seccomp.c (64933B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <wad@chromium.org> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16#define pr_fmt(fmt) "seccomp: " fmt 17 18#include <linux/refcount.h> 19#include <linux/audit.h> 20#include <linux/compat.h> 21#include <linux/coredump.h> 22#include <linux/kmemleak.h> 23#include <linux/nospec.h> 24#include <linux/prctl.h> 25#include <linux/sched.h> 26#include <linux/sched/task_stack.h> 27#include <linux/seccomp.h> 28#include <linux/slab.h> 29#include <linux/syscalls.h> 30#include <linux/sysctl.h> 31 32/* Not exposed in headers: strictly internal use only. */ 33#define SECCOMP_MODE_DEAD (SECCOMP_MODE_FILTER + 1) 34 35#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 36#include <asm/syscall.h> 37#endif 38 39#ifdef CONFIG_SECCOMP_FILTER 40#include <linux/file.h> 41#include <linux/filter.h> 42#include <linux/pid.h> 43#include <linux/ptrace.h> 44#include <linux/capability.h> 45#include <linux/uaccess.h> 46#include <linux/anon_inodes.h> 47#include <linux/lockdep.h> 48 49/* 50 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 51 * wrong direction flag in the ioctl number. This is the broken one, 52 * which the kernel needs to keep supporting until all userspaces stop 53 * using the wrong command number. 54 */ 55#define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 56 57enum notify_state { 58 SECCOMP_NOTIFY_INIT, 59 SECCOMP_NOTIFY_SENT, 60 SECCOMP_NOTIFY_REPLIED, 61}; 62 63struct seccomp_knotif { 64 /* The struct pid of the task whose filter triggered the notification */ 65 struct task_struct *task; 66 67 /* The "cookie" for this request; this is unique for this filter. */ 68 u64 id; 69 70 /* 71 * The seccomp data. This pointer is valid the entire time this 72 * notification is active, since it comes from __seccomp_filter which 73 * eclipses the entire lifecycle here. 74 */ 75 const struct seccomp_data *data; 76 77 /* 78 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 79 * struct seccomp_knotif is created and starts out in INIT. Once the 80 * handler reads the notification off of an FD, it transitions to SENT. 81 * If a signal is received the state transitions back to INIT and 82 * another message is sent. When the userspace handler replies, state 83 * transitions to REPLIED. 84 */ 85 enum notify_state state; 86 87 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 88 int error; 89 long val; 90 u32 flags; 91 92 /* 93 * Signals when this has changed states, such as the listener 94 * dying, a new seccomp addfd message, or changing to REPLIED 95 */ 96 struct completion ready; 97 98 struct list_head list; 99 100 /* outstanding addfd requests */ 101 struct list_head addfd; 102}; 103 104/** 105 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 106 * 107 * @file: A reference to the file to install in the other task 108 * @fd: The fd number to install it at. If the fd number is -1, it means the 109 * installing process should allocate the fd as normal. 110 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 111 * is allowed. 112 * @ioctl_flags: The flags used for the seccomp_addfd ioctl. 113 * @ret: The return value of the installing process. It is set to the fd num 114 * upon success (>= 0). 115 * @completion: Indicates that the installing process has completed fd 116 * installation, or gone away (either due to successful 117 * reply, or signal) 118 * 119 */ 120struct seccomp_kaddfd { 121 struct file *file; 122 int fd; 123 unsigned int flags; 124 __u32 ioctl_flags; 125 126 union { 127 bool setfd; 128 /* To only be set on reply */ 129 int ret; 130 }; 131 struct completion completion; 132 struct list_head list; 133}; 134 135/** 136 * struct notification - container for seccomp userspace notifications. Since 137 * most seccomp filters will not have notification listeners attached and this 138 * structure is fairly large, we store the notification-specific stuff in a 139 * separate structure. 140 * 141 * @request: A semaphore that users of this notification can wait on for 142 * changes. Actual reads and writes are still controlled with 143 * filter->notify_lock. 144 * @next_id: The id of the next request. 145 * @notifications: A list of struct seccomp_knotif elements. 146 */ 147struct notification { 148 struct semaphore request; 149 u64 next_id; 150 struct list_head notifications; 151}; 152 153#ifdef SECCOMP_ARCH_NATIVE 154/** 155 * struct action_cache - per-filter cache of seccomp actions per 156 * arch/syscall pair 157 * 158 * @allow_native: A bitmap where each bit represents whether the 159 * filter will always allow the syscall, for the 160 * native architecture. 161 * @allow_compat: A bitmap where each bit represents whether the 162 * filter will always allow the syscall, for the 163 * compat architecture. 164 */ 165struct action_cache { 166 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 167#ifdef SECCOMP_ARCH_COMPAT 168 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 169#endif 170}; 171#else 172struct action_cache { }; 173 174static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 175 const struct seccomp_data *sd) 176{ 177 return false; 178} 179 180static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 181{ 182} 183#endif /* SECCOMP_ARCH_NATIVE */ 184 185/** 186 * struct seccomp_filter - container for seccomp BPF programs 187 * 188 * @refs: Reference count to manage the object lifetime. 189 * A filter's reference count is incremented for each directly 190 * attached task, once for the dependent filter, and if 191 * requested for the user notifier. When @refs reaches zero, 192 * the filter can be freed. 193 * @users: A filter's @users count is incremented for each directly 194 * attached task (filter installation, fork(), thread_sync), 195 * and once for the dependent filter (tracked in filter->prev). 196 * When it reaches zero it indicates that no direct or indirect 197 * users of that filter exist. No new tasks can get associated with 198 * this filter after reaching 0. The @users count is always smaller 199 * or equal to @refs. Hence, reaching 0 for @users does not mean 200 * the filter can be freed. 201 * @cache: cache of arch/syscall mappings to actions 202 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 203 * @wait_killable_recv: Put notifying process in killable state once the 204 * notification is received by the userspace listener. 205 * @prev: points to a previously installed, or inherited, filter 206 * @prog: the BPF program to evaluate 207 * @notif: the struct that holds all notification related information 208 * @notify_lock: A lock for all notification-related accesses. 209 * @wqh: A wait queue for poll if a notifier is in use. 210 * 211 * seccomp_filter objects are organized in a tree linked via the @prev 212 * pointer. For any task, it appears to be a singly-linked list starting 213 * with current->seccomp.filter, the most recently attached or inherited filter. 214 * However, multiple filters may share a @prev node, by way of fork(), which 215 * results in a unidirectional tree existing in memory. This is similar to 216 * how namespaces work. 217 * 218 * seccomp_filter objects should never be modified after being attached 219 * to a task_struct (other than @refs). 220 */ 221struct seccomp_filter { 222 refcount_t refs; 223 refcount_t users; 224 bool log; 225 bool wait_killable_recv; 226 struct action_cache cache; 227 struct seccomp_filter *prev; 228 struct bpf_prog *prog; 229 struct notification *notif; 230 struct mutex notify_lock; 231 wait_queue_head_t wqh; 232}; 233 234/* Limit any path through the tree to 256KB worth of instructions. */ 235#define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 236 237/* 238 * Endianness is explicitly ignored and left for BPF program authors to manage 239 * as per the specific architecture. 240 */ 241static void populate_seccomp_data(struct seccomp_data *sd) 242{ 243 /* 244 * Instead of using current_pt_reg(), we're already doing the work 245 * to safely fetch "current", so just use "task" everywhere below. 246 */ 247 struct task_struct *task = current; 248 struct pt_regs *regs = task_pt_regs(task); 249 unsigned long args[6]; 250 251 sd->nr = syscall_get_nr(task, regs); 252 sd->arch = syscall_get_arch(task); 253 syscall_get_arguments(task, regs, args); 254 sd->args[0] = args[0]; 255 sd->args[1] = args[1]; 256 sd->args[2] = args[2]; 257 sd->args[3] = args[3]; 258 sd->args[4] = args[4]; 259 sd->args[5] = args[5]; 260 sd->instruction_pointer = KSTK_EIP(task); 261} 262 263/** 264 * seccomp_check_filter - verify seccomp filter code 265 * @filter: filter to verify 266 * @flen: length of filter 267 * 268 * Takes a previously checked filter (by bpf_check_classic) and 269 * redirects all filter code that loads struct sk_buff data 270 * and related data through seccomp_bpf_load. It also 271 * enforces length and alignment checking of those loads. 272 * 273 * Returns 0 if the rule set is legal or -EINVAL if not. 274 */ 275static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 276{ 277 int pc; 278 for (pc = 0; pc < flen; pc++) { 279 struct sock_filter *ftest = &filter[pc]; 280 u16 code = ftest->code; 281 u32 k = ftest->k; 282 283 switch (code) { 284 case BPF_LD | BPF_W | BPF_ABS: 285 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 286 /* 32-bit aligned and not out of bounds. */ 287 if (k >= sizeof(struct seccomp_data) || k & 3) 288 return -EINVAL; 289 continue; 290 case BPF_LD | BPF_W | BPF_LEN: 291 ftest->code = BPF_LD | BPF_IMM; 292 ftest->k = sizeof(struct seccomp_data); 293 continue; 294 case BPF_LDX | BPF_W | BPF_LEN: 295 ftest->code = BPF_LDX | BPF_IMM; 296 ftest->k = sizeof(struct seccomp_data); 297 continue; 298 /* Explicitly include allowed calls. */ 299 case BPF_RET | BPF_K: 300 case BPF_RET | BPF_A: 301 case BPF_ALU | BPF_ADD | BPF_K: 302 case BPF_ALU | BPF_ADD | BPF_X: 303 case BPF_ALU | BPF_SUB | BPF_K: 304 case BPF_ALU | BPF_SUB | BPF_X: 305 case BPF_ALU | BPF_MUL | BPF_K: 306 case BPF_ALU | BPF_MUL | BPF_X: 307 case BPF_ALU | BPF_DIV | BPF_K: 308 case BPF_ALU | BPF_DIV | BPF_X: 309 case BPF_ALU | BPF_AND | BPF_K: 310 case BPF_ALU | BPF_AND | BPF_X: 311 case BPF_ALU | BPF_OR | BPF_K: 312 case BPF_ALU | BPF_OR | BPF_X: 313 case BPF_ALU | BPF_XOR | BPF_K: 314 case BPF_ALU | BPF_XOR | BPF_X: 315 case BPF_ALU | BPF_LSH | BPF_K: 316 case BPF_ALU | BPF_LSH | BPF_X: 317 case BPF_ALU | BPF_RSH | BPF_K: 318 case BPF_ALU | BPF_RSH | BPF_X: 319 case BPF_ALU | BPF_NEG: 320 case BPF_LD | BPF_IMM: 321 case BPF_LDX | BPF_IMM: 322 case BPF_MISC | BPF_TAX: 323 case BPF_MISC | BPF_TXA: 324 case BPF_LD | BPF_MEM: 325 case BPF_LDX | BPF_MEM: 326 case BPF_ST: 327 case BPF_STX: 328 case BPF_JMP | BPF_JA: 329 case BPF_JMP | BPF_JEQ | BPF_K: 330 case BPF_JMP | BPF_JEQ | BPF_X: 331 case BPF_JMP | BPF_JGE | BPF_K: 332 case BPF_JMP | BPF_JGE | BPF_X: 333 case BPF_JMP | BPF_JGT | BPF_K: 334 case BPF_JMP | BPF_JGT | BPF_X: 335 case BPF_JMP | BPF_JSET | BPF_K: 336 case BPF_JMP | BPF_JSET | BPF_X: 337 continue; 338 default: 339 return -EINVAL; 340 } 341 } 342 return 0; 343} 344 345#ifdef SECCOMP_ARCH_NATIVE 346static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 347 size_t bitmap_size, 348 int syscall_nr) 349{ 350 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 351 return false; 352 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 353 354 return test_bit(syscall_nr, bitmap); 355} 356 357/** 358 * seccomp_cache_check_allow - lookup seccomp cache 359 * @sfilter: The seccomp filter 360 * @sd: The seccomp data to lookup the cache with 361 * 362 * Returns true if the seccomp_data is cached and allowed. 363 */ 364static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 365 const struct seccomp_data *sd) 366{ 367 int syscall_nr = sd->nr; 368 const struct action_cache *cache = &sfilter->cache; 369 370#ifndef SECCOMP_ARCH_COMPAT 371 /* A native-only architecture doesn't need to check sd->arch. */ 372 return seccomp_cache_check_allow_bitmap(cache->allow_native, 373 SECCOMP_ARCH_NATIVE_NR, 374 syscall_nr); 375#else 376 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 377 return seccomp_cache_check_allow_bitmap(cache->allow_native, 378 SECCOMP_ARCH_NATIVE_NR, 379 syscall_nr); 380 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 381 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 382 SECCOMP_ARCH_COMPAT_NR, 383 syscall_nr); 384#endif /* SECCOMP_ARCH_COMPAT */ 385 386 WARN_ON_ONCE(true); 387 return false; 388} 389#endif /* SECCOMP_ARCH_NATIVE */ 390 391/** 392 * seccomp_run_filters - evaluates all seccomp filters against @sd 393 * @sd: optional seccomp data to be passed to filters 394 * @match: stores struct seccomp_filter that resulted in the return value, 395 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 396 * be unchanged. 397 * 398 * Returns valid seccomp BPF response codes. 399 */ 400#define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 401static u32 seccomp_run_filters(const struct seccomp_data *sd, 402 struct seccomp_filter **match) 403{ 404 u32 ret = SECCOMP_RET_ALLOW; 405 /* Make sure cross-thread synced filter points somewhere sane. */ 406 struct seccomp_filter *f = 407 READ_ONCE(current->seccomp.filter); 408 409 /* Ensure unexpected behavior doesn't result in failing open. */ 410 if (WARN_ON(f == NULL)) 411 return SECCOMP_RET_KILL_PROCESS; 412 413 if (seccomp_cache_check_allow(f, sd)) 414 return SECCOMP_RET_ALLOW; 415 416 /* 417 * All filters in the list are evaluated and the lowest BPF return 418 * value always takes priority (ignoring the DATA). 419 */ 420 for (; f; f = f->prev) { 421 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 422 423 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 424 ret = cur_ret; 425 *match = f; 426 } 427 } 428 return ret; 429} 430#endif /* CONFIG_SECCOMP_FILTER */ 431 432static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 433{ 434 assert_spin_locked(¤t->sighand->siglock); 435 436 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 437 return false; 438 439 return true; 440} 441 442void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 443 444static inline void seccomp_assign_mode(struct task_struct *task, 445 unsigned long seccomp_mode, 446 unsigned long flags) 447{ 448 assert_spin_locked(&task->sighand->siglock); 449 450 task->seccomp.mode = seccomp_mode; 451 /* 452 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and 453 * filter) is set. 454 */ 455 smp_mb__before_atomic(); 456 /* Assume default seccomp processes want spec flaw mitigation. */ 457 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 458 arch_seccomp_spec_mitigate(task); 459 set_task_syscall_work(task, SECCOMP); 460} 461 462#ifdef CONFIG_SECCOMP_FILTER 463/* Returns 1 if the parent is an ancestor of the child. */ 464static int is_ancestor(struct seccomp_filter *parent, 465 struct seccomp_filter *child) 466{ 467 /* NULL is the root ancestor. */ 468 if (parent == NULL) 469 return 1; 470 for (; child; child = child->prev) 471 if (child == parent) 472 return 1; 473 return 0; 474} 475 476/** 477 * seccomp_can_sync_threads: checks if all threads can be synchronized 478 * 479 * Expects sighand and cred_guard_mutex locks to be held. 480 * 481 * Returns 0 on success, -ve on error, or the pid of a thread which was 482 * either not in the correct seccomp mode or did not have an ancestral 483 * seccomp filter. 484 */ 485static inline pid_t seccomp_can_sync_threads(void) 486{ 487 struct task_struct *thread, *caller; 488 489 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 490 assert_spin_locked(¤t->sighand->siglock); 491 492 /* Validate all threads being eligible for synchronization. */ 493 caller = current; 494 for_each_thread(caller, thread) { 495 pid_t failed; 496 497 /* Skip current, since it is initiating the sync. */ 498 if (thread == caller) 499 continue; 500 501 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 502 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 503 is_ancestor(thread->seccomp.filter, 504 caller->seccomp.filter))) 505 continue; 506 507 /* Return the first thread that cannot be synchronized. */ 508 failed = task_pid_vnr(thread); 509 /* If the pid cannot be resolved, then return -ESRCH */ 510 if (WARN_ON(failed == 0)) 511 failed = -ESRCH; 512 return failed; 513 } 514 515 return 0; 516} 517 518static inline void seccomp_filter_free(struct seccomp_filter *filter) 519{ 520 if (filter) { 521 bpf_prog_destroy(filter->prog); 522 kfree(filter); 523 } 524} 525 526static void __seccomp_filter_orphan(struct seccomp_filter *orig) 527{ 528 while (orig && refcount_dec_and_test(&orig->users)) { 529 if (waitqueue_active(&orig->wqh)) 530 wake_up_poll(&orig->wqh, EPOLLHUP); 531 orig = orig->prev; 532 } 533} 534 535static void __put_seccomp_filter(struct seccomp_filter *orig) 536{ 537 /* Clean up single-reference branches iteratively. */ 538 while (orig && refcount_dec_and_test(&orig->refs)) { 539 struct seccomp_filter *freeme = orig; 540 orig = orig->prev; 541 seccomp_filter_free(freeme); 542 } 543} 544 545static void __seccomp_filter_release(struct seccomp_filter *orig) 546{ 547 /* Notify about any unused filters in the task's former filter tree. */ 548 __seccomp_filter_orphan(orig); 549 /* Finally drop all references to the task's former tree. */ 550 __put_seccomp_filter(orig); 551} 552 553/** 554 * seccomp_filter_release - Detach the task from its filter tree, 555 * drop its reference count, and notify 556 * about unused filters 557 * 558 * This function should only be called when the task is exiting as 559 * it detaches it from its filter tree. As such, READ_ONCE() and 560 * barriers are not needed here, as would normally be needed. 561 */ 562void seccomp_filter_release(struct task_struct *tsk) 563{ 564 struct seccomp_filter *orig = tsk->seccomp.filter; 565 566 /* We are effectively holding the siglock by not having any sighand. */ 567 WARN_ON(tsk->sighand != NULL); 568 569 /* Detach task from its filter tree. */ 570 tsk->seccomp.filter = NULL; 571 __seccomp_filter_release(orig); 572} 573 574/** 575 * seccomp_sync_threads: sets all threads to use current's filter 576 * 577 * Expects sighand and cred_guard_mutex locks to be held, and for 578 * seccomp_can_sync_threads() to have returned success already 579 * without dropping the locks. 580 * 581 */ 582static inline void seccomp_sync_threads(unsigned long flags) 583{ 584 struct task_struct *thread, *caller; 585 586 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 587 assert_spin_locked(¤t->sighand->siglock); 588 589 /* Synchronize all threads. */ 590 caller = current; 591 for_each_thread(caller, thread) { 592 /* Skip current, since it needs no changes. */ 593 if (thread == caller) 594 continue; 595 596 /* Get a task reference for the new leaf node. */ 597 get_seccomp_filter(caller); 598 599 /* 600 * Drop the task reference to the shared ancestor since 601 * current's path will hold a reference. (This also 602 * allows a put before the assignment.) 603 */ 604 __seccomp_filter_release(thread->seccomp.filter); 605 606 /* Make our new filter tree visible. */ 607 smp_store_release(&thread->seccomp.filter, 608 caller->seccomp.filter); 609 atomic_set(&thread->seccomp.filter_count, 610 atomic_read(&caller->seccomp.filter_count)); 611 612 /* 613 * Don't let an unprivileged task work around 614 * the no_new_privs restriction by creating 615 * a thread that sets it up, enters seccomp, 616 * then dies. 617 */ 618 if (task_no_new_privs(caller)) 619 task_set_no_new_privs(thread); 620 621 /* 622 * Opt the other thread into seccomp if needed. 623 * As threads are considered to be trust-realm 624 * equivalent (see ptrace_may_access), it is safe to 625 * allow one thread to transition the other. 626 */ 627 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 628 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 629 flags); 630 } 631} 632 633/** 634 * seccomp_prepare_filter: Prepares a seccomp filter for use. 635 * @fprog: BPF program to install 636 * 637 * Returns filter on success or an ERR_PTR on failure. 638 */ 639static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 640{ 641 struct seccomp_filter *sfilter; 642 int ret; 643 const bool save_orig = 644#if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 645 true; 646#else 647 false; 648#endif 649 650 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 651 return ERR_PTR(-EINVAL); 652 653 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 654 655 /* 656 * Installing a seccomp filter requires that the task has 657 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 658 * This avoids scenarios where unprivileged tasks can affect the 659 * behavior of privileged children. 660 */ 661 if (!task_no_new_privs(current) && 662 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) 663 return ERR_PTR(-EACCES); 664 665 /* Allocate a new seccomp_filter */ 666 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 667 if (!sfilter) 668 return ERR_PTR(-ENOMEM); 669 670 mutex_init(&sfilter->notify_lock); 671 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 672 seccomp_check_filter, save_orig); 673 if (ret < 0) { 674 kfree(sfilter); 675 return ERR_PTR(ret); 676 } 677 678 refcount_set(&sfilter->refs, 1); 679 refcount_set(&sfilter->users, 1); 680 init_waitqueue_head(&sfilter->wqh); 681 682 return sfilter; 683} 684 685/** 686 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 687 * @user_filter: pointer to the user data containing a sock_fprog. 688 * 689 * Returns 0 on success and non-zero otherwise. 690 */ 691static struct seccomp_filter * 692seccomp_prepare_user_filter(const char __user *user_filter) 693{ 694 struct sock_fprog fprog; 695 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 696 697#ifdef CONFIG_COMPAT 698 if (in_compat_syscall()) { 699 struct compat_sock_fprog fprog32; 700 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 701 goto out; 702 fprog.len = fprog32.len; 703 fprog.filter = compat_ptr(fprog32.filter); 704 } else /* falls through to the if below. */ 705#endif 706 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 707 goto out; 708 filter = seccomp_prepare_filter(&fprog); 709out: 710 return filter; 711} 712 713#ifdef SECCOMP_ARCH_NATIVE 714/** 715 * seccomp_is_const_allow - check if filter is constant allow with given data 716 * @fprog: The BPF programs 717 * @sd: The seccomp data to check against, only syscall number and arch 718 * number are considered constant. 719 */ 720static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 721 struct seccomp_data *sd) 722{ 723 unsigned int reg_value = 0; 724 unsigned int pc; 725 bool op_res; 726 727 if (WARN_ON_ONCE(!fprog)) 728 return false; 729 730 for (pc = 0; pc < fprog->len; pc++) { 731 struct sock_filter *insn = &fprog->filter[pc]; 732 u16 code = insn->code; 733 u32 k = insn->k; 734 735 switch (code) { 736 case BPF_LD | BPF_W | BPF_ABS: 737 switch (k) { 738 case offsetof(struct seccomp_data, nr): 739 reg_value = sd->nr; 740 break; 741 case offsetof(struct seccomp_data, arch): 742 reg_value = sd->arch; 743 break; 744 default: 745 /* can't optimize (non-constant value load) */ 746 return false; 747 } 748 break; 749 case BPF_RET | BPF_K: 750 /* reached return with constant values only, check allow */ 751 return k == SECCOMP_RET_ALLOW; 752 case BPF_JMP | BPF_JA: 753 pc += insn->k; 754 break; 755 case BPF_JMP | BPF_JEQ | BPF_K: 756 case BPF_JMP | BPF_JGE | BPF_K: 757 case BPF_JMP | BPF_JGT | BPF_K: 758 case BPF_JMP | BPF_JSET | BPF_K: 759 switch (BPF_OP(code)) { 760 case BPF_JEQ: 761 op_res = reg_value == k; 762 break; 763 case BPF_JGE: 764 op_res = reg_value >= k; 765 break; 766 case BPF_JGT: 767 op_res = reg_value > k; 768 break; 769 case BPF_JSET: 770 op_res = !!(reg_value & k); 771 break; 772 default: 773 /* can't optimize (unknown jump) */ 774 return false; 775 } 776 777 pc += op_res ? insn->jt : insn->jf; 778 break; 779 case BPF_ALU | BPF_AND | BPF_K: 780 reg_value &= k; 781 break; 782 default: 783 /* can't optimize (unknown insn) */ 784 return false; 785 } 786 } 787 788 /* ran off the end of the filter?! */ 789 WARN_ON(1); 790 return false; 791} 792 793static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 794 void *bitmap, const void *bitmap_prev, 795 size_t bitmap_size, int arch) 796{ 797 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 798 struct seccomp_data sd; 799 int nr; 800 801 if (bitmap_prev) { 802 /* The new filter must be as restrictive as the last. */ 803 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 804 } else { 805 /* Before any filters, all syscalls are always allowed. */ 806 bitmap_fill(bitmap, bitmap_size); 807 } 808 809 for (nr = 0; nr < bitmap_size; nr++) { 810 /* No bitmap change: not a cacheable action. */ 811 if (!test_bit(nr, bitmap)) 812 continue; 813 814 sd.nr = nr; 815 sd.arch = arch; 816 817 /* No bitmap change: continue to always allow. */ 818 if (seccomp_is_const_allow(fprog, &sd)) 819 continue; 820 821 /* 822 * Not a cacheable action: always run filters. 823 * atomic clear_bit() not needed, filter not visible yet. 824 */ 825 __clear_bit(nr, bitmap); 826 } 827} 828 829/** 830 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls 831 * @sfilter: The seccomp filter 832 * 833 * Returns 0 if successful or -errno if error occurred. 834 */ 835static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 836{ 837 struct action_cache *cache = &sfilter->cache; 838 const struct action_cache *cache_prev = 839 sfilter->prev ? &sfilter->prev->cache : NULL; 840 841 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 842 cache_prev ? cache_prev->allow_native : NULL, 843 SECCOMP_ARCH_NATIVE_NR, 844 SECCOMP_ARCH_NATIVE); 845 846#ifdef SECCOMP_ARCH_COMPAT 847 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 848 cache_prev ? cache_prev->allow_compat : NULL, 849 SECCOMP_ARCH_COMPAT_NR, 850 SECCOMP_ARCH_COMPAT); 851#endif /* SECCOMP_ARCH_COMPAT */ 852} 853#endif /* SECCOMP_ARCH_NATIVE */ 854 855/** 856 * seccomp_attach_filter: validate and attach filter 857 * @flags: flags to change filter behavior 858 * @filter: seccomp filter to add to the current process 859 * 860 * Caller must be holding current->sighand->siglock lock. 861 * 862 * Returns 0 on success, -ve on error, or 863 * - in TSYNC mode: the pid of a thread which was either not in the correct 864 * seccomp mode or did not have an ancestral seccomp filter 865 * - in NEW_LISTENER mode: the fd of the new listener 866 */ 867static long seccomp_attach_filter(unsigned int flags, 868 struct seccomp_filter *filter) 869{ 870 unsigned long total_insns; 871 struct seccomp_filter *walker; 872 873 assert_spin_locked(¤t->sighand->siglock); 874 875 /* Validate resulting filter length. */ 876 total_insns = filter->prog->len; 877 for (walker = current->seccomp.filter; walker; walker = walker->prev) 878 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 879 if (total_insns > MAX_INSNS_PER_PATH) 880 return -ENOMEM; 881 882 /* If thread sync has been requested, check that it is possible. */ 883 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 884 int ret; 885 886 ret = seccomp_can_sync_threads(); 887 if (ret) { 888 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 889 return -ESRCH; 890 else 891 return ret; 892 } 893 } 894 895 /* Set log flag, if present. */ 896 if (flags & SECCOMP_FILTER_FLAG_LOG) 897 filter->log = true; 898 899 /* Set wait killable flag, if present. */ 900 if (flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) 901 filter->wait_killable_recv = true; 902 903 /* 904 * If there is an existing filter, make it the prev and don't drop its 905 * task reference. 906 */ 907 filter->prev = current->seccomp.filter; 908 seccomp_cache_prepare(filter); 909 current->seccomp.filter = filter; 910 atomic_inc(¤t->seccomp.filter_count); 911 912 /* Now that the new filter is in place, synchronize to all threads. */ 913 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 914 seccomp_sync_threads(flags); 915 916 return 0; 917} 918 919static void __get_seccomp_filter(struct seccomp_filter *filter) 920{ 921 refcount_inc(&filter->refs); 922} 923 924/* get_seccomp_filter - increments the reference count of the filter on @tsk */ 925void get_seccomp_filter(struct task_struct *tsk) 926{ 927 struct seccomp_filter *orig = tsk->seccomp.filter; 928 if (!orig) 929 return; 930 __get_seccomp_filter(orig); 931 refcount_inc(&orig->users); 932} 933 934#endif /* CONFIG_SECCOMP_FILTER */ 935 936/* For use with seccomp_actions_logged */ 937#define SECCOMP_LOG_KILL_PROCESS (1 << 0) 938#define SECCOMP_LOG_KILL_THREAD (1 << 1) 939#define SECCOMP_LOG_TRAP (1 << 2) 940#define SECCOMP_LOG_ERRNO (1 << 3) 941#define SECCOMP_LOG_TRACE (1 << 4) 942#define SECCOMP_LOG_LOG (1 << 5) 943#define SECCOMP_LOG_ALLOW (1 << 6) 944#define SECCOMP_LOG_USER_NOTIF (1 << 7) 945 946static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 947 SECCOMP_LOG_KILL_THREAD | 948 SECCOMP_LOG_TRAP | 949 SECCOMP_LOG_ERRNO | 950 SECCOMP_LOG_USER_NOTIF | 951 SECCOMP_LOG_TRACE | 952 SECCOMP_LOG_LOG; 953 954static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 955 bool requested) 956{ 957 bool log = false; 958 959 switch (action) { 960 case SECCOMP_RET_ALLOW: 961 break; 962 case SECCOMP_RET_TRAP: 963 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 964 break; 965 case SECCOMP_RET_ERRNO: 966 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 967 break; 968 case SECCOMP_RET_TRACE: 969 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 970 break; 971 case SECCOMP_RET_USER_NOTIF: 972 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 973 break; 974 case SECCOMP_RET_LOG: 975 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 976 break; 977 case SECCOMP_RET_KILL_THREAD: 978 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 979 break; 980 case SECCOMP_RET_KILL_PROCESS: 981 default: 982 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 983 } 984 985 /* 986 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 987 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 988 * any action from being logged by removing the action name from the 989 * seccomp_actions_logged sysctl. 990 */ 991 if (!log) 992 return; 993 994 audit_seccomp(syscall, signr, action); 995} 996 997/* 998 * Secure computing mode 1 allows only read/write/exit/sigreturn. 999 * To be fully secure this must be combined with rlimit 1000 * to limit the stack allocations too. 1001 */ 1002static const int mode1_syscalls[] = { 1003 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 1004 -1, /* negative terminated */ 1005}; 1006 1007static void __secure_computing_strict(int this_syscall) 1008{ 1009 const int *allowed_syscalls = mode1_syscalls; 1010#ifdef CONFIG_COMPAT 1011 if (in_compat_syscall()) 1012 allowed_syscalls = get_compat_mode1_syscalls(); 1013#endif 1014 do { 1015 if (*allowed_syscalls == this_syscall) 1016 return; 1017 } while (*++allowed_syscalls != -1); 1018 1019#ifdef SECCOMP_DEBUG 1020 dump_stack(); 1021#endif 1022 current->seccomp.mode = SECCOMP_MODE_DEAD; 1023 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1024 do_exit(SIGKILL); 1025} 1026 1027#ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1028void secure_computing_strict(int this_syscall) 1029{ 1030 int mode = current->seccomp.mode; 1031 1032 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1033 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1034 return; 1035 1036 if (mode == SECCOMP_MODE_DISABLED) 1037 return; 1038 else if (mode == SECCOMP_MODE_STRICT) 1039 __secure_computing_strict(this_syscall); 1040 else 1041 BUG(); 1042} 1043#else 1044 1045#ifdef CONFIG_SECCOMP_FILTER 1046static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1047{ 1048 /* 1049 * Note: overflow is ok here, the id just needs to be unique per 1050 * filter. 1051 */ 1052 lockdep_assert_held(&filter->notify_lock); 1053 return filter->notif->next_id++; 1054} 1055 1056static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n) 1057{ 1058 int fd; 1059 1060 /* 1061 * Remove the notification, and reset the list pointers, indicating 1062 * that it has been handled. 1063 */ 1064 list_del_init(&addfd->list); 1065 if (!addfd->setfd) 1066 fd = receive_fd(addfd->file, addfd->flags); 1067 else 1068 fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 1069 addfd->ret = fd; 1070 1071 if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) { 1072 /* If we fail reset and return an error to the notifier */ 1073 if (fd < 0) { 1074 n->state = SECCOMP_NOTIFY_SENT; 1075 } else { 1076 /* Return the FD we just added */ 1077 n->flags = 0; 1078 n->error = 0; 1079 n->val = fd; 1080 } 1081 } 1082 1083 /* 1084 * Mark the notification as completed. From this point, addfd mem 1085 * might be invalidated and we can't safely read it anymore. 1086 */ 1087 complete(&addfd->completion); 1088} 1089 1090static bool should_sleep_killable(struct seccomp_filter *match, 1091 struct seccomp_knotif *n) 1092{ 1093 return match->wait_killable_recv && n->state == SECCOMP_NOTIFY_SENT; 1094} 1095 1096static int seccomp_do_user_notification(int this_syscall, 1097 struct seccomp_filter *match, 1098 const struct seccomp_data *sd) 1099{ 1100 int err; 1101 u32 flags = 0; 1102 long ret = 0; 1103 struct seccomp_knotif n = {}; 1104 struct seccomp_kaddfd *addfd, *tmp; 1105 1106 mutex_lock(&match->notify_lock); 1107 err = -ENOSYS; 1108 if (!match->notif) 1109 goto out; 1110 1111 n.task = current; 1112 n.state = SECCOMP_NOTIFY_INIT; 1113 n.data = sd; 1114 n.id = seccomp_next_notify_id(match); 1115 init_completion(&n.ready); 1116 list_add_tail(&n.list, &match->notif->notifications); 1117 INIT_LIST_HEAD(&n.addfd); 1118 1119 up(&match->notif->request); 1120 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1121 1122 /* 1123 * This is where we wait for a reply from userspace. 1124 */ 1125 do { 1126 bool wait_killable = should_sleep_killable(match, &n); 1127 1128 mutex_unlock(&match->notify_lock); 1129 if (wait_killable) 1130 err = wait_for_completion_killable(&n.ready); 1131 else 1132 err = wait_for_completion_interruptible(&n.ready); 1133 mutex_lock(&match->notify_lock); 1134 1135 if (err != 0) { 1136 /* 1137 * Check to see if the notifcation got picked up and 1138 * whether we should switch to wait killable. 1139 */ 1140 if (!wait_killable && should_sleep_killable(match, &n)) 1141 continue; 1142 1143 goto interrupted; 1144 } 1145 1146 addfd = list_first_entry_or_null(&n.addfd, 1147 struct seccomp_kaddfd, list); 1148 /* Check if we were woken up by a addfd message */ 1149 if (addfd) 1150 seccomp_handle_addfd(addfd, &n); 1151 1152 } while (n.state != SECCOMP_NOTIFY_REPLIED); 1153 1154 ret = n.val; 1155 err = n.error; 1156 flags = n.flags; 1157 1158interrupted: 1159 /* If there were any pending addfd calls, clear them out */ 1160 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1161 /* The process went away before we got a chance to handle it */ 1162 addfd->ret = -ESRCH; 1163 list_del_init(&addfd->list); 1164 complete(&addfd->completion); 1165 } 1166 1167 /* 1168 * Note that it's possible the listener died in between the time when 1169 * we were notified of a response (or a signal) and when we were able to 1170 * re-acquire the lock, so only delete from the list if the 1171 * notification actually exists. 1172 * 1173 * Also note that this test is only valid because there's no way to 1174 * *reattach* to a notifier right now. If one is added, we'll need to 1175 * keep track of the notif itself and make sure they match here. 1176 */ 1177 if (match->notif) 1178 list_del(&n.list); 1179out: 1180 mutex_unlock(&match->notify_lock); 1181 1182 /* Userspace requests to continue the syscall. */ 1183 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1184 return 0; 1185 1186 syscall_set_return_value(current, current_pt_regs(), 1187 err, ret); 1188 return -1; 1189} 1190 1191static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1192 const bool recheck_after_trace) 1193{ 1194 u32 filter_ret, action; 1195 struct seccomp_filter *match = NULL; 1196 int data; 1197 struct seccomp_data sd_local; 1198 1199 /* 1200 * Make sure that any changes to mode from another thread have 1201 * been seen after SYSCALL_WORK_SECCOMP was seen. 1202 */ 1203 smp_rmb(); 1204 1205 if (!sd) { 1206 populate_seccomp_data(&sd_local); 1207 sd = &sd_local; 1208 } 1209 1210 filter_ret = seccomp_run_filters(sd, &match); 1211 data = filter_ret & SECCOMP_RET_DATA; 1212 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1213 1214 switch (action) { 1215 case SECCOMP_RET_ERRNO: 1216 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1217 if (data > MAX_ERRNO) 1218 data = MAX_ERRNO; 1219 syscall_set_return_value(current, current_pt_regs(), 1220 -data, 0); 1221 goto skip; 1222 1223 case SECCOMP_RET_TRAP: 1224 /* Show the handler the original registers. */ 1225 syscall_rollback(current, current_pt_regs()); 1226 /* Let the filter pass back 16 bits of data. */ 1227 force_sig_seccomp(this_syscall, data, false); 1228 goto skip; 1229 1230 case SECCOMP_RET_TRACE: 1231 /* We've been put in this state by the ptracer already. */ 1232 if (recheck_after_trace) 1233 return 0; 1234 1235 /* ENOSYS these calls if there is no tracer attached. */ 1236 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1237 syscall_set_return_value(current, 1238 current_pt_regs(), 1239 -ENOSYS, 0); 1240 goto skip; 1241 } 1242 1243 /* Allow the BPF to provide the event message */ 1244 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1245 /* 1246 * The delivery of a fatal signal during event 1247 * notification may silently skip tracer notification, 1248 * which could leave us with a potentially unmodified 1249 * syscall that the tracer would have liked to have 1250 * changed. Since the process is about to die, we just 1251 * force the syscall to be skipped and let the signal 1252 * kill the process and correctly handle any tracer exit 1253 * notifications. 1254 */ 1255 if (fatal_signal_pending(current)) 1256 goto skip; 1257 /* Check if the tracer forced the syscall to be skipped. */ 1258 this_syscall = syscall_get_nr(current, current_pt_regs()); 1259 if (this_syscall < 0) 1260 goto skip; 1261 1262 /* 1263 * Recheck the syscall, since it may have changed. This 1264 * intentionally uses a NULL struct seccomp_data to force 1265 * a reload of all registers. This does not goto skip since 1266 * a skip would have already been reported. 1267 */ 1268 if (__seccomp_filter(this_syscall, NULL, true)) 1269 return -1; 1270 1271 return 0; 1272 1273 case SECCOMP_RET_USER_NOTIF: 1274 if (seccomp_do_user_notification(this_syscall, match, sd)) 1275 goto skip; 1276 1277 return 0; 1278 1279 case SECCOMP_RET_LOG: 1280 seccomp_log(this_syscall, 0, action, true); 1281 return 0; 1282 1283 case SECCOMP_RET_ALLOW: 1284 /* 1285 * Note that the "match" filter will always be NULL for 1286 * this action since SECCOMP_RET_ALLOW is the starting 1287 * state in seccomp_run_filters(). 1288 */ 1289 return 0; 1290 1291 case SECCOMP_RET_KILL_THREAD: 1292 case SECCOMP_RET_KILL_PROCESS: 1293 default: 1294 current->seccomp.mode = SECCOMP_MODE_DEAD; 1295 seccomp_log(this_syscall, SIGSYS, action, true); 1296 /* Dump core only if this is the last remaining thread. */ 1297 if (action != SECCOMP_RET_KILL_THREAD || 1298 (atomic_read(¤t->signal->live) == 1)) { 1299 /* Show the original registers in the dump. */ 1300 syscall_rollback(current, current_pt_regs()); 1301 /* Trigger a coredump with SIGSYS */ 1302 force_sig_seccomp(this_syscall, data, true); 1303 } else { 1304 do_exit(SIGSYS); 1305 } 1306 return -1; /* skip the syscall go directly to signal handling */ 1307 } 1308 1309 unreachable(); 1310 1311skip: 1312 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1313 return -1; 1314} 1315#else 1316static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1317 const bool recheck_after_trace) 1318{ 1319 BUG(); 1320 1321 return -1; 1322} 1323#endif 1324 1325int __secure_computing(const struct seccomp_data *sd) 1326{ 1327 int mode = current->seccomp.mode; 1328 int this_syscall; 1329 1330 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1331 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1332 return 0; 1333 1334 this_syscall = sd ? sd->nr : 1335 syscall_get_nr(current, current_pt_regs()); 1336 1337 switch (mode) { 1338 case SECCOMP_MODE_STRICT: 1339 __secure_computing_strict(this_syscall); /* may call do_exit */ 1340 return 0; 1341 case SECCOMP_MODE_FILTER: 1342 return __seccomp_filter(this_syscall, sd, false); 1343 /* Surviving SECCOMP_RET_KILL_* must be proactively impossible. */ 1344 case SECCOMP_MODE_DEAD: 1345 WARN_ON_ONCE(1); 1346 do_exit(SIGKILL); 1347 return -1; 1348 default: 1349 BUG(); 1350 } 1351} 1352#endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1353 1354long prctl_get_seccomp(void) 1355{ 1356 return current->seccomp.mode; 1357} 1358 1359/** 1360 * seccomp_set_mode_strict: internal function for setting strict seccomp 1361 * 1362 * Once current->seccomp.mode is non-zero, it may not be changed. 1363 * 1364 * Returns 0 on success or -EINVAL on failure. 1365 */ 1366static long seccomp_set_mode_strict(void) 1367{ 1368 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1369 long ret = -EINVAL; 1370 1371 spin_lock_irq(¤t->sighand->siglock); 1372 1373 if (!seccomp_may_assign_mode(seccomp_mode)) 1374 goto out; 1375 1376#ifdef TIF_NOTSC 1377 disable_TSC(); 1378#endif 1379 seccomp_assign_mode(current, seccomp_mode, 0); 1380 ret = 0; 1381 1382out: 1383 spin_unlock_irq(¤t->sighand->siglock); 1384 1385 return ret; 1386} 1387 1388#ifdef CONFIG_SECCOMP_FILTER 1389static void seccomp_notify_free(struct seccomp_filter *filter) 1390{ 1391 kfree(filter->notif); 1392 filter->notif = NULL; 1393} 1394 1395static void seccomp_notify_detach(struct seccomp_filter *filter) 1396{ 1397 struct seccomp_knotif *knotif; 1398 1399 if (!filter) 1400 return; 1401 1402 mutex_lock(&filter->notify_lock); 1403 1404 /* 1405 * If this file is being closed because e.g. the task who owned it 1406 * died, let's wake everyone up who was waiting on us. 1407 */ 1408 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1409 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1410 continue; 1411 1412 knotif->state = SECCOMP_NOTIFY_REPLIED; 1413 knotif->error = -ENOSYS; 1414 knotif->val = 0; 1415 1416 /* 1417 * We do not need to wake up any pending addfd messages, as 1418 * the notifier will do that for us, as this just looks 1419 * like a standard reply. 1420 */ 1421 complete(&knotif->ready); 1422 } 1423 1424 seccomp_notify_free(filter); 1425 mutex_unlock(&filter->notify_lock); 1426} 1427 1428static int seccomp_notify_release(struct inode *inode, struct file *file) 1429{ 1430 struct seccomp_filter *filter = file->private_data; 1431 1432 seccomp_notify_detach(filter); 1433 __put_seccomp_filter(filter); 1434 return 0; 1435} 1436 1437/* must be called with notif_lock held */ 1438static inline struct seccomp_knotif * 1439find_notification(struct seccomp_filter *filter, u64 id) 1440{ 1441 struct seccomp_knotif *cur; 1442 1443 lockdep_assert_held(&filter->notify_lock); 1444 1445 list_for_each_entry(cur, &filter->notif->notifications, list) { 1446 if (cur->id == id) 1447 return cur; 1448 } 1449 1450 return NULL; 1451} 1452 1453 1454static long seccomp_notify_recv(struct seccomp_filter *filter, 1455 void __user *buf) 1456{ 1457 struct seccomp_knotif *knotif = NULL, *cur; 1458 struct seccomp_notif unotif; 1459 ssize_t ret; 1460 1461 /* Verify that we're not given garbage to keep struct extensible. */ 1462 ret = check_zeroed_user(buf, sizeof(unotif)); 1463 if (ret < 0) 1464 return ret; 1465 if (!ret) 1466 return -EINVAL; 1467 1468 memset(&unotif, 0, sizeof(unotif)); 1469 1470 ret = down_interruptible(&filter->notif->request); 1471 if (ret < 0) 1472 return ret; 1473 1474 mutex_lock(&filter->notify_lock); 1475 list_for_each_entry(cur, &filter->notif->notifications, list) { 1476 if (cur->state == SECCOMP_NOTIFY_INIT) { 1477 knotif = cur; 1478 break; 1479 } 1480 } 1481 1482 /* 1483 * If we didn't find a notification, it could be that the task was 1484 * interrupted by a fatal signal between the time we were woken and 1485 * when we were able to acquire the rw lock. 1486 */ 1487 if (!knotif) { 1488 ret = -ENOENT; 1489 goto out; 1490 } 1491 1492 unotif.id = knotif->id; 1493 unotif.pid = task_pid_vnr(knotif->task); 1494 unotif.data = *(knotif->data); 1495 1496 knotif->state = SECCOMP_NOTIFY_SENT; 1497 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1498 ret = 0; 1499out: 1500 mutex_unlock(&filter->notify_lock); 1501 1502 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1503 ret = -EFAULT; 1504 1505 /* 1506 * Userspace screwed up. To make sure that we keep this 1507 * notification alive, let's reset it back to INIT. It 1508 * may have died when we released the lock, so we need to make 1509 * sure it's still around. 1510 */ 1511 mutex_lock(&filter->notify_lock); 1512 knotif = find_notification(filter, unotif.id); 1513 if (knotif) { 1514 /* Reset the process to make sure it's not stuck */ 1515 if (should_sleep_killable(filter, knotif)) 1516 complete(&knotif->ready); 1517 knotif->state = SECCOMP_NOTIFY_INIT; 1518 up(&filter->notif->request); 1519 } 1520 mutex_unlock(&filter->notify_lock); 1521 } 1522 1523 return ret; 1524} 1525 1526static long seccomp_notify_send(struct seccomp_filter *filter, 1527 void __user *buf) 1528{ 1529 struct seccomp_notif_resp resp = {}; 1530 struct seccomp_knotif *knotif; 1531 long ret; 1532 1533 if (copy_from_user(&resp, buf, sizeof(resp))) 1534 return -EFAULT; 1535 1536 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1537 return -EINVAL; 1538 1539 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1540 (resp.error || resp.val)) 1541 return -EINVAL; 1542 1543 ret = mutex_lock_interruptible(&filter->notify_lock); 1544 if (ret < 0) 1545 return ret; 1546 1547 knotif = find_notification(filter, resp.id); 1548 if (!knotif) { 1549 ret = -ENOENT; 1550 goto out; 1551 } 1552 1553 /* Allow exactly one reply. */ 1554 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1555 ret = -EINPROGRESS; 1556 goto out; 1557 } 1558 1559 ret = 0; 1560 knotif->state = SECCOMP_NOTIFY_REPLIED; 1561 knotif->error = resp.error; 1562 knotif->val = resp.val; 1563 knotif->flags = resp.flags; 1564 complete(&knotif->ready); 1565out: 1566 mutex_unlock(&filter->notify_lock); 1567 return ret; 1568} 1569 1570static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1571 void __user *buf) 1572{ 1573 struct seccomp_knotif *knotif; 1574 u64 id; 1575 long ret; 1576 1577 if (copy_from_user(&id, buf, sizeof(id))) 1578 return -EFAULT; 1579 1580 ret = mutex_lock_interruptible(&filter->notify_lock); 1581 if (ret < 0) 1582 return ret; 1583 1584 knotif = find_notification(filter, id); 1585 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1586 ret = 0; 1587 else 1588 ret = -ENOENT; 1589 1590 mutex_unlock(&filter->notify_lock); 1591 return ret; 1592} 1593 1594static long seccomp_notify_addfd(struct seccomp_filter *filter, 1595 struct seccomp_notif_addfd __user *uaddfd, 1596 unsigned int size) 1597{ 1598 struct seccomp_notif_addfd addfd; 1599 struct seccomp_knotif *knotif; 1600 struct seccomp_kaddfd kaddfd; 1601 int ret; 1602 1603 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1604 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1605 1606 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1607 return -EINVAL; 1608 1609 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1610 if (ret) 1611 return ret; 1612 1613 if (addfd.newfd_flags & ~O_CLOEXEC) 1614 return -EINVAL; 1615 1616 if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND)) 1617 return -EINVAL; 1618 1619 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1620 return -EINVAL; 1621 1622 kaddfd.file = fget(addfd.srcfd); 1623 if (!kaddfd.file) 1624 return -EBADF; 1625 1626 kaddfd.ioctl_flags = addfd.flags; 1627 kaddfd.flags = addfd.newfd_flags; 1628 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD; 1629 kaddfd.fd = addfd.newfd; 1630 init_completion(&kaddfd.completion); 1631 1632 ret = mutex_lock_interruptible(&filter->notify_lock); 1633 if (ret < 0) 1634 goto out; 1635 1636 knotif = find_notification(filter, addfd.id); 1637 if (!knotif) { 1638 ret = -ENOENT; 1639 goto out_unlock; 1640 } 1641 1642 /* 1643 * We do not want to allow for FD injection to occur before the 1644 * notification has been picked up by a userspace handler, or after 1645 * the notification has been replied to. 1646 */ 1647 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1648 ret = -EINPROGRESS; 1649 goto out_unlock; 1650 } 1651 1652 if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) { 1653 /* 1654 * Disallow queuing an atomic addfd + send reply while there are 1655 * some addfd requests still to process. 1656 * 1657 * There is no clear reason to support it and allows us to keep 1658 * the loop on the other side straight-forward. 1659 */ 1660 if (!list_empty(&knotif->addfd)) { 1661 ret = -EBUSY; 1662 goto out_unlock; 1663 } 1664 1665 /* Allow exactly only one reply */ 1666 knotif->state = SECCOMP_NOTIFY_REPLIED; 1667 } 1668 1669 list_add(&kaddfd.list, &knotif->addfd); 1670 complete(&knotif->ready); 1671 mutex_unlock(&filter->notify_lock); 1672 1673 /* Now we wait for it to be processed or be interrupted */ 1674 ret = wait_for_completion_interruptible(&kaddfd.completion); 1675 if (ret == 0) { 1676 /* 1677 * We had a successful completion. The other side has already 1678 * removed us from the addfd queue, and 1679 * wait_for_completion_interruptible has a memory barrier upon 1680 * success that lets us read this value directly without 1681 * locking. 1682 */ 1683 ret = kaddfd.ret; 1684 goto out; 1685 } 1686 1687 mutex_lock(&filter->notify_lock); 1688 /* 1689 * Even though we were woken up by a signal and not a successful 1690 * completion, a completion may have happened in the mean time. 1691 * 1692 * We need to check again if the addfd request has been handled, 1693 * and if not, we will remove it from the queue. 1694 */ 1695 if (list_empty(&kaddfd.list)) 1696 ret = kaddfd.ret; 1697 else 1698 list_del(&kaddfd.list); 1699 1700out_unlock: 1701 mutex_unlock(&filter->notify_lock); 1702out: 1703 fput(kaddfd.file); 1704 1705 return ret; 1706} 1707 1708static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1709 unsigned long arg) 1710{ 1711 struct seccomp_filter *filter = file->private_data; 1712 void __user *buf = (void __user *)arg; 1713 1714 /* Fixed-size ioctls */ 1715 switch (cmd) { 1716 case SECCOMP_IOCTL_NOTIF_RECV: 1717 return seccomp_notify_recv(filter, buf); 1718 case SECCOMP_IOCTL_NOTIF_SEND: 1719 return seccomp_notify_send(filter, buf); 1720 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1721 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1722 return seccomp_notify_id_valid(filter, buf); 1723 } 1724 1725 /* Extensible Argument ioctls */ 1726#define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1727 switch (EA_IOCTL(cmd)) { 1728 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1729 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1730 default: 1731 return -EINVAL; 1732 } 1733} 1734 1735static __poll_t seccomp_notify_poll(struct file *file, 1736 struct poll_table_struct *poll_tab) 1737{ 1738 struct seccomp_filter *filter = file->private_data; 1739 __poll_t ret = 0; 1740 struct seccomp_knotif *cur; 1741 1742 poll_wait(file, &filter->wqh, poll_tab); 1743 1744 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1745 return EPOLLERR; 1746 1747 list_for_each_entry(cur, &filter->notif->notifications, list) { 1748 if (cur->state == SECCOMP_NOTIFY_INIT) 1749 ret |= EPOLLIN | EPOLLRDNORM; 1750 if (cur->state == SECCOMP_NOTIFY_SENT) 1751 ret |= EPOLLOUT | EPOLLWRNORM; 1752 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1753 break; 1754 } 1755 1756 mutex_unlock(&filter->notify_lock); 1757 1758 if (refcount_read(&filter->users) == 0) 1759 ret |= EPOLLHUP; 1760 1761 return ret; 1762} 1763 1764static const struct file_operations seccomp_notify_ops = { 1765 .poll = seccomp_notify_poll, 1766 .release = seccomp_notify_release, 1767 .unlocked_ioctl = seccomp_notify_ioctl, 1768 .compat_ioctl = seccomp_notify_ioctl, 1769}; 1770 1771static struct file *init_listener(struct seccomp_filter *filter) 1772{ 1773 struct file *ret; 1774 1775 ret = ERR_PTR(-ENOMEM); 1776 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1777 if (!filter->notif) 1778 goto out; 1779 1780 sema_init(&filter->notif->request, 0); 1781 filter->notif->next_id = get_random_u64(); 1782 INIT_LIST_HEAD(&filter->notif->notifications); 1783 1784 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1785 filter, O_RDWR); 1786 if (IS_ERR(ret)) 1787 goto out_notif; 1788 1789 /* The file has a reference to it now */ 1790 __get_seccomp_filter(filter); 1791 1792out_notif: 1793 if (IS_ERR(ret)) 1794 seccomp_notify_free(filter); 1795out: 1796 return ret; 1797} 1798 1799/* 1800 * Does @new_child have a listener while an ancestor also has a listener? 1801 * If so, we'll want to reject this filter. 1802 * This only has to be tested for the current process, even in the TSYNC case, 1803 * because TSYNC installs @child with the same parent on all threads. 1804 * Note that @new_child is not hooked up to its parent at this point yet, so 1805 * we use current->seccomp.filter. 1806 */ 1807static bool has_duplicate_listener(struct seccomp_filter *new_child) 1808{ 1809 struct seccomp_filter *cur; 1810 1811 /* must be protected against concurrent TSYNC */ 1812 lockdep_assert_held(¤t->sighand->siglock); 1813 1814 if (!new_child->notif) 1815 return false; 1816 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1817 if (cur->notif) 1818 return true; 1819 } 1820 1821 return false; 1822} 1823 1824/** 1825 * seccomp_set_mode_filter: internal function for setting seccomp filter 1826 * @flags: flags to change filter behavior 1827 * @filter: struct sock_fprog containing filter 1828 * 1829 * This function may be called repeatedly to install additional filters. 1830 * Every filter successfully installed will be evaluated (in reverse order) 1831 * for each system call the task makes. 1832 * 1833 * Once current->seccomp.mode is non-zero, it may not be changed. 1834 * 1835 * Returns 0 on success or -EINVAL on failure. 1836 */ 1837static long seccomp_set_mode_filter(unsigned int flags, 1838 const char __user *filter) 1839{ 1840 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1841 struct seccomp_filter *prepared = NULL; 1842 long ret = -EINVAL; 1843 int listener = -1; 1844 struct file *listener_f = NULL; 1845 1846 /* Validate flags. */ 1847 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1848 return -EINVAL; 1849 1850 /* 1851 * In the successful case, NEW_LISTENER returns the new listener fd. 1852 * But in the failure case, TSYNC returns the thread that died. If you 1853 * combine these two flags, there's no way to tell whether something 1854 * succeeded or failed. So, let's disallow this combination if the user 1855 * has not explicitly requested no errors from TSYNC. 1856 */ 1857 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1858 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1859 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1860 return -EINVAL; 1861 1862 /* 1863 * The SECCOMP_FILTER_FLAG_WAIT_KILLABLE_SENT flag doesn't make sense 1864 * without the SECCOMP_FILTER_FLAG_NEW_LISTENER flag. 1865 */ 1866 if ((flags & SECCOMP_FILTER_FLAG_WAIT_KILLABLE_RECV) && 1867 ((flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) == 0)) 1868 return -EINVAL; 1869 1870 /* Prepare the new filter before holding any locks. */ 1871 prepared = seccomp_prepare_user_filter(filter); 1872 if (IS_ERR(prepared)) 1873 return PTR_ERR(prepared); 1874 1875 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1876 listener = get_unused_fd_flags(O_CLOEXEC); 1877 if (listener < 0) { 1878 ret = listener; 1879 goto out_free; 1880 } 1881 1882 listener_f = init_listener(prepared); 1883 if (IS_ERR(listener_f)) { 1884 put_unused_fd(listener); 1885 ret = PTR_ERR(listener_f); 1886 goto out_free; 1887 } 1888 } 1889 1890 /* 1891 * Make sure we cannot change seccomp or nnp state via TSYNC 1892 * while another thread is in the middle of calling exec. 1893 */ 1894 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1895 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1896 goto out_put_fd; 1897 1898 spin_lock_irq(¤t->sighand->siglock); 1899 1900 if (!seccomp_may_assign_mode(seccomp_mode)) 1901 goto out; 1902 1903 if (has_duplicate_listener(prepared)) { 1904 ret = -EBUSY; 1905 goto out; 1906 } 1907 1908 ret = seccomp_attach_filter(flags, prepared); 1909 if (ret) 1910 goto out; 1911 /* Do not free the successfully attached filter. */ 1912 prepared = NULL; 1913 1914 seccomp_assign_mode(current, seccomp_mode, flags); 1915out: 1916 spin_unlock_irq(¤t->sighand->siglock); 1917 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1918 mutex_unlock(¤t->signal->cred_guard_mutex); 1919out_put_fd: 1920 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1921 if (ret) { 1922 listener_f->private_data = NULL; 1923 fput(listener_f); 1924 put_unused_fd(listener); 1925 seccomp_notify_detach(prepared); 1926 } else { 1927 fd_install(listener, listener_f); 1928 ret = listener; 1929 } 1930 } 1931out_free: 1932 seccomp_filter_free(prepared); 1933 return ret; 1934} 1935#else 1936static inline long seccomp_set_mode_filter(unsigned int flags, 1937 const char __user *filter) 1938{ 1939 return -EINVAL; 1940} 1941#endif 1942 1943static long seccomp_get_action_avail(const char __user *uaction) 1944{ 1945 u32 action; 1946 1947 if (copy_from_user(&action, uaction, sizeof(action))) 1948 return -EFAULT; 1949 1950 switch (action) { 1951 case SECCOMP_RET_KILL_PROCESS: 1952 case SECCOMP_RET_KILL_THREAD: 1953 case SECCOMP_RET_TRAP: 1954 case SECCOMP_RET_ERRNO: 1955 case SECCOMP_RET_USER_NOTIF: 1956 case SECCOMP_RET_TRACE: 1957 case SECCOMP_RET_LOG: 1958 case SECCOMP_RET_ALLOW: 1959 break; 1960 default: 1961 return -EOPNOTSUPP; 1962 } 1963 1964 return 0; 1965} 1966 1967static long seccomp_get_notif_sizes(void __user *usizes) 1968{ 1969 struct seccomp_notif_sizes sizes = { 1970 .seccomp_notif = sizeof(struct seccomp_notif), 1971 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 1972 .seccomp_data = sizeof(struct seccomp_data), 1973 }; 1974 1975 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 1976 return -EFAULT; 1977 1978 return 0; 1979} 1980 1981/* Common entry point for both prctl and syscall. */ 1982static long do_seccomp(unsigned int op, unsigned int flags, 1983 void __user *uargs) 1984{ 1985 switch (op) { 1986 case SECCOMP_SET_MODE_STRICT: 1987 if (flags != 0 || uargs != NULL) 1988 return -EINVAL; 1989 return seccomp_set_mode_strict(); 1990 case SECCOMP_SET_MODE_FILTER: 1991 return seccomp_set_mode_filter(flags, uargs); 1992 case SECCOMP_GET_ACTION_AVAIL: 1993 if (flags != 0) 1994 return -EINVAL; 1995 1996 return seccomp_get_action_avail(uargs); 1997 case SECCOMP_GET_NOTIF_SIZES: 1998 if (flags != 0) 1999 return -EINVAL; 2000 2001 return seccomp_get_notif_sizes(uargs); 2002 default: 2003 return -EINVAL; 2004 } 2005} 2006 2007SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 2008 void __user *, uargs) 2009{ 2010 return do_seccomp(op, flags, uargs); 2011} 2012 2013/** 2014 * prctl_set_seccomp: configures current->seccomp.mode 2015 * @seccomp_mode: requested mode to use 2016 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 2017 * 2018 * Returns 0 on success or -EINVAL on failure. 2019 */ 2020long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 2021{ 2022 unsigned int op; 2023 void __user *uargs; 2024 2025 switch (seccomp_mode) { 2026 case SECCOMP_MODE_STRICT: 2027 op = SECCOMP_SET_MODE_STRICT; 2028 /* 2029 * Setting strict mode through prctl always ignored filter, 2030 * so make sure it is always NULL here to pass the internal 2031 * check in do_seccomp(). 2032 */ 2033 uargs = NULL; 2034 break; 2035 case SECCOMP_MODE_FILTER: 2036 op = SECCOMP_SET_MODE_FILTER; 2037 uargs = filter; 2038 break; 2039 default: 2040 return -EINVAL; 2041 } 2042 2043 /* prctl interface doesn't have flags, so they are always zero. */ 2044 return do_seccomp(op, 0, uargs); 2045} 2046 2047#if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 2048static struct seccomp_filter *get_nth_filter(struct task_struct *task, 2049 unsigned long filter_off) 2050{ 2051 struct seccomp_filter *orig, *filter; 2052 unsigned long count; 2053 2054 /* 2055 * Note: this is only correct because the caller should be the (ptrace) 2056 * tracer of the task, otherwise lock_task_sighand is needed. 2057 */ 2058 spin_lock_irq(&task->sighand->siglock); 2059 2060 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 2061 spin_unlock_irq(&task->sighand->siglock); 2062 return ERR_PTR(-EINVAL); 2063 } 2064 2065 orig = task->seccomp.filter; 2066 __get_seccomp_filter(orig); 2067 spin_unlock_irq(&task->sighand->siglock); 2068 2069 count = 0; 2070 for (filter = orig; filter; filter = filter->prev) 2071 count++; 2072 2073 if (filter_off >= count) { 2074 filter = ERR_PTR(-ENOENT); 2075 goto out; 2076 } 2077 2078 count -= filter_off; 2079 for (filter = orig; filter && count > 1; filter = filter->prev) 2080 count--; 2081 2082 if (WARN_ON(count != 1 || !filter)) { 2083 filter = ERR_PTR(-ENOENT); 2084 goto out; 2085 } 2086 2087 __get_seccomp_filter(filter); 2088 2089out: 2090 __put_seccomp_filter(orig); 2091 return filter; 2092} 2093 2094long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2095 void __user *data) 2096{ 2097 struct seccomp_filter *filter; 2098 struct sock_fprog_kern *fprog; 2099 long ret; 2100 2101 if (!capable(CAP_SYS_ADMIN) || 2102 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2103 return -EACCES; 2104 } 2105 2106 filter = get_nth_filter(task, filter_off); 2107 if (IS_ERR(filter)) 2108 return PTR_ERR(filter); 2109 2110 fprog = filter->prog->orig_prog; 2111 if (!fprog) { 2112 /* This must be a new non-cBPF filter, since we save 2113 * every cBPF filter's orig_prog above when 2114 * CONFIG_CHECKPOINT_RESTORE is enabled. 2115 */ 2116 ret = -EMEDIUMTYPE; 2117 goto out; 2118 } 2119 2120 ret = fprog->len; 2121 if (!data) 2122 goto out; 2123 2124 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2125 ret = -EFAULT; 2126 2127out: 2128 __put_seccomp_filter(filter); 2129 return ret; 2130} 2131 2132long seccomp_get_metadata(struct task_struct *task, 2133 unsigned long size, void __user *data) 2134{ 2135 long ret; 2136 struct seccomp_filter *filter; 2137 struct seccomp_metadata kmd = {}; 2138 2139 if (!capable(CAP_SYS_ADMIN) || 2140 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2141 return -EACCES; 2142 } 2143 2144 size = min_t(unsigned long, size, sizeof(kmd)); 2145 2146 if (size < sizeof(kmd.filter_off)) 2147 return -EINVAL; 2148 2149 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2150 return -EFAULT; 2151 2152 filter = get_nth_filter(task, kmd.filter_off); 2153 if (IS_ERR(filter)) 2154 return PTR_ERR(filter); 2155 2156 if (filter->log) 2157 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2158 2159 ret = size; 2160 if (copy_to_user(data, &kmd, size)) 2161 ret = -EFAULT; 2162 2163 __put_seccomp_filter(filter); 2164 return ret; 2165} 2166#endif 2167 2168#ifdef CONFIG_SYSCTL 2169 2170/* Human readable action names for friendly sysctl interaction */ 2171#define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2172#define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2173#define SECCOMP_RET_TRAP_NAME "trap" 2174#define SECCOMP_RET_ERRNO_NAME "errno" 2175#define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2176#define SECCOMP_RET_TRACE_NAME "trace" 2177#define SECCOMP_RET_LOG_NAME "log" 2178#define SECCOMP_RET_ALLOW_NAME "allow" 2179 2180static const char seccomp_actions_avail[] = 2181 SECCOMP_RET_KILL_PROCESS_NAME " " 2182 SECCOMP_RET_KILL_THREAD_NAME " " 2183 SECCOMP_RET_TRAP_NAME " " 2184 SECCOMP_RET_ERRNO_NAME " " 2185 SECCOMP_RET_USER_NOTIF_NAME " " 2186 SECCOMP_RET_TRACE_NAME " " 2187 SECCOMP_RET_LOG_NAME " " 2188 SECCOMP_RET_ALLOW_NAME; 2189 2190struct seccomp_log_name { 2191 u32 log; 2192 const char *name; 2193}; 2194 2195static const struct seccomp_log_name seccomp_log_names[] = { 2196 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2197 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2198 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2199 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2200 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2201 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2202 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2203 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2204 { } 2205}; 2206 2207static bool seccomp_names_from_actions_logged(char *names, size_t size, 2208 u32 actions_logged, 2209 const char *sep) 2210{ 2211 const struct seccomp_log_name *cur; 2212 bool append_sep = false; 2213 2214 for (cur = seccomp_log_names; cur->name && size; cur++) { 2215 ssize_t ret; 2216 2217 if (!(actions_logged & cur->log)) 2218 continue; 2219 2220 if (append_sep) { 2221 ret = strscpy(names, sep, size); 2222 if (ret < 0) 2223 return false; 2224 2225 names += ret; 2226 size -= ret; 2227 } else 2228 append_sep = true; 2229 2230 ret = strscpy(names, cur->name, size); 2231 if (ret < 0) 2232 return false; 2233 2234 names += ret; 2235 size -= ret; 2236 } 2237 2238 return true; 2239} 2240 2241static bool seccomp_action_logged_from_name(u32 *action_logged, 2242 const char *name) 2243{ 2244 const struct seccomp_log_name *cur; 2245 2246 for (cur = seccomp_log_names; cur->name; cur++) { 2247 if (!strcmp(cur->name, name)) { 2248 *action_logged = cur->log; 2249 return true; 2250 } 2251 } 2252 2253 return false; 2254} 2255 2256static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2257{ 2258 char *name; 2259 2260 *actions_logged = 0; 2261 while ((name = strsep(&names, " ")) && *name) { 2262 u32 action_logged = 0; 2263 2264 if (!seccomp_action_logged_from_name(&action_logged, name)) 2265 return false; 2266 2267 *actions_logged |= action_logged; 2268 } 2269 2270 return true; 2271} 2272 2273static int read_actions_logged(struct ctl_table *ro_table, void *buffer, 2274 size_t *lenp, loff_t *ppos) 2275{ 2276 char names[sizeof(seccomp_actions_avail)]; 2277 struct ctl_table table; 2278 2279 memset(names, 0, sizeof(names)); 2280 2281 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2282 seccomp_actions_logged, " ")) 2283 return -EINVAL; 2284 2285 table = *ro_table; 2286 table.data = names; 2287 table.maxlen = sizeof(names); 2288 return proc_dostring(&table, 0, buffer, lenp, ppos); 2289} 2290 2291static int write_actions_logged(struct ctl_table *ro_table, void *buffer, 2292 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2293{ 2294 char names[sizeof(seccomp_actions_avail)]; 2295 struct ctl_table table; 2296 int ret; 2297 2298 if (!capable(CAP_SYS_ADMIN)) 2299 return -EPERM; 2300 2301 memset(names, 0, sizeof(names)); 2302 2303 table = *ro_table; 2304 table.data = names; 2305 table.maxlen = sizeof(names); 2306 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2307 if (ret) 2308 return ret; 2309 2310 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2311 return -EINVAL; 2312 2313 if (*actions_logged & SECCOMP_LOG_ALLOW) 2314 return -EINVAL; 2315 2316 seccomp_actions_logged = *actions_logged; 2317 return 0; 2318} 2319 2320static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2321 int ret) 2322{ 2323 char names[sizeof(seccomp_actions_avail)]; 2324 char old_names[sizeof(seccomp_actions_avail)]; 2325 const char *new = names; 2326 const char *old = old_names; 2327 2328 if (!audit_enabled) 2329 return; 2330 2331 memset(names, 0, sizeof(names)); 2332 memset(old_names, 0, sizeof(old_names)); 2333 2334 if (ret) 2335 new = "?"; 2336 else if (!actions_logged) 2337 new = "(none)"; 2338 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2339 actions_logged, ",")) 2340 new = "?"; 2341 2342 if (!old_actions_logged) 2343 old = "(none)"; 2344 else if (!seccomp_names_from_actions_logged(old_names, 2345 sizeof(old_names), 2346 old_actions_logged, ",")) 2347 old = "?"; 2348 2349 return audit_seccomp_actions_logged(new, old, !ret); 2350} 2351 2352static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2353 void *buffer, size_t *lenp, 2354 loff_t *ppos) 2355{ 2356 int ret; 2357 2358 if (write) { 2359 u32 actions_logged = 0; 2360 u32 old_actions_logged = seccomp_actions_logged; 2361 2362 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2363 &actions_logged); 2364 audit_actions_logged(actions_logged, old_actions_logged, ret); 2365 } else 2366 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2367 2368 return ret; 2369} 2370 2371static struct ctl_path seccomp_sysctl_path[] = { 2372 { .procname = "kernel", }, 2373 { .procname = "seccomp", }, 2374 { } 2375}; 2376 2377static struct ctl_table seccomp_sysctl_table[] = { 2378 { 2379 .procname = "actions_avail", 2380 .data = (void *) &seccomp_actions_avail, 2381 .maxlen = sizeof(seccomp_actions_avail), 2382 .mode = 0444, 2383 .proc_handler = proc_dostring, 2384 }, 2385 { 2386 .procname = "actions_logged", 2387 .mode = 0644, 2388 .proc_handler = seccomp_actions_logged_handler, 2389 }, 2390 { } 2391}; 2392 2393static int __init seccomp_sysctl_init(void) 2394{ 2395 struct ctl_table_header *hdr; 2396 2397 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); 2398 if (!hdr) 2399 pr_warn("sysctl registration failed\n"); 2400 else 2401 kmemleak_not_leak(hdr); 2402 2403 return 0; 2404} 2405 2406device_initcall(seccomp_sysctl_init) 2407 2408#endif /* CONFIG_SYSCTL */ 2409 2410#ifdef CONFIG_SECCOMP_CACHE_DEBUG 2411/* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2412static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2413 const void *bitmap, size_t bitmap_size) 2414{ 2415 int nr; 2416 2417 for (nr = 0; nr < bitmap_size; nr++) { 2418 bool cached = test_bit(nr, bitmap); 2419 char *status = cached ? "ALLOW" : "FILTER"; 2420 2421 seq_printf(m, "%s %d %s\n", name, nr, status); 2422 } 2423} 2424 2425int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2426 struct pid *pid, struct task_struct *task) 2427{ 2428 struct seccomp_filter *f; 2429 unsigned long flags; 2430 2431 /* 2432 * We don't want some sandboxed process to know what their seccomp 2433 * filters consist of. 2434 */ 2435 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2436 return -EACCES; 2437 2438 if (!lock_task_sighand(task, &flags)) 2439 return -ESRCH; 2440 2441 f = READ_ONCE(task->seccomp.filter); 2442 if (!f) { 2443 unlock_task_sighand(task, &flags); 2444 return 0; 2445 } 2446 2447 /* prevent filter from being freed while we are printing it */ 2448 __get_seccomp_filter(f); 2449 unlock_task_sighand(task, &flags); 2450 2451 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2452 f->cache.allow_native, 2453 SECCOMP_ARCH_NATIVE_NR); 2454 2455#ifdef SECCOMP_ARCH_COMPAT 2456 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2457 f->cache.allow_compat, 2458 SECCOMP_ARCH_COMPAT_NR); 2459#endif /* SECCOMP_ARCH_COMPAT */ 2460 2461 __put_seccomp_filter(f); 2462 return 0; 2463} 2464#endif /* CONFIG_SECCOMP_CACHE_DEBUG */