sched.h (83414B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Scheduler internal types and methods: 4 */ 5#ifndef _KERNEL_SCHED_SCHED_H 6#define _KERNEL_SCHED_SCHED_H 7 8#include <linux/sched/affinity.h> 9#include <linux/sched/autogroup.h> 10#include <linux/sched/cpufreq.h> 11#include <linux/sched/deadline.h> 12#include <linux/sched.h> 13#include <linux/sched/loadavg.h> 14#include <linux/sched/mm.h> 15#include <linux/sched/rseq_api.h> 16#include <linux/sched/signal.h> 17#include <linux/sched/smt.h> 18#include <linux/sched/stat.h> 19#include <linux/sched/sysctl.h> 20#include <linux/sched/task_flags.h> 21#include <linux/sched/task.h> 22#include <linux/sched/topology.h> 23 24#include <linux/atomic.h> 25#include <linux/bitmap.h> 26#include <linux/bug.h> 27#include <linux/capability.h> 28#include <linux/cgroup_api.h> 29#include <linux/cgroup.h> 30#include <linux/cpufreq.h> 31#include <linux/cpumask_api.h> 32#include <linux/ctype.h> 33#include <linux/file.h> 34#include <linux/fs_api.h> 35#include <linux/hrtimer_api.h> 36#include <linux/interrupt.h> 37#include <linux/irq_work.h> 38#include <linux/jiffies.h> 39#include <linux/kref_api.h> 40#include <linux/kthread.h> 41#include <linux/ktime_api.h> 42#include <linux/lockdep_api.h> 43#include <linux/lockdep.h> 44#include <linux/minmax.h> 45#include <linux/mm.h> 46#include <linux/module.h> 47#include <linux/mutex_api.h> 48#include <linux/plist.h> 49#include <linux/poll.h> 50#include <linux/proc_fs.h> 51#include <linux/profile.h> 52#include <linux/psi.h> 53#include <linux/rcupdate.h> 54#include <linux/seq_file.h> 55#include <linux/seqlock.h> 56#include <linux/softirq.h> 57#include <linux/spinlock_api.h> 58#include <linux/static_key.h> 59#include <linux/stop_machine.h> 60#include <linux/syscalls_api.h> 61#include <linux/syscalls.h> 62#include <linux/tick.h> 63#include <linux/topology.h> 64#include <linux/types.h> 65#include <linux/u64_stats_sync_api.h> 66#include <linux/uaccess.h> 67#include <linux/wait_api.h> 68#include <linux/wait_bit.h> 69#include <linux/workqueue_api.h> 70 71#include <trace/events/power.h> 72#include <trace/events/sched.h> 73 74#include "../workqueue_internal.h" 75 76#ifdef CONFIG_CGROUP_SCHED 77#include <linux/cgroup.h> 78#include <linux/psi.h> 79#endif 80 81#ifdef CONFIG_SCHED_DEBUG 82# include <linux/static_key.h> 83#endif 84 85#ifdef CONFIG_PARAVIRT 86# include <asm/paravirt.h> 87# include <asm/paravirt_api_clock.h> 88#endif 89 90#include "cpupri.h" 91#include "cpudeadline.h" 92 93#ifdef CONFIG_SCHED_DEBUG 94# define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 95#else 96# define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 97#endif 98 99struct rq; 100struct cpuidle_state; 101 102/* task_struct::on_rq states: */ 103#define TASK_ON_RQ_QUEUED 1 104#define TASK_ON_RQ_MIGRATING 2 105 106extern __read_mostly int scheduler_running; 107 108extern unsigned long calc_load_update; 109extern atomic_long_t calc_load_tasks; 110 111extern unsigned int sysctl_sched_child_runs_first; 112 113extern void calc_global_load_tick(struct rq *this_rq); 114extern long calc_load_fold_active(struct rq *this_rq, long adjust); 115 116extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 117 118extern unsigned int sysctl_sched_rt_period; 119extern int sysctl_sched_rt_runtime; 120extern int sched_rr_timeslice; 121 122/* 123 * Helpers for converting nanosecond timing to jiffy resolution 124 */ 125#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 126 127/* 128 * Increase resolution of nice-level calculations for 64-bit architectures. 129 * The extra resolution improves shares distribution and load balancing of 130 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 131 * hierarchies, especially on larger systems. This is not a user-visible change 132 * and does not change the user-interface for setting shares/weights. 133 * 134 * We increase resolution only if we have enough bits to allow this increased 135 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 136 * are pretty high and the returns do not justify the increased costs. 137 * 138 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 139 * increase coverage and consistency always enable it on 64-bit platforms. 140 */ 141#ifdef CONFIG_64BIT 142# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 143# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 144# define scale_load_down(w) \ 145({ \ 146 unsigned long __w = (w); \ 147 if (__w) \ 148 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 149 __w; \ 150}) 151#else 152# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 153# define scale_load(w) (w) 154# define scale_load_down(w) (w) 155#endif 156 157/* 158 * Task weight (visible to users) and its load (invisible to users) have 159 * independent resolution, but they should be well calibrated. We use 160 * scale_load() and scale_load_down(w) to convert between them. The 161 * following must be true: 162 * 163 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 164 * 165 */ 166#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 167 168/* 169 * Single value that decides SCHED_DEADLINE internal math precision. 170 * 10 -> just above 1us 171 * 9 -> just above 0.5us 172 */ 173#define DL_SCALE 10 174 175/* 176 * Single value that denotes runtime == period, ie unlimited time. 177 */ 178#define RUNTIME_INF ((u64)~0ULL) 179 180static inline int idle_policy(int policy) 181{ 182 return policy == SCHED_IDLE; 183} 184static inline int fair_policy(int policy) 185{ 186 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 187} 188 189static inline int rt_policy(int policy) 190{ 191 return policy == SCHED_FIFO || policy == SCHED_RR; 192} 193 194static inline int dl_policy(int policy) 195{ 196 return policy == SCHED_DEADLINE; 197} 198static inline bool valid_policy(int policy) 199{ 200 return idle_policy(policy) || fair_policy(policy) || 201 rt_policy(policy) || dl_policy(policy); 202} 203 204static inline int task_has_idle_policy(struct task_struct *p) 205{ 206 return idle_policy(p->policy); 207} 208 209static inline int task_has_rt_policy(struct task_struct *p) 210{ 211 return rt_policy(p->policy); 212} 213 214static inline int task_has_dl_policy(struct task_struct *p) 215{ 216 return dl_policy(p->policy); 217} 218 219#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 220 221static inline void update_avg(u64 *avg, u64 sample) 222{ 223 s64 diff = sample - *avg; 224 *avg += diff / 8; 225} 226 227/* 228 * Shifting a value by an exponent greater *or equal* to the size of said value 229 * is UB; cap at size-1. 230 */ 231#define shr_bound(val, shift) \ 232 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 233 234/* 235 * !! For sched_setattr_nocheck() (kernel) only !! 236 * 237 * This is actually gross. :( 238 * 239 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 240 * tasks, but still be able to sleep. We need this on platforms that cannot 241 * atomically change clock frequency. Remove once fast switching will be 242 * available on such platforms. 243 * 244 * SUGOV stands for SchedUtil GOVernor. 245 */ 246#define SCHED_FLAG_SUGOV 0x10000000 247 248#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 249 250static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 251{ 252#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 253 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 254#else 255 return false; 256#endif 257} 258 259/* 260 * Tells if entity @a should preempt entity @b. 261 */ 262static inline bool 263dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 264{ 265 return dl_entity_is_special(a) || 266 dl_time_before(a->deadline, b->deadline); 267} 268 269/* 270 * This is the priority-queue data structure of the RT scheduling class: 271 */ 272struct rt_prio_array { 273 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 274 struct list_head queue[MAX_RT_PRIO]; 275}; 276 277struct rt_bandwidth { 278 /* nests inside the rq lock: */ 279 raw_spinlock_t rt_runtime_lock; 280 ktime_t rt_period; 281 u64 rt_runtime; 282 struct hrtimer rt_period_timer; 283 unsigned int rt_period_active; 284}; 285 286void __dl_clear_params(struct task_struct *p); 287 288struct dl_bandwidth { 289 raw_spinlock_t dl_runtime_lock; 290 u64 dl_runtime; 291 u64 dl_period; 292}; 293 294static inline int dl_bandwidth_enabled(void) 295{ 296 return sysctl_sched_rt_runtime >= 0; 297} 298 299/* 300 * To keep the bandwidth of -deadline tasks under control 301 * we need some place where: 302 * - store the maximum -deadline bandwidth of each cpu; 303 * - cache the fraction of bandwidth that is currently allocated in 304 * each root domain; 305 * 306 * This is all done in the data structure below. It is similar to the 307 * one used for RT-throttling (rt_bandwidth), with the main difference 308 * that, since here we are only interested in admission control, we 309 * do not decrease any runtime while the group "executes", neither we 310 * need a timer to replenish it. 311 * 312 * With respect to SMP, bandwidth is given on a per root domain basis, 313 * meaning that: 314 * - bw (< 100%) is the deadline bandwidth of each CPU; 315 * - total_bw is the currently allocated bandwidth in each root domain; 316 */ 317struct dl_bw { 318 raw_spinlock_t lock; 319 u64 bw; 320 u64 total_bw; 321}; 322 323/* 324 * Verify the fitness of task @p to run on @cpu taking into account the 325 * CPU original capacity and the runtime/deadline ratio of the task. 326 * 327 * The function will return true if the CPU original capacity of the 328 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 329 * task and false otherwise. 330 */ 331static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 332{ 333 unsigned long cap = arch_scale_cpu_capacity(cpu); 334 335 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 336} 337 338extern void init_dl_bw(struct dl_bw *dl_b); 339extern int sched_dl_global_validate(void); 340extern void sched_dl_do_global(void); 341extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 342extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 343extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 344extern bool __checkparam_dl(const struct sched_attr *attr); 345extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 346extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 347extern int dl_cpu_busy(int cpu, struct task_struct *p); 348 349#ifdef CONFIG_CGROUP_SCHED 350 351struct cfs_rq; 352struct rt_rq; 353 354extern struct list_head task_groups; 355 356struct cfs_bandwidth { 357#ifdef CONFIG_CFS_BANDWIDTH 358 raw_spinlock_t lock; 359 ktime_t period; 360 u64 quota; 361 u64 runtime; 362 u64 burst; 363 u64 runtime_snap; 364 s64 hierarchical_quota; 365 366 u8 idle; 367 u8 period_active; 368 u8 slack_started; 369 struct hrtimer period_timer; 370 struct hrtimer slack_timer; 371 struct list_head throttled_cfs_rq; 372 373 /* Statistics: */ 374 int nr_periods; 375 int nr_throttled; 376 int nr_burst; 377 u64 throttled_time; 378 u64 burst_time; 379#endif 380}; 381 382/* Task group related information */ 383struct task_group { 384 struct cgroup_subsys_state css; 385 386#ifdef CONFIG_FAIR_GROUP_SCHED 387 /* schedulable entities of this group on each CPU */ 388 struct sched_entity **se; 389 /* runqueue "owned" by this group on each CPU */ 390 struct cfs_rq **cfs_rq; 391 unsigned long shares; 392 393 /* A positive value indicates that this is a SCHED_IDLE group. */ 394 int idle; 395 396#ifdef CONFIG_SMP 397 /* 398 * load_avg can be heavily contended at clock tick time, so put 399 * it in its own cacheline separated from the fields above which 400 * will also be accessed at each tick. 401 */ 402 atomic_long_t load_avg ____cacheline_aligned; 403#endif 404#endif 405 406#ifdef CONFIG_RT_GROUP_SCHED 407 struct sched_rt_entity **rt_se; 408 struct rt_rq **rt_rq; 409 410 struct rt_bandwidth rt_bandwidth; 411#endif 412 413 struct rcu_head rcu; 414 struct list_head list; 415 416 struct task_group *parent; 417 struct list_head siblings; 418 struct list_head children; 419 420#ifdef CONFIG_SCHED_AUTOGROUP 421 struct autogroup *autogroup; 422#endif 423 424 struct cfs_bandwidth cfs_bandwidth; 425 426#ifdef CONFIG_UCLAMP_TASK_GROUP 427 /* The two decimal precision [%] value requested from user-space */ 428 unsigned int uclamp_pct[UCLAMP_CNT]; 429 /* Clamp values requested for a task group */ 430 struct uclamp_se uclamp_req[UCLAMP_CNT]; 431 /* Effective clamp values used for a task group */ 432 struct uclamp_se uclamp[UCLAMP_CNT]; 433#endif 434 435}; 436 437#ifdef CONFIG_FAIR_GROUP_SCHED 438#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 439 440/* 441 * A weight of 0 or 1 can cause arithmetics problems. 442 * A weight of a cfs_rq is the sum of weights of which entities 443 * are queued on this cfs_rq, so a weight of a entity should not be 444 * too large, so as the shares value of a task group. 445 * (The default weight is 1024 - so there's no practical 446 * limitation from this.) 447 */ 448#define MIN_SHARES (1UL << 1) 449#define MAX_SHARES (1UL << 18) 450#endif 451 452typedef int (*tg_visitor)(struct task_group *, void *); 453 454extern int walk_tg_tree_from(struct task_group *from, 455 tg_visitor down, tg_visitor up, void *data); 456 457/* 458 * Iterate the full tree, calling @down when first entering a node and @up when 459 * leaving it for the final time. 460 * 461 * Caller must hold rcu_lock or sufficient equivalent. 462 */ 463static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 464{ 465 return walk_tg_tree_from(&root_task_group, down, up, data); 466} 467 468extern int tg_nop(struct task_group *tg, void *data); 469 470extern void free_fair_sched_group(struct task_group *tg); 471extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 472extern void online_fair_sched_group(struct task_group *tg); 473extern void unregister_fair_sched_group(struct task_group *tg); 474extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 475 struct sched_entity *se, int cpu, 476 struct sched_entity *parent); 477extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 478 479extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 480extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 481extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 482 483extern void unregister_rt_sched_group(struct task_group *tg); 484extern void free_rt_sched_group(struct task_group *tg); 485extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 486extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 487 struct sched_rt_entity *rt_se, int cpu, 488 struct sched_rt_entity *parent); 489extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 490extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 491extern long sched_group_rt_runtime(struct task_group *tg); 492extern long sched_group_rt_period(struct task_group *tg); 493extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 494 495extern struct task_group *sched_create_group(struct task_group *parent); 496extern void sched_online_group(struct task_group *tg, 497 struct task_group *parent); 498extern void sched_destroy_group(struct task_group *tg); 499extern void sched_release_group(struct task_group *tg); 500 501extern void sched_move_task(struct task_struct *tsk); 502 503#ifdef CONFIG_FAIR_GROUP_SCHED 504extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 505 506extern int sched_group_set_idle(struct task_group *tg, long idle); 507 508#ifdef CONFIG_SMP 509extern void set_task_rq_fair(struct sched_entity *se, 510 struct cfs_rq *prev, struct cfs_rq *next); 511#else /* !CONFIG_SMP */ 512static inline void set_task_rq_fair(struct sched_entity *se, 513 struct cfs_rq *prev, struct cfs_rq *next) { } 514#endif /* CONFIG_SMP */ 515#endif /* CONFIG_FAIR_GROUP_SCHED */ 516 517#else /* CONFIG_CGROUP_SCHED */ 518 519struct cfs_bandwidth { }; 520 521#endif /* CONFIG_CGROUP_SCHED */ 522 523/* CFS-related fields in a runqueue */ 524struct cfs_rq { 525 struct load_weight load; 526 unsigned int nr_running; 527 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 528 unsigned int idle_nr_running; /* SCHED_IDLE */ 529 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 530 531 u64 exec_clock; 532 u64 min_vruntime; 533#ifdef CONFIG_SCHED_CORE 534 unsigned int forceidle_seq; 535 u64 min_vruntime_fi; 536#endif 537 538#ifndef CONFIG_64BIT 539 u64 min_vruntime_copy; 540#endif 541 542 struct rb_root_cached tasks_timeline; 543 544 /* 545 * 'curr' points to currently running entity on this cfs_rq. 546 * It is set to NULL otherwise (i.e when none are currently running). 547 */ 548 struct sched_entity *curr; 549 struct sched_entity *next; 550 struct sched_entity *last; 551 struct sched_entity *skip; 552 553#ifdef CONFIG_SCHED_DEBUG 554 unsigned int nr_spread_over; 555#endif 556 557#ifdef CONFIG_SMP 558 /* 559 * CFS load tracking 560 */ 561 struct sched_avg avg; 562#ifndef CONFIG_64BIT 563 u64 load_last_update_time_copy; 564#endif 565 struct { 566 raw_spinlock_t lock ____cacheline_aligned; 567 int nr; 568 unsigned long load_avg; 569 unsigned long util_avg; 570 unsigned long runnable_avg; 571 } removed; 572 573#ifdef CONFIG_FAIR_GROUP_SCHED 574 unsigned long tg_load_avg_contrib; 575 long propagate; 576 long prop_runnable_sum; 577 578 /* 579 * h_load = weight * f(tg) 580 * 581 * Where f(tg) is the recursive weight fraction assigned to 582 * this group. 583 */ 584 unsigned long h_load; 585 u64 last_h_load_update; 586 struct sched_entity *h_load_next; 587#endif /* CONFIG_FAIR_GROUP_SCHED */ 588#endif /* CONFIG_SMP */ 589 590#ifdef CONFIG_FAIR_GROUP_SCHED 591 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 592 593 /* 594 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 595 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 596 * (like users, containers etc.) 597 * 598 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 599 * This list is used during load balance. 600 */ 601 int on_list; 602 struct list_head leaf_cfs_rq_list; 603 struct task_group *tg; /* group that "owns" this runqueue */ 604 605 /* Locally cached copy of our task_group's idle value */ 606 int idle; 607 608#ifdef CONFIG_CFS_BANDWIDTH 609 int runtime_enabled; 610 s64 runtime_remaining; 611 612 u64 throttled_clock; 613 u64 throttled_clock_pelt; 614 u64 throttled_clock_pelt_time; 615 int throttled; 616 int throttle_count; 617 struct list_head throttled_list; 618#endif /* CONFIG_CFS_BANDWIDTH */ 619#endif /* CONFIG_FAIR_GROUP_SCHED */ 620}; 621 622static inline int rt_bandwidth_enabled(void) 623{ 624 return sysctl_sched_rt_runtime >= 0; 625} 626 627/* RT IPI pull logic requires IRQ_WORK */ 628#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 629# define HAVE_RT_PUSH_IPI 630#endif 631 632/* Real-Time classes' related field in a runqueue: */ 633struct rt_rq { 634 struct rt_prio_array active; 635 unsigned int rt_nr_running; 636 unsigned int rr_nr_running; 637#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 638 struct { 639 int curr; /* highest queued rt task prio */ 640#ifdef CONFIG_SMP 641 int next; /* next highest */ 642#endif 643 } highest_prio; 644#endif 645#ifdef CONFIG_SMP 646 unsigned int rt_nr_migratory; 647 unsigned int rt_nr_total; 648 int overloaded; 649 struct plist_head pushable_tasks; 650 651#endif /* CONFIG_SMP */ 652 int rt_queued; 653 654 int rt_throttled; 655 u64 rt_time; 656 u64 rt_runtime; 657 /* Nests inside the rq lock: */ 658 raw_spinlock_t rt_runtime_lock; 659 660#ifdef CONFIG_RT_GROUP_SCHED 661 unsigned int rt_nr_boosted; 662 663 struct rq *rq; 664 struct task_group *tg; 665#endif 666}; 667 668static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 669{ 670 return rt_rq->rt_queued && rt_rq->rt_nr_running; 671} 672 673/* Deadline class' related fields in a runqueue */ 674struct dl_rq { 675 /* runqueue is an rbtree, ordered by deadline */ 676 struct rb_root_cached root; 677 678 unsigned int dl_nr_running; 679 680#ifdef CONFIG_SMP 681 /* 682 * Deadline values of the currently executing and the 683 * earliest ready task on this rq. Caching these facilitates 684 * the decision whether or not a ready but not running task 685 * should migrate somewhere else. 686 */ 687 struct { 688 u64 curr; 689 u64 next; 690 } earliest_dl; 691 692 unsigned int dl_nr_migratory; 693 int overloaded; 694 695 /* 696 * Tasks on this rq that can be pushed away. They are kept in 697 * an rb-tree, ordered by tasks' deadlines, with caching 698 * of the leftmost (earliest deadline) element. 699 */ 700 struct rb_root_cached pushable_dl_tasks_root; 701#else 702 struct dl_bw dl_bw; 703#endif 704 /* 705 * "Active utilization" for this runqueue: increased when a 706 * task wakes up (becomes TASK_RUNNING) and decreased when a 707 * task blocks 708 */ 709 u64 running_bw; 710 711 /* 712 * Utilization of the tasks "assigned" to this runqueue (including 713 * the tasks that are in runqueue and the tasks that executed on this 714 * CPU and blocked). Increased when a task moves to this runqueue, and 715 * decreased when the task moves away (migrates, changes scheduling 716 * policy, or terminates). 717 * This is needed to compute the "inactive utilization" for the 718 * runqueue (inactive utilization = this_bw - running_bw). 719 */ 720 u64 this_bw; 721 u64 extra_bw; 722 723 /* 724 * Inverse of the fraction of CPU utilization that can be reclaimed 725 * by the GRUB algorithm. 726 */ 727 u64 bw_ratio; 728}; 729 730#ifdef CONFIG_FAIR_GROUP_SCHED 731/* An entity is a task if it doesn't "own" a runqueue */ 732#define entity_is_task(se) (!se->my_q) 733 734static inline void se_update_runnable(struct sched_entity *se) 735{ 736 if (!entity_is_task(se)) 737 se->runnable_weight = se->my_q->h_nr_running; 738} 739 740static inline long se_runnable(struct sched_entity *se) 741{ 742 if (entity_is_task(se)) 743 return !!se->on_rq; 744 else 745 return se->runnable_weight; 746} 747 748#else 749#define entity_is_task(se) 1 750 751static inline void se_update_runnable(struct sched_entity *se) {} 752 753static inline long se_runnable(struct sched_entity *se) 754{ 755 return !!se->on_rq; 756} 757#endif 758 759#ifdef CONFIG_SMP 760/* 761 * XXX we want to get rid of these helpers and use the full load resolution. 762 */ 763static inline long se_weight(struct sched_entity *se) 764{ 765 return scale_load_down(se->load.weight); 766} 767 768 769static inline bool sched_asym_prefer(int a, int b) 770{ 771 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 772} 773 774struct perf_domain { 775 struct em_perf_domain *em_pd; 776 struct perf_domain *next; 777 struct rcu_head rcu; 778}; 779 780/* Scheduling group status flags */ 781#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 782#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 783 784/* 785 * We add the notion of a root-domain which will be used to define per-domain 786 * variables. Each exclusive cpuset essentially defines an island domain by 787 * fully partitioning the member CPUs from any other cpuset. Whenever a new 788 * exclusive cpuset is created, we also create and attach a new root-domain 789 * object. 790 * 791 */ 792struct root_domain { 793 atomic_t refcount; 794 atomic_t rto_count; 795 struct rcu_head rcu; 796 cpumask_var_t span; 797 cpumask_var_t online; 798 799 /* 800 * Indicate pullable load on at least one CPU, e.g: 801 * - More than one runnable task 802 * - Running task is misfit 803 */ 804 int overload; 805 806 /* Indicate one or more cpus over-utilized (tipping point) */ 807 int overutilized; 808 809 /* 810 * The bit corresponding to a CPU gets set here if such CPU has more 811 * than one runnable -deadline task (as it is below for RT tasks). 812 */ 813 cpumask_var_t dlo_mask; 814 atomic_t dlo_count; 815 struct dl_bw dl_bw; 816 struct cpudl cpudl; 817 818 /* 819 * Indicate whether a root_domain's dl_bw has been checked or 820 * updated. It's monotonously increasing value. 821 * 822 * Also, some corner cases, like 'wrap around' is dangerous, but given 823 * that u64 is 'big enough'. So that shouldn't be a concern. 824 */ 825 u64 visit_gen; 826 827#ifdef HAVE_RT_PUSH_IPI 828 /* 829 * For IPI pull requests, loop across the rto_mask. 830 */ 831 struct irq_work rto_push_work; 832 raw_spinlock_t rto_lock; 833 /* These are only updated and read within rto_lock */ 834 int rto_loop; 835 int rto_cpu; 836 /* These atomics are updated outside of a lock */ 837 atomic_t rto_loop_next; 838 atomic_t rto_loop_start; 839#endif 840 /* 841 * The "RT overload" flag: it gets set if a CPU has more than 842 * one runnable RT task. 843 */ 844 cpumask_var_t rto_mask; 845 struct cpupri cpupri; 846 847 unsigned long max_cpu_capacity; 848 849 /* 850 * NULL-terminated list of performance domains intersecting with the 851 * CPUs of the rd. Protected by RCU. 852 */ 853 struct perf_domain __rcu *pd; 854}; 855 856extern void init_defrootdomain(void); 857extern int sched_init_domains(const struct cpumask *cpu_map); 858extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 859extern void sched_get_rd(struct root_domain *rd); 860extern void sched_put_rd(struct root_domain *rd); 861 862#ifdef HAVE_RT_PUSH_IPI 863extern void rto_push_irq_work_func(struct irq_work *work); 864#endif 865#endif /* CONFIG_SMP */ 866 867#ifdef CONFIG_UCLAMP_TASK 868/* 869 * struct uclamp_bucket - Utilization clamp bucket 870 * @value: utilization clamp value for tasks on this clamp bucket 871 * @tasks: number of RUNNABLE tasks on this clamp bucket 872 * 873 * Keep track of how many tasks are RUNNABLE for a given utilization 874 * clamp value. 875 */ 876struct uclamp_bucket { 877 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 878 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 879}; 880 881/* 882 * struct uclamp_rq - rq's utilization clamp 883 * @value: currently active clamp values for a rq 884 * @bucket: utilization clamp buckets affecting a rq 885 * 886 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 887 * A clamp value is affecting a rq when there is at least one task RUNNABLE 888 * (or actually running) with that value. 889 * 890 * There are up to UCLAMP_CNT possible different clamp values, currently there 891 * are only two: minimum utilization and maximum utilization. 892 * 893 * All utilization clamping values are MAX aggregated, since: 894 * - for util_min: we want to run the CPU at least at the max of the minimum 895 * utilization required by its currently RUNNABLE tasks. 896 * - for util_max: we want to allow the CPU to run up to the max of the 897 * maximum utilization allowed by its currently RUNNABLE tasks. 898 * 899 * Since on each system we expect only a limited number of different 900 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 901 * the metrics required to compute all the per-rq utilization clamp values. 902 */ 903struct uclamp_rq { 904 unsigned int value; 905 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 906}; 907 908DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 909#endif /* CONFIG_UCLAMP_TASK */ 910 911/* 912 * This is the main, per-CPU runqueue data structure. 913 * 914 * Locking rule: those places that want to lock multiple runqueues 915 * (such as the load balancing or the thread migration code), lock 916 * acquire operations must be ordered by ascending &runqueue. 917 */ 918struct rq { 919 /* runqueue lock: */ 920 raw_spinlock_t __lock; 921 922 /* 923 * nr_running and cpu_load should be in the same cacheline because 924 * remote CPUs use both these fields when doing load calculation. 925 */ 926 unsigned int nr_running; 927#ifdef CONFIG_NUMA_BALANCING 928 unsigned int nr_numa_running; 929 unsigned int nr_preferred_running; 930 unsigned int numa_migrate_on; 931#endif 932#ifdef CONFIG_NO_HZ_COMMON 933#ifdef CONFIG_SMP 934 unsigned long last_blocked_load_update_tick; 935 unsigned int has_blocked_load; 936 call_single_data_t nohz_csd; 937#endif /* CONFIG_SMP */ 938 unsigned int nohz_tick_stopped; 939 atomic_t nohz_flags; 940#endif /* CONFIG_NO_HZ_COMMON */ 941 942#ifdef CONFIG_SMP 943 unsigned int ttwu_pending; 944#endif 945 u64 nr_switches; 946 947#ifdef CONFIG_UCLAMP_TASK 948 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 949 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 950 unsigned int uclamp_flags; 951#define UCLAMP_FLAG_IDLE 0x01 952#endif 953 954 struct cfs_rq cfs; 955 struct rt_rq rt; 956 struct dl_rq dl; 957 958#ifdef CONFIG_FAIR_GROUP_SCHED 959 /* list of leaf cfs_rq on this CPU: */ 960 struct list_head leaf_cfs_rq_list; 961 struct list_head *tmp_alone_branch; 962#endif /* CONFIG_FAIR_GROUP_SCHED */ 963 964 /* 965 * This is part of a global counter where only the total sum 966 * over all CPUs matters. A task can increase this counter on 967 * one CPU and if it got migrated afterwards it may decrease 968 * it on another CPU. Always updated under the runqueue lock: 969 */ 970 unsigned int nr_uninterruptible; 971 972 struct task_struct __rcu *curr; 973 struct task_struct *idle; 974 struct task_struct *stop; 975 unsigned long next_balance; 976 struct mm_struct *prev_mm; 977 978 unsigned int clock_update_flags; 979 u64 clock; 980 /* Ensure that all clocks are in the same cache line */ 981 u64 clock_task ____cacheline_aligned; 982 u64 clock_pelt; 983 unsigned long lost_idle_time; 984 985 atomic_t nr_iowait; 986 987#ifdef CONFIG_SCHED_DEBUG 988 u64 last_seen_need_resched_ns; 989 int ticks_without_resched; 990#endif 991 992#ifdef CONFIG_MEMBARRIER 993 int membarrier_state; 994#endif 995 996#ifdef CONFIG_SMP 997 struct root_domain *rd; 998 struct sched_domain __rcu *sd; 999 1000 unsigned long cpu_capacity; 1001 unsigned long cpu_capacity_orig; 1002 1003 struct callback_head *balance_callback; 1004 1005 unsigned char nohz_idle_balance; 1006 unsigned char idle_balance; 1007 1008 unsigned long misfit_task_load; 1009 1010 /* For active balancing */ 1011 int active_balance; 1012 int push_cpu; 1013 struct cpu_stop_work active_balance_work; 1014 1015 /* CPU of this runqueue: */ 1016 int cpu; 1017 int online; 1018 1019 struct list_head cfs_tasks; 1020 1021 struct sched_avg avg_rt; 1022 struct sched_avg avg_dl; 1023#ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1024 struct sched_avg avg_irq; 1025#endif 1026#ifdef CONFIG_SCHED_THERMAL_PRESSURE 1027 struct sched_avg avg_thermal; 1028#endif 1029 u64 idle_stamp; 1030 u64 avg_idle; 1031 1032 unsigned long wake_stamp; 1033 u64 wake_avg_idle; 1034 1035 /* This is used to determine avg_idle's max value */ 1036 u64 max_idle_balance_cost; 1037 1038#ifdef CONFIG_HOTPLUG_CPU 1039 struct rcuwait hotplug_wait; 1040#endif 1041#endif /* CONFIG_SMP */ 1042 1043#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1044 u64 prev_irq_time; 1045#endif 1046#ifdef CONFIG_PARAVIRT 1047 u64 prev_steal_time; 1048#endif 1049#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1050 u64 prev_steal_time_rq; 1051#endif 1052 1053 /* calc_load related fields */ 1054 unsigned long calc_load_update; 1055 long calc_load_active; 1056 1057#ifdef CONFIG_SCHED_HRTICK 1058#ifdef CONFIG_SMP 1059 call_single_data_t hrtick_csd; 1060#endif 1061 struct hrtimer hrtick_timer; 1062 ktime_t hrtick_time; 1063#endif 1064 1065#ifdef CONFIG_SCHEDSTATS 1066 /* latency stats */ 1067 struct sched_info rq_sched_info; 1068 unsigned long long rq_cpu_time; 1069 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1070 1071 /* sys_sched_yield() stats */ 1072 unsigned int yld_count; 1073 1074 /* schedule() stats */ 1075 unsigned int sched_count; 1076 unsigned int sched_goidle; 1077 1078 /* try_to_wake_up() stats */ 1079 unsigned int ttwu_count; 1080 unsigned int ttwu_local; 1081#endif 1082 1083#ifdef CONFIG_CPU_IDLE 1084 /* Must be inspected within a rcu lock section */ 1085 struct cpuidle_state *idle_state; 1086#endif 1087 1088#ifdef CONFIG_SMP 1089 unsigned int nr_pinned; 1090#endif 1091 unsigned int push_busy; 1092 struct cpu_stop_work push_work; 1093 1094#ifdef CONFIG_SCHED_CORE 1095 /* per rq */ 1096 struct rq *core; 1097 struct task_struct *core_pick; 1098 unsigned int core_enabled; 1099 unsigned int core_sched_seq; 1100 struct rb_root core_tree; 1101 1102 /* shared state -- careful with sched_core_cpu_deactivate() */ 1103 unsigned int core_task_seq; 1104 unsigned int core_pick_seq; 1105 unsigned long core_cookie; 1106 unsigned int core_forceidle_count; 1107 unsigned int core_forceidle_seq; 1108 unsigned int core_forceidle_occupation; 1109 u64 core_forceidle_start; 1110#endif 1111}; 1112 1113#ifdef CONFIG_FAIR_GROUP_SCHED 1114 1115/* CPU runqueue to which this cfs_rq is attached */ 1116static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1117{ 1118 return cfs_rq->rq; 1119} 1120 1121#else 1122 1123static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1124{ 1125 return container_of(cfs_rq, struct rq, cfs); 1126} 1127#endif 1128 1129static inline int cpu_of(struct rq *rq) 1130{ 1131#ifdef CONFIG_SMP 1132 return rq->cpu; 1133#else 1134 return 0; 1135#endif 1136} 1137 1138#define MDF_PUSH 0x01 1139 1140static inline bool is_migration_disabled(struct task_struct *p) 1141{ 1142#ifdef CONFIG_SMP 1143 return p->migration_disabled; 1144#else 1145 return false; 1146#endif 1147} 1148 1149struct sched_group; 1150#ifdef CONFIG_SCHED_CORE 1151static inline struct cpumask *sched_group_span(struct sched_group *sg); 1152 1153DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1154 1155static inline bool sched_core_enabled(struct rq *rq) 1156{ 1157 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1158} 1159 1160static inline bool sched_core_disabled(void) 1161{ 1162 return !static_branch_unlikely(&__sched_core_enabled); 1163} 1164 1165/* 1166 * Be careful with this function; not for general use. The return value isn't 1167 * stable unless you actually hold a relevant rq->__lock. 1168 */ 1169static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1170{ 1171 if (sched_core_enabled(rq)) 1172 return &rq->core->__lock; 1173 1174 return &rq->__lock; 1175} 1176 1177static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1178{ 1179 if (rq->core_enabled) 1180 return &rq->core->__lock; 1181 1182 return &rq->__lock; 1183} 1184 1185bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1186 1187/* 1188 * Helpers to check if the CPU's core cookie matches with the task's cookie 1189 * when core scheduling is enabled. 1190 * A special case is that the task's cookie always matches with CPU's core 1191 * cookie if the CPU is in an idle core. 1192 */ 1193static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1194{ 1195 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1196 if (!sched_core_enabled(rq)) 1197 return true; 1198 1199 return rq->core->core_cookie == p->core_cookie; 1200} 1201 1202static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1203{ 1204 bool idle_core = true; 1205 int cpu; 1206 1207 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1208 if (!sched_core_enabled(rq)) 1209 return true; 1210 1211 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1212 if (!available_idle_cpu(cpu)) { 1213 idle_core = false; 1214 break; 1215 } 1216 } 1217 1218 /* 1219 * A CPU in an idle core is always the best choice for tasks with 1220 * cookies. 1221 */ 1222 return idle_core || rq->core->core_cookie == p->core_cookie; 1223} 1224 1225static inline bool sched_group_cookie_match(struct rq *rq, 1226 struct task_struct *p, 1227 struct sched_group *group) 1228{ 1229 int cpu; 1230 1231 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1232 if (!sched_core_enabled(rq)) 1233 return true; 1234 1235 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1236 if (sched_core_cookie_match(rq, p)) 1237 return true; 1238 } 1239 return false; 1240} 1241 1242static inline bool sched_core_enqueued(struct task_struct *p) 1243{ 1244 return !RB_EMPTY_NODE(&p->core_node); 1245} 1246 1247extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1248extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1249 1250extern void sched_core_get(void); 1251extern void sched_core_put(void); 1252 1253#else /* !CONFIG_SCHED_CORE */ 1254 1255static inline bool sched_core_enabled(struct rq *rq) 1256{ 1257 return false; 1258} 1259 1260static inline bool sched_core_disabled(void) 1261{ 1262 return true; 1263} 1264 1265static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1266{ 1267 return &rq->__lock; 1268} 1269 1270static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1271{ 1272 return &rq->__lock; 1273} 1274 1275static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1276{ 1277 return true; 1278} 1279 1280static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1281{ 1282 return true; 1283} 1284 1285static inline bool sched_group_cookie_match(struct rq *rq, 1286 struct task_struct *p, 1287 struct sched_group *group) 1288{ 1289 return true; 1290} 1291#endif /* CONFIG_SCHED_CORE */ 1292 1293static inline void lockdep_assert_rq_held(struct rq *rq) 1294{ 1295 lockdep_assert_held(__rq_lockp(rq)); 1296} 1297 1298extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1299extern bool raw_spin_rq_trylock(struct rq *rq); 1300extern void raw_spin_rq_unlock(struct rq *rq); 1301 1302static inline void raw_spin_rq_lock(struct rq *rq) 1303{ 1304 raw_spin_rq_lock_nested(rq, 0); 1305} 1306 1307static inline void raw_spin_rq_lock_irq(struct rq *rq) 1308{ 1309 local_irq_disable(); 1310 raw_spin_rq_lock(rq); 1311} 1312 1313static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1314{ 1315 raw_spin_rq_unlock(rq); 1316 local_irq_enable(); 1317} 1318 1319static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1320{ 1321 unsigned long flags; 1322 local_irq_save(flags); 1323 raw_spin_rq_lock(rq); 1324 return flags; 1325} 1326 1327static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1328{ 1329 raw_spin_rq_unlock(rq); 1330 local_irq_restore(flags); 1331} 1332 1333#define raw_spin_rq_lock_irqsave(rq, flags) \ 1334do { \ 1335 flags = _raw_spin_rq_lock_irqsave(rq); \ 1336} while (0) 1337 1338#ifdef CONFIG_SCHED_SMT 1339extern void __update_idle_core(struct rq *rq); 1340 1341static inline void update_idle_core(struct rq *rq) 1342{ 1343 if (static_branch_unlikely(&sched_smt_present)) 1344 __update_idle_core(rq); 1345} 1346 1347#else 1348static inline void update_idle_core(struct rq *rq) { } 1349#endif 1350 1351DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1352 1353#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1354#define this_rq() this_cpu_ptr(&runqueues) 1355#define task_rq(p) cpu_rq(task_cpu(p)) 1356#define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1357#define raw_rq() raw_cpu_ptr(&runqueues) 1358 1359#ifdef CONFIG_FAIR_GROUP_SCHED 1360static inline struct task_struct *task_of(struct sched_entity *se) 1361{ 1362 SCHED_WARN_ON(!entity_is_task(se)); 1363 return container_of(se, struct task_struct, se); 1364} 1365 1366static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1367{ 1368 return p->se.cfs_rq; 1369} 1370 1371/* runqueue on which this entity is (to be) queued */ 1372static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1373{ 1374 return se->cfs_rq; 1375} 1376 1377/* runqueue "owned" by this group */ 1378static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1379{ 1380 return grp->my_q; 1381} 1382 1383#else 1384 1385static inline struct task_struct *task_of(struct sched_entity *se) 1386{ 1387 return container_of(se, struct task_struct, se); 1388} 1389 1390static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1391{ 1392 return &task_rq(p)->cfs; 1393} 1394 1395static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1396{ 1397 struct task_struct *p = task_of(se); 1398 struct rq *rq = task_rq(p); 1399 1400 return &rq->cfs; 1401} 1402 1403/* runqueue "owned" by this group */ 1404static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1405{ 1406 return NULL; 1407} 1408#endif 1409 1410extern void update_rq_clock(struct rq *rq); 1411 1412/* 1413 * rq::clock_update_flags bits 1414 * 1415 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1416 * call to __schedule(). This is an optimisation to avoid 1417 * neighbouring rq clock updates. 1418 * 1419 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1420 * in effect and calls to update_rq_clock() are being ignored. 1421 * 1422 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1423 * made to update_rq_clock() since the last time rq::lock was pinned. 1424 * 1425 * If inside of __schedule(), clock_update_flags will have been 1426 * shifted left (a left shift is a cheap operation for the fast path 1427 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1428 * 1429 * if (rq-clock_update_flags >= RQCF_UPDATED) 1430 * 1431 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1432 * one position though, because the next rq_unpin_lock() will shift it 1433 * back. 1434 */ 1435#define RQCF_REQ_SKIP 0x01 1436#define RQCF_ACT_SKIP 0x02 1437#define RQCF_UPDATED 0x04 1438 1439static inline void assert_clock_updated(struct rq *rq) 1440{ 1441 /* 1442 * The only reason for not seeing a clock update since the 1443 * last rq_pin_lock() is if we're currently skipping updates. 1444 */ 1445 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1446} 1447 1448static inline u64 rq_clock(struct rq *rq) 1449{ 1450 lockdep_assert_rq_held(rq); 1451 assert_clock_updated(rq); 1452 1453 return rq->clock; 1454} 1455 1456static inline u64 rq_clock_task(struct rq *rq) 1457{ 1458 lockdep_assert_rq_held(rq); 1459 assert_clock_updated(rq); 1460 1461 return rq->clock_task; 1462} 1463 1464/** 1465 * By default the decay is the default pelt decay period. 1466 * The decay shift can change the decay period in 1467 * multiples of 32. 1468 * Decay shift Decay period(ms) 1469 * 0 32 1470 * 1 64 1471 * 2 128 1472 * 3 256 1473 * 4 512 1474 */ 1475extern int sched_thermal_decay_shift; 1476 1477static inline u64 rq_clock_thermal(struct rq *rq) 1478{ 1479 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1480} 1481 1482static inline void rq_clock_skip_update(struct rq *rq) 1483{ 1484 lockdep_assert_rq_held(rq); 1485 rq->clock_update_flags |= RQCF_REQ_SKIP; 1486} 1487 1488/* 1489 * See rt task throttling, which is the only time a skip 1490 * request is canceled. 1491 */ 1492static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1493{ 1494 lockdep_assert_rq_held(rq); 1495 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1496} 1497 1498struct rq_flags { 1499 unsigned long flags; 1500 struct pin_cookie cookie; 1501#ifdef CONFIG_SCHED_DEBUG 1502 /* 1503 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1504 * current pin context is stashed here in case it needs to be 1505 * restored in rq_repin_lock(). 1506 */ 1507 unsigned int clock_update_flags; 1508#endif 1509}; 1510 1511extern struct callback_head balance_push_callback; 1512 1513/* 1514 * Lockdep annotation that avoids accidental unlocks; it's like a 1515 * sticky/continuous lockdep_assert_held(). 1516 * 1517 * This avoids code that has access to 'struct rq *rq' (basically everything in 1518 * the scheduler) from accidentally unlocking the rq if they do not also have a 1519 * copy of the (on-stack) 'struct rq_flags rf'. 1520 * 1521 * Also see Documentation/locking/lockdep-design.rst. 1522 */ 1523static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1524{ 1525 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1526 1527#ifdef CONFIG_SCHED_DEBUG 1528 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1529 rf->clock_update_flags = 0; 1530#ifdef CONFIG_SMP 1531 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1532#endif 1533#endif 1534} 1535 1536static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1537{ 1538#ifdef CONFIG_SCHED_DEBUG 1539 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1540 rf->clock_update_flags = RQCF_UPDATED; 1541#endif 1542 1543 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1544} 1545 1546static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1547{ 1548 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1549 1550#ifdef CONFIG_SCHED_DEBUG 1551 /* 1552 * Restore the value we stashed in @rf for this pin context. 1553 */ 1554 rq->clock_update_flags |= rf->clock_update_flags; 1555#endif 1556} 1557 1558struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1559 __acquires(rq->lock); 1560 1561struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1562 __acquires(p->pi_lock) 1563 __acquires(rq->lock); 1564 1565static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1566 __releases(rq->lock) 1567{ 1568 rq_unpin_lock(rq, rf); 1569 raw_spin_rq_unlock(rq); 1570} 1571 1572static inline void 1573task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1574 __releases(rq->lock) 1575 __releases(p->pi_lock) 1576{ 1577 rq_unpin_lock(rq, rf); 1578 raw_spin_rq_unlock(rq); 1579 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1580} 1581 1582static inline void 1583rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1584 __acquires(rq->lock) 1585{ 1586 raw_spin_rq_lock_irqsave(rq, rf->flags); 1587 rq_pin_lock(rq, rf); 1588} 1589 1590static inline void 1591rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1592 __acquires(rq->lock) 1593{ 1594 raw_spin_rq_lock_irq(rq); 1595 rq_pin_lock(rq, rf); 1596} 1597 1598static inline void 1599rq_lock(struct rq *rq, struct rq_flags *rf) 1600 __acquires(rq->lock) 1601{ 1602 raw_spin_rq_lock(rq); 1603 rq_pin_lock(rq, rf); 1604} 1605 1606static inline void 1607rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1608 __releases(rq->lock) 1609{ 1610 rq_unpin_lock(rq, rf); 1611 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1612} 1613 1614static inline void 1615rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1616 __releases(rq->lock) 1617{ 1618 rq_unpin_lock(rq, rf); 1619 raw_spin_rq_unlock_irq(rq); 1620} 1621 1622static inline void 1623rq_unlock(struct rq *rq, struct rq_flags *rf) 1624 __releases(rq->lock) 1625{ 1626 rq_unpin_lock(rq, rf); 1627 raw_spin_rq_unlock(rq); 1628} 1629 1630static inline struct rq * 1631this_rq_lock_irq(struct rq_flags *rf) 1632 __acquires(rq->lock) 1633{ 1634 struct rq *rq; 1635 1636 local_irq_disable(); 1637 rq = this_rq(); 1638 rq_lock(rq, rf); 1639 return rq; 1640} 1641 1642#ifdef CONFIG_NUMA 1643enum numa_topology_type { 1644 NUMA_DIRECT, 1645 NUMA_GLUELESS_MESH, 1646 NUMA_BACKPLANE, 1647}; 1648extern enum numa_topology_type sched_numa_topology_type; 1649extern int sched_max_numa_distance; 1650extern bool find_numa_distance(int distance); 1651extern void sched_init_numa(int offline_node); 1652extern void sched_update_numa(int cpu, bool online); 1653extern void sched_domains_numa_masks_set(unsigned int cpu); 1654extern void sched_domains_numa_masks_clear(unsigned int cpu); 1655extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1656#else 1657static inline void sched_init_numa(int offline_node) { } 1658static inline void sched_update_numa(int cpu, bool online) { } 1659static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1660static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1661static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1662{ 1663 return nr_cpu_ids; 1664} 1665#endif 1666 1667#ifdef CONFIG_NUMA_BALANCING 1668/* The regions in numa_faults array from task_struct */ 1669enum numa_faults_stats { 1670 NUMA_MEM = 0, 1671 NUMA_CPU, 1672 NUMA_MEMBUF, 1673 NUMA_CPUBUF 1674}; 1675extern void sched_setnuma(struct task_struct *p, int node); 1676extern int migrate_task_to(struct task_struct *p, int cpu); 1677extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1678 int cpu, int scpu); 1679extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1680#else 1681static inline void 1682init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1683{ 1684} 1685#endif /* CONFIG_NUMA_BALANCING */ 1686 1687#ifdef CONFIG_SMP 1688 1689static inline void 1690queue_balance_callback(struct rq *rq, 1691 struct callback_head *head, 1692 void (*func)(struct rq *rq)) 1693{ 1694 lockdep_assert_rq_held(rq); 1695 1696 /* 1697 * Don't (re)queue an already queued item; nor queue anything when 1698 * balance_push() is active, see the comment with 1699 * balance_push_callback. 1700 */ 1701 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1702 return; 1703 1704 head->func = (void (*)(struct callback_head *))func; 1705 head->next = rq->balance_callback; 1706 rq->balance_callback = head; 1707} 1708 1709#define rcu_dereference_check_sched_domain(p) \ 1710 rcu_dereference_check((p), \ 1711 lockdep_is_held(&sched_domains_mutex)) 1712 1713/* 1714 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1715 * See destroy_sched_domains: call_rcu for details. 1716 * 1717 * The domain tree of any CPU may only be accessed from within 1718 * preempt-disabled sections. 1719 */ 1720#define for_each_domain(cpu, __sd) \ 1721 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1722 __sd; __sd = __sd->parent) 1723 1724/** 1725 * highest_flag_domain - Return highest sched_domain containing flag. 1726 * @cpu: The CPU whose highest level of sched domain is to 1727 * be returned. 1728 * @flag: The flag to check for the highest sched_domain 1729 * for the given CPU. 1730 * 1731 * Returns the highest sched_domain of a CPU which contains the given flag. 1732 */ 1733static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1734{ 1735 struct sched_domain *sd, *hsd = NULL; 1736 1737 for_each_domain(cpu, sd) { 1738 if (!(sd->flags & flag)) 1739 break; 1740 hsd = sd; 1741 } 1742 1743 return hsd; 1744} 1745 1746static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1747{ 1748 struct sched_domain *sd; 1749 1750 for_each_domain(cpu, sd) { 1751 if (sd->flags & flag) 1752 break; 1753 } 1754 1755 return sd; 1756} 1757 1758DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1759DECLARE_PER_CPU(int, sd_llc_size); 1760DECLARE_PER_CPU(int, sd_llc_id); 1761DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1762DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1763DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1764DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1765extern struct static_key_false sched_asym_cpucapacity; 1766 1767struct sched_group_capacity { 1768 atomic_t ref; 1769 /* 1770 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1771 * for a single CPU. 1772 */ 1773 unsigned long capacity; 1774 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1775 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1776 unsigned long next_update; 1777 int imbalance; /* XXX unrelated to capacity but shared group state */ 1778 1779#ifdef CONFIG_SCHED_DEBUG 1780 int id; 1781#endif 1782 1783 unsigned long cpumask[]; /* Balance mask */ 1784}; 1785 1786struct sched_group { 1787 struct sched_group *next; /* Must be a circular list */ 1788 atomic_t ref; 1789 1790 unsigned int group_weight; 1791 struct sched_group_capacity *sgc; 1792 int asym_prefer_cpu; /* CPU of highest priority in group */ 1793 int flags; 1794 1795 /* 1796 * The CPUs this group covers. 1797 * 1798 * NOTE: this field is variable length. (Allocated dynamically 1799 * by attaching extra space to the end of the structure, 1800 * depending on how many CPUs the kernel has booted up with) 1801 */ 1802 unsigned long cpumask[]; 1803}; 1804 1805static inline struct cpumask *sched_group_span(struct sched_group *sg) 1806{ 1807 return to_cpumask(sg->cpumask); 1808} 1809 1810/* 1811 * See build_balance_mask(). 1812 */ 1813static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1814{ 1815 return to_cpumask(sg->sgc->cpumask); 1816} 1817 1818/** 1819 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1820 * @group: The group whose first CPU is to be returned. 1821 */ 1822static inline unsigned int group_first_cpu(struct sched_group *group) 1823{ 1824 return cpumask_first(sched_group_span(group)); 1825} 1826 1827extern int group_balance_cpu(struct sched_group *sg); 1828 1829#ifdef CONFIG_SCHED_DEBUG 1830void update_sched_domain_debugfs(void); 1831void dirty_sched_domain_sysctl(int cpu); 1832#else 1833static inline void update_sched_domain_debugfs(void) 1834{ 1835} 1836static inline void dirty_sched_domain_sysctl(int cpu) 1837{ 1838} 1839#endif 1840 1841extern int sched_update_scaling(void); 1842#endif /* CONFIG_SMP */ 1843 1844#include "stats.h" 1845 1846#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1847 1848extern void __sched_core_account_forceidle(struct rq *rq); 1849 1850static inline void sched_core_account_forceidle(struct rq *rq) 1851{ 1852 if (schedstat_enabled()) 1853 __sched_core_account_forceidle(rq); 1854} 1855 1856extern void __sched_core_tick(struct rq *rq); 1857 1858static inline void sched_core_tick(struct rq *rq) 1859{ 1860 if (sched_core_enabled(rq) && schedstat_enabled()) 1861 __sched_core_tick(rq); 1862} 1863 1864#else 1865 1866static inline void sched_core_account_forceidle(struct rq *rq) {} 1867 1868static inline void sched_core_tick(struct rq *rq) {} 1869 1870#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1871 1872#ifdef CONFIG_CGROUP_SCHED 1873 1874/* 1875 * Return the group to which this tasks belongs. 1876 * 1877 * We cannot use task_css() and friends because the cgroup subsystem 1878 * changes that value before the cgroup_subsys::attach() method is called, 1879 * therefore we cannot pin it and might observe the wrong value. 1880 * 1881 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1882 * core changes this before calling sched_move_task(). 1883 * 1884 * Instead we use a 'copy' which is updated from sched_move_task() while 1885 * holding both task_struct::pi_lock and rq::lock. 1886 */ 1887static inline struct task_group *task_group(struct task_struct *p) 1888{ 1889 return p->sched_task_group; 1890} 1891 1892/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1893static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1894{ 1895#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1896 struct task_group *tg = task_group(p); 1897#endif 1898 1899#ifdef CONFIG_FAIR_GROUP_SCHED 1900 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1901 p->se.cfs_rq = tg->cfs_rq[cpu]; 1902 p->se.parent = tg->se[cpu]; 1903#endif 1904 1905#ifdef CONFIG_RT_GROUP_SCHED 1906 p->rt.rt_rq = tg->rt_rq[cpu]; 1907 p->rt.parent = tg->rt_se[cpu]; 1908#endif 1909} 1910 1911#else /* CONFIG_CGROUP_SCHED */ 1912 1913static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1914static inline struct task_group *task_group(struct task_struct *p) 1915{ 1916 return NULL; 1917} 1918 1919#endif /* CONFIG_CGROUP_SCHED */ 1920 1921static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1922{ 1923 set_task_rq(p, cpu); 1924#ifdef CONFIG_SMP 1925 /* 1926 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1927 * successfully executed on another CPU. We must ensure that updates of 1928 * per-task data have been completed by this moment. 1929 */ 1930 smp_wmb(); 1931 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1932 p->wake_cpu = cpu; 1933#endif 1934} 1935 1936/* 1937 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1938 */ 1939#ifdef CONFIG_SCHED_DEBUG 1940# define const_debug __read_mostly 1941#else 1942# define const_debug const 1943#endif 1944 1945#define SCHED_FEAT(name, enabled) \ 1946 __SCHED_FEAT_##name , 1947 1948enum { 1949#include "features.h" 1950 __SCHED_FEAT_NR, 1951}; 1952 1953#undef SCHED_FEAT 1954 1955#ifdef CONFIG_SCHED_DEBUG 1956 1957/* 1958 * To support run-time toggling of sched features, all the translation units 1959 * (but core.c) reference the sysctl_sched_features defined in core.c. 1960 */ 1961extern const_debug unsigned int sysctl_sched_features; 1962 1963#ifdef CONFIG_JUMP_LABEL 1964#define SCHED_FEAT(name, enabled) \ 1965static __always_inline bool static_branch_##name(struct static_key *key) \ 1966{ \ 1967 return static_key_##enabled(key); \ 1968} 1969 1970#include "features.h" 1971#undef SCHED_FEAT 1972 1973extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1974#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1975 1976#else /* !CONFIG_JUMP_LABEL */ 1977 1978#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1979 1980#endif /* CONFIG_JUMP_LABEL */ 1981 1982#else /* !SCHED_DEBUG */ 1983 1984/* 1985 * Each translation unit has its own copy of sysctl_sched_features to allow 1986 * constants propagation at compile time and compiler optimization based on 1987 * features default. 1988 */ 1989#define SCHED_FEAT(name, enabled) \ 1990 (1UL << __SCHED_FEAT_##name) * enabled | 1991static const_debug __maybe_unused unsigned int sysctl_sched_features = 1992#include "features.h" 1993 0; 1994#undef SCHED_FEAT 1995 1996#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1997 1998#endif /* SCHED_DEBUG */ 1999 2000extern struct static_key_false sched_numa_balancing; 2001extern struct static_key_false sched_schedstats; 2002 2003static inline u64 global_rt_period(void) 2004{ 2005 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2006} 2007 2008static inline u64 global_rt_runtime(void) 2009{ 2010 if (sysctl_sched_rt_runtime < 0) 2011 return RUNTIME_INF; 2012 2013 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2014} 2015 2016static inline int task_current(struct rq *rq, struct task_struct *p) 2017{ 2018 return rq->curr == p; 2019} 2020 2021static inline int task_running(struct rq *rq, struct task_struct *p) 2022{ 2023#ifdef CONFIG_SMP 2024 return p->on_cpu; 2025#else 2026 return task_current(rq, p); 2027#endif 2028} 2029 2030static inline int task_on_rq_queued(struct task_struct *p) 2031{ 2032 return p->on_rq == TASK_ON_RQ_QUEUED; 2033} 2034 2035static inline int task_on_rq_migrating(struct task_struct *p) 2036{ 2037 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2038} 2039 2040/* Wake flags. The first three directly map to some SD flag value */ 2041#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2042#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2043#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2044 2045#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2046#define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2047#define WF_ON_CPU 0x40 /* Wakee is on_cpu */ 2048 2049#ifdef CONFIG_SMP 2050static_assert(WF_EXEC == SD_BALANCE_EXEC); 2051static_assert(WF_FORK == SD_BALANCE_FORK); 2052static_assert(WF_TTWU == SD_BALANCE_WAKE); 2053#endif 2054 2055/* 2056 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2057 * of tasks with abnormal "nice" values across CPUs the contribution that 2058 * each task makes to its run queue's load is weighted according to its 2059 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2060 * scaled version of the new time slice allocation that they receive on time 2061 * slice expiry etc. 2062 */ 2063 2064#define WEIGHT_IDLEPRIO 3 2065#define WMULT_IDLEPRIO 1431655765 2066 2067extern const int sched_prio_to_weight[40]; 2068extern const u32 sched_prio_to_wmult[40]; 2069 2070/* 2071 * {de,en}queue flags: 2072 * 2073 * DEQUEUE_SLEEP - task is no longer runnable 2074 * ENQUEUE_WAKEUP - task just became runnable 2075 * 2076 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2077 * are in a known state which allows modification. Such pairs 2078 * should preserve as much state as possible. 2079 * 2080 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2081 * in the runqueue. 2082 * 2083 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2084 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2085 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2086 * 2087 */ 2088 2089#define DEQUEUE_SLEEP 0x01 2090#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2091#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2092#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2093 2094#define ENQUEUE_WAKEUP 0x01 2095#define ENQUEUE_RESTORE 0x02 2096#define ENQUEUE_MOVE 0x04 2097#define ENQUEUE_NOCLOCK 0x08 2098 2099#define ENQUEUE_HEAD 0x10 2100#define ENQUEUE_REPLENISH 0x20 2101#ifdef CONFIG_SMP 2102#define ENQUEUE_MIGRATED 0x40 2103#else 2104#define ENQUEUE_MIGRATED 0x00 2105#endif 2106 2107#define RETRY_TASK ((void *)-1UL) 2108 2109struct sched_class { 2110 2111#ifdef CONFIG_UCLAMP_TASK 2112 int uclamp_enabled; 2113#endif 2114 2115 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2116 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2117 void (*yield_task) (struct rq *rq); 2118 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2119 2120 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2121 2122 struct task_struct *(*pick_next_task)(struct rq *rq); 2123 2124 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2125 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2126 2127#ifdef CONFIG_SMP 2128 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2129 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2130 2131 struct task_struct * (*pick_task)(struct rq *rq); 2132 2133 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2134 2135 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2136 2137 void (*set_cpus_allowed)(struct task_struct *p, 2138 const struct cpumask *newmask, 2139 u32 flags); 2140 2141 void (*rq_online)(struct rq *rq); 2142 void (*rq_offline)(struct rq *rq); 2143 2144 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2145#endif 2146 2147 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2148 void (*task_fork)(struct task_struct *p); 2149 void (*task_dead)(struct task_struct *p); 2150 2151 /* 2152 * The switched_from() call is allowed to drop rq->lock, therefore we 2153 * cannot assume the switched_from/switched_to pair is serialized by 2154 * rq->lock. They are however serialized by p->pi_lock. 2155 */ 2156 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2157 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2158 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2159 int oldprio); 2160 2161 unsigned int (*get_rr_interval)(struct rq *rq, 2162 struct task_struct *task); 2163 2164 void (*update_curr)(struct rq *rq); 2165 2166#define TASK_SET_GROUP 0 2167#define TASK_MOVE_GROUP 1 2168 2169#ifdef CONFIG_FAIR_GROUP_SCHED 2170 void (*task_change_group)(struct task_struct *p, int type); 2171#endif 2172}; 2173 2174static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2175{ 2176 WARN_ON_ONCE(rq->curr != prev); 2177 prev->sched_class->put_prev_task(rq, prev); 2178} 2179 2180static inline void set_next_task(struct rq *rq, struct task_struct *next) 2181{ 2182 next->sched_class->set_next_task(rq, next, false); 2183} 2184 2185 2186/* 2187 * Helper to define a sched_class instance; each one is placed in a separate 2188 * section which is ordered by the linker script: 2189 * 2190 * include/asm-generic/vmlinux.lds.h 2191 * 2192 * *CAREFUL* they are laid out in *REVERSE* order!!! 2193 * 2194 * Also enforce alignment on the instance, not the type, to guarantee layout. 2195 */ 2196#define DEFINE_SCHED_CLASS(name) \ 2197const struct sched_class name##_sched_class \ 2198 __aligned(__alignof__(struct sched_class)) \ 2199 __section("__" #name "_sched_class") 2200 2201/* Defined in include/asm-generic/vmlinux.lds.h */ 2202extern struct sched_class __sched_class_highest[]; 2203extern struct sched_class __sched_class_lowest[]; 2204 2205#define for_class_range(class, _from, _to) \ 2206 for (class = (_from); class < (_to); class++) 2207 2208#define for_each_class(class) \ 2209 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2210 2211#define sched_class_above(_a, _b) ((_a) < (_b)) 2212 2213extern const struct sched_class stop_sched_class; 2214extern const struct sched_class dl_sched_class; 2215extern const struct sched_class rt_sched_class; 2216extern const struct sched_class fair_sched_class; 2217extern const struct sched_class idle_sched_class; 2218 2219static inline bool sched_stop_runnable(struct rq *rq) 2220{ 2221 return rq->stop && task_on_rq_queued(rq->stop); 2222} 2223 2224static inline bool sched_dl_runnable(struct rq *rq) 2225{ 2226 return rq->dl.dl_nr_running > 0; 2227} 2228 2229static inline bool sched_rt_runnable(struct rq *rq) 2230{ 2231 return rq->rt.rt_queued > 0; 2232} 2233 2234static inline bool sched_fair_runnable(struct rq *rq) 2235{ 2236 return rq->cfs.nr_running > 0; 2237} 2238 2239extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2240extern struct task_struct *pick_next_task_idle(struct rq *rq); 2241 2242#define SCA_CHECK 0x01 2243#define SCA_MIGRATE_DISABLE 0x02 2244#define SCA_MIGRATE_ENABLE 0x04 2245#define SCA_USER 0x08 2246 2247#ifdef CONFIG_SMP 2248 2249extern void update_group_capacity(struct sched_domain *sd, int cpu); 2250 2251extern void trigger_load_balance(struct rq *rq); 2252 2253extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2254 2255static inline struct task_struct *get_push_task(struct rq *rq) 2256{ 2257 struct task_struct *p = rq->curr; 2258 2259 lockdep_assert_rq_held(rq); 2260 2261 if (rq->push_busy) 2262 return NULL; 2263 2264 if (p->nr_cpus_allowed == 1) 2265 return NULL; 2266 2267 if (p->migration_disabled) 2268 return NULL; 2269 2270 rq->push_busy = true; 2271 return get_task_struct(p); 2272} 2273 2274extern int push_cpu_stop(void *arg); 2275 2276#endif 2277 2278#ifdef CONFIG_CPU_IDLE 2279static inline void idle_set_state(struct rq *rq, 2280 struct cpuidle_state *idle_state) 2281{ 2282 rq->idle_state = idle_state; 2283} 2284 2285static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2286{ 2287 SCHED_WARN_ON(!rcu_read_lock_held()); 2288 2289 return rq->idle_state; 2290} 2291#else 2292static inline void idle_set_state(struct rq *rq, 2293 struct cpuidle_state *idle_state) 2294{ 2295} 2296 2297static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2298{ 2299 return NULL; 2300} 2301#endif 2302 2303extern void schedule_idle(void); 2304 2305extern void sysrq_sched_debug_show(void); 2306extern void sched_init_granularity(void); 2307extern void update_max_interval(void); 2308 2309extern void init_sched_dl_class(void); 2310extern void init_sched_rt_class(void); 2311extern void init_sched_fair_class(void); 2312 2313extern void reweight_task(struct task_struct *p, int prio); 2314 2315extern void resched_curr(struct rq *rq); 2316extern void resched_cpu(int cpu); 2317 2318extern struct rt_bandwidth def_rt_bandwidth; 2319extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2320extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2321 2322extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2323extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2324extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2325 2326#define BW_SHIFT 20 2327#define BW_UNIT (1 << BW_SHIFT) 2328#define RATIO_SHIFT 8 2329#define MAX_BW_BITS (64 - BW_SHIFT) 2330#define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2331unsigned long to_ratio(u64 period, u64 runtime); 2332 2333extern void init_entity_runnable_average(struct sched_entity *se); 2334extern void post_init_entity_util_avg(struct task_struct *p); 2335 2336#ifdef CONFIG_NO_HZ_FULL 2337extern bool sched_can_stop_tick(struct rq *rq); 2338extern int __init sched_tick_offload_init(void); 2339 2340/* 2341 * Tick may be needed by tasks in the runqueue depending on their policy and 2342 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2343 * nohz mode if necessary. 2344 */ 2345static inline void sched_update_tick_dependency(struct rq *rq) 2346{ 2347 int cpu = cpu_of(rq); 2348 2349 if (!tick_nohz_full_cpu(cpu)) 2350 return; 2351 2352 if (sched_can_stop_tick(rq)) 2353 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2354 else 2355 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2356} 2357#else 2358static inline int sched_tick_offload_init(void) { return 0; } 2359static inline void sched_update_tick_dependency(struct rq *rq) { } 2360#endif 2361 2362static inline void add_nr_running(struct rq *rq, unsigned count) 2363{ 2364 unsigned prev_nr = rq->nr_running; 2365 2366 rq->nr_running = prev_nr + count; 2367 if (trace_sched_update_nr_running_tp_enabled()) { 2368 call_trace_sched_update_nr_running(rq, count); 2369 } 2370 2371#ifdef CONFIG_SMP 2372 if (prev_nr < 2 && rq->nr_running >= 2) { 2373 if (!READ_ONCE(rq->rd->overload)) 2374 WRITE_ONCE(rq->rd->overload, 1); 2375 } 2376#endif 2377 2378 sched_update_tick_dependency(rq); 2379} 2380 2381static inline void sub_nr_running(struct rq *rq, unsigned count) 2382{ 2383 rq->nr_running -= count; 2384 if (trace_sched_update_nr_running_tp_enabled()) { 2385 call_trace_sched_update_nr_running(rq, -count); 2386 } 2387 2388 /* Check if we still need preemption */ 2389 sched_update_tick_dependency(rq); 2390} 2391 2392extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2393extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2394 2395extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2396 2397extern const_debug unsigned int sysctl_sched_nr_migrate; 2398extern const_debug unsigned int sysctl_sched_migration_cost; 2399 2400#ifdef CONFIG_SCHED_DEBUG 2401extern unsigned int sysctl_sched_latency; 2402extern unsigned int sysctl_sched_min_granularity; 2403extern unsigned int sysctl_sched_idle_min_granularity; 2404extern unsigned int sysctl_sched_wakeup_granularity; 2405extern int sysctl_resched_latency_warn_ms; 2406extern int sysctl_resched_latency_warn_once; 2407 2408extern unsigned int sysctl_sched_tunable_scaling; 2409 2410extern unsigned int sysctl_numa_balancing_scan_delay; 2411extern unsigned int sysctl_numa_balancing_scan_period_min; 2412extern unsigned int sysctl_numa_balancing_scan_period_max; 2413extern unsigned int sysctl_numa_balancing_scan_size; 2414#endif 2415 2416#ifdef CONFIG_SCHED_HRTICK 2417 2418/* 2419 * Use hrtick when: 2420 * - enabled by features 2421 * - hrtimer is actually high res 2422 */ 2423static inline int hrtick_enabled(struct rq *rq) 2424{ 2425 if (!cpu_active(cpu_of(rq))) 2426 return 0; 2427 return hrtimer_is_hres_active(&rq->hrtick_timer); 2428} 2429 2430static inline int hrtick_enabled_fair(struct rq *rq) 2431{ 2432 if (!sched_feat(HRTICK)) 2433 return 0; 2434 return hrtick_enabled(rq); 2435} 2436 2437static inline int hrtick_enabled_dl(struct rq *rq) 2438{ 2439 if (!sched_feat(HRTICK_DL)) 2440 return 0; 2441 return hrtick_enabled(rq); 2442} 2443 2444void hrtick_start(struct rq *rq, u64 delay); 2445 2446#else 2447 2448static inline int hrtick_enabled_fair(struct rq *rq) 2449{ 2450 return 0; 2451} 2452 2453static inline int hrtick_enabled_dl(struct rq *rq) 2454{ 2455 return 0; 2456} 2457 2458static inline int hrtick_enabled(struct rq *rq) 2459{ 2460 return 0; 2461} 2462 2463#endif /* CONFIG_SCHED_HRTICK */ 2464 2465#ifndef arch_scale_freq_tick 2466static __always_inline 2467void arch_scale_freq_tick(void) 2468{ 2469} 2470#endif 2471 2472#ifndef arch_scale_freq_capacity 2473/** 2474 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2475 * @cpu: the CPU in question. 2476 * 2477 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2478 * 2479 * f_curr 2480 * ------ * SCHED_CAPACITY_SCALE 2481 * f_max 2482 */ 2483static __always_inline 2484unsigned long arch_scale_freq_capacity(int cpu) 2485{ 2486 return SCHED_CAPACITY_SCALE; 2487} 2488#endif 2489 2490#ifdef CONFIG_SCHED_DEBUG 2491/* 2492 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2493 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2494 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2495 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2496 */ 2497static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2498{ 2499 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2500 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2501#ifdef CONFIG_SMP 2502 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2503#endif 2504} 2505#else 2506static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2507#endif 2508 2509#ifdef CONFIG_SMP 2510 2511static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2512{ 2513#ifdef CONFIG_SCHED_CORE 2514 /* 2515 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2516 * order by core-id first and cpu-id second. 2517 * 2518 * Notably: 2519 * 2520 * double_rq_lock(0,3); will take core-0, core-1 lock 2521 * double_rq_lock(1,2); will take core-1, core-0 lock 2522 * 2523 * when only cpu-id is considered. 2524 */ 2525 if (rq1->core->cpu < rq2->core->cpu) 2526 return true; 2527 if (rq1->core->cpu > rq2->core->cpu) 2528 return false; 2529 2530 /* 2531 * __sched_core_flip() relies on SMT having cpu-id lock order. 2532 */ 2533#endif 2534 return rq1->cpu < rq2->cpu; 2535} 2536 2537extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2538 2539#ifdef CONFIG_PREEMPTION 2540 2541/* 2542 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2543 * way at the expense of forcing extra atomic operations in all 2544 * invocations. This assures that the double_lock is acquired using the 2545 * same underlying policy as the spinlock_t on this architecture, which 2546 * reduces latency compared to the unfair variant below. However, it 2547 * also adds more overhead and therefore may reduce throughput. 2548 */ 2549static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2550 __releases(this_rq->lock) 2551 __acquires(busiest->lock) 2552 __acquires(this_rq->lock) 2553{ 2554 raw_spin_rq_unlock(this_rq); 2555 double_rq_lock(this_rq, busiest); 2556 2557 return 1; 2558} 2559 2560#else 2561/* 2562 * Unfair double_lock_balance: Optimizes throughput at the expense of 2563 * latency by eliminating extra atomic operations when the locks are 2564 * already in proper order on entry. This favors lower CPU-ids and will 2565 * grant the double lock to lower CPUs over higher ids under contention, 2566 * regardless of entry order into the function. 2567 */ 2568static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2569 __releases(this_rq->lock) 2570 __acquires(busiest->lock) 2571 __acquires(this_rq->lock) 2572{ 2573 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2574 likely(raw_spin_rq_trylock(busiest))) { 2575 double_rq_clock_clear_update(this_rq, busiest); 2576 return 0; 2577 } 2578 2579 if (rq_order_less(this_rq, busiest)) { 2580 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2581 double_rq_clock_clear_update(this_rq, busiest); 2582 return 0; 2583 } 2584 2585 raw_spin_rq_unlock(this_rq); 2586 double_rq_lock(this_rq, busiest); 2587 2588 return 1; 2589} 2590 2591#endif /* CONFIG_PREEMPTION */ 2592 2593/* 2594 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2595 */ 2596static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2597{ 2598 lockdep_assert_irqs_disabled(); 2599 2600 return _double_lock_balance(this_rq, busiest); 2601} 2602 2603static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2604 __releases(busiest->lock) 2605{ 2606 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2607 raw_spin_rq_unlock(busiest); 2608 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2609} 2610 2611static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2612{ 2613 if (l1 > l2) 2614 swap(l1, l2); 2615 2616 spin_lock(l1); 2617 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2618} 2619 2620static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2621{ 2622 if (l1 > l2) 2623 swap(l1, l2); 2624 2625 spin_lock_irq(l1); 2626 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2627} 2628 2629static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2630{ 2631 if (l1 > l2) 2632 swap(l1, l2); 2633 2634 raw_spin_lock(l1); 2635 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2636} 2637 2638/* 2639 * double_rq_unlock - safely unlock two runqueues 2640 * 2641 * Note this does not restore interrupts like task_rq_unlock, 2642 * you need to do so manually after calling. 2643 */ 2644static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2645 __releases(rq1->lock) 2646 __releases(rq2->lock) 2647{ 2648 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2649 raw_spin_rq_unlock(rq2); 2650 else 2651 __release(rq2->lock); 2652 raw_spin_rq_unlock(rq1); 2653} 2654 2655extern void set_rq_online (struct rq *rq); 2656extern void set_rq_offline(struct rq *rq); 2657extern bool sched_smp_initialized; 2658 2659#else /* CONFIG_SMP */ 2660 2661/* 2662 * double_rq_lock - safely lock two runqueues 2663 * 2664 * Note this does not disable interrupts like task_rq_lock, 2665 * you need to do so manually before calling. 2666 */ 2667static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2668 __acquires(rq1->lock) 2669 __acquires(rq2->lock) 2670{ 2671 BUG_ON(!irqs_disabled()); 2672 BUG_ON(rq1 != rq2); 2673 raw_spin_rq_lock(rq1); 2674 __acquire(rq2->lock); /* Fake it out ;) */ 2675 double_rq_clock_clear_update(rq1, rq2); 2676} 2677 2678/* 2679 * double_rq_unlock - safely unlock two runqueues 2680 * 2681 * Note this does not restore interrupts like task_rq_unlock, 2682 * you need to do so manually after calling. 2683 */ 2684static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2685 __releases(rq1->lock) 2686 __releases(rq2->lock) 2687{ 2688 BUG_ON(rq1 != rq2); 2689 raw_spin_rq_unlock(rq1); 2690 __release(rq2->lock); 2691} 2692 2693#endif 2694 2695extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2696extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2697 2698#ifdef CONFIG_SCHED_DEBUG 2699extern bool sched_debug_verbose; 2700 2701extern void print_cfs_stats(struct seq_file *m, int cpu); 2702extern void print_rt_stats(struct seq_file *m, int cpu); 2703extern void print_dl_stats(struct seq_file *m, int cpu); 2704extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2705extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2706extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2707 2708extern void resched_latency_warn(int cpu, u64 latency); 2709#ifdef CONFIG_NUMA_BALANCING 2710extern void 2711show_numa_stats(struct task_struct *p, struct seq_file *m); 2712extern void 2713print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2714 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2715#endif /* CONFIG_NUMA_BALANCING */ 2716#else 2717static inline void resched_latency_warn(int cpu, u64 latency) {} 2718#endif /* CONFIG_SCHED_DEBUG */ 2719 2720extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2721extern void init_rt_rq(struct rt_rq *rt_rq); 2722extern void init_dl_rq(struct dl_rq *dl_rq); 2723 2724extern void cfs_bandwidth_usage_inc(void); 2725extern void cfs_bandwidth_usage_dec(void); 2726 2727#ifdef CONFIG_NO_HZ_COMMON 2728#define NOHZ_BALANCE_KICK_BIT 0 2729#define NOHZ_STATS_KICK_BIT 1 2730#define NOHZ_NEWILB_KICK_BIT 2 2731#define NOHZ_NEXT_KICK_BIT 3 2732 2733/* Run rebalance_domains() */ 2734#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2735/* Update blocked load */ 2736#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2737/* Update blocked load when entering idle */ 2738#define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2739/* Update nohz.next_balance */ 2740#define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2741 2742#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2743 2744#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2745 2746extern void nohz_balance_exit_idle(struct rq *rq); 2747#else 2748static inline void nohz_balance_exit_idle(struct rq *rq) { } 2749#endif 2750 2751#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2752extern void nohz_run_idle_balance(int cpu); 2753#else 2754static inline void nohz_run_idle_balance(int cpu) { } 2755#endif 2756 2757#ifdef CONFIG_IRQ_TIME_ACCOUNTING 2758struct irqtime { 2759 u64 total; 2760 u64 tick_delta; 2761 u64 irq_start_time; 2762 struct u64_stats_sync sync; 2763}; 2764 2765DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2766 2767/* 2768 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2769 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2770 * and never move forward. 2771 */ 2772static inline u64 irq_time_read(int cpu) 2773{ 2774 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2775 unsigned int seq; 2776 u64 total; 2777 2778 do { 2779 seq = __u64_stats_fetch_begin(&irqtime->sync); 2780 total = irqtime->total; 2781 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2782 2783 return total; 2784} 2785#endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2786 2787#ifdef CONFIG_CPU_FREQ 2788DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2789 2790/** 2791 * cpufreq_update_util - Take a note about CPU utilization changes. 2792 * @rq: Runqueue to carry out the update for. 2793 * @flags: Update reason flags. 2794 * 2795 * This function is called by the scheduler on the CPU whose utilization is 2796 * being updated. 2797 * 2798 * It can only be called from RCU-sched read-side critical sections. 2799 * 2800 * The way cpufreq is currently arranged requires it to evaluate the CPU 2801 * performance state (frequency/voltage) on a regular basis to prevent it from 2802 * being stuck in a completely inadequate performance level for too long. 2803 * That is not guaranteed to happen if the updates are only triggered from CFS 2804 * and DL, though, because they may not be coming in if only RT tasks are 2805 * active all the time (or there are RT tasks only). 2806 * 2807 * As a workaround for that issue, this function is called periodically by the 2808 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2809 * but that really is a band-aid. Going forward it should be replaced with 2810 * solutions targeted more specifically at RT tasks. 2811 */ 2812static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2813{ 2814 struct update_util_data *data; 2815 2816 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2817 cpu_of(rq))); 2818 if (data) 2819 data->func(data, rq_clock(rq), flags); 2820} 2821#else 2822static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2823#endif /* CONFIG_CPU_FREQ */ 2824 2825#ifdef arch_scale_freq_capacity 2826# ifndef arch_scale_freq_invariant 2827# define arch_scale_freq_invariant() true 2828# endif 2829#else 2830# define arch_scale_freq_invariant() false 2831#endif 2832 2833#ifdef CONFIG_SMP 2834static inline unsigned long capacity_orig_of(int cpu) 2835{ 2836 return cpu_rq(cpu)->cpu_capacity_orig; 2837} 2838 2839/** 2840 * enum cpu_util_type - CPU utilization type 2841 * @FREQUENCY_UTIL: Utilization used to select frequency 2842 * @ENERGY_UTIL: Utilization used during energy calculation 2843 * 2844 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2845 * need to be aggregated differently depending on the usage made of them. This 2846 * enum is used within effective_cpu_util() to differentiate the types of 2847 * utilization expected by the callers, and adjust the aggregation accordingly. 2848 */ 2849enum cpu_util_type { 2850 FREQUENCY_UTIL, 2851 ENERGY_UTIL, 2852}; 2853 2854unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2855 unsigned long max, enum cpu_util_type type, 2856 struct task_struct *p); 2857 2858static inline unsigned long cpu_bw_dl(struct rq *rq) 2859{ 2860 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2861} 2862 2863static inline unsigned long cpu_util_dl(struct rq *rq) 2864{ 2865 return READ_ONCE(rq->avg_dl.util_avg); 2866} 2867 2868/** 2869 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. 2870 * @cpu: the CPU to get the utilization for. 2871 * 2872 * The unit of the return value must be the same as the one of CPU capacity 2873 * so that CPU utilization can be compared with CPU capacity. 2874 * 2875 * CPU utilization is the sum of running time of runnable tasks plus the 2876 * recent utilization of currently non-runnable tasks on that CPU. 2877 * It represents the amount of CPU capacity currently used by CFS tasks in 2878 * the range [0..max CPU capacity] with max CPU capacity being the CPU 2879 * capacity at f_max. 2880 * 2881 * The estimated CPU utilization is defined as the maximum between CPU 2882 * utilization and sum of the estimated utilization of the currently 2883 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 2884 * previously-executed tasks, which helps better deduce how busy a CPU will 2885 * be when a long-sleeping task wakes up. The contribution to CPU utilization 2886 * of such a task would be significantly decayed at this point of time. 2887 * 2888 * CPU utilization can be higher than the current CPU capacity 2889 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 2890 * of rounding errors as well as task migrations or wakeups of new tasks. 2891 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 2892 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 2893 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 2894 * capacity. CPU utilization is allowed to overshoot current CPU capacity 2895 * though since this is useful for predicting the CPU capacity required 2896 * after task migrations (scheduler-driven DVFS). 2897 * 2898 * Return: (Estimated) utilization for the specified CPU. 2899 */ 2900static inline unsigned long cpu_util_cfs(int cpu) 2901{ 2902 struct cfs_rq *cfs_rq; 2903 unsigned long util; 2904 2905 cfs_rq = &cpu_rq(cpu)->cfs; 2906 util = READ_ONCE(cfs_rq->avg.util_avg); 2907 2908 if (sched_feat(UTIL_EST)) { 2909 util = max_t(unsigned long, util, 2910 READ_ONCE(cfs_rq->avg.util_est.enqueued)); 2911 } 2912 2913 return min(util, capacity_orig_of(cpu)); 2914} 2915 2916static inline unsigned long cpu_util_rt(struct rq *rq) 2917{ 2918 return READ_ONCE(rq->avg_rt.util_avg); 2919} 2920#endif 2921 2922#ifdef CONFIG_UCLAMP_TASK 2923unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2924 2925/** 2926 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2927 * @rq: The rq to clamp against. Must not be NULL. 2928 * @util: The util value to clamp. 2929 * @p: The task to clamp against. Can be NULL if you want to clamp 2930 * against @rq only. 2931 * 2932 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2933 * 2934 * If sched_uclamp_used static key is disabled, then just return the util 2935 * without any clamping since uclamp aggregation at the rq level in the fast 2936 * path is disabled, rendering this operation a NOP. 2937 * 2938 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2939 * will return the correct effective uclamp value of the task even if the 2940 * static key is disabled. 2941 */ 2942static __always_inline 2943unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2944 struct task_struct *p) 2945{ 2946 unsigned long min_util = 0; 2947 unsigned long max_util = 0; 2948 2949 if (!static_branch_likely(&sched_uclamp_used)) 2950 return util; 2951 2952 if (p) { 2953 min_util = uclamp_eff_value(p, UCLAMP_MIN); 2954 max_util = uclamp_eff_value(p, UCLAMP_MAX); 2955 2956 /* 2957 * Ignore last runnable task's max clamp, as this task will 2958 * reset it. Similarly, no need to read the rq's min clamp. 2959 */ 2960 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 2961 goto out; 2962 } 2963 2964 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 2965 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 2966out: 2967 /* 2968 * Since CPU's {min,max}_util clamps are MAX aggregated considering 2969 * RUNNABLE tasks with _different_ clamps, we can end up with an 2970 * inversion. Fix it now when the clamps are applied. 2971 */ 2972 if (unlikely(min_util >= max_util)) 2973 return min_util; 2974 2975 return clamp(util, min_util, max_util); 2976} 2977 2978/* Is the rq being capped/throttled by uclamp_max? */ 2979static inline bool uclamp_rq_is_capped(struct rq *rq) 2980{ 2981 unsigned long rq_util; 2982 unsigned long max_util; 2983 2984 if (!static_branch_likely(&sched_uclamp_used)) 2985 return false; 2986 2987 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 2988 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 2989 2990 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 2991} 2992 2993/* 2994 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 2995 * by default in the fast path and only gets turned on once userspace performs 2996 * an operation that requires it. 2997 * 2998 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 2999 * hence is active. 3000 */ 3001static inline bool uclamp_is_used(void) 3002{ 3003 return static_branch_likely(&sched_uclamp_used); 3004} 3005#else /* CONFIG_UCLAMP_TASK */ 3006static inline 3007unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3008 struct task_struct *p) 3009{ 3010 return util; 3011} 3012 3013static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3014 3015static inline bool uclamp_is_used(void) 3016{ 3017 return false; 3018} 3019#endif /* CONFIG_UCLAMP_TASK */ 3020 3021#ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3022static inline unsigned long cpu_util_irq(struct rq *rq) 3023{ 3024 return rq->avg_irq.util_avg; 3025} 3026 3027static inline 3028unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3029{ 3030 util *= (max - irq); 3031 util /= max; 3032 3033 return util; 3034 3035} 3036#else 3037static inline unsigned long cpu_util_irq(struct rq *rq) 3038{ 3039 return 0; 3040} 3041 3042static inline 3043unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3044{ 3045 return util; 3046} 3047#endif 3048 3049#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3050 3051#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3052 3053DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3054 3055static inline bool sched_energy_enabled(void) 3056{ 3057 return static_branch_unlikely(&sched_energy_present); 3058} 3059 3060#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3061 3062#define perf_domain_span(pd) NULL 3063static inline bool sched_energy_enabled(void) { return false; } 3064 3065#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3066 3067#ifdef CONFIG_MEMBARRIER 3068/* 3069 * The scheduler provides memory barriers required by membarrier between: 3070 * - prior user-space memory accesses and store to rq->membarrier_state, 3071 * - store to rq->membarrier_state and following user-space memory accesses. 3072 * In the same way it provides those guarantees around store to rq->curr. 3073 */ 3074static inline void membarrier_switch_mm(struct rq *rq, 3075 struct mm_struct *prev_mm, 3076 struct mm_struct *next_mm) 3077{ 3078 int membarrier_state; 3079 3080 if (prev_mm == next_mm) 3081 return; 3082 3083 membarrier_state = atomic_read(&next_mm->membarrier_state); 3084 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3085 return; 3086 3087 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3088} 3089#else 3090static inline void membarrier_switch_mm(struct rq *rq, 3091 struct mm_struct *prev_mm, 3092 struct mm_struct *next_mm) 3093{ 3094} 3095#endif 3096 3097#ifdef CONFIG_SMP 3098static inline bool is_per_cpu_kthread(struct task_struct *p) 3099{ 3100 if (!(p->flags & PF_KTHREAD)) 3101 return false; 3102 3103 if (p->nr_cpus_allowed != 1) 3104 return false; 3105 3106 return true; 3107} 3108#endif 3109 3110extern void swake_up_all_locked(struct swait_queue_head *q); 3111extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3112 3113#ifdef CONFIG_PREEMPT_DYNAMIC 3114extern int preempt_dynamic_mode; 3115extern int sched_dynamic_mode(const char *str); 3116extern void sched_dynamic_update(int mode); 3117#endif 3118 3119#endif /* _KERNEL_SCHED_SCHED_H */