#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
   1354#define this_rq()		this_cpu_ptr(&runqueues)
   1355#define task_rq(p)		cpu_rq(task_cpu(p))
   1356#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
   1357#define raw_rq()		raw_cpu_ptr(&runqueues)
   1358
   1359#ifdef CONFIG_FAIR_GROUP_SCHED
   1360static inline struct task_struct *task_of(struct sched_entity *se)
   1361{
   1362	SCHED_WARN_ON(!entity_is_task(se));
   1363	return container_of(se, struct task_struct, se);
   1364}
   1365
   1366static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
   1367{
   1368	return p->se.cfs_rq;
   1369}
   1370
   1371/* runqueue on which this entity is (to be) queued */
   1372static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
   1373{
   1374	return se->cfs_rq;
   1375}
   1376
   1377/* runqueue "owned" by this group */
   1378static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
   1379{
   1380	return grp->my_q;
   1381}
   1382
   1383#else
   1384
   1385static inline struct task_struct *task_of(struct sched_entity *se)
   1386{
   1387	return container_of(se, struct task_struct, se);
   1388}
   1389
   1390static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
   1391{
   1392	return &task_rq(p)->cfs;
   1393}
   1394
   1395static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
   1396{
   1397	struct task_struct *p = task_of(se);
   1398	struct rq *rq = task_rq(p);
   1399
   1400	return &rq->cfs;
   1401}
   1402
   1403/* runqueue "owned" by this group */
   1404static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
   1405{
   1406	return NULL;
   1407}
   1408#endif
   1409
   1410extern void update_rq_clock(struct rq *rq);
   1411
   1412/*
   1413 * rq::clock_update_flags bits
   1414 *
   1415 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
   1416 *  call to __schedule(). This is an optimisation to avoid
   1417 *  neighbouring rq clock updates.
   1418 *
   1419 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
   1420 *  in effect and calls to update_rq_clock() are being ignored.
   1421 *
   1422 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
   1423 *  made to update_rq_clock() since the last time rq::lock was pinned.
   1424 *
   1425 * If inside of __schedule(), clock_update_flags will have been
   1426 * shifted left (a left shift is a cheap operation for the fast path
   1427 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
   1428 *
   1429 *	if (rq-clock_update_flags >= RQCF_UPDATED)
   1430 *
   1431 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
   1432 * one position though, because the next rq_unpin_lock() will shift it
   1433 * back.
   1434 */
   1435#define RQCF_REQ_SKIP		0x01
   1436#define RQCF_ACT_SKIP		0x02
   1437#define RQCF_UPDATED		0x04
   1438
   1439static inline void assert_clock_updated(struct rq *rq)
   1440{
   1441	/*
   1442	 * The only reason for not seeing a clock update since the
   1443	 * last rq_pin_lock() is if we're currently skipping updates.
   1444	 */
   1445	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
   1446}
   1447
   1448static inline u64 rq_clock(struct rq *rq)
   1449{
   1450	lockdep_assert_rq_held(rq);
   1451	assert_clock_updated(rq);
   1452
   1453	return rq->clock;
   1454}
   1455
   1456static inline u64 rq_clock_task(struct rq *rq)
   1457{
   1458	lockdep_assert_rq_held(rq);
   1459	assert_clock_updated(rq);
   1460
   1461	return rq->clock_task;
   1462}
   1463
   1464/**
   1465 * By default the decay is the default pelt decay period.
   1466 * The decay shift can change the decay period in
   1467 * multiples of 32.
   1468 *  Decay shift		Decay period(ms)
   1469 *	0			32
   1470 *	1			64
   1471 *	2			128
   1472 *	3			256
   1473 *	4			512
   1474 */
   1475extern int sched_thermal_decay_shift;
   1476
   1477static inline u64 rq_clock_thermal(struct rq *rq)
   1478{
   1479	return rq_clock_task(rq) >> sched_thermal_decay_shift;
   1480}
   1481
   1482static inline void rq_clock_skip_update(struct rq *rq)
   1483{
   1484	lockdep_assert_rq_held(rq);
   1485	rq->clock_update_flags |= RQCF_REQ_SKIP;
   1486}
   1487
   1488/*
   1489 * See rt task throttling, which is the only time a skip
   1490 * request is canceled.
   1491 */
   1492static inline void rq_clock_cancel_skipupdate(struct rq *rq)
   1493{
   1494	lockdep_assert_rq_held(rq);
   1495	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
   1496}
   1497
   1498struct rq_flags {
   1499	unsigned long flags;
   1500	struct pin_cookie cookie;
   1501#ifdef CONFIG_SCHED_DEBUG
   1502	/*
   1503	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
   1504	 * current pin context is stashed here in case it needs to be
   1505	 * restored in rq_repin_lock().
   1506	 */
   1507	unsigned int clock_update_flags;
   1508#endif
   1509};
   1510
   1511extern struct callback_head balance_push_callback;
   1512
   1513/*
   1514 * Lockdep annotation that avoids accidental unlocks; it's like a
   1515 * sticky/continuous lockdep_assert_held().
   1516 *
   1517 * This avoids code that has access to 'struct rq *rq' (basically everything in
   1518 * the scheduler) from accidentally unlocking the rq if they do not also have a
   1519 * copy of the (on-stack) 'struct rq_flags rf'.
   1520 *
   1521 * Also see Documentation/locking/lockdep-design.rst.
   1522 */
   1523static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
   1524{
   1525	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
   1526
   1527#ifdef CONFIG_SCHED_DEBUG
   1528	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
   1529	rf->clock_update_flags = 0;
   1530#ifdef CONFIG_SMP
   1531	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
   1532#endif
   1533#endif
   1534}
   1535
   1536static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
   1537{
   1538#ifdef CONFIG_SCHED_DEBUG
   1539	if (rq->clock_update_flags > RQCF_ACT_SKIP)
   1540		rf->clock_update_flags = RQCF_UPDATED;
   1541#endif
   1542
   1543	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
   1544}
   1545
   1546static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
   1547{
   1548	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
   1549
   1550#ifdef CONFIG_SCHED_DEBUG
   1551	/*
   1552	 * Restore the value we stashed in @rf for this pin context.
   1553	 */
   1554	rq->clock_update_flags |= rf->clock_update_flags;
   1555#endif
   1556}
   1557
   1558struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
   1559	__acquires(rq->lock);
   1560
   1561struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
   1562	__acquires(p->pi_lock)
   1563	__acquires(rq->lock);
   1564
   1565static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
   1566	__releases(rq->lock)
   1567{
   1568	rq_unpin_lock(rq, rf);
   1569	raw_spin_rq_unlock(rq);
   1570}
   1571
   1572static inline void
   1573task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
   1574	__releases(rq->lock)
   1575	__releases(p->pi_lock)
   1576{
   1577	rq_unpin_lock(rq, rf);
   1578	raw_spin_rq_unlock(rq);
   1579	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
   1580}
   1581
   1582static inline void
   1583rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
   1584	__acquires(rq->lock)
   1585{
   1586	raw_spin_rq_lock_irqsave(rq, rf->flags);
   1587	rq_pin_lock(rq, rf);
   1588}
   1589
   1590static inline void
   1591rq_lock_irq(struct rq *rq, struct rq_flags *rf)
   1592	__acquires(rq->lock)
   1593{
   1594	raw_spin_rq_lock_irq(rq);
   1595	rq_pin_lock(rq, rf);
   1596}
   1597
   1598static inline void
   1599rq_lock(struct rq *rq, struct rq_flags *rf)
   1600	__acquires(rq->lock)
   1601{
   1602	raw_spin_rq_lock(rq);
   1603	rq_pin_lock(rq, rf);
   1604}
   1605
   1606static inline void
   1607rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
   1608	__releases(rq->lock)
   1609{
   1610	rq_unpin_lock(rq, rf);
   1611	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
   1612}
   1613
   1614static inline void
   1615rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
   1616	__releases(rq->lock)
   1617{
   1618	rq_unpin_lock(rq, rf);
   1619	raw_spin_rq_unlock_irq(rq);
   1620}
   1621
   1622static inline void
   1623rq_unlock(struct rq *rq, struct rq_flags *rf)
   1624	__releases(rq->lock)
   1625{
   1626	rq_unpin_lock(rq, rf);
   1627	raw_spin_rq_unlock(rq);
   1628}
   1629
   1630static inline struct rq *
   1631this_rq_lock_irq(struct rq_flags *rf)
   1632	__acquires(rq->lock)
   1633{
   1634	struct rq *rq;
   1635
   1636	local_irq_disable();
   1637	rq = this_rq();
   1638	rq_lock(rq, rf);
   1639	return rq;
   1640}
   1641
   1642#ifdef CONFIG_NUMA
   1643enum numa_topology_type {
   1644	NUMA_DIRECT,
   1645	NUMA_GLUELESS_MESH,
   1646	NUMA_BACKPLANE,
   1647};
   1648extern enum numa_topology_type sched_numa_topology_type;
   1649extern int sched_max_numa_distance;
   1650extern bool find_numa_distance(int distance);
   1651extern void sched_init_numa(int offline_node);
   1652extern void sched_update_numa(int cpu, bool online);
   1653extern void sched_domains_numa_masks_set(unsigned int cpu);
   1654extern void sched_domains_numa_masks_clear(unsigned int cpu);
   1655extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
   1656#else
   1657static inline void sched_init_numa(int offline_node) { }
   1658static inline void sched_update_numa(int cpu, bool online) { }
   1659static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
   1660static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
   1661static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
   1662{
   1663	return nr_cpu_ids;
   1664}
   1665#endif
   1666
   1667#ifdef CONFIG_NUMA_BALANCING
   1668/* The regions in numa_faults array from task_struct */
   1669enum numa_faults_stats {
   1670	NUMA_MEM = 0,
   1671	NUMA_CPU,
   1672	NUMA_MEMBUF,
   1673	NUMA_CPUBUF
   1674};
   1675extern void sched_setnuma(struct task_struct *p, int node);
   1676extern int migrate_task_to(struct task_struct *p, int cpu);
   1677extern int migrate_swap(struct task_struct *p, struct task_struct *t,
   1678			int cpu, int scpu);
   1679extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
   1680#else
   1681static inline void
   1682init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
   1683{
   1684}
   1685#endif /* CONFIG_NUMA_BALANCING */
   1686
   1687#ifdef CONFIG_SMP
   1688
   1689static inline void
   1690queue_balance_callback(struct rq *rq,
   1691		       struct callback_head *head,
   1692		       void (*func)(struct rq *rq))
   1693{
   1694	lockdep_assert_rq_held(rq);
   1695
   1696	/*
   1697	 * Don't (re)queue an already queued item; nor queue anything when
   1698	 * balance_push() is active, see the comment with
   1699	 * balance_push_callback.
   1700	 */
   1701	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
   1702		return;
   1703
   1704	head->func = (void (*)(struct callback_head *))func;
   1705	head->next = rq->balance_callback;
   1706	rq->balance_callback = head;
   1707}
   1708
   1709#define rcu_dereference_check_sched_domain(p) \
   1710	rcu_dereference_check((p), \
   1711			      lockdep_is_held(&sched_domains_mutex))
   1712
   1713/*
   1714 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
   1715 * See destroy_sched_domains: call_rcu for details.
   1716 *
   1717 * The domain tree of any CPU may only be accessed from within
   1718 * preempt-disabled sections.
   1719 */
   1720#define for_each_domain(cpu, __sd) \
   1721	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
   1722			__sd; __sd = __sd->parent)
   1723
   1724/**
   1725 * highest_flag_domain - Return highest sched_domain containing flag.
   1726 * @cpu:	The CPU whose highest level of sched domain is to
   1727 *		be returned.
   1728 * @flag:	The flag to check for the highest sched_domain
   1729 *		for the given CPU.
   1730 *
   1731 * Returns the highest sched_domain of a CPU which contains the given flag.
   1732 */
   1733static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
   1734{
   1735	struct sched_domain *sd, *hsd = NULL;
   1736
   1737	for_each_domain(cpu, sd) {
   1738		if (!(sd->flags & flag))
   1739			break;
   1740		hsd = sd;
   1741	}
   1742
   1743	return hsd;
   1744}
   1745
   1746static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
   1747{
   1748	struct sched_domain *sd;
   1749
   1750	for_each_domain(cpu, sd) {
   1751		if (sd->flags & flag)
   1752			break;
   1753	}
   1754
   1755	return sd;
   1756}
   1757
   1758DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
   1759DECLARE_PER_CPU(int, sd_llc_size);
   1760DECLARE_PER_CPU(int, sd_llc_id);
   1761DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
   1762DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
   1763DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
   1764DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
   1765extern struct static_key_false sched_asym_cpucapacity;
   1766
   1767struct sched_group_capacity {
   1768	atomic_t		ref;
   1769	/*
   1770	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
   1771	 * for a single CPU.
   1772	 */
   1773	unsigned long		capacity;
   1774	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
   1775	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
   1776	unsigned long		next_update;
   1777	int			imbalance;		/* XXX unrelated to capacity but shared group state */
   1778
   1779#ifdef CONFIG_SCHED_DEBUG
   1780	int			id;
   1781#endif
   1782
   1783	unsigned long		cpumask[];		/* Balance mask */
   1784};
   1785
   1786struct sched_group {
   1787	struct sched_group	*next;			/* Must be a circular list */
   1788	atomic_t		ref;
   1789
   1790	unsigned int		group_weight;
   1791	struct sched_group_capacity *sgc;
   1792	int			asym_prefer_cpu;	/* CPU of highest priority in group */
   1793	int			flags;
   1794
   1795	/*
   1796	 * The CPUs this group covers.
   1797	 *
   1798	 * NOTE: this field is variable length. (Allocated dynamically
   1799	 * by attaching extra space to the end of the structure,
   1800	 * depending on how many CPUs the kernel has booted up with)
   1801	 */
   1802	unsigned long		cpumask[];
   1803};
   1804
   1805static inline struct cpumask *sched_group_span(struct sched_group *sg)
   1806{
   1807	return to_cpumask(sg->cpumask);
   1808}
   1809
   1810/*
   1811 * See build_balance_mask().
   1812 */
   1813static inline struct cpumask *group_balance_mask(struct sched_group *sg)
   1814{
   1815	return to_cpumask(sg->sgc->cpumask);
   1816}
   1817
   1818/**
   1819 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
   1820 * @group: The group whose first CPU is to be returned.
   1821 */
   1822static inline unsigned int group_first_cpu(struct sched_group *group)
   1823{
   1824	return cpumask_first(sched_group_span(group));
   1825}
   1826
   1827extern int group_balance_cpu(struct sched_group *sg);
   1828
   1829#ifdef CONFIG_SCHED_DEBUG
   1830void update_sched_domain_debugfs(void);
   1831void dirty_sched_domain_sysctl(int cpu);
   1832#else
   1833static inline void update_sched_domain_debugfs(void)
   1834{
   1835}
   1836static inline void dirty_sched_domain_sysctl(int cpu)
   1837{
   1838}
   1839#endif
   1840
   1841extern int sched_update_scaling(void);
   1842#endif /* CONFIG_SMP */
   1843
   1844#include "stats.h"
   1845
   1846#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
   1847
   1848extern void __sched_core_account_forceidle(struct rq *rq);
   1849
   1850static inline void sched_core_account_forceidle(struct rq *rq)
   1851{
   1852	if (schedstat_enabled())
   1853		__sched_core_account_forceidle(rq);
   1854}
   1855
   1856extern void __sched_core_tick(struct rq *rq);
   1857
   1858static inline void sched_core_tick(struct rq *rq)
   1859{
   1860	if (sched_core_enabled(rq) && schedstat_enabled())
   1861		__sched_core_tick(rq);
   1862}
   1863
   1864#else
   1865
   1866static inline void sched_core_account_forceidle(struct rq *rq) {}
   1867
   1868static inline void sched_core_tick(struct rq *rq) {}
   1869
   1870#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
   1871
   1872#ifdef CONFIG_CGROUP_SCHED
   1873
   1874/*
   1875 * Return the group to which this tasks belongs.
   1876 *
   1877 * We cannot use task_css() and friends because the cgroup subsystem
   1878 * changes that value before the cgroup_subsys::attach() method is called,
   1879 * therefore we cannot pin it and might observe the wrong value.
   1880 *
   1881 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
   1882 * core changes this before calling sched_move_task().
   1883 *
   1884 * Instead we use a 'copy' which is updated from sched_move_task() while
   1885 * holding both task_struct::pi_lock and rq::lock.
   1886 */
   1887static inline struct task_group *task_group(struct task_struct *p)
   1888{
   1889	return p->sched_task_group;
   1890}
   1891
   1892/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
   1893static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
   1894{
   1895#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
   1896	struct task_group *tg = task_group(p);
   1897#endif
   1898
   1899#ifdef CONFIG_FAIR_GROUP_SCHED
   1900	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
   1901	p->se.cfs_rq = tg->cfs_rq[cpu];
   1902	p->se.parent = tg->se[cpu];
   1903#endif
   1904
   1905#ifdef CONFIG_RT_GROUP_SCHED
   1906	p->rt.rt_rq  = tg->rt_rq[cpu];
   1907	p->rt.parent = tg->rt_se[cpu];
   1908#endif
   1909}
   1910
   1911#else /* CONFIG_CGROUP_SCHED */
   1912
   1913static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
   1914static inline struct task_group *task_group(struct task_struct *p)
   1915{
   1916	return NULL;
   1917}
   1918
   1919#endif /* CONFIG_CGROUP_SCHED */
   1920
   1921static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
   1922{
   1923	set_task_rq(p, cpu);
   1924#ifdef CONFIG_SMP
   1925	/*
   1926	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
   1927	 * successfully executed on another CPU. We must ensure that updates of
   1928	 * per-task data have been completed by this moment.
   1929	 */
   1930	smp_wmb();
   1931	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
   1932	p->wake_cpu = cpu;
   1933#endif
   1934}
   1935
   1936/*
   1937 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
   1938 */
   1939#ifdef CONFIG_SCHED_DEBUG
   1940# define const_debug __read_mostly
   1941#else
   1942# define const_debug const
   1943#endif
   1944
   1945#define SCHED_FEAT(name, enabled)	\
   1946	__SCHED_FEAT_##name ,
   1947
   1948enum {
   1949#include "features.h"
   1950	__SCHED_FEAT_NR,
   1951};
   1952
   1953#undef SCHED_FEAT
   1954
   1955#ifdef CONFIG_SCHED_DEBUG
   1956
   1957/*
   1958 * To support run-time toggling of sched features, all the translation units
   1959 * (but core.c) reference the sysctl_sched_features defined in core.c.
   1960 */
   1961extern const_debug unsigned int sysctl_sched_features;
   1962
   1963#ifdef CONFIG_JUMP_LABEL
   1964#define SCHED_FEAT(name, enabled)					\
   1965static __always_inline bool static_branch_##name(struct static_key *key) \
   1966{									\
   1967	return static_key_##enabled(key);				\
   1968}
   1969
   1970#include "features.h"
   1971#undef SCHED_FEAT
   1972
   1973extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
   1974#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
   1975
   1976#else /* !CONFIG_JUMP_LABEL */
   1977
   1978#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
   1979
   1980#endif /* CONFIG_JUMP_LABEL */
   1981
   1982#else /* !SCHED_DEBUG */
   1983
   1984/*
   1985 * Each translation unit has its own copy of sysctl_sched_features to allow
   1986 * constants propagation at compile time and compiler optimization based on
   1987 * features default.
   1988 */
   1989#define SCHED_FEAT(name, enabled)	\
   1990	(1UL << __SCHED_FEAT_##name) * enabled |
   1991static const_debug __maybe_unused unsigned int sysctl_sched_features =
   1992#include "features.h"
   1993	0;
   1994#undef SCHED_FEAT
   1995
   1996#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
   1997
   1998#endif /* SCHED_DEBUG */
   1999
   2000extern struct static_key_false sched_numa_balancing;
   2001extern struct static_key_false sched_schedstats;
   2002
   2003static inline u64 global_rt_period(void)
   2004{
   2005	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
   2006}
   2007
   2008static inline u64 global_rt_runtime(void)
   2009{
   2010	if (sysctl_sched_rt_runtime < 0)
   2011		return RUNTIME_INF;
   2012
   2013	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
   2014}
   2015
   2016static inline int task_current(struct rq *rq, struct task_struct *p)
   2017{
   2018	return rq->curr == p;
   2019}
   2020
   2021static inline int task_running(struct rq *rq, struct task_struct *p)
   2022{
   2023#ifdef CONFIG_SMP
   2024	return p->on_cpu;
   2025#else
   2026	return task_current(rq, p);
   2027#endif
   2028}
   2029
   2030static inline int task_on_rq_queued(struct task_struct *p)
   2031{
   2032	return p->on_rq == TASK_ON_RQ_QUEUED;
   2033}
   2034
   2035static inline int task_on_rq_migrating(struct task_struct *p)
   2036{
   2037	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
   2038}
   2039
   2040/* Wake flags. The first three directly map to some SD flag value */
   2041#define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
   2042#define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
   2043#define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
   2044
   2045#define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
   2046#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
   2047#define WF_ON_CPU   0x40 /* Wakee is on_cpu */
   2048
   2049#ifdef CONFIG_SMP
   2050static_assert(WF_EXEC == SD_BALANCE_EXEC);
   2051static_assert(WF_FORK == SD_BALANCE_FORK);
   2052static_assert(WF_TTWU == SD_BALANCE_WAKE);
   2053#endif
   2054
   2055/*
   2056 * To aid in avoiding the subversion of "niceness" due to uneven distribution
   2057 * of tasks with abnormal "nice" values across CPUs the contribution that
   2058 * each task makes to its run queue's load is weighted according to its
   2059 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
   2060 * scaled version of the new time slice allocation that they receive on time
   2061 * slice expiry etc.
   2062 */
   2063
   2064#define WEIGHT_IDLEPRIO		3
   2065#define WMULT_IDLEPRIO		1431655765
   2066
   2067extern const int		sched_prio_to_weight[40];
   2068extern const u32		sched_prio_to_wmult[40];
   2069
   2070/*
   2071 * {de,en}queue flags:
   2072 *
   2073 * DEQUEUE_SLEEP  - task is no longer runnable
   2074 * ENQUEUE_WAKEUP - task just became runnable
   2075 *
   2076 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
   2077 *                are in a known state which allows modification. Such pairs
   2078 *                should preserve as much state as possible.
   2079 *
   2080 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
   2081 *        in the runqueue.
   2082 *
   2083 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
   2084 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
   2085 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
   2086 *
   2087 */
   2088
   2089#define DEQUEUE_SLEEP		0x01
   2090#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
   2091#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
   2092#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
   2093
   2094#define ENQUEUE_WAKEUP		0x01
   2095#define ENQUEUE_RESTORE		0x02
   2096#define ENQUEUE_MOVE		0x04
   2097#define ENQUEUE_NOCLOCK		0x08
   2098
   2099#define ENQUEUE_HEAD		0x10
   2100#define ENQUEUE_REPLENISH	0x20
   2101#ifdef CONFIG_SMP
   2102#define ENQUEUE_MIGRATED	0x40
   2103#else
   2104#define ENQUEUE_MIGRATED	0x00
   2105#endif
   2106
   2107#define RETRY_TASK		((void *)-1UL)
   2108
   2109struct sched_class {
   2110
   2111#ifdef CONFIG_UCLAMP_TASK
   2112	int uclamp_enabled;
   2113#endif
   2114
   2115	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
   2116	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
   2117	void (*yield_task)   (struct rq *rq);
   2118	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
   2119
   2120	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
   2121
   2122	struct task_struct *(*pick_next_task)(struct rq *rq);
   2123
   2124	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
   2125	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
   2126
   2127#ifdef CONFIG_SMP
   2128	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
   2129	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
   2130
   2131	struct task_struct * (*pick_task)(struct rq *rq);
   2132
   2133	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
   2134
   2135	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
   2136
   2137	void (*set_cpus_allowed)(struct task_struct *p,
   2138				 const struct cpumask *newmask,
   2139				 u32 flags);
   2140
   2141	void (*rq_online)(struct rq *rq);
   2142	void (*rq_offline)(struct rq *rq);
   2143
   2144	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
   2145#endif
   2146
   2147	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
   2148	void (*task_fork)(struct task_struct *p);
   2149	void (*task_dead)(struct task_struct *p);
   2150
   2151	/*
   2152	 * The switched_from() call is allowed to drop rq->lock, therefore we
   2153	 * cannot assume the switched_from/switched_to pair is serialized by
   2154	 * rq->lock. They are however serialized by p->pi_lock.
   2155	 */
   2156	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
   2157	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
   2158	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
   2159			      int oldprio);
   2160
   2161	unsigned int (*get_rr_interval)(struct rq *rq,
   2162					struct task_struct *task);
   2163
   2164	void (*update_curr)(struct rq *rq);
   2165
   2166#define TASK_SET_GROUP		0
   2167#define TASK_MOVE_GROUP		1
   2168
   2169#ifdef CONFIG_FAIR_GROUP_SCHED
   2170	void (*task_change_group)(struct task_struct *p, int type);
   2171#endif
   2172};
   2173
   2174static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
   2175{
   2176	WARN_ON_ONCE(rq->curr != prev);
   2177	prev->sched_class->put_prev_task(rq, prev);
   2178}
   2179
   2180static inline void set_next_task(struct rq *rq, struct task_struct *next)
   2181{
   2182	next->sched_class->set_next_task(rq, next, false);
   2183}
   2184
   2185
   2186/*
   2187 * Helper to define a sched_class instance; each one is placed in a separate
   2188 * section which is ordered by the linker script:
   2189 *
   2190 *   include/asm-generic/vmlinux.lds.h
   2191 *
   2192 * *CAREFUL* they are laid out in *REVERSE* order!!!
   2193 *
   2194 * Also enforce alignment on the instance, not the type, to guarantee layout.
   2195 */
   2196#define DEFINE_SCHED_CLASS(name) \
   2197const struct sched_class name##_sched_class \
   2198	__aligned(__alignof__(struct sched_class)) \
   2199	__section("__" #name "_sched_class")
   2200
   2201/* Defined in include/asm-generic/vmlinux.lds.h */
   2202extern struct sched_class __sched_class_highest[];
   2203extern struct sched_class __sched_class_lowest[];
   2204
   2205#define for_class_range(class, _from, _to) \
   2206	for (class = (_from); class < (_to); class++)
   2207
   2208#define for_each_class(class) \
   2209	for_class_range(class, __sched_class_highest, __sched_class_lowest)
   2210
   2211#define sched_class_above(_a, _b)	((_a) < (_b))
   2212
   2213extern const struct sched_class stop_sched_class;
   2214extern const struct sched_class dl_sched_class;
   2215extern const struct sched_class rt_sched_class;
   2216extern const struct sched_class fair_sched_class;
   2217extern const struct sched_class idle_sched_class;
   2218
   2219static inline bool sched_stop_runnable(struct rq *rq)
   2220{
   2221	return rq->stop && task_on_rq_queued(rq->stop);
   2222}
   2223
   2224static inline bool sched_dl_runnable(struct rq *rq)
   2225{
   2226	return rq->dl.dl_nr_running > 0;
   2227}
   2228
   2229static inline bool sched_rt_runnable(struct rq *rq)
   2230{
   2231	return rq->rt.rt_queued > 0;
   2232}
   2233
   2234static inline bool sched_fair_runnable(struct rq *rq)
   2235{
   2236	return rq->cfs.nr_running > 0;
   2237}
   2238
   2239extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
   2240extern struct task_struct *pick_next_task_idle(struct rq *rq);
   2241
   2242#define SCA_CHECK		0x01
   2243#define SCA_MIGRATE_DISABLE	0x02
   2244#define SCA_MIGRATE_ENABLE	0x04
   2245#define SCA_USER		0x08
   2246
   2247#ifdef CONFIG_SMP
   2248
   2249extern void update_group_capacity(struct sched_domain *sd, int cpu);
   2250
   2251extern void trigger_load_balance(struct rq *rq);
   2252
   2253extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
   2254
   2255static inline struct task_struct *get_push_task(struct rq *rq)
   2256{
   2257	struct task_struct *p = rq->curr;
   2258
   2259	lockdep_assert_rq_held(rq);
   2260
   2261	if (rq->push_busy)
   2262		return NULL;
   2263
   2264	if (p->nr_cpus_allowed == 1)
   2265		return NULL;
   2266
   2267	if (p->migration_disabled)
   2268		return NULL;
   2269
   2270	rq->push_busy = true;
   2271	return get_task_struct(p);
   2272}
   2273
   2274extern int push_cpu_stop(void *arg);
   2275
   2276#endif
   2277
   2278#ifdef CONFIG_CPU_IDLE
   2279static inline void idle_set_state(struct rq *rq,
   2280				  struct cpuidle_state *idle_state)
   2281{
   2282	rq->idle_state = idle_state;
   2283}
   2284
   2285static inline struct cpuidle_state *idle_get_state(struct rq *rq)
   2286{
   2287	SCHED_WARN_ON(!rcu_read_lock_held());
   2288
   2289	return rq->idle_state;
   2290}
   2291#else
   2292static inline void idle_set_state(struct rq *rq,
   2293				  struct cpuidle_state *idle_state)
   2294{
   2295}
   2296
   2297static inline struct cpuidle_state *idle_get_state(struct rq *rq)
   2298{
   2299	return NULL;
   2300}
   2301#endif
   2302
   2303extern void schedule_idle(void);
   2304
   2305extern void sysrq_sched_debug_show(void);
   2306extern void sched_init_granularity(void);
   2307extern void update_max_interval(void);
   2308
   2309extern void init_sched_dl_class(void);
   2310extern void init_sched_rt_class(void);
   2311extern void init_sched_fair_class(void);
   2312
   2313extern void reweight_task(struct task_struct *p, int prio);
   2314
   2315extern void resched_curr(struct rq *rq);
   2316extern void resched_cpu(int cpu);
   2317
   2318extern struct rt_bandwidth def_rt_bandwidth;
   2319extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
   2320extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
   2321
   2322extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
   2323extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
   2324extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
   2325
   2326#define BW_SHIFT		20
   2327#define BW_UNIT			(1 << BW_SHIFT)
   2328#define RATIO_SHIFT		8
   2329#define MAX_BW_BITS		(64 - BW_SHIFT)
   2330#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
   2331unsigned long to_ratio(u64 period, u64 runtime);
   2332
   2333extern void init_entity_runnable_average(struct sched_entity *se);
   2334extern void post_init_entity_util_avg(struct task_struct *p);
   2335
   2336#ifdef CONFIG_NO_HZ_FULL
   2337extern bool sched_can_stop_tick(struct rq *rq);
   2338extern int __init sched_tick_offload_init(void);
   2339
   2340/*
   2341 * Tick may be needed by tasks in the runqueue depending on their policy and
   2342 * requirements. If tick is needed, lets send the target an IPI to kick it out of
   2343 * nohz mode if necessary.
   2344 */
   2345static inline void sched_update_tick_dependency(struct rq *rq)
   2346{
   2347	int cpu = cpu_of(rq);
   2348
   2349	if (!tick_nohz_full_cpu(cpu))
   2350		return;
   2351
   2352	if (sched_can_stop_tick(rq))
   2353		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
   2354	else
   2355		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
   2356}
   2357#else
   2358static inline int sched_tick_offload_init(void) { return 0; }
   2359static inline void sched_update_tick_dependency(struct rq *rq) { }
   2360#endif
   2361
   2362static inline void add_nr_running(struct rq *rq, unsigned count)
   2363{
   2364	unsigned prev_nr = rq->nr_running;
   2365
   2366	rq->nr_running = prev_nr + count;
   2367	if (trace_sched_update_nr_running_tp_enabled()) {
   2368		call_trace_sched_update_nr_running(rq, count);
   2369	}
   2370
   2371#ifdef CONFIG_SMP
   2372	if (prev_nr < 2 && rq->nr_running >= 2) {
   2373		if (!READ_ONCE(rq->rd->overload))
   2374			WRITE_ONCE(rq->rd->overload, 1);
   2375	}
   2376#endif
   2377
   2378	sched_update_tick_dependency(rq);
   2379}
   2380
   2381static inline void sub_nr_running(struct rq *rq, unsigned count)
   2382{
   2383	rq->nr_running -= count;
   2384	if (trace_sched_update_nr_running_tp_enabled()) {
   2385		call_trace_sched_update_nr_running(rq, -count);
   2386	}
   2387
   2388	/* Check if we still need preemption */
   2389	sched_update_tick_dependency(rq);
   2390}
   2391
   2392extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
   2393extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
   2394
   2395extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
   2396
   2397extern const_debug unsigned int sysctl_sched_nr_migrate;
   2398extern const_debug unsigned int sysctl_sched_migration_cost;
   2399
   2400#ifdef CONFIG_SCHED_DEBUG
   2401extern unsigned int sysctl_sched_latency;
   2402extern unsigned int sysctl_sched_min_granularity;
   2403extern unsigned int sysctl_sched_idle_min_granularity;
   2404extern unsigned int sysctl_sched_wakeup_granularity;
   2405extern int sysctl_resched_latency_warn_ms;
   2406extern int sysctl_resched_latency_warn_once;
   2407
   2408extern unsigned int sysctl_sched_tunable_scaling;
   2409
   2410extern unsigned int sysctl_numa_balancing_scan_delay;
   2411extern unsigned int sysctl_numa_balancing_scan_period_min;
   2412extern unsigned int sysctl_numa_balancing_scan_period_max;
   2413extern unsigned int sysctl_numa_balancing_scan_size;
   2414#endif
   2415
   2416#ifdef CONFIG_SCHED_HRTICK
   2417
   2418/*
   2419 * Use hrtick when:
   2420 *  - enabled by features
   2421 *  - hrtimer is actually high res
   2422 */
   2423static inline int hrtick_enabled(struct rq *rq)
   2424{
   2425	if (!cpu_active(cpu_of(rq)))
   2426		return 0;
   2427	return hrtimer_is_hres_active(&rq->hrtick_timer);
   2428}
   2429
   2430static inline int hrtick_enabled_fair(struct rq *rq)
   2431{
   2432	if (!sched_feat(HRTICK))
   2433		return 0;
   2434	return hrtick_enabled(rq);
   2435}
   2436
   2437static inline int hrtick_enabled_dl(struct rq *rq)
   2438{
   2439	if (!sched_feat(HRTICK_DL))
   2440		return 0;
   2441	return hrtick_enabled(rq);
   2442}
   2443
   2444void hrtick_start(struct rq *rq, u64 delay);
   2445
   2446#else
   2447
   2448static inline int hrtick_enabled_fair(struct rq *rq)
   2449{
   2450	return 0;
   2451}
   2452
   2453static inline int hrtick_enabled_dl(struct rq *rq)
   2454{
   2455	return 0;
   2456}
   2457
   2458static inline int hrtick_enabled(struct rq *rq)
   2459{
   2460	return 0;
   2461}
   2462
   2463#endif /* CONFIG_SCHED_HRTICK */
   2464
   2465#ifndef arch_scale_freq_tick
   2466static __always_inline
   2467void arch_scale_freq_tick(void)
   2468{
   2469}
   2470#endif
   2471
   2472#ifndef arch_scale_freq_capacity
   2473/**
   2474 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
   2475 * @cpu: the CPU in question.
   2476 *
   2477 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
   2478 *
   2479 *     f_curr
   2480 *     ------ * SCHED_CAPACITY_SCALE
   2481 *     f_max
   2482 */
   2483static __always_inline
   2484unsigned long arch_scale_freq_capacity(int cpu)
   2485{
   2486	return SCHED_CAPACITY_SCALE;
   2487}
   2488#endif
   2489
   2490#ifdef CONFIG_SCHED_DEBUG
   2491/*
   2492 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
   2493 * acquire rq lock instead of rq_lock(). So at the end of these two functions
   2494 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
   2495 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
   2496 */
   2497static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
   2498{
   2499	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
   2500	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
   2501#ifdef CONFIG_SMP
   2502	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
   2503#endif
   2504}
   2505#else
   2506static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
   2507#endif
   2508
   2509#ifdef CONFIG_SMP
   2510
   2511static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
   2512{
   2513#ifdef CONFIG_SCHED_CORE
   2514	/*
   2515	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
   2516	 * order by core-id first and cpu-id second.
   2517	 *
   2518	 * Notably:
   2519	 *
   2520	 *	double_rq_lock(0,3); will take core-0, core-1 lock
   2521	 *	double_rq_lock(1,2); will take core-1, core-0 lock
   2522	 *
   2523	 * when only cpu-id is considered.
   2524	 */
   2525	if (rq1->core->cpu < rq2->core->cpu)
   2526		return true;
   2527	if (rq1->core->cpu > rq2->core->cpu)
   2528		return false;
   2529
   2530	/*
   2531	 * __sched_core_flip() relies on SMT having cpu-id lock order.
   2532	 */
   2533#endif
   2534	return rq1->cpu < rq2->cpu;
   2535}
   2536
   2537extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
   2538
   2539#ifdef CONFIG_PREEMPTION
   2540
   2541/*
   2542 * fair double_lock_balance: Safely acquires both rq->locks in a fair
   2543 * way at the expense of forcing extra atomic operations in all
   2544 * invocations.  This assures that the double_lock is acquired using the
   2545 * same underlying policy as the spinlock_t on this architecture, which
   2546 * reduces latency compared to the unfair variant below.  However, it
   2547 * also adds more overhead and therefore may reduce throughput.
   2548 */
   2549static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
   2550	__releases(this_rq->lock)
   2551	__acquires(busiest->lock)
   2552	__acquires(this_rq->lock)
   2553{
   2554	raw_spin_rq_unlock(this_rq);
   2555	double_rq_lock(this_rq, busiest);
   2556
   2557	return 1;
   2558}
   2559
   2560#else
   2561/*
   2562 * Unfair double_lock_balance: Optimizes throughput at the expense of
   2563 * latency by eliminating extra atomic operations when the locks are
   2564 * already in proper order on entry.  This favors lower CPU-ids and will
   2565 * grant the double lock to lower CPUs over higher ids under contention,
   2566 * regardless of entry order into the function.
   2567 */
   2568static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
   2569	__releases(this_rq->lock)
   2570	__acquires(busiest->lock)
   2571	__acquires(this_rq->lock)
   2572{
   2573	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
   2574	    likely(raw_spin_rq_trylock(busiest))) {
   2575		double_rq_clock_clear_update(this_rq, busiest);
   2576		return 0;
   2577	}
   2578
   2579	if (rq_order_less(this_rq, busiest)) {
   2580		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
   2581		double_rq_clock_clear_update(this_rq, busiest);
   2582		return 0;
   2583	}
   2584
   2585	raw_spin_rq_unlock(this_rq);
   2586	double_rq_lock(this_rq, busiest);
   2587
   2588	return 1;
   2589}
   2590
   2591#endif /* CONFIG_PREEMPTION */
   2592
   2593/*
   2594 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
   2595 */
   2596static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
   2597{
   2598	lockdep_assert_irqs_disabled();
   2599
   2600	return _double_lock_balance(this_rq, busiest);
   2601}
   2602
   2603static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
   2604	__releases(busiest->lock)
   2605{
   2606	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
   2607		raw_spin_rq_unlock(busiest);
   2608	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
   2609}
   2610
   2611static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
   2612{
   2613	if (l1 > l2)
   2614		swap(l1, l2);
   2615
   2616	spin_lock(l1);
   2617	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
   2618}
   2619
   2620static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
   2621{
   2622	if (l1 > l2)
   2623		swap(l1, l2);
   2624
   2625	spin_lock_irq(l1);
   2626	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
   2627}
   2628
   2629static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
   2630{
   2631	if (l1 > l2)
   2632		swap(l1, l2);
   2633
   2634	raw_spin_lock(l1);
   2635	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
   2636}
   2637
   2638/*
   2639 * double_rq_unlock - safely unlock two runqueues
   2640 *
   2641 * Note this does not restore interrupts like task_rq_unlock,
   2642 * you need to do so manually after calling.
   2643 */
   2644static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
   2645	__releases(rq1->lock)
   2646	__releases(rq2->lock)
   2647{
   2648	if (__rq_lockp(rq1) != __rq_lockp(rq2))
   2649		raw_spin_rq_unlock(rq2);
   2650	else
   2651		__release(rq2->lock);
   2652	raw_spin_rq_unlock(rq1);
   2653}
   2654
   2655extern void set_rq_online (struct rq *rq);
   2656extern void set_rq_offline(struct rq *rq);
   2657extern bool sched_smp_initialized;
   2658
   2659#else /* CONFIG_SMP */
   2660
   2661/*
   2662 * double_rq_lock - safely lock two runqueues
   2663 *
   2664 * Note this does not disable interrupts like task_rq_lock,
   2665 * you need to do so manually before calling.
   2666 */
   2667static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
   2668	__acquires(rq1->lock)
   2669	__acquires(rq2->lock)
   2670{
   2671	BUG_ON(!irqs_disabled());
   2672	BUG_ON(rq1 != rq2);
   2673	raw_spin_rq_lock(rq1);
   2674	__acquire(rq2->lock);	/* Fake it out ;) */
   2675	double_rq_clock_clear_update(rq1, rq2);
   2676}
   2677
   2678/*
   2679 * double_rq_unlock - safely unlock two runqueues
   2680 *
   2681 * Note this does not restore interrupts like task_rq_unlock,
   2682 * you need to do so manually after calling.
   2683 */
   2684static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
   2685	__releases(rq1->lock)
   2686	__releases(rq2->lock)
   2687{
   2688	BUG_ON(rq1 != rq2);
   2689	raw_spin_rq_unlock(rq1);
   2690	__release(rq2->lock);
   2691}
   2692
   2693#endif
   2694
   2695extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
   2696extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
   2697
   2698#ifdef	CONFIG_SCHED_DEBUG
   2699extern bool sched_debug_verbose;
   2700
   2701extern void print_cfs_stats(struct seq_file *m, int cpu);
   2702extern void print_rt_stats(struct seq_file *m, int cpu);
   2703extern void print_dl_stats(struct seq_file *m, int cpu);
   2704extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
   2705extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
   2706extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
   2707
   2708extern void resched_latency_warn(int cpu, u64 latency);
   2709#ifdef CONFIG_NUMA_BALANCING
   2710extern void
   2711show_numa_stats(struct task_struct *p, struct seq_file *m);
   2712extern void
   2713print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
   2714	unsigned long tpf, unsigned long gsf, unsigned long gpf);
   2715#endif /* CONFIG_NUMA_BALANCING */
   2716#else
   2717static inline void resched_latency_warn(int cpu, u64 latency) {}
   2718#endif /* CONFIG_SCHED_DEBUG */
   2719
   2720extern void init_cfs_rq(struct cfs_rq *cfs_rq);
   2721extern void init_rt_rq(struct rt_rq *rt_rq);
   2722extern void init_dl_rq(struct dl_rq *dl_rq);
   2723
   2724extern void cfs_bandwidth_usage_inc(void);
   2725extern void cfs_bandwidth_usage_dec(void);
   2726
   2727#ifdef CONFIG_NO_HZ_COMMON
   2728#define NOHZ_BALANCE_KICK_BIT	0
   2729#define NOHZ_STATS_KICK_BIT	1
   2730#define NOHZ_NEWILB_KICK_BIT	2
   2731#define NOHZ_NEXT_KICK_BIT	3
   2732
   2733/* Run rebalance_domains() */
   2734#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
   2735/* Update blocked load */
   2736#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
   2737/* Update blocked load when entering idle */
   2738#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
   2739/* Update nohz.next_balance */
   2740#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
   2741
   2742#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
   2743
   2744#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
   2745
   2746extern void nohz_balance_exit_idle(struct rq *rq);
   2747#else
   2748static inline void nohz_balance_exit_idle(struct rq *rq) { }
   2749#endif
   2750
   2751#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
   2752extern void nohz_run_idle_balance(int cpu);
   2753#else
   2754static inline void nohz_run_idle_balance(int cpu) { }
   2755#endif
   2756
   2757#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   2758struct irqtime {
   2759	u64			total;
   2760	u64			tick_delta;
   2761	u64			irq_start_time;
   2762	struct u64_stats_sync	sync;
   2763};
   2764
   2765DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
   2766
   2767/*
   2768 * Returns the irqtime minus the softirq time computed by ksoftirqd.
   2769 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
   2770 * and never move forward.
   2771 */
   2772static inline u64 irq_time_read(int cpu)
   2773{
   2774	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
   2775	unsigned int seq;
   2776	u64 total;
   2777
   2778	do {
   2779		seq = __u64_stats_fetch_begin(&irqtime->sync);
   2780		total = irqtime->total;
   2781	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
   2782
   2783	return total;
   2784}
   2785#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
   2786
   2787#ifdef CONFIG_CPU_FREQ
   2788DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
   2789
   2790/**
   2791 * cpufreq_update_util - Take a note about CPU utilization changes.
   2792 * @rq: Runqueue to carry out the update for.
   2793 * @flags: Update reason flags.
   2794 *
   2795 * This function is called by the scheduler on the CPU whose utilization is
   2796 * being updated.
   2797 *
   2798 * It can only be called from RCU-sched read-side critical sections.
   2799 *
   2800 * The way cpufreq is currently arranged requires it to evaluate the CPU
   2801 * performance state (frequency/voltage) on a regular basis to prevent it from
   2802 * being stuck in a completely inadequate performance level for too long.
   2803 * That is not guaranteed to happen if the updates are only triggered from CFS
   2804 * and DL, though, because they may not be coming in if only RT tasks are
   2805 * active all the time (or there are RT tasks only).
   2806 *
   2807 * As a workaround for that issue, this function is called periodically by the
   2808 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
   2809 * but that really is a band-aid.  Going forward it should be replaced with
   2810 * solutions targeted more specifically at RT tasks.
   2811 */
   2812static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
   2813{
   2814	struct update_util_data *data;
   2815
   2816	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
   2817						  cpu_of(rq)));
   2818	if (data)
   2819		data->func(data, rq_clock(rq), flags);
   2820}
   2821#else
   2822static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
   2823#endif /* CONFIG_CPU_FREQ */
   2824
   2825#ifdef arch_scale_freq_capacity
   2826# ifndef arch_scale_freq_invariant
   2827#  define arch_scale_freq_invariant()	true
   2828# endif
   2829#else
   2830# define arch_scale_freq_invariant()	false
   2831#endif
   2832
   2833#ifdef CONFIG_SMP
   2834static inline unsigned long capacity_orig_of(int cpu)
   2835{
   2836	return cpu_rq(cpu)->cpu_capacity_orig;
   2837}
   2838
   2839/**
   2840 * enum cpu_util_type - CPU utilization type
   2841 * @FREQUENCY_UTIL:	Utilization used to select frequency
   2842 * @ENERGY_UTIL:	Utilization used during energy calculation
   2843 *
   2844 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
   2845 * need to be aggregated differently depending on the usage made of them. This
   2846 * enum is used within effective_cpu_util() to differentiate the types of
   2847 * utilization expected by the callers, and adjust the aggregation accordingly.
   2848 */
   2849enum cpu_util_type {
   2850	FREQUENCY_UTIL,
   2851	ENERGY_UTIL,
   2852};
   2853
   2854unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
   2855				 unsigned long max, enum cpu_util_type type,
   2856				 struct task_struct *p);
   2857
   2858static inline unsigned long cpu_bw_dl(struct rq *rq)
   2859{
   2860	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
   2861}
   2862
   2863static inline unsigned long cpu_util_dl(struct rq *rq)
   2864{
   2865	return READ_ONCE(rq->avg_dl.util_avg);
   2866}
   2867
   2868/**
   2869 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
   2870 * @cpu: the CPU to get the utilization for.
   2871 *
   2872 * The unit of the return value must be the same as the one of CPU capacity
   2873 * so that CPU utilization can be compared with CPU capacity.
   2874 *
   2875 * CPU utilization is the sum of running time of runnable tasks plus the
   2876 * recent utilization of currently non-runnable tasks on that CPU.
   2877 * It represents the amount of CPU capacity currently used by CFS tasks in
   2878 * the range [0..max CPU capacity] with max CPU capacity being the CPU
   2879 * capacity at f_max.
   2880 *
   2881 * The estimated CPU utilization is defined as the maximum between CPU
   2882 * utilization and sum of the estimated utilization of the currently
   2883 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
   2884 * previously-executed tasks, which helps better deduce how busy a CPU will
   2885 * be when a long-sleeping task wakes up. The contribution to CPU utilization
   2886 * of such a task would be significantly decayed at this point of time.
   2887 *
   2888 * CPU utilization can be higher than the current CPU capacity
   2889 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
   2890 * of rounding errors as well as task migrations or wakeups of new tasks.
   2891 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
   2892 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
   2893 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
   2894 * capacity. CPU utilization is allowed to overshoot current CPU capacity
   2895 * though since this is useful for predicting the CPU capacity required
   2896 * after task migrations (scheduler-driven DVFS).
   2897 *
   2898 * Return: (Estimated) utilization for the specified CPU.
   2899 */
   2900static inline unsigned long cpu_util_cfs(int cpu)
   2901{
   2902	struct cfs_rq *cfs_rq;
   2903	unsigned long util;
   2904
   2905	cfs_rq = &cpu_rq(cpu)->cfs;
   2906	util = READ_ONCE(cfs_rq->avg.util_avg);
   2907
   2908	if (sched_feat(UTIL_EST)) {
   2909		util = max_t(unsigned long, util,
   2910			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
   2911	}
   2912
   2913	return min(util, capacity_orig_of(cpu));
   2914}
   2915
   2916static inline unsigned long cpu_util_rt(struct rq *rq)
   2917{
   2918	return READ_ONCE(rq->avg_rt.util_avg);
   2919}
   2920#endif
   2921
   2922#ifdef CONFIG_UCLAMP_TASK
   2923unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
   2924
   2925/**
   2926 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
   2927 * @rq:		The rq to clamp against. Must not be NULL.
   2928 * @util:	The util value to clamp.
   2929 * @p:		The task to clamp against. Can be NULL if you want to clamp
   2930 *		against @rq only.
   2931 *
   2932 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
   2933 *
   2934 * If sched_uclamp_used static key is disabled, then just return the util
   2935 * without any clamping since uclamp aggregation at the rq level in the fast
   2936 * path is disabled, rendering this operation a NOP.
   2937 *
   2938 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
   2939 * will return the correct effective uclamp value of the task even if the
   2940 * static key is disabled.
   2941 */
   2942static __always_inline
   2943unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
   2944				  struct task_struct *p)
   2945{
   2946	unsigned long min_util = 0;
   2947	unsigned long max_util = 0;
   2948
   2949	if (!static_branch_likely(&sched_uclamp_used))
   2950		return util;
   2951
   2952	if (p) {
   2953		min_util = uclamp_eff_value(p, UCLAMP_MIN);
   2954		max_util = uclamp_eff_value(p, UCLAMP_MAX);
   2955
   2956		/*
   2957		 * Ignore last runnable task's max clamp, as this task will
   2958		 * reset it. Similarly, no need to read the rq's min clamp.
   2959		 */
   2960		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
   2961			goto out;
   2962	}
   2963
   2964	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
   2965	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
   2966out:
   2967	/*
   2968	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
   2969	 * RUNNABLE tasks with _different_ clamps, we can end up with an
   2970	 * inversion. Fix it now when the clamps are applied.
   2971	 */
   2972	if (unlikely(min_util >= max_util))
   2973		return min_util;
   2974
   2975	return clamp(util, min_util, max_util);
   2976}
   2977
   2978/* Is the rq being capped/throttled by uclamp_max? */
   2979static inline bool uclamp_rq_is_capped(struct rq *rq)
   2980{
   2981	unsigned long rq_util;
   2982	unsigned long max_util;
   2983
   2984	if (!static_branch_likely(&sched_uclamp_used))
   2985		return false;
   2986
   2987	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
   2988	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
   2989
   2990	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
   2991}
   2992
   2993/*
   2994 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
   2995 * by default in the fast path and only gets turned on once userspace performs
   2996 * an operation that requires it.
   2997 *
   2998 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
   2999 * hence is active.
   3000 */
   3001static inline bool uclamp_is_used(void)
   3002{
   3003	return static_branch_likely(&sched_uclamp_used);
   3004}
   3005#else /* CONFIG_UCLAMP_TASK */
   3006static inline
   3007unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
   3008				  struct task_struct *p)
   3009{
   3010	return util;
   3011}
   3012
   3013static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
   3014
   3015static inline bool uclamp_is_used(void)
   3016{
   3017	return false;
   3018}
   3019#endif /* CONFIG_UCLAMP_TASK */
   3020
   3021#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
   3022static inline unsigned long cpu_util_irq(struct rq *rq)
   3023{
   3024	return rq->avg_irq.util_avg;
   3025}
   3026
   3027static inline
   3028unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
   3029{
   3030	util *= (max - irq);
   3031	util /= max;
   3032
   3033	return util;
   3034
   3035}
   3036#else
   3037static inline unsigned long cpu_util_irq(struct rq *rq)
   3038{
   3039	return 0;
   3040}
   3041
   3042static inline
   3043unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
   3044{
   3045	return util;
   3046}
   3047#endif
   3048
   3049#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
   3050
   3051#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
   3052
   3053DECLARE_STATIC_KEY_FALSE(sched_energy_present);
   3054
   3055static inline bool sched_energy_enabled(void)
   3056{
   3057	return static_branch_unlikely(&sched_energy_present);
   3058}
   3059
   3060#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
   3061
   3062#define perf_domain_span(pd) NULL
   3063static inline bool sched_energy_enabled(void) { return false; }
   3064
   3065#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
   3066
   3067#ifdef CONFIG_MEMBARRIER
   3068/*
   3069 * The scheduler provides memory barriers required by membarrier between:
   3070 * - prior user-space memory accesses and store to rq->membarrier_state,
   3071 * - store to rq->membarrier_state and following user-space memory accesses.
   3072 * In the same way it provides those guarantees around store to rq->curr.
   3073 */
   3074static inline void membarrier_switch_mm(struct rq *rq,
   3075					struct mm_struct *prev_mm,
   3076					struct mm_struct *next_mm)
   3077{
   3078	int membarrier_state;
   3079
   3080	if (prev_mm == next_mm)
   3081		return;
   3082
   3083	membarrier_state = atomic_read(&next_mm->membarrier_state);
   3084	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
   3085		return;
   3086
   3087	WRITE_ONCE(rq->membarrier_state, membarrier_state);
   3088}
   3089#else
   3090static inline void membarrier_switch_mm(struct rq *rq,
   3091					struct mm_struct *prev_mm,
   3092					struct mm_struct *next_mm)
   3093{
   3094}
   3095#endif
   3096
   3097#ifdef CONFIG_SMP
   3098static inline bool is_per_cpu_kthread(struct task_struct *p)
   3099{
   3100	if (!(p->flags & PF_KTHREAD))
   3101		return false;
   3102
   3103	if (p->nr_cpus_allowed != 1)
   3104		return false;
   3105
   3106	return true;
   3107}
   3108#endif
   3109
   3110extern void swake_up_all_locked(struct swait_queue_head *q);
   3111extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
   3112
   3113#ifdef CONFIG_PREEMPT_DYNAMIC
   3114extern int preempt_dynamic_mode;
   3115extern int sched_dynamic_mode(const char *str);
   3116extern void sched_dynamic_update(int mode);
   3117#endif
   3118
   3119#endif /* _KERNEL_SCHED_SCHED_H */