wait.c (14838B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Generic waiting primitives. 4 * 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 */ 7 8void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key) 9{ 10 spin_lock_init(&wq_head->lock); 11 lockdep_set_class_and_name(&wq_head->lock, key, name); 12 INIT_LIST_HEAD(&wq_head->head); 13} 14 15EXPORT_SYMBOL(__init_waitqueue_head); 16 17void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 18{ 19 unsigned long flags; 20 21 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 22 spin_lock_irqsave(&wq_head->lock, flags); 23 __add_wait_queue(wq_head, wq_entry); 24 spin_unlock_irqrestore(&wq_head->lock, flags); 25} 26EXPORT_SYMBOL(add_wait_queue); 27 28void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 29{ 30 unsigned long flags; 31 32 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 33 spin_lock_irqsave(&wq_head->lock, flags); 34 __add_wait_queue_entry_tail(wq_head, wq_entry); 35 spin_unlock_irqrestore(&wq_head->lock, flags); 36} 37EXPORT_SYMBOL(add_wait_queue_exclusive); 38 39void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 40{ 41 unsigned long flags; 42 43 wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY; 44 spin_lock_irqsave(&wq_head->lock, flags); 45 __add_wait_queue(wq_head, wq_entry); 46 spin_unlock_irqrestore(&wq_head->lock, flags); 47} 48EXPORT_SYMBOL_GPL(add_wait_queue_priority); 49 50void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 51{ 52 unsigned long flags; 53 54 spin_lock_irqsave(&wq_head->lock, flags); 55 __remove_wait_queue(wq_head, wq_entry); 56 spin_unlock_irqrestore(&wq_head->lock, flags); 57} 58EXPORT_SYMBOL(remove_wait_queue); 59 60/* 61 * Scan threshold to break wait queue walk. 62 * This allows a waker to take a break from holding the 63 * wait queue lock during the wait queue walk. 64 */ 65#define WAITQUEUE_WALK_BREAK_CNT 64 66 67/* 68 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 69 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 70 * number) then we wake that number of exclusive tasks, and potentially all 71 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of 72 * the list and any non-exclusive tasks will be woken first. A priority task 73 * may be at the head of the list, and can consume the event without any other 74 * tasks being woken. 75 * 76 * There are circumstances in which we can try to wake a task which has already 77 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 78 * zero in this (rare) case, and we handle it by continuing to scan the queue. 79 */ 80static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode, 81 int nr_exclusive, int wake_flags, void *key, 82 wait_queue_entry_t *bookmark) 83{ 84 wait_queue_entry_t *curr, *next; 85 int cnt = 0; 86 87 lockdep_assert_held(&wq_head->lock); 88 89 if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) { 90 curr = list_next_entry(bookmark, entry); 91 92 list_del(&bookmark->entry); 93 bookmark->flags = 0; 94 } else 95 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry); 96 97 if (&curr->entry == &wq_head->head) 98 return nr_exclusive; 99 100 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) { 101 unsigned flags = curr->flags; 102 int ret; 103 104 if (flags & WQ_FLAG_BOOKMARK) 105 continue; 106 107 ret = curr->func(curr, mode, wake_flags, key); 108 if (ret < 0) 109 break; 110 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 111 break; 112 113 if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) && 114 (&next->entry != &wq_head->head)) { 115 bookmark->flags = WQ_FLAG_BOOKMARK; 116 list_add_tail(&bookmark->entry, &next->entry); 117 break; 118 } 119 } 120 121 return nr_exclusive; 122} 123 124static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode, 125 int nr_exclusive, int wake_flags, void *key) 126{ 127 unsigned long flags; 128 wait_queue_entry_t bookmark; 129 130 bookmark.flags = 0; 131 bookmark.private = NULL; 132 bookmark.func = NULL; 133 INIT_LIST_HEAD(&bookmark.entry); 134 135 do { 136 spin_lock_irqsave(&wq_head->lock, flags); 137 nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive, 138 wake_flags, key, &bookmark); 139 spin_unlock_irqrestore(&wq_head->lock, flags); 140 } while (bookmark.flags & WQ_FLAG_BOOKMARK); 141} 142 143/** 144 * __wake_up - wake up threads blocked on a waitqueue. 145 * @wq_head: the waitqueue 146 * @mode: which threads 147 * @nr_exclusive: how many wake-one or wake-many threads to wake up 148 * @key: is directly passed to the wakeup function 149 * 150 * If this function wakes up a task, it executes a full memory barrier before 151 * accessing the task state. 152 */ 153void __wake_up(struct wait_queue_head *wq_head, unsigned int mode, 154 int nr_exclusive, void *key) 155{ 156 __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key); 157} 158EXPORT_SYMBOL(__wake_up); 159 160/* 161 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 162 */ 163void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr) 164{ 165 __wake_up_common(wq_head, mode, nr, 0, NULL, NULL); 166} 167EXPORT_SYMBOL_GPL(__wake_up_locked); 168 169void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key) 170{ 171 __wake_up_common(wq_head, mode, 1, 0, key, NULL); 172} 173EXPORT_SYMBOL_GPL(__wake_up_locked_key); 174 175void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head, 176 unsigned int mode, void *key, wait_queue_entry_t *bookmark) 177{ 178 __wake_up_common(wq_head, mode, 1, 0, key, bookmark); 179} 180EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark); 181 182/** 183 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 184 * @wq_head: the waitqueue 185 * @mode: which threads 186 * @key: opaque value to be passed to wakeup targets 187 * 188 * The sync wakeup differs that the waker knows that it will schedule 189 * away soon, so while the target thread will be woken up, it will not 190 * be migrated to another CPU - ie. the two threads are 'synchronized' 191 * with each other. This can prevent needless bouncing between CPUs. 192 * 193 * On UP it can prevent extra preemption. 194 * 195 * If this function wakes up a task, it executes a full memory barrier before 196 * accessing the task state. 197 */ 198void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, 199 void *key) 200{ 201 if (unlikely(!wq_head)) 202 return; 203 204 __wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key); 205} 206EXPORT_SYMBOL_GPL(__wake_up_sync_key); 207 208/** 209 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue. 210 * @wq_head: the waitqueue 211 * @mode: which threads 212 * @key: opaque value to be passed to wakeup targets 213 * 214 * The sync wakeup differs in that the waker knows that it will schedule 215 * away soon, so while the target thread will be woken up, it will not 216 * be migrated to another CPU - ie. the two threads are 'synchronized' 217 * with each other. This can prevent needless bouncing between CPUs. 218 * 219 * On UP it can prevent extra preemption. 220 * 221 * If this function wakes up a task, it executes a full memory barrier before 222 * accessing the task state. 223 */ 224void __wake_up_locked_sync_key(struct wait_queue_head *wq_head, 225 unsigned int mode, void *key) 226{ 227 __wake_up_common(wq_head, mode, 1, WF_SYNC, key, NULL); 228} 229EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key); 230 231/* 232 * __wake_up_sync - see __wake_up_sync_key() 233 */ 234void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode) 235{ 236 __wake_up_sync_key(wq_head, mode, NULL); 237} 238EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 239 240void __wake_up_pollfree(struct wait_queue_head *wq_head) 241{ 242 __wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE)); 243 /* POLLFREE must have cleared the queue. */ 244 WARN_ON_ONCE(waitqueue_active(wq_head)); 245} 246 247/* 248 * Note: we use "set_current_state()" _after_ the wait-queue add, 249 * because we need a memory barrier there on SMP, so that any 250 * wake-function that tests for the wait-queue being active 251 * will be guaranteed to see waitqueue addition _or_ subsequent 252 * tests in this thread will see the wakeup having taken place. 253 * 254 * The spin_unlock() itself is semi-permeable and only protects 255 * one way (it only protects stuff inside the critical region and 256 * stops them from bleeding out - it would still allow subsequent 257 * loads to move into the critical region). 258 */ 259void 260prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 261{ 262 unsigned long flags; 263 264 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 265 spin_lock_irqsave(&wq_head->lock, flags); 266 if (list_empty(&wq_entry->entry)) 267 __add_wait_queue(wq_head, wq_entry); 268 set_current_state(state); 269 spin_unlock_irqrestore(&wq_head->lock, flags); 270} 271EXPORT_SYMBOL(prepare_to_wait); 272 273/* Returns true if we are the first waiter in the queue, false otherwise. */ 274bool 275prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 276{ 277 unsigned long flags; 278 bool was_empty = false; 279 280 wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 281 spin_lock_irqsave(&wq_head->lock, flags); 282 if (list_empty(&wq_entry->entry)) { 283 was_empty = list_empty(&wq_head->head); 284 __add_wait_queue_entry_tail(wq_head, wq_entry); 285 } 286 set_current_state(state); 287 spin_unlock_irqrestore(&wq_head->lock, flags); 288 return was_empty; 289} 290EXPORT_SYMBOL(prepare_to_wait_exclusive); 291 292void init_wait_entry(struct wait_queue_entry *wq_entry, int flags) 293{ 294 wq_entry->flags = flags; 295 wq_entry->private = current; 296 wq_entry->func = autoremove_wake_function; 297 INIT_LIST_HEAD(&wq_entry->entry); 298} 299EXPORT_SYMBOL(init_wait_entry); 300 301long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state) 302{ 303 unsigned long flags; 304 long ret = 0; 305 306 spin_lock_irqsave(&wq_head->lock, flags); 307 if (signal_pending_state(state, current)) { 308 /* 309 * Exclusive waiter must not fail if it was selected by wakeup, 310 * it should "consume" the condition we were waiting for. 311 * 312 * The caller will recheck the condition and return success if 313 * we were already woken up, we can not miss the event because 314 * wakeup locks/unlocks the same wq_head->lock. 315 * 316 * But we need to ensure that set-condition + wakeup after that 317 * can't see us, it should wake up another exclusive waiter if 318 * we fail. 319 */ 320 list_del_init(&wq_entry->entry); 321 ret = -ERESTARTSYS; 322 } else { 323 if (list_empty(&wq_entry->entry)) { 324 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE) 325 __add_wait_queue_entry_tail(wq_head, wq_entry); 326 else 327 __add_wait_queue(wq_head, wq_entry); 328 } 329 set_current_state(state); 330 } 331 spin_unlock_irqrestore(&wq_head->lock, flags); 332 333 return ret; 334} 335EXPORT_SYMBOL(prepare_to_wait_event); 336 337/* 338 * Note! These two wait functions are entered with the 339 * wait-queue lock held (and interrupts off in the _irq 340 * case), so there is no race with testing the wakeup 341 * condition in the caller before they add the wait 342 * entry to the wake queue. 343 */ 344int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait) 345{ 346 if (likely(list_empty(&wait->entry))) 347 __add_wait_queue_entry_tail(wq, wait); 348 349 set_current_state(TASK_INTERRUPTIBLE); 350 if (signal_pending(current)) 351 return -ERESTARTSYS; 352 353 spin_unlock(&wq->lock); 354 schedule(); 355 spin_lock(&wq->lock); 356 357 return 0; 358} 359EXPORT_SYMBOL(do_wait_intr); 360 361int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait) 362{ 363 if (likely(list_empty(&wait->entry))) 364 __add_wait_queue_entry_tail(wq, wait); 365 366 set_current_state(TASK_INTERRUPTIBLE); 367 if (signal_pending(current)) 368 return -ERESTARTSYS; 369 370 spin_unlock_irq(&wq->lock); 371 schedule(); 372 spin_lock_irq(&wq->lock); 373 374 return 0; 375} 376EXPORT_SYMBOL(do_wait_intr_irq); 377 378/** 379 * finish_wait - clean up after waiting in a queue 380 * @wq_head: waitqueue waited on 381 * @wq_entry: wait descriptor 382 * 383 * Sets current thread back to running state and removes 384 * the wait descriptor from the given waitqueue if still 385 * queued. 386 */ 387void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry) 388{ 389 unsigned long flags; 390 391 __set_current_state(TASK_RUNNING); 392 /* 393 * We can check for list emptiness outside the lock 394 * IFF: 395 * - we use the "careful" check that verifies both 396 * the next and prev pointers, so that there cannot 397 * be any half-pending updates in progress on other 398 * CPU's that we haven't seen yet (and that might 399 * still change the stack area. 400 * and 401 * - all other users take the lock (ie we can only 402 * have _one_ other CPU that looks at or modifies 403 * the list). 404 */ 405 if (!list_empty_careful(&wq_entry->entry)) { 406 spin_lock_irqsave(&wq_head->lock, flags); 407 list_del_init(&wq_entry->entry); 408 spin_unlock_irqrestore(&wq_head->lock, flags); 409 } 410} 411EXPORT_SYMBOL(finish_wait); 412 413int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 414{ 415 int ret = default_wake_function(wq_entry, mode, sync, key); 416 417 if (ret) 418 list_del_init_careful(&wq_entry->entry); 419 420 return ret; 421} 422EXPORT_SYMBOL(autoremove_wake_function); 423 424static inline bool is_kthread_should_stop(void) 425{ 426 return (current->flags & PF_KTHREAD) && kthread_should_stop(); 427} 428 429/* 430 * DEFINE_WAIT_FUNC(wait, woken_wake_func); 431 * 432 * add_wait_queue(&wq_head, &wait); 433 * for (;;) { 434 * if (condition) 435 * break; 436 * 437 * // in wait_woken() // in woken_wake_function() 438 * 439 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN; 440 * smp_mb(); // A try_to_wake_up(): 441 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier> 442 * schedule() if (p->state & mode) 443 * p->state = TASK_RUNNING; p->state = TASK_RUNNING; 444 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~ 445 * smp_mb(); // B condition = true; 446 * } smp_mb(); // C 447 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN; 448 */ 449long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout) 450{ 451 /* 452 * The below executes an smp_mb(), which matches with the full barrier 453 * executed by the try_to_wake_up() in woken_wake_function() such that 454 * either we see the store to wq_entry->flags in woken_wake_function() 455 * or woken_wake_function() sees our store to current->state. 456 */ 457 set_current_state(mode); /* A */ 458 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) 459 timeout = schedule_timeout(timeout); 460 __set_current_state(TASK_RUNNING); 461 462 /* 463 * The below executes an smp_mb(), which matches with the smp_mb() (C) 464 * in woken_wake_function() such that either we see the wait condition 465 * being true or the store to wq_entry->flags in woken_wake_function() 466 * follows ours in the coherence order. 467 */ 468 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */ 469 470 return timeout; 471} 472EXPORT_SYMBOL(wait_woken); 473 474int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key) 475{ 476 /* Pairs with the smp_store_mb() in wait_woken(). */ 477 smp_mb(); /* C */ 478 wq_entry->flags |= WQ_FLAG_WOKEN; 479 480 return default_wake_function(wq_entry, mode, sync, key); 481} 482EXPORT_SYMBOL(woken_wake_function);