signal.c (126276B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/kernel/signal.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 8 * 9 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 10 * Changes to use preallocated sigqueue structures 11 * to allow signals to be sent reliably. 12 */ 13 14#include <linux/slab.h> 15#include <linux/export.h> 16#include <linux/init.h> 17#include <linux/sched/mm.h> 18#include <linux/sched/user.h> 19#include <linux/sched/debug.h> 20#include <linux/sched/task.h> 21#include <linux/sched/task_stack.h> 22#include <linux/sched/cputime.h> 23#include <linux/file.h> 24#include <linux/fs.h> 25#include <linux/proc_fs.h> 26#include <linux/tty.h> 27#include <linux/binfmts.h> 28#include <linux/coredump.h> 29#include <linux/security.h> 30#include <linux/syscalls.h> 31#include <linux/ptrace.h> 32#include <linux/signal.h> 33#include <linux/signalfd.h> 34#include <linux/ratelimit.h> 35#include <linux/task_work.h> 36#include <linux/capability.h> 37#include <linux/freezer.h> 38#include <linux/pid_namespace.h> 39#include <linux/nsproxy.h> 40#include <linux/user_namespace.h> 41#include <linux/uprobes.h> 42#include <linux/compat.h> 43#include <linux/cn_proc.h> 44#include <linux/compiler.h> 45#include <linux/posix-timers.h> 46#include <linux/cgroup.h> 47#include <linux/audit.h> 48 49#define CREATE_TRACE_POINTS 50#include <trace/events/signal.h> 51 52#include <asm/param.h> 53#include <linux/uaccess.h> 54#include <asm/unistd.h> 55#include <asm/siginfo.h> 56#include <asm/cacheflush.h> 57#include <asm/syscall.h> /* for syscall_get_* */ 58 59/* 60 * SLAB caches for signal bits. 61 */ 62 63static struct kmem_cache *sigqueue_cachep; 64 65int print_fatal_signals __read_mostly; 66 67static void __user *sig_handler(struct task_struct *t, int sig) 68{ 69 return t->sighand->action[sig - 1].sa.sa_handler; 70} 71 72static inline bool sig_handler_ignored(void __user *handler, int sig) 73{ 74 /* Is it explicitly or implicitly ignored? */ 75 return handler == SIG_IGN || 76 (handler == SIG_DFL && sig_kernel_ignore(sig)); 77} 78 79static bool sig_task_ignored(struct task_struct *t, int sig, bool force) 80{ 81 void __user *handler; 82 83 handler = sig_handler(t, sig); 84 85 /* SIGKILL and SIGSTOP may not be sent to the global init */ 86 if (unlikely(is_global_init(t) && sig_kernel_only(sig))) 87 return true; 88 89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 90 handler == SIG_DFL && !(force && sig_kernel_only(sig))) 91 return true; 92 93 /* Only allow kernel generated signals to this kthread */ 94 if (unlikely((t->flags & PF_KTHREAD) && 95 (handler == SIG_KTHREAD_KERNEL) && !force)) 96 return true; 97 98 return sig_handler_ignored(handler, sig); 99} 100 101static bool sig_ignored(struct task_struct *t, int sig, bool force) 102{ 103 /* 104 * Blocked signals are never ignored, since the 105 * signal handler may change by the time it is 106 * unblocked. 107 */ 108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 109 return false; 110 111 /* 112 * Tracers may want to know about even ignored signal unless it 113 * is SIGKILL which can't be reported anyway but can be ignored 114 * by SIGNAL_UNKILLABLE task. 115 */ 116 if (t->ptrace && sig != SIGKILL) 117 return false; 118 119 return sig_task_ignored(t, sig, force); 120} 121 122/* 123 * Re-calculate pending state from the set of locally pending 124 * signals, globally pending signals, and blocked signals. 125 */ 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked) 127{ 128 unsigned long ready; 129 long i; 130 131 switch (_NSIG_WORDS) { 132 default: 133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 134 ready |= signal->sig[i] &~ blocked->sig[i]; 135 break; 136 137 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 138 ready |= signal->sig[2] &~ blocked->sig[2]; 139 ready |= signal->sig[1] &~ blocked->sig[1]; 140 ready |= signal->sig[0] &~ blocked->sig[0]; 141 break; 142 143 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 144 ready |= signal->sig[0] &~ blocked->sig[0]; 145 break; 146 147 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 148 } 149 return ready != 0; 150} 151 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 153 154static bool recalc_sigpending_tsk(struct task_struct *t) 155{ 156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) || 157 PENDING(&t->pending, &t->blocked) || 158 PENDING(&t->signal->shared_pending, &t->blocked) || 159 cgroup_task_frozen(t)) { 160 set_tsk_thread_flag(t, TIF_SIGPENDING); 161 return true; 162 } 163 164 /* 165 * We must never clear the flag in another thread, or in current 166 * when it's possible the current syscall is returning -ERESTART*. 167 * So we don't clear it here, and only callers who know they should do. 168 */ 169 return false; 170} 171 172/* 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 174 * This is superfluous when called on current, the wakeup is a harmless no-op. 175 */ 176void recalc_sigpending_and_wake(struct task_struct *t) 177{ 178 if (recalc_sigpending_tsk(t)) 179 signal_wake_up(t, 0); 180} 181 182void recalc_sigpending(void) 183{ 184 if (!recalc_sigpending_tsk(current) && !freezing(current)) 185 clear_thread_flag(TIF_SIGPENDING); 186 187} 188EXPORT_SYMBOL(recalc_sigpending); 189 190void calculate_sigpending(void) 191{ 192 /* Have any signals or users of TIF_SIGPENDING been delayed 193 * until after fork? 194 */ 195 spin_lock_irq(¤t->sighand->siglock); 196 set_tsk_thread_flag(current, TIF_SIGPENDING); 197 recalc_sigpending(); 198 spin_unlock_irq(¤t->sighand->siglock); 199} 200 201/* Given the mask, find the first available signal that should be serviced. */ 202 203#define SYNCHRONOUS_MASK \ 204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 206 207int next_signal(struct sigpending *pending, sigset_t *mask) 208{ 209 unsigned long i, *s, *m, x; 210 int sig = 0; 211 212 s = pending->signal.sig; 213 m = mask->sig; 214 215 /* 216 * Handle the first word specially: it contains the 217 * synchronous signals that need to be dequeued first. 218 */ 219 x = *s &~ *m; 220 if (x) { 221 if (x & SYNCHRONOUS_MASK) 222 x &= SYNCHRONOUS_MASK; 223 sig = ffz(~x) + 1; 224 return sig; 225 } 226 227 switch (_NSIG_WORDS) { 228 default: 229 for (i = 1; i < _NSIG_WORDS; ++i) { 230 x = *++s &~ *++m; 231 if (!x) 232 continue; 233 sig = ffz(~x) + i*_NSIG_BPW + 1; 234 break; 235 } 236 break; 237 238 case 2: 239 x = s[1] &~ m[1]; 240 if (!x) 241 break; 242 sig = ffz(~x) + _NSIG_BPW + 1; 243 break; 244 245 case 1: 246 /* Nothing to do */ 247 break; 248 } 249 250 return sig; 251} 252 253static inline void print_dropped_signal(int sig) 254{ 255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 256 257 if (!print_fatal_signals) 258 return; 259 260 if (!__ratelimit(&ratelimit_state)) 261 return; 262 263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 264 current->comm, current->pid, sig); 265} 266 267/** 268 * task_set_jobctl_pending - set jobctl pending bits 269 * @task: target task 270 * @mask: pending bits to set 271 * 272 * Clear @mask from @task->jobctl. @mask must be subset of 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 275 * cleared. If @task is already being killed or exiting, this function 276 * becomes noop. 277 * 278 * CONTEXT: 279 * Must be called with @task->sighand->siglock held. 280 * 281 * RETURNS: 282 * %true if @mask is set, %false if made noop because @task was dying. 283 */ 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask) 285{ 286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 289 290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 291 return false; 292 293 if (mask & JOBCTL_STOP_SIGMASK) 294 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 295 296 task->jobctl |= mask; 297 return true; 298} 299 300/** 301 * task_clear_jobctl_trapping - clear jobctl trapping bit 302 * @task: target task 303 * 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 305 * Clear it and wake up the ptracer. Note that we don't need any further 306 * locking. @task->siglock guarantees that @task->parent points to the 307 * ptracer. 308 * 309 * CONTEXT: 310 * Must be called with @task->sighand->siglock held. 311 */ 312void task_clear_jobctl_trapping(struct task_struct *task) 313{ 314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 315 task->jobctl &= ~JOBCTL_TRAPPING; 316 smp_mb(); /* advised by wake_up_bit() */ 317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 318 } 319} 320 321/** 322 * task_clear_jobctl_pending - clear jobctl pending bits 323 * @task: target task 324 * @mask: pending bits to clear 325 * 326 * Clear @mask from @task->jobctl. @mask must be subset of 327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 328 * STOP bits are cleared together. 329 * 330 * If clearing of @mask leaves no stop or trap pending, this function calls 331 * task_clear_jobctl_trapping(). 332 * 333 * CONTEXT: 334 * Must be called with @task->sighand->siglock held. 335 */ 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask) 337{ 338 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 339 340 if (mask & JOBCTL_STOP_PENDING) 341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 342 343 task->jobctl &= ~mask; 344 345 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 346 task_clear_jobctl_trapping(task); 347} 348 349/** 350 * task_participate_group_stop - participate in a group stop 351 * @task: task participating in a group stop 352 * 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 354 * Group stop states are cleared and the group stop count is consumed if 355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 356 * stop, the appropriate `SIGNAL_*` flags are set. 357 * 358 * CONTEXT: 359 * Must be called with @task->sighand->siglock held. 360 * 361 * RETURNS: 362 * %true if group stop completion should be notified to the parent, %false 363 * otherwise. 364 */ 365static bool task_participate_group_stop(struct task_struct *task) 366{ 367 struct signal_struct *sig = task->signal; 368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 369 370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 371 372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 373 374 if (!consume) 375 return false; 376 377 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 378 sig->group_stop_count--; 379 380 /* 381 * Tell the caller to notify completion iff we are entering into a 382 * fresh group stop. Read comment in do_signal_stop() for details. 383 */ 384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED); 386 return true; 387 } 388 return false; 389} 390 391void task_join_group_stop(struct task_struct *task) 392{ 393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK; 394 struct signal_struct *sig = current->signal; 395 396 if (sig->group_stop_count) { 397 sig->group_stop_count++; 398 mask |= JOBCTL_STOP_CONSUME; 399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED)) 400 return; 401 402 /* Have the new thread join an on-going signal group stop */ 403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING); 404} 405 406/* 407 * allocate a new signal queue record 408 * - this may be called without locks if and only if t == current, otherwise an 409 * appropriate lock must be held to stop the target task from exiting 410 */ 411static struct sigqueue * 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags, 413 int override_rlimit, const unsigned int sigqueue_flags) 414{ 415 struct sigqueue *q = NULL; 416 struct ucounts *ucounts = NULL; 417 long sigpending; 418 419 /* 420 * Protect access to @t credentials. This can go away when all 421 * callers hold rcu read lock. 422 * 423 * NOTE! A pending signal will hold on to the user refcount, 424 * and we get/put the refcount only when the sigpending count 425 * changes from/to zero. 426 */ 427 rcu_read_lock(); 428 ucounts = task_ucounts(t); 429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 430 rcu_read_unlock(); 431 if (!sigpending) 432 return NULL; 433 434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) { 435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags); 436 } else { 437 print_dropped_signal(sig); 438 } 439 440 if (unlikely(q == NULL)) { 441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING); 442 } else { 443 INIT_LIST_HEAD(&q->list); 444 q->flags = sigqueue_flags; 445 q->ucounts = ucounts; 446 } 447 return q; 448} 449 450static void __sigqueue_free(struct sigqueue *q) 451{ 452 if (q->flags & SIGQUEUE_PREALLOC) 453 return; 454 if (q->ucounts) { 455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING); 456 q->ucounts = NULL; 457 } 458 kmem_cache_free(sigqueue_cachep, q); 459} 460 461void flush_sigqueue(struct sigpending *queue) 462{ 463 struct sigqueue *q; 464 465 sigemptyset(&queue->signal); 466 while (!list_empty(&queue->list)) { 467 q = list_entry(queue->list.next, struct sigqueue , list); 468 list_del_init(&q->list); 469 __sigqueue_free(q); 470 } 471} 472 473/* 474 * Flush all pending signals for this kthread. 475 */ 476void flush_signals(struct task_struct *t) 477{ 478 unsigned long flags; 479 480 spin_lock_irqsave(&t->sighand->siglock, flags); 481 clear_tsk_thread_flag(t, TIF_SIGPENDING); 482 flush_sigqueue(&t->pending); 483 flush_sigqueue(&t->signal->shared_pending); 484 spin_unlock_irqrestore(&t->sighand->siglock, flags); 485} 486EXPORT_SYMBOL(flush_signals); 487 488#ifdef CONFIG_POSIX_TIMERS 489static void __flush_itimer_signals(struct sigpending *pending) 490{ 491 sigset_t signal, retain; 492 struct sigqueue *q, *n; 493 494 signal = pending->signal; 495 sigemptyset(&retain); 496 497 list_for_each_entry_safe(q, n, &pending->list, list) { 498 int sig = q->info.si_signo; 499 500 if (likely(q->info.si_code != SI_TIMER)) { 501 sigaddset(&retain, sig); 502 } else { 503 sigdelset(&signal, sig); 504 list_del_init(&q->list); 505 __sigqueue_free(q); 506 } 507 } 508 509 sigorsets(&pending->signal, &signal, &retain); 510} 511 512void flush_itimer_signals(void) 513{ 514 struct task_struct *tsk = current; 515 unsigned long flags; 516 517 spin_lock_irqsave(&tsk->sighand->siglock, flags); 518 __flush_itimer_signals(&tsk->pending); 519 __flush_itimer_signals(&tsk->signal->shared_pending); 520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 521} 522#endif 523 524void ignore_signals(struct task_struct *t) 525{ 526 int i; 527 528 for (i = 0; i < _NSIG; ++i) 529 t->sighand->action[i].sa.sa_handler = SIG_IGN; 530 531 flush_signals(t); 532} 533 534/* 535 * Flush all handlers for a task. 536 */ 537 538void 539flush_signal_handlers(struct task_struct *t, int force_default) 540{ 541 int i; 542 struct k_sigaction *ka = &t->sighand->action[0]; 543 for (i = _NSIG ; i != 0 ; i--) { 544 if (force_default || ka->sa.sa_handler != SIG_IGN) 545 ka->sa.sa_handler = SIG_DFL; 546 ka->sa.sa_flags = 0; 547#ifdef __ARCH_HAS_SA_RESTORER 548 ka->sa.sa_restorer = NULL; 549#endif 550 sigemptyset(&ka->sa.sa_mask); 551 ka++; 552 } 553} 554 555bool unhandled_signal(struct task_struct *tsk, int sig) 556{ 557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 558 if (is_global_init(tsk)) 559 return true; 560 561 if (handler != SIG_IGN && handler != SIG_DFL) 562 return false; 563 564 /* if ptraced, let the tracer determine */ 565 return !tsk->ptrace; 566} 567 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info, 569 bool *resched_timer) 570{ 571 struct sigqueue *q, *first = NULL; 572 573 /* 574 * Collect the siginfo appropriate to this signal. Check if 575 * there is another siginfo for the same signal. 576 */ 577 list_for_each_entry(q, &list->list, list) { 578 if (q->info.si_signo == sig) { 579 if (first) 580 goto still_pending; 581 first = q; 582 } 583 } 584 585 sigdelset(&list->signal, sig); 586 587 if (first) { 588still_pending: 589 list_del_init(&first->list); 590 copy_siginfo(info, &first->info); 591 592 *resched_timer = 593 (first->flags & SIGQUEUE_PREALLOC) && 594 (info->si_code == SI_TIMER) && 595 (info->si_sys_private); 596 597 __sigqueue_free(first); 598 } else { 599 /* 600 * Ok, it wasn't in the queue. This must be 601 * a fast-pathed signal or we must have been 602 * out of queue space. So zero out the info. 603 */ 604 clear_siginfo(info); 605 info->si_signo = sig; 606 info->si_errno = 0; 607 info->si_code = SI_USER; 608 info->si_pid = 0; 609 info->si_uid = 0; 610 } 611} 612 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 614 kernel_siginfo_t *info, bool *resched_timer) 615{ 616 int sig = next_signal(pending, mask); 617 618 if (sig) 619 collect_signal(sig, pending, info, resched_timer); 620 return sig; 621} 622 623/* 624 * Dequeue a signal and return the element to the caller, which is 625 * expected to free it. 626 * 627 * All callers have to hold the siglock. 628 */ 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask, 630 kernel_siginfo_t *info, enum pid_type *type) 631{ 632 bool resched_timer = false; 633 int signr; 634 635 /* We only dequeue private signals from ourselves, we don't let 636 * signalfd steal them 637 */ 638 *type = PIDTYPE_PID; 639 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer); 640 if (!signr) { 641 *type = PIDTYPE_TGID; 642 signr = __dequeue_signal(&tsk->signal->shared_pending, 643 mask, info, &resched_timer); 644#ifdef CONFIG_POSIX_TIMERS 645 /* 646 * itimer signal ? 647 * 648 * itimers are process shared and we restart periodic 649 * itimers in the signal delivery path to prevent DoS 650 * attacks in the high resolution timer case. This is 651 * compliant with the old way of self-restarting 652 * itimers, as the SIGALRM is a legacy signal and only 653 * queued once. Changing the restart behaviour to 654 * restart the timer in the signal dequeue path is 655 * reducing the timer noise on heavy loaded !highres 656 * systems too. 657 */ 658 if (unlikely(signr == SIGALRM)) { 659 struct hrtimer *tmr = &tsk->signal->real_timer; 660 661 if (!hrtimer_is_queued(tmr) && 662 tsk->signal->it_real_incr != 0) { 663 hrtimer_forward(tmr, tmr->base->get_time(), 664 tsk->signal->it_real_incr); 665 hrtimer_restart(tmr); 666 } 667 } 668#endif 669 } 670 671 recalc_sigpending(); 672 if (!signr) 673 return 0; 674 675 if (unlikely(sig_kernel_stop(signr))) { 676 /* 677 * Set a marker that we have dequeued a stop signal. Our 678 * caller might release the siglock and then the pending 679 * stop signal it is about to process is no longer in the 680 * pending bitmasks, but must still be cleared by a SIGCONT 681 * (and overruled by a SIGKILL). So those cases clear this 682 * shared flag after we've set it. Note that this flag may 683 * remain set after the signal we return is ignored or 684 * handled. That doesn't matter because its only purpose 685 * is to alert stop-signal processing code when another 686 * processor has come along and cleared the flag. 687 */ 688 current->jobctl |= JOBCTL_STOP_DEQUEUED; 689 } 690#ifdef CONFIG_POSIX_TIMERS 691 if (resched_timer) { 692 /* 693 * Release the siglock to ensure proper locking order 694 * of timer locks outside of siglocks. Note, we leave 695 * irqs disabled here, since the posix-timers code is 696 * about to disable them again anyway. 697 */ 698 spin_unlock(&tsk->sighand->siglock); 699 posixtimer_rearm(info); 700 spin_lock(&tsk->sighand->siglock); 701 702 /* Don't expose the si_sys_private value to userspace */ 703 info->si_sys_private = 0; 704 } 705#endif 706 return signr; 707} 708EXPORT_SYMBOL_GPL(dequeue_signal); 709 710static int dequeue_synchronous_signal(kernel_siginfo_t *info) 711{ 712 struct task_struct *tsk = current; 713 struct sigpending *pending = &tsk->pending; 714 struct sigqueue *q, *sync = NULL; 715 716 /* 717 * Might a synchronous signal be in the queue? 718 */ 719 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK)) 720 return 0; 721 722 /* 723 * Return the first synchronous signal in the queue. 724 */ 725 list_for_each_entry(q, &pending->list, list) { 726 /* Synchronous signals have a positive si_code */ 727 if ((q->info.si_code > SI_USER) && 728 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) { 729 sync = q; 730 goto next; 731 } 732 } 733 return 0; 734next: 735 /* 736 * Check if there is another siginfo for the same signal. 737 */ 738 list_for_each_entry_continue(q, &pending->list, list) { 739 if (q->info.si_signo == sync->info.si_signo) 740 goto still_pending; 741 } 742 743 sigdelset(&pending->signal, sync->info.si_signo); 744 recalc_sigpending(); 745still_pending: 746 list_del_init(&sync->list); 747 copy_siginfo(info, &sync->info); 748 __sigqueue_free(sync); 749 return info->si_signo; 750} 751 752/* 753 * Tell a process that it has a new active signal.. 754 * 755 * NOTE! we rely on the previous spin_lock to 756 * lock interrupts for us! We can only be called with 757 * "siglock" held, and the local interrupt must 758 * have been disabled when that got acquired! 759 * 760 * No need to set need_resched since signal event passing 761 * goes through ->blocked 762 */ 763void signal_wake_up_state(struct task_struct *t, unsigned int state) 764{ 765 lockdep_assert_held(&t->sighand->siglock); 766 767 set_tsk_thread_flag(t, TIF_SIGPENDING); 768 769 /* 770 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 771 * case. We don't check t->state here because there is a race with it 772 * executing another processor and just now entering stopped state. 773 * By using wake_up_state, we ensure the process will wake up and 774 * handle its death signal. 775 */ 776 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 777 kick_process(t); 778} 779 780/* 781 * Remove signals in mask from the pending set and queue. 782 * Returns 1 if any signals were found. 783 * 784 * All callers must be holding the siglock. 785 */ 786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 787{ 788 struct sigqueue *q, *n; 789 sigset_t m; 790 791 sigandsets(&m, mask, &s->signal); 792 if (sigisemptyset(&m)) 793 return; 794 795 sigandnsets(&s->signal, &s->signal, mask); 796 list_for_each_entry_safe(q, n, &s->list, list) { 797 if (sigismember(mask, q->info.si_signo)) { 798 list_del_init(&q->list); 799 __sigqueue_free(q); 800 } 801 } 802} 803 804static inline int is_si_special(const struct kernel_siginfo *info) 805{ 806 return info <= SEND_SIG_PRIV; 807} 808 809static inline bool si_fromuser(const struct kernel_siginfo *info) 810{ 811 return info == SEND_SIG_NOINFO || 812 (!is_si_special(info) && SI_FROMUSER(info)); 813} 814 815/* 816 * called with RCU read lock from check_kill_permission() 817 */ 818static bool kill_ok_by_cred(struct task_struct *t) 819{ 820 const struct cred *cred = current_cred(); 821 const struct cred *tcred = __task_cred(t); 822 823 return uid_eq(cred->euid, tcred->suid) || 824 uid_eq(cred->euid, tcred->uid) || 825 uid_eq(cred->uid, tcred->suid) || 826 uid_eq(cred->uid, tcred->uid) || 827 ns_capable(tcred->user_ns, CAP_KILL); 828} 829 830/* 831 * Bad permissions for sending the signal 832 * - the caller must hold the RCU read lock 833 */ 834static int check_kill_permission(int sig, struct kernel_siginfo *info, 835 struct task_struct *t) 836{ 837 struct pid *sid; 838 int error; 839 840 if (!valid_signal(sig)) 841 return -EINVAL; 842 843 if (!si_fromuser(info)) 844 return 0; 845 846 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 847 if (error) 848 return error; 849 850 if (!same_thread_group(current, t) && 851 !kill_ok_by_cred(t)) { 852 switch (sig) { 853 case SIGCONT: 854 sid = task_session(t); 855 /* 856 * We don't return the error if sid == NULL. The 857 * task was unhashed, the caller must notice this. 858 */ 859 if (!sid || sid == task_session(current)) 860 break; 861 fallthrough; 862 default: 863 return -EPERM; 864 } 865 } 866 867 return security_task_kill(t, info, sig, NULL); 868} 869 870/** 871 * ptrace_trap_notify - schedule trap to notify ptracer 872 * @t: tracee wanting to notify tracer 873 * 874 * This function schedules sticky ptrace trap which is cleared on the next 875 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 876 * ptracer. 877 * 878 * If @t is running, STOP trap will be taken. If trapped for STOP and 879 * ptracer is listening for events, tracee is woken up so that it can 880 * re-trap for the new event. If trapped otherwise, STOP trap will be 881 * eventually taken without returning to userland after the existing traps 882 * are finished by PTRACE_CONT. 883 * 884 * CONTEXT: 885 * Must be called with @task->sighand->siglock held. 886 */ 887static void ptrace_trap_notify(struct task_struct *t) 888{ 889 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 890 lockdep_assert_held(&t->sighand->siglock); 891 892 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 893 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 894} 895 896/* 897 * Handle magic process-wide effects of stop/continue signals. Unlike 898 * the signal actions, these happen immediately at signal-generation 899 * time regardless of blocking, ignoring, or handling. This does the 900 * actual continuing for SIGCONT, but not the actual stopping for stop 901 * signals. The process stop is done as a signal action for SIG_DFL. 902 * 903 * Returns true if the signal should be actually delivered, otherwise 904 * it should be dropped. 905 */ 906static bool prepare_signal(int sig, struct task_struct *p, bool force) 907{ 908 struct signal_struct *signal = p->signal; 909 struct task_struct *t; 910 sigset_t flush; 911 912 if (signal->flags & SIGNAL_GROUP_EXIT) { 913 if (signal->core_state) 914 return sig == SIGKILL; 915 /* 916 * The process is in the middle of dying, nothing to do. 917 */ 918 } else if (sig_kernel_stop(sig)) { 919 /* 920 * This is a stop signal. Remove SIGCONT from all queues. 921 */ 922 siginitset(&flush, sigmask(SIGCONT)); 923 flush_sigqueue_mask(&flush, &signal->shared_pending); 924 for_each_thread(p, t) 925 flush_sigqueue_mask(&flush, &t->pending); 926 } else if (sig == SIGCONT) { 927 unsigned int why; 928 /* 929 * Remove all stop signals from all queues, wake all threads. 930 */ 931 siginitset(&flush, SIG_KERNEL_STOP_MASK); 932 flush_sigqueue_mask(&flush, &signal->shared_pending); 933 for_each_thread(p, t) { 934 flush_sigqueue_mask(&flush, &t->pending); 935 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 936 if (likely(!(t->ptrace & PT_SEIZED))) { 937 t->jobctl &= ~JOBCTL_STOPPED; 938 wake_up_state(t, __TASK_STOPPED); 939 } else 940 ptrace_trap_notify(t); 941 } 942 943 /* 944 * Notify the parent with CLD_CONTINUED if we were stopped. 945 * 946 * If we were in the middle of a group stop, we pretend it 947 * was already finished, and then continued. Since SIGCHLD 948 * doesn't queue we report only CLD_STOPPED, as if the next 949 * CLD_CONTINUED was dropped. 950 */ 951 why = 0; 952 if (signal->flags & SIGNAL_STOP_STOPPED) 953 why |= SIGNAL_CLD_CONTINUED; 954 else if (signal->group_stop_count) 955 why |= SIGNAL_CLD_STOPPED; 956 957 if (why) { 958 /* 959 * The first thread which returns from do_signal_stop() 960 * will take ->siglock, notice SIGNAL_CLD_MASK, and 961 * notify its parent. See get_signal(). 962 */ 963 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED); 964 signal->group_stop_count = 0; 965 signal->group_exit_code = 0; 966 } 967 } 968 969 return !sig_ignored(p, sig, force); 970} 971 972/* 973 * Test if P wants to take SIG. After we've checked all threads with this, 974 * it's equivalent to finding no threads not blocking SIG. Any threads not 975 * blocking SIG were ruled out because they are not running and already 976 * have pending signals. Such threads will dequeue from the shared queue 977 * as soon as they're available, so putting the signal on the shared queue 978 * will be equivalent to sending it to one such thread. 979 */ 980static inline bool wants_signal(int sig, struct task_struct *p) 981{ 982 if (sigismember(&p->blocked, sig)) 983 return false; 984 985 if (p->flags & PF_EXITING) 986 return false; 987 988 if (sig == SIGKILL) 989 return true; 990 991 if (task_is_stopped_or_traced(p)) 992 return false; 993 994 return task_curr(p) || !task_sigpending(p); 995} 996 997static void complete_signal(int sig, struct task_struct *p, enum pid_type type) 998{ 999 struct signal_struct *signal = p->signal; 1000 struct task_struct *t; 1001 1002 /* 1003 * Now find a thread we can wake up to take the signal off the queue. 1004 * 1005 * If the main thread wants the signal, it gets first crack. 1006 * Probably the least surprising to the average bear. 1007 */ 1008 if (wants_signal(sig, p)) 1009 t = p; 1010 else if ((type == PIDTYPE_PID) || thread_group_empty(p)) 1011 /* 1012 * There is just one thread and it does not need to be woken. 1013 * It will dequeue unblocked signals before it runs again. 1014 */ 1015 return; 1016 else { 1017 /* 1018 * Otherwise try to find a suitable thread. 1019 */ 1020 t = signal->curr_target; 1021 while (!wants_signal(sig, t)) { 1022 t = next_thread(t); 1023 if (t == signal->curr_target) 1024 /* 1025 * No thread needs to be woken. 1026 * Any eligible threads will see 1027 * the signal in the queue soon. 1028 */ 1029 return; 1030 } 1031 signal->curr_target = t; 1032 } 1033 1034 /* 1035 * Found a killable thread. If the signal will be fatal, 1036 * then start taking the whole group down immediately. 1037 */ 1038 if (sig_fatal(p, sig) && 1039 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) && 1040 !sigismember(&t->real_blocked, sig) && 1041 (sig == SIGKILL || !p->ptrace)) { 1042 /* 1043 * This signal will be fatal to the whole group. 1044 */ 1045 if (!sig_kernel_coredump(sig)) { 1046 /* 1047 * Start a group exit and wake everybody up. 1048 * This way we don't have other threads 1049 * running and doing things after a slower 1050 * thread has the fatal signal pending. 1051 */ 1052 signal->flags = SIGNAL_GROUP_EXIT; 1053 signal->group_exit_code = sig; 1054 signal->group_stop_count = 0; 1055 t = p; 1056 do { 1057 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1058 sigaddset(&t->pending.signal, SIGKILL); 1059 signal_wake_up(t, 1); 1060 } while_each_thread(p, t); 1061 return; 1062 } 1063 } 1064 1065 /* 1066 * The signal is already in the shared-pending queue. 1067 * Tell the chosen thread to wake up and dequeue it. 1068 */ 1069 signal_wake_up(t, sig == SIGKILL); 1070 return; 1071} 1072 1073static inline bool legacy_queue(struct sigpending *signals, int sig) 1074{ 1075 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1076} 1077 1078static int __send_signal_locked(int sig, struct kernel_siginfo *info, 1079 struct task_struct *t, enum pid_type type, bool force) 1080{ 1081 struct sigpending *pending; 1082 struct sigqueue *q; 1083 int override_rlimit; 1084 int ret = 0, result; 1085 1086 lockdep_assert_held(&t->sighand->siglock); 1087 1088 result = TRACE_SIGNAL_IGNORED; 1089 if (!prepare_signal(sig, t, force)) 1090 goto ret; 1091 1092 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1093 /* 1094 * Short-circuit ignored signals and support queuing 1095 * exactly one non-rt signal, so that we can get more 1096 * detailed information about the cause of the signal. 1097 */ 1098 result = TRACE_SIGNAL_ALREADY_PENDING; 1099 if (legacy_queue(pending, sig)) 1100 goto ret; 1101 1102 result = TRACE_SIGNAL_DELIVERED; 1103 /* 1104 * Skip useless siginfo allocation for SIGKILL and kernel threads. 1105 */ 1106 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD)) 1107 goto out_set; 1108 1109 /* 1110 * Real-time signals must be queued if sent by sigqueue, or 1111 * some other real-time mechanism. It is implementation 1112 * defined whether kill() does so. We attempt to do so, on 1113 * the principle of least surprise, but since kill is not 1114 * allowed to fail with EAGAIN when low on memory we just 1115 * make sure at least one signal gets delivered and don't 1116 * pass on the info struct. 1117 */ 1118 if (sig < SIGRTMIN) 1119 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1120 else 1121 override_rlimit = 0; 1122 1123 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0); 1124 1125 if (q) { 1126 list_add_tail(&q->list, &pending->list); 1127 switch ((unsigned long) info) { 1128 case (unsigned long) SEND_SIG_NOINFO: 1129 clear_siginfo(&q->info); 1130 q->info.si_signo = sig; 1131 q->info.si_errno = 0; 1132 q->info.si_code = SI_USER; 1133 q->info.si_pid = task_tgid_nr_ns(current, 1134 task_active_pid_ns(t)); 1135 rcu_read_lock(); 1136 q->info.si_uid = 1137 from_kuid_munged(task_cred_xxx(t, user_ns), 1138 current_uid()); 1139 rcu_read_unlock(); 1140 break; 1141 case (unsigned long) SEND_SIG_PRIV: 1142 clear_siginfo(&q->info); 1143 q->info.si_signo = sig; 1144 q->info.si_errno = 0; 1145 q->info.si_code = SI_KERNEL; 1146 q->info.si_pid = 0; 1147 q->info.si_uid = 0; 1148 break; 1149 default: 1150 copy_siginfo(&q->info, info); 1151 break; 1152 } 1153 } else if (!is_si_special(info) && 1154 sig >= SIGRTMIN && info->si_code != SI_USER) { 1155 /* 1156 * Queue overflow, abort. We may abort if the 1157 * signal was rt and sent by user using something 1158 * other than kill(). 1159 */ 1160 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1161 ret = -EAGAIN; 1162 goto ret; 1163 } else { 1164 /* 1165 * This is a silent loss of information. We still 1166 * send the signal, but the *info bits are lost. 1167 */ 1168 result = TRACE_SIGNAL_LOSE_INFO; 1169 } 1170 1171out_set: 1172 signalfd_notify(t, sig); 1173 sigaddset(&pending->signal, sig); 1174 1175 /* Let multiprocess signals appear after on-going forks */ 1176 if (type > PIDTYPE_TGID) { 1177 struct multiprocess_signals *delayed; 1178 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) { 1179 sigset_t *signal = &delayed->signal; 1180 /* Can't queue both a stop and a continue signal */ 1181 if (sig == SIGCONT) 1182 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK); 1183 else if (sig_kernel_stop(sig)) 1184 sigdelset(signal, SIGCONT); 1185 sigaddset(signal, sig); 1186 } 1187 } 1188 1189 complete_signal(sig, t, type); 1190ret: 1191 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result); 1192 return ret; 1193} 1194 1195static inline bool has_si_pid_and_uid(struct kernel_siginfo *info) 1196{ 1197 bool ret = false; 1198 switch (siginfo_layout(info->si_signo, info->si_code)) { 1199 case SIL_KILL: 1200 case SIL_CHLD: 1201 case SIL_RT: 1202 ret = true; 1203 break; 1204 case SIL_TIMER: 1205 case SIL_POLL: 1206 case SIL_FAULT: 1207 case SIL_FAULT_TRAPNO: 1208 case SIL_FAULT_MCEERR: 1209 case SIL_FAULT_BNDERR: 1210 case SIL_FAULT_PKUERR: 1211 case SIL_FAULT_PERF_EVENT: 1212 case SIL_SYS: 1213 ret = false; 1214 break; 1215 } 1216 return ret; 1217} 1218 1219int send_signal_locked(int sig, struct kernel_siginfo *info, 1220 struct task_struct *t, enum pid_type type) 1221{ 1222 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */ 1223 bool force = false; 1224 1225 if (info == SEND_SIG_NOINFO) { 1226 /* Force if sent from an ancestor pid namespace */ 1227 force = !task_pid_nr_ns(current, task_active_pid_ns(t)); 1228 } else if (info == SEND_SIG_PRIV) { 1229 /* Don't ignore kernel generated signals */ 1230 force = true; 1231 } else if (has_si_pid_and_uid(info)) { 1232 /* SIGKILL and SIGSTOP is special or has ids */ 1233 struct user_namespace *t_user_ns; 1234 1235 rcu_read_lock(); 1236 t_user_ns = task_cred_xxx(t, user_ns); 1237 if (current_user_ns() != t_user_ns) { 1238 kuid_t uid = make_kuid(current_user_ns(), info->si_uid); 1239 info->si_uid = from_kuid_munged(t_user_ns, uid); 1240 } 1241 rcu_read_unlock(); 1242 1243 /* A kernel generated signal? */ 1244 force = (info->si_code == SI_KERNEL); 1245 1246 /* From an ancestor pid namespace? */ 1247 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { 1248 info->si_pid = 0; 1249 force = true; 1250 } 1251 } 1252 return __send_signal_locked(sig, info, t, type, force); 1253} 1254 1255static void print_fatal_signal(int signr) 1256{ 1257 struct pt_regs *regs = signal_pt_regs(); 1258 pr_info("potentially unexpected fatal signal %d.\n", signr); 1259 1260#if defined(__i386__) && !defined(__arch_um__) 1261 pr_info("code at %08lx: ", regs->ip); 1262 { 1263 int i; 1264 for (i = 0; i < 16; i++) { 1265 unsigned char insn; 1266 1267 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1268 break; 1269 pr_cont("%02x ", insn); 1270 } 1271 } 1272 pr_cont("\n"); 1273#endif 1274 preempt_disable(); 1275 show_regs(regs); 1276 preempt_enable(); 1277} 1278 1279static int __init setup_print_fatal_signals(char *str) 1280{ 1281 get_option (&str, &print_fatal_signals); 1282 1283 return 1; 1284} 1285 1286__setup("print-fatal-signals=", setup_print_fatal_signals); 1287 1288int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p, 1289 enum pid_type type) 1290{ 1291 unsigned long flags; 1292 int ret = -ESRCH; 1293 1294 if (lock_task_sighand(p, &flags)) { 1295 ret = send_signal_locked(sig, info, p, type); 1296 unlock_task_sighand(p, &flags); 1297 } 1298 1299 return ret; 1300} 1301 1302enum sig_handler { 1303 HANDLER_CURRENT, /* If reachable use the current handler */ 1304 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */ 1305 HANDLER_EXIT, /* Only visible as the process exit code */ 1306}; 1307 1308/* 1309 * Force a signal that the process can't ignore: if necessary 1310 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1311 * 1312 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1313 * since we do not want to have a signal handler that was blocked 1314 * be invoked when user space had explicitly blocked it. 1315 * 1316 * We don't want to have recursive SIGSEGV's etc, for example, 1317 * that is why we also clear SIGNAL_UNKILLABLE. 1318 */ 1319static int 1320force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, 1321 enum sig_handler handler) 1322{ 1323 unsigned long int flags; 1324 int ret, blocked, ignored; 1325 struct k_sigaction *action; 1326 int sig = info->si_signo; 1327 1328 spin_lock_irqsave(&t->sighand->siglock, flags); 1329 action = &t->sighand->action[sig-1]; 1330 ignored = action->sa.sa_handler == SIG_IGN; 1331 blocked = sigismember(&t->blocked, sig); 1332 if (blocked || ignored || (handler != HANDLER_CURRENT)) { 1333 action->sa.sa_handler = SIG_DFL; 1334 if (handler == HANDLER_EXIT) 1335 action->sa.sa_flags |= SA_IMMUTABLE; 1336 if (blocked) { 1337 sigdelset(&t->blocked, sig); 1338 recalc_sigpending_and_wake(t); 1339 } 1340 } 1341 /* 1342 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect 1343 * debugging to leave init killable. But HANDLER_EXIT is always fatal. 1344 */ 1345 if (action->sa.sa_handler == SIG_DFL && 1346 (!t->ptrace || (handler == HANDLER_EXIT))) 1347 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1348 ret = send_signal_locked(sig, info, t, PIDTYPE_PID); 1349 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1350 1351 return ret; 1352} 1353 1354int force_sig_info(struct kernel_siginfo *info) 1355{ 1356 return force_sig_info_to_task(info, current, HANDLER_CURRENT); 1357} 1358 1359/* 1360 * Nuke all other threads in the group. 1361 */ 1362int zap_other_threads(struct task_struct *p) 1363{ 1364 struct task_struct *t = p; 1365 int count = 0; 1366 1367 p->signal->group_stop_count = 0; 1368 1369 while_each_thread(p, t) { 1370 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1371 count++; 1372 1373 /* Don't bother with already dead threads */ 1374 if (t->exit_state) 1375 continue; 1376 sigaddset(&t->pending.signal, SIGKILL); 1377 signal_wake_up(t, 1); 1378 } 1379 1380 return count; 1381} 1382 1383struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1384 unsigned long *flags) 1385{ 1386 struct sighand_struct *sighand; 1387 1388 rcu_read_lock(); 1389 for (;;) { 1390 sighand = rcu_dereference(tsk->sighand); 1391 if (unlikely(sighand == NULL)) 1392 break; 1393 1394 /* 1395 * This sighand can be already freed and even reused, but 1396 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which 1397 * initializes ->siglock: this slab can't go away, it has 1398 * the same object type, ->siglock can't be reinitialized. 1399 * 1400 * We need to ensure that tsk->sighand is still the same 1401 * after we take the lock, we can race with de_thread() or 1402 * __exit_signal(). In the latter case the next iteration 1403 * must see ->sighand == NULL. 1404 */ 1405 spin_lock_irqsave(&sighand->siglock, *flags); 1406 if (likely(sighand == rcu_access_pointer(tsk->sighand))) 1407 break; 1408 spin_unlock_irqrestore(&sighand->siglock, *flags); 1409 } 1410 rcu_read_unlock(); 1411 1412 return sighand; 1413} 1414 1415#ifdef CONFIG_LOCKDEP 1416void lockdep_assert_task_sighand_held(struct task_struct *task) 1417{ 1418 struct sighand_struct *sighand; 1419 1420 rcu_read_lock(); 1421 sighand = rcu_dereference(task->sighand); 1422 if (sighand) 1423 lockdep_assert_held(&sighand->siglock); 1424 else 1425 WARN_ON_ONCE(1); 1426 rcu_read_unlock(); 1427} 1428#endif 1429 1430/* 1431 * send signal info to all the members of a group 1432 */ 1433int group_send_sig_info(int sig, struct kernel_siginfo *info, 1434 struct task_struct *p, enum pid_type type) 1435{ 1436 int ret; 1437 1438 rcu_read_lock(); 1439 ret = check_kill_permission(sig, info, p); 1440 rcu_read_unlock(); 1441 1442 if (!ret && sig) 1443 ret = do_send_sig_info(sig, info, p, type); 1444 1445 return ret; 1446} 1447 1448/* 1449 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1450 * control characters do (^C, ^Z etc) 1451 * - the caller must hold at least a readlock on tasklist_lock 1452 */ 1453int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp) 1454{ 1455 struct task_struct *p = NULL; 1456 int retval, success; 1457 1458 success = 0; 1459 retval = -ESRCH; 1460 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1461 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID); 1462 success |= !err; 1463 retval = err; 1464 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1465 return success ? 0 : retval; 1466} 1467 1468int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid) 1469{ 1470 int error = -ESRCH; 1471 struct task_struct *p; 1472 1473 for (;;) { 1474 rcu_read_lock(); 1475 p = pid_task(pid, PIDTYPE_PID); 1476 if (p) 1477 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID); 1478 rcu_read_unlock(); 1479 if (likely(!p || error != -ESRCH)) 1480 return error; 1481 1482 /* 1483 * The task was unhashed in between, try again. If it 1484 * is dead, pid_task() will return NULL, if we race with 1485 * de_thread() it will find the new leader. 1486 */ 1487 } 1488} 1489 1490static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid) 1491{ 1492 int error; 1493 rcu_read_lock(); 1494 error = kill_pid_info(sig, info, find_vpid(pid)); 1495 rcu_read_unlock(); 1496 return error; 1497} 1498 1499static inline bool kill_as_cred_perm(const struct cred *cred, 1500 struct task_struct *target) 1501{ 1502 const struct cred *pcred = __task_cred(target); 1503 1504 return uid_eq(cred->euid, pcred->suid) || 1505 uid_eq(cred->euid, pcred->uid) || 1506 uid_eq(cred->uid, pcred->suid) || 1507 uid_eq(cred->uid, pcred->uid); 1508} 1509 1510/* 1511 * The usb asyncio usage of siginfo is wrong. The glibc support 1512 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT. 1513 * AKA after the generic fields: 1514 * kernel_pid_t si_pid; 1515 * kernel_uid32_t si_uid; 1516 * sigval_t si_value; 1517 * 1518 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout 1519 * after the generic fields is: 1520 * void __user *si_addr; 1521 * 1522 * This is a practical problem when there is a 64bit big endian kernel 1523 * and a 32bit userspace. As the 32bit address will encoded in the low 1524 * 32bits of the pointer. Those low 32bits will be stored at higher 1525 * address than appear in a 32 bit pointer. So userspace will not 1526 * see the address it was expecting for it's completions. 1527 * 1528 * There is nothing in the encoding that can allow 1529 * copy_siginfo_to_user32 to detect this confusion of formats, so 1530 * handle this by requiring the caller of kill_pid_usb_asyncio to 1531 * notice when this situration takes place and to store the 32bit 1532 * pointer in sival_int, instead of sival_addr of the sigval_t addr 1533 * parameter. 1534 */ 1535int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, 1536 struct pid *pid, const struct cred *cred) 1537{ 1538 struct kernel_siginfo info; 1539 struct task_struct *p; 1540 unsigned long flags; 1541 int ret = -EINVAL; 1542 1543 if (!valid_signal(sig)) 1544 return ret; 1545 1546 clear_siginfo(&info); 1547 info.si_signo = sig; 1548 info.si_errno = errno; 1549 info.si_code = SI_ASYNCIO; 1550 *((sigval_t *)&info.si_pid) = addr; 1551 1552 rcu_read_lock(); 1553 p = pid_task(pid, PIDTYPE_PID); 1554 if (!p) { 1555 ret = -ESRCH; 1556 goto out_unlock; 1557 } 1558 if (!kill_as_cred_perm(cred, p)) { 1559 ret = -EPERM; 1560 goto out_unlock; 1561 } 1562 ret = security_task_kill(p, &info, sig, cred); 1563 if (ret) 1564 goto out_unlock; 1565 1566 if (sig) { 1567 if (lock_task_sighand(p, &flags)) { 1568 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false); 1569 unlock_task_sighand(p, &flags); 1570 } else 1571 ret = -ESRCH; 1572 } 1573out_unlock: 1574 rcu_read_unlock(); 1575 return ret; 1576} 1577EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio); 1578 1579/* 1580 * kill_something_info() interprets pid in interesting ways just like kill(2). 1581 * 1582 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1583 * is probably wrong. Should make it like BSD or SYSV. 1584 */ 1585 1586static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid) 1587{ 1588 int ret; 1589 1590 if (pid > 0) 1591 return kill_proc_info(sig, info, pid); 1592 1593 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */ 1594 if (pid == INT_MIN) 1595 return -ESRCH; 1596 1597 read_lock(&tasklist_lock); 1598 if (pid != -1) { 1599 ret = __kill_pgrp_info(sig, info, 1600 pid ? find_vpid(-pid) : task_pgrp(current)); 1601 } else { 1602 int retval = 0, count = 0; 1603 struct task_struct * p; 1604 1605 for_each_process(p) { 1606 if (task_pid_vnr(p) > 1 && 1607 !same_thread_group(p, current)) { 1608 int err = group_send_sig_info(sig, info, p, 1609 PIDTYPE_MAX); 1610 ++count; 1611 if (err != -EPERM) 1612 retval = err; 1613 } 1614 } 1615 ret = count ? retval : -ESRCH; 1616 } 1617 read_unlock(&tasklist_lock); 1618 1619 return ret; 1620} 1621 1622/* 1623 * These are for backward compatibility with the rest of the kernel source. 1624 */ 1625 1626int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p) 1627{ 1628 /* 1629 * Make sure legacy kernel users don't send in bad values 1630 * (normal paths check this in check_kill_permission). 1631 */ 1632 if (!valid_signal(sig)) 1633 return -EINVAL; 1634 1635 return do_send_sig_info(sig, info, p, PIDTYPE_PID); 1636} 1637EXPORT_SYMBOL(send_sig_info); 1638 1639#define __si_special(priv) \ 1640 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1641 1642int 1643send_sig(int sig, struct task_struct *p, int priv) 1644{ 1645 return send_sig_info(sig, __si_special(priv), p); 1646} 1647EXPORT_SYMBOL(send_sig); 1648 1649void force_sig(int sig) 1650{ 1651 struct kernel_siginfo info; 1652 1653 clear_siginfo(&info); 1654 info.si_signo = sig; 1655 info.si_errno = 0; 1656 info.si_code = SI_KERNEL; 1657 info.si_pid = 0; 1658 info.si_uid = 0; 1659 force_sig_info(&info); 1660} 1661EXPORT_SYMBOL(force_sig); 1662 1663void force_fatal_sig(int sig) 1664{ 1665 struct kernel_siginfo info; 1666 1667 clear_siginfo(&info); 1668 info.si_signo = sig; 1669 info.si_errno = 0; 1670 info.si_code = SI_KERNEL; 1671 info.si_pid = 0; 1672 info.si_uid = 0; 1673 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL); 1674} 1675 1676void force_exit_sig(int sig) 1677{ 1678 struct kernel_siginfo info; 1679 1680 clear_siginfo(&info); 1681 info.si_signo = sig; 1682 info.si_errno = 0; 1683 info.si_code = SI_KERNEL; 1684 info.si_pid = 0; 1685 info.si_uid = 0; 1686 force_sig_info_to_task(&info, current, HANDLER_EXIT); 1687} 1688 1689/* 1690 * When things go south during signal handling, we 1691 * will force a SIGSEGV. And if the signal that caused 1692 * the problem was already a SIGSEGV, we'll want to 1693 * make sure we don't even try to deliver the signal.. 1694 */ 1695void force_sigsegv(int sig) 1696{ 1697 if (sig == SIGSEGV) 1698 force_fatal_sig(SIGSEGV); 1699 else 1700 force_sig(SIGSEGV); 1701} 1702 1703int force_sig_fault_to_task(int sig, int code, void __user *addr 1704 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1705 , struct task_struct *t) 1706{ 1707 struct kernel_siginfo info; 1708 1709 clear_siginfo(&info); 1710 info.si_signo = sig; 1711 info.si_errno = 0; 1712 info.si_code = code; 1713 info.si_addr = addr; 1714#ifdef __ia64__ 1715 info.si_imm = imm; 1716 info.si_flags = flags; 1717 info.si_isr = isr; 1718#endif 1719 return force_sig_info_to_task(&info, t, HANDLER_CURRENT); 1720} 1721 1722int force_sig_fault(int sig, int code, void __user *addr 1723 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)) 1724{ 1725 return force_sig_fault_to_task(sig, code, addr 1726 ___ARCH_SI_IA64(imm, flags, isr), current); 1727} 1728 1729int send_sig_fault(int sig, int code, void __user *addr 1730 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr) 1731 , struct task_struct *t) 1732{ 1733 struct kernel_siginfo info; 1734 1735 clear_siginfo(&info); 1736 info.si_signo = sig; 1737 info.si_errno = 0; 1738 info.si_code = code; 1739 info.si_addr = addr; 1740#ifdef __ia64__ 1741 info.si_imm = imm; 1742 info.si_flags = flags; 1743 info.si_isr = isr; 1744#endif 1745 return send_sig_info(info.si_signo, &info, t); 1746} 1747 1748int force_sig_mceerr(int code, void __user *addr, short lsb) 1749{ 1750 struct kernel_siginfo info; 1751 1752 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1753 clear_siginfo(&info); 1754 info.si_signo = SIGBUS; 1755 info.si_errno = 0; 1756 info.si_code = code; 1757 info.si_addr = addr; 1758 info.si_addr_lsb = lsb; 1759 return force_sig_info(&info); 1760} 1761 1762int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t) 1763{ 1764 struct kernel_siginfo info; 1765 1766 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR)); 1767 clear_siginfo(&info); 1768 info.si_signo = SIGBUS; 1769 info.si_errno = 0; 1770 info.si_code = code; 1771 info.si_addr = addr; 1772 info.si_addr_lsb = lsb; 1773 return send_sig_info(info.si_signo, &info, t); 1774} 1775EXPORT_SYMBOL(send_sig_mceerr); 1776 1777int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper) 1778{ 1779 struct kernel_siginfo info; 1780 1781 clear_siginfo(&info); 1782 info.si_signo = SIGSEGV; 1783 info.si_errno = 0; 1784 info.si_code = SEGV_BNDERR; 1785 info.si_addr = addr; 1786 info.si_lower = lower; 1787 info.si_upper = upper; 1788 return force_sig_info(&info); 1789} 1790 1791#ifdef SEGV_PKUERR 1792int force_sig_pkuerr(void __user *addr, u32 pkey) 1793{ 1794 struct kernel_siginfo info; 1795 1796 clear_siginfo(&info); 1797 info.si_signo = SIGSEGV; 1798 info.si_errno = 0; 1799 info.si_code = SEGV_PKUERR; 1800 info.si_addr = addr; 1801 info.si_pkey = pkey; 1802 return force_sig_info(&info); 1803} 1804#endif 1805 1806int send_sig_perf(void __user *addr, u32 type, u64 sig_data) 1807{ 1808 struct kernel_siginfo info; 1809 1810 clear_siginfo(&info); 1811 info.si_signo = SIGTRAP; 1812 info.si_errno = 0; 1813 info.si_code = TRAP_PERF; 1814 info.si_addr = addr; 1815 info.si_perf_data = sig_data; 1816 info.si_perf_type = type; 1817 1818 /* 1819 * Signals generated by perf events should not terminate the whole 1820 * process if SIGTRAP is blocked, however, delivering the signal 1821 * asynchronously is better than not delivering at all. But tell user 1822 * space if the signal was asynchronous, so it can clearly be 1823 * distinguished from normal synchronous ones. 1824 */ 1825 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ? 1826 TRAP_PERF_FLAG_ASYNC : 1827 0; 1828 1829 return send_sig_info(info.si_signo, &info, current); 1830} 1831 1832/** 1833 * force_sig_seccomp - signals the task to allow in-process syscall emulation 1834 * @syscall: syscall number to send to userland 1835 * @reason: filter-supplied reason code to send to userland (via si_errno) 1836 * @force_coredump: true to trigger a coredump 1837 * 1838 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info. 1839 */ 1840int force_sig_seccomp(int syscall, int reason, bool force_coredump) 1841{ 1842 struct kernel_siginfo info; 1843 1844 clear_siginfo(&info); 1845 info.si_signo = SIGSYS; 1846 info.si_code = SYS_SECCOMP; 1847 info.si_call_addr = (void __user *)KSTK_EIP(current); 1848 info.si_errno = reason; 1849 info.si_arch = syscall_get_arch(current); 1850 info.si_syscall = syscall; 1851 return force_sig_info_to_task(&info, current, 1852 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT); 1853} 1854 1855/* For the crazy architectures that include trap information in 1856 * the errno field, instead of an actual errno value. 1857 */ 1858int force_sig_ptrace_errno_trap(int errno, void __user *addr) 1859{ 1860 struct kernel_siginfo info; 1861 1862 clear_siginfo(&info); 1863 info.si_signo = SIGTRAP; 1864 info.si_errno = errno; 1865 info.si_code = TRAP_HWBKPT; 1866 info.si_addr = addr; 1867 return force_sig_info(&info); 1868} 1869 1870/* For the rare architectures that include trap information using 1871 * si_trapno. 1872 */ 1873int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno) 1874{ 1875 struct kernel_siginfo info; 1876 1877 clear_siginfo(&info); 1878 info.si_signo = sig; 1879 info.si_errno = 0; 1880 info.si_code = code; 1881 info.si_addr = addr; 1882 info.si_trapno = trapno; 1883 return force_sig_info(&info); 1884} 1885 1886/* For the rare architectures that include trap information using 1887 * si_trapno. 1888 */ 1889int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno, 1890 struct task_struct *t) 1891{ 1892 struct kernel_siginfo info; 1893 1894 clear_siginfo(&info); 1895 info.si_signo = sig; 1896 info.si_errno = 0; 1897 info.si_code = code; 1898 info.si_addr = addr; 1899 info.si_trapno = trapno; 1900 return send_sig_info(info.si_signo, &info, t); 1901} 1902 1903int kill_pgrp(struct pid *pid, int sig, int priv) 1904{ 1905 int ret; 1906 1907 read_lock(&tasklist_lock); 1908 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1909 read_unlock(&tasklist_lock); 1910 1911 return ret; 1912} 1913EXPORT_SYMBOL(kill_pgrp); 1914 1915int kill_pid(struct pid *pid, int sig, int priv) 1916{ 1917 return kill_pid_info(sig, __si_special(priv), pid); 1918} 1919EXPORT_SYMBOL(kill_pid); 1920 1921/* 1922 * These functions support sending signals using preallocated sigqueue 1923 * structures. This is needed "because realtime applications cannot 1924 * afford to lose notifications of asynchronous events, like timer 1925 * expirations or I/O completions". In the case of POSIX Timers 1926 * we allocate the sigqueue structure from the timer_create. If this 1927 * allocation fails we are able to report the failure to the application 1928 * with an EAGAIN error. 1929 */ 1930struct sigqueue *sigqueue_alloc(void) 1931{ 1932 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC); 1933} 1934 1935void sigqueue_free(struct sigqueue *q) 1936{ 1937 unsigned long flags; 1938 spinlock_t *lock = ¤t->sighand->siglock; 1939 1940 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1941 /* 1942 * We must hold ->siglock while testing q->list 1943 * to serialize with collect_signal() or with 1944 * __exit_signal()->flush_sigqueue(). 1945 */ 1946 spin_lock_irqsave(lock, flags); 1947 q->flags &= ~SIGQUEUE_PREALLOC; 1948 /* 1949 * If it is queued it will be freed when dequeued, 1950 * like the "regular" sigqueue. 1951 */ 1952 if (!list_empty(&q->list)) 1953 q = NULL; 1954 spin_unlock_irqrestore(lock, flags); 1955 1956 if (q) 1957 __sigqueue_free(q); 1958} 1959 1960int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type) 1961{ 1962 int sig = q->info.si_signo; 1963 struct sigpending *pending; 1964 struct task_struct *t; 1965 unsigned long flags; 1966 int ret, result; 1967 1968 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1969 1970 ret = -1; 1971 rcu_read_lock(); 1972 t = pid_task(pid, type); 1973 if (!t || !likely(lock_task_sighand(t, &flags))) 1974 goto ret; 1975 1976 ret = 1; /* the signal is ignored */ 1977 result = TRACE_SIGNAL_IGNORED; 1978 if (!prepare_signal(sig, t, false)) 1979 goto out; 1980 1981 ret = 0; 1982 if (unlikely(!list_empty(&q->list))) { 1983 /* 1984 * If an SI_TIMER entry is already queue just increment 1985 * the overrun count. 1986 */ 1987 BUG_ON(q->info.si_code != SI_TIMER); 1988 q->info.si_overrun++; 1989 result = TRACE_SIGNAL_ALREADY_PENDING; 1990 goto out; 1991 } 1992 q->info.si_overrun = 0; 1993 1994 signalfd_notify(t, sig); 1995 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending; 1996 list_add_tail(&q->list, &pending->list); 1997 sigaddset(&pending->signal, sig); 1998 complete_signal(sig, t, type); 1999 result = TRACE_SIGNAL_DELIVERED; 2000out: 2001 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result); 2002 unlock_task_sighand(t, &flags); 2003ret: 2004 rcu_read_unlock(); 2005 return ret; 2006} 2007 2008static void do_notify_pidfd(struct task_struct *task) 2009{ 2010 struct pid *pid; 2011 2012 WARN_ON(task->exit_state == 0); 2013 pid = task_pid(task); 2014 wake_up_all(&pid->wait_pidfd); 2015} 2016 2017/* 2018 * Let a parent know about the death of a child. 2019 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 2020 * 2021 * Returns true if our parent ignored us and so we've switched to 2022 * self-reaping. 2023 */ 2024bool do_notify_parent(struct task_struct *tsk, int sig) 2025{ 2026 struct kernel_siginfo info; 2027 unsigned long flags; 2028 struct sighand_struct *psig; 2029 bool autoreap = false; 2030 u64 utime, stime; 2031 2032 WARN_ON_ONCE(sig == -1); 2033 2034 /* do_notify_parent_cldstop should have been called instead. */ 2035 WARN_ON_ONCE(task_is_stopped_or_traced(tsk)); 2036 2037 WARN_ON_ONCE(!tsk->ptrace && 2038 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 2039 2040 /* Wake up all pidfd waiters */ 2041 do_notify_pidfd(tsk); 2042 2043 if (sig != SIGCHLD) { 2044 /* 2045 * This is only possible if parent == real_parent. 2046 * Check if it has changed security domain. 2047 */ 2048 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id)) 2049 sig = SIGCHLD; 2050 } 2051 2052 clear_siginfo(&info); 2053 info.si_signo = sig; 2054 info.si_errno = 0; 2055 /* 2056 * We are under tasklist_lock here so our parent is tied to 2057 * us and cannot change. 2058 * 2059 * task_active_pid_ns will always return the same pid namespace 2060 * until a task passes through release_task. 2061 * 2062 * write_lock() currently calls preempt_disable() which is the 2063 * same as rcu_read_lock(), but according to Oleg, this is not 2064 * correct to rely on this 2065 */ 2066 rcu_read_lock(); 2067 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 2068 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 2069 task_uid(tsk)); 2070 rcu_read_unlock(); 2071 2072 task_cputime(tsk, &utime, &stime); 2073 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime); 2074 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime); 2075 2076 info.si_status = tsk->exit_code & 0x7f; 2077 if (tsk->exit_code & 0x80) 2078 info.si_code = CLD_DUMPED; 2079 else if (tsk->exit_code & 0x7f) 2080 info.si_code = CLD_KILLED; 2081 else { 2082 info.si_code = CLD_EXITED; 2083 info.si_status = tsk->exit_code >> 8; 2084 } 2085 2086 psig = tsk->parent->sighand; 2087 spin_lock_irqsave(&psig->siglock, flags); 2088 if (!tsk->ptrace && sig == SIGCHLD && 2089 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 2090 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 2091 /* 2092 * We are exiting and our parent doesn't care. POSIX.1 2093 * defines special semantics for setting SIGCHLD to SIG_IGN 2094 * or setting the SA_NOCLDWAIT flag: we should be reaped 2095 * automatically and not left for our parent's wait4 call. 2096 * Rather than having the parent do it as a magic kind of 2097 * signal handler, we just set this to tell do_exit that we 2098 * can be cleaned up without becoming a zombie. Note that 2099 * we still call __wake_up_parent in this case, because a 2100 * blocked sys_wait4 might now return -ECHILD. 2101 * 2102 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 2103 * is implementation-defined: we do (if you don't want 2104 * it, just use SIG_IGN instead). 2105 */ 2106 autoreap = true; 2107 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 2108 sig = 0; 2109 } 2110 /* 2111 * Send with __send_signal as si_pid and si_uid are in the 2112 * parent's namespaces. 2113 */ 2114 if (valid_signal(sig) && sig) 2115 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false); 2116 __wake_up_parent(tsk, tsk->parent); 2117 spin_unlock_irqrestore(&psig->siglock, flags); 2118 2119 return autoreap; 2120} 2121 2122/** 2123 * do_notify_parent_cldstop - notify parent of stopped/continued state change 2124 * @tsk: task reporting the state change 2125 * @for_ptracer: the notification is for ptracer 2126 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 2127 * 2128 * Notify @tsk's parent that the stopped/continued state has changed. If 2129 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 2130 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 2131 * 2132 * CONTEXT: 2133 * Must be called with tasklist_lock at least read locked. 2134 */ 2135static void do_notify_parent_cldstop(struct task_struct *tsk, 2136 bool for_ptracer, int why) 2137{ 2138 struct kernel_siginfo info; 2139 unsigned long flags; 2140 struct task_struct *parent; 2141 struct sighand_struct *sighand; 2142 u64 utime, stime; 2143 2144 if (for_ptracer) { 2145 parent = tsk->parent; 2146 } else { 2147 tsk = tsk->group_leader; 2148 parent = tsk->real_parent; 2149 } 2150 2151 clear_siginfo(&info); 2152 info.si_signo = SIGCHLD; 2153 info.si_errno = 0; 2154 /* 2155 * see comment in do_notify_parent() about the following 4 lines 2156 */ 2157 rcu_read_lock(); 2158 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 2159 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 2160 rcu_read_unlock(); 2161 2162 task_cputime(tsk, &utime, &stime); 2163 info.si_utime = nsec_to_clock_t(utime); 2164 info.si_stime = nsec_to_clock_t(stime); 2165 2166 info.si_code = why; 2167 switch (why) { 2168 case CLD_CONTINUED: 2169 info.si_status = SIGCONT; 2170 break; 2171 case CLD_STOPPED: 2172 info.si_status = tsk->signal->group_exit_code & 0x7f; 2173 break; 2174 case CLD_TRAPPED: 2175 info.si_status = tsk->exit_code & 0x7f; 2176 break; 2177 default: 2178 BUG(); 2179 } 2180 2181 sighand = parent->sighand; 2182 spin_lock_irqsave(&sighand->siglock, flags); 2183 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 2184 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 2185 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID); 2186 /* 2187 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 2188 */ 2189 __wake_up_parent(tsk, parent); 2190 spin_unlock_irqrestore(&sighand->siglock, flags); 2191} 2192 2193/* 2194 * This must be called with current->sighand->siglock held. 2195 * 2196 * This should be the path for all ptrace stops. 2197 * We always set current->last_siginfo while stopped here. 2198 * That makes it a way to test a stopped process for 2199 * being ptrace-stopped vs being job-control-stopped. 2200 * 2201 * Returns the signal the ptracer requested the code resume 2202 * with. If the code did not stop because the tracer is gone, 2203 * the stop signal remains unchanged unless clear_code. 2204 */ 2205static int ptrace_stop(int exit_code, int why, unsigned long message, 2206 kernel_siginfo_t *info) 2207 __releases(¤t->sighand->siglock) 2208 __acquires(¤t->sighand->siglock) 2209{ 2210 bool gstop_done = false; 2211 2212 if (arch_ptrace_stop_needed()) { 2213 /* 2214 * The arch code has something special to do before a 2215 * ptrace stop. This is allowed to block, e.g. for faults 2216 * on user stack pages. We can't keep the siglock while 2217 * calling arch_ptrace_stop, so we must release it now. 2218 * To preserve proper semantics, we must do this before 2219 * any signal bookkeeping like checking group_stop_count. 2220 */ 2221 spin_unlock_irq(¤t->sighand->siglock); 2222 arch_ptrace_stop(); 2223 spin_lock_irq(¤t->sighand->siglock); 2224 } 2225 2226 /* 2227 * After this point ptrace_signal_wake_up or signal_wake_up 2228 * will clear TASK_TRACED if ptrace_unlink happens or a fatal 2229 * signal comes in. Handle previous ptrace_unlinks and fatal 2230 * signals here to prevent ptrace_stop sleeping in schedule. 2231 */ 2232 if (!current->ptrace || __fatal_signal_pending(current)) 2233 return exit_code; 2234 2235 set_special_state(TASK_TRACED); 2236 current->jobctl |= JOBCTL_TRACED; 2237 2238 /* 2239 * We're committing to trapping. TRACED should be visible before 2240 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 2241 * Also, transition to TRACED and updates to ->jobctl should be 2242 * atomic with respect to siglock and should be done after the arch 2243 * hook as siglock is released and regrabbed across it. 2244 * 2245 * TRACER TRACEE 2246 * 2247 * ptrace_attach() 2248 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED) 2249 * do_wait() 2250 * set_current_state() smp_wmb(); 2251 * ptrace_do_wait() 2252 * wait_task_stopped() 2253 * task_stopped_code() 2254 * [L] task_is_traced() [S] task_clear_jobctl_trapping(); 2255 */ 2256 smp_wmb(); 2257 2258 current->ptrace_message = message; 2259 current->last_siginfo = info; 2260 current->exit_code = exit_code; 2261 2262 /* 2263 * If @why is CLD_STOPPED, we're trapping to participate in a group 2264 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 2265 * across siglock relocks since INTERRUPT was scheduled, PENDING 2266 * could be clear now. We act as if SIGCONT is received after 2267 * TASK_TRACED is entered - ignore it. 2268 */ 2269 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 2270 gstop_done = task_participate_group_stop(current); 2271 2272 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 2273 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 2274 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 2275 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 2276 2277 /* entering a trap, clear TRAPPING */ 2278 task_clear_jobctl_trapping(current); 2279 2280 spin_unlock_irq(¤t->sighand->siglock); 2281 read_lock(&tasklist_lock); 2282 /* 2283 * Notify parents of the stop. 2284 * 2285 * While ptraced, there are two parents - the ptracer and 2286 * the real_parent of the group_leader. The ptracer should 2287 * know about every stop while the real parent is only 2288 * interested in the completion of group stop. The states 2289 * for the two don't interact with each other. Notify 2290 * separately unless they're gonna be duplicates. 2291 */ 2292 if (current->ptrace) 2293 do_notify_parent_cldstop(current, true, why); 2294 if (gstop_done && (!current->ptrace || ptrace_reparented(current))) 2295 do_notify_parent_cldstop(current, false, why); 2296 2297 /* 2298 * Don't want to allow preemption here, because 2299 * sys_ptrace() needs this task to be inactive. 2300 * 2301 * XXX: implement read_unlock_no_resched(). 2302 */ 2303 preempt_disable(); 2304 read_unlock(&tasklist_lock); 2305 cgroup_enter_frozen(); 2306 preempt_enable_no_resched(); 2307 freezable_schedule(); 2308 cgroup_leave_frozen(true); 2309 2310 /* 2311 * We are back. Now reacquire the siglock before touching 2312 * last_siginfo, so that we are sure to have synchronized with 2313 * any signal-sending on another CPU that wants to examine it. 2314 */ 2315 spin_lock_irq(¤t->sighand->siglock); 2316 exit_code = current->exit_code; 2317 current->last_siginfo = NULL; 2318 current->ptrace_message = 0; 2319 current->exit_code = 0; 2320 2321 /* LISTENING can be set only during STOP traps, clear it */ 2322 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN); 2323 2324 /* 2325 * Queued signals ignored us while we were stopped for tracing. 2326 * So check for any that we should take before resuming user mode. 2327 * This sets TIF_SIGPENDING, but never clears it. 2328 */ 2329 recalc_sigpending_tsk(current); 2330 return exit_code; 2331} 2332 2333static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message) 2334{ 2335 kernel_siginfo_t info; 2336 2337 clear_siginfo(&info); 2338 info.si_signo = signr; 2339 info.si_code = exit_code; 2340 info.si_pid = task_pid_vnr(current); 2341 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2342 2343 /* Let the debugger run. */ 2344 return ptrace_stop(exit_code, why, message, &info); 2345} 2346 2347int ptrace_notify(int exit_code, unsigned long message) 2348{ 2349 int signr; 2350 2351 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 2352 if (unlikely(task_work_pending(current))) 2353 task_work_run(); 2354 2355 spin_lock_irq(¤t->sighand->siglock); 2356 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message); 2357 spin_unlock_irq(¤t->sighand->siglock); 2358 return signr; 2359} 2360 2361/** 2362 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 2363 * @signr: signr causing group stop if initiating 2364 * 2365 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 2366 * and participate in it. If already set, participate in the existing 2367 * group stop. If participated in a group stop (and thus slept), %true is 2368 * returned with siglock released. 2369 * 2370 * If ptraced, this function doesn't handle stop itself. Instead, 2371 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 2372 * untouched. The caller must ensure that INTERRUPT trap handling takes 2373 * places afterwards. 2374 * 2375 * CONTEXT: 2376 * Must be called with @current->sighand->siglock held, which is released 2377 * on %true return. 2378 * 2379 * RETURNS: 2380 * %false if group stop is already cancelled or ptrace trap is scheduled. 2381 * %true if participated in group stop. 2382 */ 2383static bool do_signal_stop(int signr) 2384 __releases(¤t->sighand->siglock) 2385{ 2386 struct signal_struct *sig = current->signal; 2387 2388 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 2389 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 2390 struct task_struct *t; 2391 2392 /* signr will be recorded in task->jobctl for retries */ 2393 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2394 2395 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2396 unlikely(sig->flags & SIGNAL_GROUP_EXIT) || 2397 unlikely(sig->group_exec_task)) 2398 return false; 2399 /* 2400 * There is no group stop already in progress. We must 2401 * initiate one now. 2402 * 2403 * While ptraced, a task may be resumed while group stop is 2404 * still in effect and then receive a stop signal and 2405 * initiate another group stop. This deviates from the 2406 * usual behavior as two consecutive stop signals can't 2407 * cause two group stops when !ptraced. That is why we 2408 * also check !task_is_stopped(t) below. 2409 * 2410 * The condition can be distinguished by testing whether 2411 * SIGNAL_STOP_STOPPED is already set. Don't generate 2412 * group_exit_code in such case. 2413 * 2414 * This is not necessary for SIGNAL_STOP_CONTINUED because 2415 * an intervening stop signal is required to cause two 2416 * continued events regardless of ptrace. 2417 */ 2418 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2419 sig->group_exit_code = signr; 2420 2421 sig->group_stop_count = 0; 2422 2423 if (task_set_jobctl_pending(current, signr | gstop)) 2424 sig->group_stop_count++; 2425 2426 t = current; 2427 while_each_thread(current, t) { 2428 /* 2429 * Setting state to TASK_STOPPED for a group 2430 * stop is always done with the siglock held, 2431 * so this check has no races. 2432 */ 2433 if (!task_is_stopped(t) && 2434 task_set_jobctl_pending(t, signr | gstop)) { 2435 sig->group_stop_count++; 2436 if (likely(!(t->ptrace & PT_SEIZED))) 2437 signal_wake_up(t, 0); 2438 else 2439 ptrace_trap_notify(t); 2440 } 2441 } 2442 } 2443 2444 if (likely(!current->ptrace)) { 2445 int notify = 0; 2446 2447 /* 2448 * If there are no other threads in the group, or if there 2449 * is a group stop in progress and we are the last to stop, 2450 * report to the parent. 2451 */ 2452 if (task_participate_group_stop(current)) 2453 notify = CLD_STOPPED; 2454 2455 current->jobctl |= JOBCTL_STOPPED; 2456 set_special_state(TASK_STOPPED); 2457 spin_unlock_irq(¤t->sighand->siglock); 2458 2459 /* 2460 * Notify the parent of the group stop completion. Because 2461 * we're not holding either the siglock or tasklist_lock 2462 * here, ptracer may attach inbetween; however, this is for 2463 * group stop and should always be delivered to the real 2464 * parent of the group leader. The new ptracer will get 2465 * its notification when this task transitions into 2466 * TASK_TRACED. 2467 */ 2468 if (notify) { 2469 read_lock(&tasklist_lock); 2470 do_notify_parent_cldstop(current, false, notify); 2471 read_unlock(&tasklist_lock); 2472 } 2473 2474 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2475 cgroup_enter_frozen(); 2476 freezable_schedule(); 2477 return true; 2478 } else { 2479 /* 2480 * While ptraced, group stop is handled by STOP trap. 2481 * Schedule it and let the caller deal with it. 2482 */ 2483 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2484 return false; 2485 } 2486} 2487 2488/** 2489 * do_jobctl_trap - take care of ptrace jobctl traps 2490 * 2491 * When PT_SEIZED, it's used for both group stop and explicit 2492 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2493 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2494 * the stop signal; otherwise, %SIGTRAP. 2495 * 2496 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2497 * number as exit_code and no siginfo. 2498 * 2499 * CONTEXT: 2500 * Must be called with @current->sighand->siglock held, which may be 2501 * released and re-acquired before returning with intervening sleep. 2502 */ 2503static void do_jobctl_trap(void) 2504{ 2505 struct signal_struct *signal = current->signal; 2506 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2507 2508 if (current->ptrace & PT_SEIZED) { 2509 if (!signal->group_stop_count && 2510 !(signal->flags & SIGNAL_STOP_STOPPED)) 2511 signr = SIGTRAP; 2512 WARN_ON_ONCE(!signr); 2513 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2514 CLD_STOPPED, 0); 2515 } else { 2516 WARN_ON_ONCE(!signr); 2517 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2518 } 2519} 2520 2521/** 2522 * do_freezer_trap - handle the freezer jobctl trap 2523 * 2524 * Puts the task into frozen state, if only the task is not about to quit. 2525 * In this case it drops JOBCTL_TRAP_FREEZE. 2526 * 2527 * CONTEXT: 2528 * Must be called with @current->sighand->siglock held, 2529 * which is always released before returning. 2530 */ 2531static void do_freezer_trap(void) 2532 __releases(¤t->sighand->siglock) 2533{ 2534 /* 2535 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE, 2536 * let's make another loop to give it a chance to be handled. 2537 * In any case, we'll return back. 2538 */ 2539 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) != 2540 JOBCTL_TRAP_FREEZE) { 2541 spin_unlock_irq(¤t->sighand->siglock); 2542 return; 2543 } 2544 2545 /* 2546 * Now we're sure that there is no pending fatal signal and no 2547 * pending traps. Clear TIF_SIGPENDING to not get out of schedule() 2548 * immediately (if there is a non-fatal signal pending), and 2549 * put the task into sleep. 2550 */ 2551 __set_current_state(TASK_INTERRUPTIBLE); 2552 clear_thread_flag(TIF_SIGPENDING); 2553 spin_unlock_irq(¤t->sighand->siglock); 2554 cgroup_enter_frozen(); 2555 freezable_schedule(); 2556} 2557 2558static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type) 2559{ 2560 /* 2561 * We do not check sig_kernel_stop(signr) but set this marker 2562 * unconditionally because we do not know whether debugger will 2563 * change signr. This flag has no meaning unless we are going 2564 * to stop after return from ptrace_stop(). In this case it will 2565 * be checked in do_signal_stop(), we should only stop if it was 2566 * not cleared by SIGCONT while we were sleeping. See also the 2567 * comment in dequeue_signal(). 2568 */ 2569 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2570 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info); 2571 2572 /* We're back. Did the debugger cancel the sig? */ 2573 if (signr == 0) 2574 return signr; 2575 2576 /* 2577 * Update the siginfo structure if the signal has 2578 * changed. If the debugger wanted something 2579 * specific in the siginfo structure then it should 2580 * have updated *info via PTRACE_SETSIGINFO. 2581 */ 2582 if (signr != info->si_signo) { 2583 clear_siginfo(info); 2584 info->si_signo = signr; 2585 info->si_errno = 0; 2586 info->si_code = SI_USER; 2587 rcu_read_lock(); 2588 info->si_pid = task_pid_vnr(current->parent); 2589 info->si_uid = from_kuid_munged(current_user_ns(), 2590 task_uid(current->parent)); 2591 rcu_read_unlock(); 2592 } 2593 2594 /* If the (new) signal is now blocked, requeue it. */ 2595 if (sigismember(¤t->blocked, signr) || 2596 fatal_signal_pending(current)) { 2597 send_signal_locked(signr, info, current, type); 2598 signr = 0; 2599 } 2600 2601 return signr; 2602} 2603 2604static void hide_si_addr_tag_bits(struct ksignal *ksig) 2605{ 2606 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) { 2607 case SIL_FAULT: 2608 case SIL_FAULT_TRAPNO: 2609 case SIL_FAULT_MCEERR: 2610 case SIL_FAULT_BNDERR: 2611 case SIL_FAULT_PKUERR: 2612 case SIL_FAULT_PERF_EVENT: 2613 ksig->info.si_addr = arch_untagged_si_addr( 2614 ksig->info.si_addr, ksig->sig, ksig->info.si_code); 2615 break; 2616 case SIL_KILL: 2617 case SIL_TIMER: 2618 case SIL_POLL: 2619 case SIL_CHLD: 2620 case SIL_RT: 2621 case SIL_SYS: 2622 break; 2623 } 2624} 2625 2626bool get_signal(struct ksignal *ksig) 2627{ 2628 struct sighand_struct *sighand = current->sighand; 2629 struct signal_struct *signal = current->signal; 2630 int signr; 2631 2632 clear_notify_signal(); 2633 if (unlikely(task_work_pending(current))) 2634 task_work_run(); 2635 2636 if (!task_sigpending(current)) 2637 return false; 2638 2639 if (unlikely(uprobe_deny_signal())) 2640 return false; 2641 2642 /* 2643 * Do this once, we can't return to user-mode if freezing() == T. 2644 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2645 * thus do not need another check after return. 2646 */ 2647 try_to_freeze(); 2648 2649relock: 2650 spin_lock_irq(&sighand->siglock); 2651 2652 /* 2653 * Every stopped thread goes here after wakeup. Check to see if 2654 * we should notify the parent, prepare_signal(SIGCONT) encodes 2655 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2656 */ 2657 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2658 int why; 2659 2660 if (signal->flags & SIGNAL_CLD_CONTINUED) 2661 why = CLD_CONTINUED; 2662 else 2663 why = CLD_STOPPED; 2664 2665 signal->flags &= ~SIGNAL_CLD_MASK; 2666 2667 spin_unlock_irq(&sighand->siglock); 2668 2669 /* 2670 * Notify the parent that we're continuing. This event is 2671 * always per-process and doesn't make whole lot of sense 2672 * for ptracers, who shouldn't consume the state via 2673 * wait(2) either, but, for backward compatibility, notify 2674 * the ptracer of the group leader too unless it's gonna be 2675 * a duplicate. 2676 */ 2677 read_lock(&tasklist_lock); 2678 do_notify_parent_cldstop(current, false, why); 2679 2680 if (ptrace_reparented(current->group_leader)) 2681 do_notify_parent_cldstop(current->group_leader, 2682 true, why); 2683 read_unlock(&tasklist_lock); 2684 2685 goto relock; 2686 } 2687 2688 for (;;) { 2689 struct k_sigaction *ka; 2690 enum pid_type type; 2691 2692 /* Has this task already been marked for death? */ 2693 if ((signal->flags & SIGNAL_GROUP_EXIT) || 2694 signal->group_exec_task) { 2695 ksig->info.si_signo = signr = SIGKILL; 2696 sigdelset(¤t->pending.signal, SIGKILL); 2697 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO, 2698 &sighand->action[SIGKILL - 1]); 2699 recalc_sigpending(); 2700 goto fatal; 2701 } 2702 2703 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2704 do_signal_stop(0)) 2705 goto relock; 2706 2707 if (unlikely(current->jobctl & 2708 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) { 2709 if (current->jobctl & JOBCTL_TRAP_MASK) { 2710 do_jobctl_trap(); 2711 spin_unlock_irq(&sighand->siglock); 2712 } else if (current->jobctl & JOBCTL_TRAP_FREEZE) 2713 do_freezer_trap(); 2714 2715 goto relock; 2716 } 2717 2718 /* 2719 * If the task is leaving the frozen state, let's update 2720 * cgroup counters and reset the frozen bit. 2721 */ 2722 if (unlikely(cgroup_task_frozen(current))) { 2723 spin_unlock_irq(&sighand->siglock); 2724 cgroup_leave_frozen(false); 2725 goto relock; 2726 } 2727 2728 /* 2729 * Signals generated by the execution of an instruction 2730 * need to be delivered before any other pending signals 2731 * so that the instruction pointer in the signal stack 2732 * frame points to the faulting instruction. 2733 */ 2734 type = PIDTYPE_PID; 2735 signr = dequeue_synchronous_signal(&ksig->info); 2736 if (!signr) 2737 signr = dequeue_signal(current, ¤t->blocked, 2738 &ksig->info, &type); 2739 2740 if (!signr) 2741 break; /* will return 0 */ 2742 2743 if (unlikely(current->ptrace) && (signr != SIGKILL) && 2744 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) { 2745 signr = ptrace_signal(signr, &ksig->info, type); 2746 if (!signr) 2747 continue; 2748 } 2749 2750 ka = &sighand->action[signr-1]; 2751 2752 /* Trace actually delivered signals. */ 2753 trace_signal_deliver(signr, &ksig->info, ka); 2754 2755 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2756 continue; 2757 if (ka->sa.sa_handler != SIG_DFL) { 2758 /* Run the handler. */ 2759 ksig->ka = *ka; 2760 2761 if (ka->sa.sa_flags & SA_ONESHOT) 2762 ka->sa.sa_handler = SIG_DFL; 2763 2764 break; /* will return non-zero "signr" value */ 2765 } 2766 2767 /* 2768 * Now we are doing the default action for this signal. 2769 */ 2770 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2771 continue; 2772 2773 /* 2774 * Global init gets no signals it doesn't want. 2775 * Container-init gets no signals it doesn't want from same 2776 * container. 2777 * 2778 * Note that if global/container-init sees a sig_kernel_only() 2779 * signal here, the signal must have been generated internally 2780 * or must have come from an ancestor namespace. In either 2781 * case, the signal cannot be dropped. 2782 */ 2783 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2784 !sig_kernel_only(signr)) 2785 continue; 2786 2787 if (sig_kernel_stop(signr)) { 2788 /* 2789 * The default action is to stop all threads in 2790 * the thread group. The job control signals 2791 * do nothing in an orphaned pgrp, but SIGSTOP 2792 * always works. Note that siglock needs to be 2793 * dropped during the call to is_orphaned_pgrp() 2794 * because of lock ordering with tasklist_lock. 2795 * This allows an intervening SIGCONT to be posted. 2796 * We need to check for that and bail out if necessary. 2797 */ 2798 if (signr != SIGSTOP) { 2799 spin_unlock_irq(&sighand->siglock); 2800 2801 /* signals can be posted during this window */ 2802 2803 if (is_current_pgrp_orphaned()) 2804 goto relock; 2805 2806 spin_lock_irq(&sighand->siglock); 2807 } 2808 2809 if (likely(do_signal_stop(ksig->info.si_signo))) { 2810 /* It released the siglock. */ 2811 goto relock; 2812 } 2813 2814 /* 2815 * We didn't actually stop, due to a race 2816 * with SIGCONT or something like that. 2817 */ 2818 continue; 2819 } 2820 2821 fatal: 2822 spin_unlock_irq(&sighand->siglock); 2823 if (unlikely(cgroup_task_frozen(current))) 2824 cgroup_leave_frozen(true); 2825 2826 /* 2827 * Anything else is fatal, maybe with a core dump. 2828 */ 2829 current->flags |= PF_SIGNALED; 2830 2831 if (sig_kernel_coredump(signr)) { 2832 if (print_fatal_signals) 2833 print_fatal_signal(ksig->info.si_signo); 2834 proc_coredump_connector(current); 2835 /* 2836 * If it was able to dump core, this kills all 2837 * other threads in the group and synchronizes with 2838 * their demise. If we lost the race with another 2839 * thread getting here, it set group_exit_code 2840 * first and our do_group_exit call below will use 2841 * that value and ignore the one we pass it. 2842 */ 2843 do_coredump(&ksig->info); 2844 } 2845 2846 /* 2847 * PF_IO_WORKER threads will catch and exit on fatal signals 2848 * themselves. They have cleanup that must be performed, so 2849 * we cannot call do_exit() on their behalf. 2850 */ 2851 if (current->flags & PF_IO_WORKER) 2852 goto out; 2853 2854 /* 2855 * Death signals, no core dump. 2856 */ 2857 do_group_exit(ksig->info.si_signo); 2858 /* NOTREACHED */ 2859 } 2860 spin_unlock_irq(&sighand->siglock); 2861out: 2862 ksig->sig = signr; 2863 2864 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS)) 2865 hide_si_addr_tag_bits(ksig); 2866 2867 return ksig->sig > 0; 2868} 2869 2870/** 2871 * signal_delivered - called after signal delivery to update blocked signals 2872 * @ksig: kernel signal struct 2873 * @stepping: nonzero if debugger single-step or block-step in use 2874 * 2875 * This function should be called when a signal has successfully been 2876 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2877 * is always blocked), and the signal itself is blocked unless %SA_NODEFER 2878 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2879 */ 2880static void signal_delivered(struct ksignal *ksig, int stepping) 2881{ 2882 sigset_t blocked; 2883 2884 /* A signal was successfully delivered, and the 2885 saved sigmask was stored on the signal frame, 2886 and will be restored by sigreturn. So we can 2887 simply clear the restore sigmask flag. */ 2888 clear_restore_sigmask(); 2889 2890 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2891 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2892 sigaddset(&blocked, ksig->sig); 2893 set_current_blocked(&blocked); 2894 if (current->sas_ss_flags & SS_AUTODISARM) 2895 sas_ss_reset(current); 2896 if (stepping) 2897 ptrace_notify(SIGTRAP, 0); 2898} 2899 2900void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2901{ 2902 if (failed) 2903 force_sigsegv(ksig->sig); 2904 else 2905 signal_delivered(ksig, stepping); 2906} 2907 2908/* 2909 * It could be that complete_signal() picked us to notify about the 2910 * group-wide signal. Other threads should be notified now to take 2911 * the shared signals in @which since we will not. 2912 */ 2913static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2914{ 2915 sigset_t retarget; 2916 struct task_struct *t; 2917 2918 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2919 if (sigisemptyset(&retarget)) 2920 return; 2921 2922 t = tsk; 2923 while_each_thread(tsk, t) { 2924 if (t->flags & PF_EXITING) 2925 continue; 2926 2927 if (!has_pending_signals(&retarget, &t->blocked)) 2928 continue; 2929 /* Remove the signals this thread can handle. */ 2930 sigandsets(&retarget, &retarget, &t->blocked); 2931 2932 if (!task_sigpending(t)) 2933 signal_wake_up(t, 0); 2934 2935 if (sigisemptyset(&retarget)) 2936 break; 2937 } 2938} 2939 2940void exit_signals(struct task_struct *tsk) 2941{ 2942 int group_stop = 0; 2943 sigset_t unblocked; 2944 2945 /* 2946 * @tsk is about to have PF_EXITING set - lock out users which 2947 * expect stable threadgroup. 2948 */ 2949 cgroup_threadgroup_change_begin(tsk); 2950 2951 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 2952 tsk->flags |= PF_EXITING; 2953 cgroup_threadgroup_change_end(tsk); 2954 return; 2955 } 2956 2957 spin_lock_irq(&tsk->sighand->siglock); 2958 /* 2959 * From now this task is not visible for group-wide signals, 2960 * see wants_signal(), do_signal_stop(). 2961 */ 2962 tsk->flags |= PF_EXITING; 2963 2964 cgroup_threadgroup_change_end(tsk); 2965 2966 if (!task_sigpending(tsk)) 2967 goto out; 2968 2969 unblocked = tsk->blocked; 2970 signotset(&unblocked); 2971 retarget_shared_pending(tsk, &unblocked); 2972 2973 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2974 task_participate_group_stop(tsk)) 2975 group_stop = CLD_STOPPED; 2976out: 2977 spin_unlock_irq(&tsk->sighand->siglock); 2978 2979 /* 2980 * If group stop has completed, deliver the notification. This 2981 * should always go to the real parent of the group leader. 2982 */ 2983 if (unlikely(group_stop)) { 2984 read_lock(&tasklist_lock); 2985 do_notify_parent_cldstop(tsk, false, group_stop); 2986 read_unlock(&tasklist_lock); 2987 } 2988} 2989 2990/* 2991 * System call entry points. 2992 */ 2993 2994/** 2995 * sys_restart_syscall - restart a system call 2996 */ 2997SYSCALL_DEFINE0(restart_syscall) 2998{ 2999 struct restart_block *restart = ¤t->restart_block; 3000 return restart->fn(restart); 3001} 3002 3003long do_no_restart_syscall(struct restart_block *param) 3004{ 3005 return -EINTR; 3006} 3007 3008static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 3009{ 3010 if (task_sigpending(tsk) && !thread_group_empty(tsk)) { 3011 sigset_t newblocked; 3012 /* A set of now blocked but previously unblocked signals. */ 3013 sigandnsets(&newblocked, newset, ¤t->blocked); 3014 retarget_shared_pending(tsk, &newblocked); 3015 } 3016 tsk->blocked = *newset; 3017 recalc_sigpending(); 3018} 3019 3020/** 3021 * set_current_blocked - change current->blocked mask 3022 * @newset: new mask 3023 * 3024 * It is wrong to change ->blocked directly, this helper should be used 3025 * to ensure the process can't miss a shared signal we are going to block. 3026 */ 3027void set_current_blocked(sigset_t *newset) 3028{ 3029 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3030 __set_current_blocked(newset); 3031} 3032 3033void __set_current_blocked(const sigset_t *newset) 3034{ 3035 struct task_struct *tsk = current; 3036 3037 /* 3038 * In case the signal mask hasn't changed, there is nothing we need 3039 * to do. The current->blocked shouldn't be modified by other task. 3040 */ 3041 if (sigequalsets(&tsk->blocked, newset)) 3042 return; 3043 3044 spin_lock_irq(&tsk->sighand->siglock); 3045 __set_task_blocked(tsk, newset); 3046 spin_unlock_irq(&tsk->sighand->siglock); 3047} 3048 3049/* 3050 * This is also useful for kernel threads that want to temporarily 3051 * (or permanently) block certain signals. 3052 * 3053 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 3054 * interface happily blocks "unblockable" signals like SIGKILL 3055 * and friends. 3056 */ 3057int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 3058{ 3059 struct task_struct *tsk = current; 3060 sigset_t newset; 3061 3062 /* Lockless, only current can change ->blocked, never from irq */ 3063 if (oldset) 3064 *oldset = tsk->blocked; 3065 3066 switch (how) { 3067 case SIG_BLOCK: 3068 sigorsets(&newset, &tsk->blocked, set); 3069 break; 3070 case SIG_UNBLOCK: 3071 sigandnsets(&newset, &tsk->blocked, set); 3072 break; 3073 case SIG_SETMASK: 3074 newset = *set; 3075 break; 3076 default: 3077 return -EINVAL; 3078 } 3079 3080 __set_current_blocked(&newset); 3081 return 0; 3082} 3083EXPORT_SYMBOL(sigprocmask); 3084 3085/* 3086 * The api helps set app-provided sigmasks. 3087 * 3088 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and 3089 * epoll_pwait where a new sigmask is passed from userland for the syscalls. 3090 * 3091 * Note that it does set_restore_sigmask() in advance, so it must be always 3092 * paired with restore_saved_sigmask_unless() before return from syscall. 3093 */ 3094int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize) 3095{ 3096 sigset_t kmask; 3097 3098 if (!umask) 3099 return 0; 3100 if (sigsetsize != sizeof(sigset_t)) 3101 return -EINVAL; 3102 if (copy_from_user(&kmask, umask, sizeof(sigset_t))) 3103 return -EFAULT; 3104 3105 set_restore_sigmask(); 3106 current->saved_sigmask = current->blocked; 3107 set_current_blocked(&kmask); 3108 3109 return 0; 3110} 3111 3112#ifdef CONFIG_COMPAT 3113int set_compat_user_sigmask(const compat_sigset_t __user *umask, 3114 size_t sigsetsize) 3115{ 3116 sigset_t kmask; 3117 3118 if (!umask) 3119 return 0; 3120 if (sigsetsize != sizeof(compat_sigset_t)) 3121 return -EINVAL; 3122 if (get_compat_sigset(&kmask, umask)) 3123 return -EFAULT; 3124 3125 set_restore_sigmask(); 3126 current->saved_sigmask = current->blocked; 3127 set_current_blocked(&kmask); 3128 3129 return 0; 3130} 3131#endif 3132 3133/** 3134 * sys_rt_sigprocmask - change the list of currently blocked signals 3135 * @how: whether to add, remove, or set signals 3136 * @nset: stores pending signals 3137 * @oset: previous value of signal mask if non-null 3138 * @sigsetsize: size of sigset_t type 3139 */ 3140SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 3141 sigset_t __user *, oset, size_t, sigsetsize) 3142{ 3143 sigset_t old_set, new_set; 3144 int error; 3145 3146 /* XXX: Don't preclude handling different sized sigset_t's. */ 3147 if (sigsetsize != sizeof(sigset_t)) 3148 return -EINVAL; 3149 3150 old_set = current->blocked; 3151 3152 if (nset) { 3153 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 3154 return -EFAULT; 3155 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3156 3157 error = sigprocmask(how, &new_set, NULL); 3158 if (error) 3159 return error; 3160 } 3161 3162 if (oset) { 3163 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 3164 return -EFAULT; 3165 } 3166 3167 return 0; 3168} 3169 3170#ifdef CONFIG_COMPAT 3171COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 3172 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 3173{ 3174 sigset_t old_set = current->blocked; 3175 3176 /* XXX: Don't preclude handling different sized sigset_t's. */ 3177 if (sigsetsize != sizeof(sigset_t)) 3178 return -EINVAL; 3179 3180 if (nset) { 3181 sigset_t new_set; 3182 int error; 3183 if (get_compat_sigset(&new_set, nset)) 3184 return -EFAULT; 3185 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3186 3187 error = sigprocmask(how, &new_set, NULL); 3188 if (error) 3189 return error; 3190 } 3191 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0; 3192} 3193#endif 3194 3195static void do_sigpending(sigset_t *set) 3196{ 3197 spin_lock_irq(¤t->sighand->siglock); 3198 sigorsets(set, ¤t->pending.signal, 3199 ¤t->signal->shared_pending.signal); 3200 spin_unlock_irq(¤t->sighand->siglock); 3201 3202 /* Outside the lock because only this thread touches it. */ 3203 sigandsets(set, ¤t->blocked, set); 3204} 3205 3206/** 3207 * sys_rt_sigpending - examine a pending signal that has been raised 3208 * while blocked 3209 * @uset: stores pending signals 3210 * @sigsetsize: size of sigset_t type or larger 3211 */ 3212SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 3213{ 3214 sigset_t set; 3215 3216 if (sigsetsize > sizeof(*uset)) 3217 return -EINVAL; 3218 3219 do_sigpending(&set); 3220 3221 if (copy_to_user(uset, &set, sigsetsize)) 3222 return -EFAULT; 3223 3224 return 0; 3225} 3226 3227#ifdef CONFIG_COMPAT 3228COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 3229 compat_size_t, sigsetsize) 3230{ 3231 sigset_t set; 3232 3233 if (sigsetsize > sizeof(*uset)) 3234 return -EINVAL; 3235 3236 do_sigpending(&set); 3237 3238 return put_compat_sigset(uset, &set, sigsetsize); 3239} 3240#endif 3241 3242static const struct { 3243 unsigned char limit, layout; 3244} sig_sicodes[] = { 3245 [SIGILL] = { NSIGILL, SIL_FAULT }, 3246 [SIGFPE] = { NSIGFPE, SIL_FAULT }, 3247 [SIGSEGV] = { NSIGSEGV, SIL_FAULT }, 3248 [SIGBUS] = { NSIGBUS, SIL_FAULT }, 3249 [SIGTRAP] = { NSIGTRAP, SIL_FAULT }, 3250#if defined(SIGEMT) 3251 [SIGEMT] = { NSIGEMT, SIL_FAULT }, 3252#endif 3253 [SIGCHLD] = { NSIGCHLD, SIL_CHLD }, 3254 [SIGPOLL] = { NSIGPOLL, SIL_POLL }, 3255 [SIGSYS] = { NSIGSYS, SIL_SYS }, 3256}; 3257 3258static bool known_siginfo_layout(unsigned sig, int si_code) 3259{ 3260 if (si_code == SI_KERNEL) 3261 return true; 3262 else if ((si_code > SI_USER)) { 3263 if (sig_specific_sicodes(sig)) { 3264 if (si_code <= sig_sicodes[sig].limit) 3265 return true; 3266 } 3267 else if (si_code <= NSIGPOLL) 3268 return true; 3269 } 3270 else if (si_code >= SI_DETHREAD) 3271 return true; 3272 else if (si_code == SI_ASYNCNL) 3273 return true; 3274 return false; 3275} 3276 3277enum siginfo_layout siginfo_layout(unsigned sig, int si_code) 3278{ 3279 enum siginfo_layout layout = SIL_KILL; 3280 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) { 3281 if ((sig < ARRAY_SIZE(sig_sicodes)) && 3282 (si_code <= sig_sicodes[sig].limit)) { 3283 layout = sig_sicodes[sig].layout; 3284 /* Handle the exceptions */ 3285 if ((sig == SIGBUS) && 3286 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO)) 3287 layout = SIL_FAULT_MCEERR; 3288 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR)) 3289 layout = SIL_FAULT_BNDERR; 3290#ifdef SEGV_PKUERR 3291 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR)) 3292 layout = SIL_FAULT_PKUERR; 3293#endif 3294 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF)) 3295 layout = SIL_FAULT_PERF_EVENT; 3296 else if (IS_ENABLED(CONFIG_SPARC) && 3297 (sig == SIGILL) && (si_code == ILL_ILLTRP)) 3298 layout = SIL_FAULT_TRAPNO; 3299 else if (IS_ENABLED(CONFIG_ALPHA) && 3300 ((sig == SIGFPE) || 3301 ((sig == SIGTRAP) && (si_code == TRAP_UNK)))) 3302 layout = SIL_FAULT_TRAPNO; 3303 } 3304 else if (si_code <= NSIGPOLL) 3305 layout = SIL_POLL; 3306 } else { 3307 if (si_code == SI_TIMER) 3308 layout = SIL_TIMER; 3309 else if (si_code == SI_SIGIO) 3310 layout = SIL_POLL; 3311 else if (si_code < 0) 3312 layout = SIL_RT; 3313 } 3314 return layout; 3315} 3316 3317static inline char __user *si_expansion(const siginfo_t __user *info) 3318{ 3319 return ((char __user *)info) + sizeof(struct kernel_siginfo); 3320} 3321 3322int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from) 3323{ 3324 char __user *expansion = si_expansion(to); 3325 if (copy_to_user(to, from , sizeof(struct kernel_siginfo))) 3326 return -EFAULT; 3327 if (clear_user(expansion, SI_EXPANSION_SIZE)) 3328 return -EFAULT; 3329 return 0; 3330} 3331 3332static int post_copy_siginfo_from_user(kernel_siginfo_t *info, 3333 const siginfo_t __user *from) 3334{ 3335 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) { 3336 char __user *expansion = si_expansion(from); 3337 char buf[SI_EXPANSION_SIZE]; 3338 int i; 3339 /* 3340 * An unknown si_code might need more than 3341 * sizeof(struct kernel_siginfo) bytes. Verify all of the 3342 * extra bytes are 0. This guarantees copy_siginfo_to_user 3343 * will return this data to userspace exactly. 3344 */ 3345 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE)) 3346 return -EFAULT; 3347 for (i = 0; i < SI_EXPANSION_SIZE; i++) { 3348 if (buf[i] != 0) 3349 return -E2BIG; 3350 } 3351 } 3352 return 0; 3353} 3354 3355static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to, 3356 const siginfo_t __user *from) 3357{ 3358 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3359 return -EFAULT; 3360 to->si_signo = signo; 3361 return post_copy_siginfo_from_user(to, from); 3362} 3363 3364int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from) 3365{ 3366 if (copy_from_user(to, from, sizeof(struct kernel_siginfo))) 3367 return -EFAULT; 3368 return post_copy_siginfo_from_user(to, from); 3369} 3370 3371#ifdef CONFIG_COMPAT 3372/** 3373 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo 3374 * @to: compat siginfo destination 3375 * @from: kernel siginfo source 3376 * 3377 * Note: This function does not work properly for the SIGCHLD on x32, but 3378 * fortunately it doesn't have to. The only valid callers for this function are 3379 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code. 3380 * The latter does not care because SIGCHLD will never cause a coredump. 3381 */ 3382void copy_siginfo_to_external32(struct compat_siginfo *to, 3383 const struct kernel_siginfo *from) 3384{ 3385 memset(to, 0, sizeof(*to)); 3386 3387 to->si_signo = from->si_signo; 3388 to->si_errno = from->si_errno; 3389 to->si_code = from->si_code; 3390 switch(siginfo_layout(from->si_signo, from->si_code)) { 3391 case SIL_KILL: 3392 to->si_pid = from->si_pid; 3393 to->si_uid = from->si_uid; 3394 break; 3395 case SIL_TIMER: 3396 to->si_tid = from->si_tid; 3397 to->si_overrun = from->si_overrun; 3398 to->si_int = from->si_int; 3399 break; 3400 case SIL_POLL: 3401 to->si_band = from->si_band; 3402 to->si_fd = from->si_fd; 3403 break; 3404 case SIL_FAULT: 3405 to->si_addr = ptr_to_compat(from->si_addr); 3406 break; 3407 case SIL_FAULT_TRAPNO: 3408 to->si_addr = ptr_to_compat(from->si_addr); 3409 to->si_trapno = from->si_trapno; 3410 break; 3411 case SIL_FAULT_MCEERR: 3412 to->si_addr = ptr_to_compat(from->si_addr); 3413 to->si_addr_lsb = from->si_addr_lsb; 3414 break; 3415 case SIL_FAULT_BNDERR: 3416 to->si_addr = ptr_to_compat(from->si_addr); 3417 to->si_lower = ptr_to_compat(from->si_lower); 3418 to->si_upper = ptr_to_compat(from->si_upper); 3419 break; 3420 case SIL_FAULT_PKUERR: 3421 to->si_addr = ptr_to_compat(from->si_addr); 3422 to->si_pkey = from->si_pkey; 3423 break; 3424 case SIL_FAULT_PERF_EVENT: 3425 to->si_addr = ptr_to_compat(from->si_addr); 3426 to->si_perf_data = from->si_perf_data; 3427 to->si_perf_type = from->si_perf_type; 3428 to->si_perf_flags = from->si_perf_flags; 3429 break; 3430 case SIL_CHLD: 3431 to->si_pid = from->si_pid; 3432 to->si_uid = from->si_uid; 3433 to->si_status = from->si_status; 3434 to->si_utime = from->si_utime; 3435 to->si_stime = from->si_stime; 3436 break; 3437 case SIL_RT: 3438 to->si_pid = from->si_pid; 3439 to->si_uid = from->si_uid; 3440 to->si_int = from->si_int; 3441 break; 3442 case SIL_SYS: 3443 to->si_call_addr = ptr_to_compat(from->si_call_addr); 3444 to->si_syscall = from->si_syscall; 3445 to->si_arch = from->si_arch; 3446 break; 3447 } 3448} 3449 3450int __copy_siginfo_to_user32(struct compat_siginfo __user *to, 3451 const struct kernel_siginfo *from) 3452{ 3453 struct compat_siginfo new; 3454 3455 copy_siginfo_to_external32(&new, from); 3456 if (copy_to_user(to, &new, sizeof(struct compat_siginfo))) 3457 return -EFAULT; 3458 return 0; 3459} 3460 3461static int post_copy_siginfo_from_user32(kernel_siginfo_t *to, 3462 const struct compat_siginfo *from) 3463{ 3464 clear_siginfo(to); 3465 to->si_signo = from->si_signo; 3466 to->si_errno = from->si_errno; 3467 to->si_code = from->si_code; 3468 switch(siginfo_layout(from->si_signo, from->si_code)) { 3469 case SIL_KILL: 3470 to->si_pid = from->si_pid; 3471 to->si_uid = from->si_uid; 3472 break; 3473 case SIL_TIMER: 3474 to->si_tid = from->si_tid; 3475 to->si_overrun = from->si_overrun; 3476 to->si_int = from->si_int; 3477 break; 3478 case SIL_POLL: 3479 to->si_band = from->si_band; 3480 to->si_fd = from->si_fd; 3481 break; 3482 case SIL_FAULT: 3483 to->si_addr = compat_ptr(from->si_addr); 3484 break; 3485 case SIL_FAULT_TRAPNO: 3486 to->si_addr = compat_ptr(from->si_addr); 3487 to->si_trapno = from->si_trapno; 3488 break; 3489 case SIL_FAULT_MCEERR: 3490 to->si_addr = compat_ptr(from->si_addr); 3491 to->si_addr_lsb = from->si_addr_lsb; 3492 break; 3493 case SIL_FAULT_BNDERR: 3494 to->si_addr = compat_ptr(from->si_addr); 3495 to->si_lower = compat_ptr(from->si_lower); 3496 to->si_upper = compat_ptr(from->si_upper); 3497 break; 3498 case SIL_FAULT_PKUERR: 3499 to->si_addr = compat_ptr(from->si_addr); 3500 to->si_pkey = from->si_pkey; 3501 break; 3502 case SIL_FAULT_PERF_EVENT: 3503 to->si_addr = compat_ptr(from->si_addr); 3504 to->si_perf_data = from->si_perf_data; 3505 to->si_perf_type = from->si_perf_type; 3506 to->si_perf_flags = from->si_perf_flags; 3507 break; 3508 case SIL_CHLD: 3509 to->si_pid = from->si_pid; 3510 to->si_uid = from->si_uid; 3511 to->si_status = from->si_status; 3512#ifdef CONFIG_X86_X32_ABI 3513 if (in_x32_syscall()) { 3514 to->si_utime = from->_sifields._sigchld_x32._utime; 3515 to->si_stime = from->_sifields._sigchld_x32._stime; 3516 } else 3517#endif 3518 { 3519 to->si_utime = from->si_utime; 3520 to->si_stime = from->si_stime; 3521 } 3522 break; 3523 case SIL_RT: 3524 to->si_pid = from->si_pid; 3525 to->si_uid = from->si_uid; 3526 to->si_int = from->si_int; 3527 break; 3528 case SIL_SYS: 3529 to->si_call_addr = compat_ptr(from->si_call_addr); 3530 to->si_syscall = from->si_syscall; 3531 to->si_arch = from->si_arch; 3532 break; 3533 } 3534 return 0; 3535} 3536 3537static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to, 3538 const struct compat_siginfo __user *ufrom) 3539{ 3540 struct compat_siginfo from; 3541 3542 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3543 return -EFAULT; 3544 3545 from.si_signo = signo; 3546 return post_copy_siginfo_from_user32(to, &from); 3547} 3548 3549int copy_siginfo_from_user32(struct kernel_siginfo *to, 3550 const struct compat_siginfo __user *ufrom) 3551{ 3552 struct compat_siginfo from; 3553 3554 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo))) 3555 return -EFAULT; 3556 3557 return post_copy_siginfo_from_user32(to, &from); 3558} 3559#endif /* CONFIG_COMPAT */ 3560 3561/** 3562 * do_sigtimedwait - wait for queued signals specified in @which 3563 * @which: queued signals to wait for 3564 * @info: if non-null, the signal's siginfo is returned here 3565 * @ts: upper bound on process time suspension 3566 */ 3567static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, 3568 const struct timespec64 *ts) 3569{ 3570 ktime_t *to = NULL, timeout = KTIME_MAX; 3571 struct task_struct *tsk = current; 3572 sigset_t mask = *which; 3573 enum pid_type type; 3574 int sig, ret = 0; 3575 3576 if (ts) { 3577 if (!timespec64_valid(ts)) 3578 return -EINVAL; 3579 timeout = timespec64_to_ktime(*ts); 3580 to = &timeout; 3581 } 3582 3583 /* 3584 * Invert the set of allowed signals to get those we want to block. 3585 */ 3586 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 3587 signotset(&mask); 3588 3589 spin_lock_irq(&tsk->sighand->siglock); 3590 sig = dequeue_signal(tsk, &mask, info, &type); 3591 if (!sig && timeout) { 3592 /* 3593 * None ready, temporarily unblock those we're interested 3594 * while we are sleeping in so that we'll be awakened when 3595 * they arrive. Unblocking is always fine, we can avoid 3596 * set_current_blocked(). 3597 */ 3598 tsk->real_blocked = tsk->blocked; 3599 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 3600 recalc_sigpending(); 3601 spin_unlock_irq(&tsk->sighand->siglock); 3602 3603 __set_current_state(TASK_INTERRUPTIBLE); 3604 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns, 3605 HRTIMER_MODE_REL); 3606 spin_lock_irq(&tsk->sighand->siglock); 3607 __set_task_blocked(tsk, &tsk->real_blocked); 3608 sigemptyset(&tsk->real_blocked); 3609 sig = dequeue_signal(tsk, &mask, info, &type); 3610 } 3611 spin_unlock_irq(&tsk->sighand->siglock); 3612 3613 if (sig) 3614 return sig; 3615 return ret ? -EINTR : -EAGAIN; 3616} 3617 3618/** 3619 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 3620 * in @uthese 3621 * @uthese: queued signals to wait for 3622 * @uinfo: if non-null, the signal's siginfo is returned here 3623 * @uts: upper bound on process time suspension 3624 * @sigsetsize: size of sigset_t type 3625 */ 3626SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 3627 siginfo_t __user *, uinfo, 3628 const struct __kernel_timespec __user *, uts, 3629 size_t, sigsetsize) 3630{ 3631 sigset_t these; 3632 struct timespec64 ts; 3633 kernel_siginfo_t info; 3634 int ret; 3635 3636 /* XXX: Don't preclude handling different sized sigset_t's. */ 3637 if (sigsetsize != sizeof(sigset_t)) 3638 return -EINVAL; 3639 3640 if (copy_from_user(&these, uthese, sizeof(these))) 3641 return -EFAULT; 3642 3643 if (uts) { 3644 if (get_timespec64(&ts, uts)) 3645 return -EFAULT; 3646 } 3647 3648 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3649 3650 if (ret > 0 && uinfo) { 3651 if (copy_siginfo_to_user(uinfo, &info)) 3652 ret = -EFAULT; 3653 } 3654 3655 return ret; 3656} 3657 3658#ifdef CONFIG_COMPAT_32BIT_TIME 3659SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese, 3660 siginfo_t __user *, uinfo, 3661 const struct old_timespec32 __user *, uts, 3662 size_t, sigsetsize) 3663{ 3664 sigset_t these; 3665 struct timespec64 ts; 3666 kernel_siginfo_t info; 3667 int ret; 3668 3669 if (sigsetsize != sizeof(sigset_t)) 3670 return -EINVAL; 3671 3672 if (copy_from_user(&these, uthese, sizeof(these))) 3673 return -EFAULT; 3674 3675 if (uts) { 3676 if (get_old_timespec32(&ts, uts)) 3677 return -EFAULT; 3678 } 3679 3680 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 3681 3682 if (ret > 0 && uinfo) { 3683 if (copy_siginfo_to_user(uinfo, &info)) 3684 ret = -EFAULT; 3685 } 3686 3687 return ret; 3688} 3689#endif 3690 3691#ifdef CONFIG_COMPAT 3692COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese, 3693 struct compat_siginfo __user *, uinfo, 3694 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize) 3695{ 3696 sigset_t s; 3697 struct timespec64 t; 3698 kernel_siginfo_t info; 3699 long ret; 3700 3701 if (sigsetsize != sizeof(sigset_t)) 3702 return -EINVAL; 3703 3704 if (get_compat_sigset(&s, uthese)) 3705 return -EFAULT; 3706 3707 if (uts) { 3708 if (get_timespec64(&t, uts)) 3709 return -EFAULT; 3710 } 3711 3712 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3713 3714 if (ret > 0 && uinfo) { 3715 if (copy_siginfo_to_user32(uinfo, &info)) 3716 ret = -EFAULT; 3717 } 3718 3719 return ret; 3720} 3721 3722#ifdef CONFIG_COMPAT_32BIT_TIME 3723COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese, 3724 struct compat_siginfo __user *, uinfo, 3725 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize) 3726{ 3727 sigset_t s; 3728 struct timespec64 t; 3729 kernel_siginfo_t info; 3730 long ret; 3731 3732 if (sigsetsize != sizeof(sigset_t)) 3733 return -EINVAL; 3734 3735 if (get_compat_sigset(&s, uthese)) 3736 return -EFAULT; 3737 3738 if (uts) { 3739 if (get_old_timespec32(&t, uts)) 3740 return -EFAULT; 3741 } 3742 3743 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL); 3744 3745 if (ret > 0 && uinfo) { 3746 if (copy_siginfo_to_user32(uinfo, &info)) 3747 ret = -EFAULT; 3748 } 3749 3750 return ret; 3751} 3752#endif 3753#endif 3754 3755static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info) 3756{ 3757 clear_siginfo(info); 3758 info->si_signo = sig; 3759 info->si_errno = 0; 3760 info->si_code = SI_USER; 3761 info->si_pid = task_tgid_vnr(current); 3762 info->si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3763} 3764 3765/** 3766 * sys_kill - send a signal to a process 3767 * @pid: the PID of the process 3768 * @sig: signal to be sent 3769 */ 3770SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 3771{ 3772 struct kernel_siginfo info; 3773 3774 prepare_kill_siginfo(sig, &info); 3775 3776 return kill_something_info(sig, &info, pid); 3777} 3778 3779/* 3780 * Verify that the signaler and signalee either are in the same pid namespace 3781 * or that the signaler's pid namespace is an ancestor of the signalee's pid 3782 * namespace. 3783 */ 3784static bool access_pidfd_pidns(struct pid *pid) 3785{ 3786 struct pid_namespace *active = task_active_pid_ns(current); 3787 struct pid_namespace *p = ns_of_pid(pid); 3788 3789 for (;;) { 3790 if (!p) 3791 return false; 3792 if (p == active) 3793 break; 3794 p = p->parent; 3795 } 3796 3797 return true; 3798} 3799 3800static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, 3801 siginfo_t __user *info) 3802{ 3803#ifdef CONFIG_COMPAT 3804 /* 3805 * Avoid hooking up compat syscalls and instead handle necessary 3806 * conversions here. Note, this is a stop-gap measure and should not be 3807 * considered a generic solution. 3808 */ 3809 if (in_compat_syscall()) 3810 return copy_siginfo_from_user32( 3811 kinfo, (struct compat_siginfo __user *)info); 3812#endif 3813 return copy_siginfo_from_user(kinfo, info); 3814} 3815 3816static struct pid *pidfd_to_pid(const struct file *file) 3817{ 3818 struct pid *pid; 3819 3820 pid = pidfd_pid(file); 3821 if (!IS_ERR(pid)) 3822 return pid; 3823 3824 return tgid_pidfd_to_pid(file); 3825} 3826 3827/** 3828 * sys_pidfd_send_signal - Signal a process through a pidfd 3829 * @pidfd: file descriptor of the process 3830 * @sig: signal to send 3831 * @info: signal info 3832 * @flags: future flags 3833 * 3834 * The syscall currently only signals via PIDTYPE_PID which covers 3835 * kill(<positive-pid>, <signal>. It does not signal threads or process 3836 * groups. 3837 * In order to extend the syscall to threads and process groups the @flags 3838 * argument should be used. In essence, the @flags argument will determine 3839 * what is signaled and not the file descriptor itself. Put in other words, 3840 * grouping is a property of the flags argument not a property of the file 3841 * descriptor. 3842 * 3843 * Return: 0 on success, negative errno on failure 3844 */ 3845SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig, 3846 siginfo_t __user *, info, unsigned int, flags) 3847{ 3848 int ret; 3849 struct fd f; 3850 struct pid *pid; 3851 kernel_siginfo_t kinfo; 3852 3853 /* Enforce flags be set to 0 until we add an extension. */ 3854 if (flags) 3855 return -EINVAL; 3856 3857 f = fdget(pidfd); 3858 if (!f.file) 3859 return -EBADF; 3860 3861 /* Is this a pidfd? */ 3862 pid = pidfd_to_pid(f.file); 3863 if (IS_ERR(pid)) { 3864 ret = PTR_ERR(pid); 3865 goto err; 3866 } 3867 3868 ret = -EINVAL; 3869 if (!access_pidfd_pidns(pid)) 3870 goto err; 3871 3872 if (info) { 3873 ret = copy_siginfo_from_user_any(&kinfo, info); 3874 if (unlikely(ret)) 3875 goto err; 3876 3877 ret = -EINVAL; 3878 if (unlikely(sig != kinfo.si_signo)) 3879 goto err; 3880 3881 /* Only allow sending arbitrary signals to yourself. */ 3882 ret = -EPERM; 3883 if ((task_pid(current) != pid) && 3884 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL)) 3885 goto err; 3886 } else { 3887 prepare_kill_siginfo(sig, &kinfo); 3888 } 3889 3890 ret = kill_pid_info(sig, &kinfo, pid); 3891 3892err: 3893 fdput(f); 3894 return ret; 3895} 3896 3897static int 3898do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info) 3899{ 3900 struct task_struct *p; 3901 int error = -ESRCH; 3902 3903 rcu_read_lock(); 3904 p = find_task_by_vpid(pid); 3905 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 3906 error = check_kill_permission(sig, info, p); 3907 /* 3908 * The null signal is a permissions and process existence 3909 * probe. No signal is actually delivered. 3910 */ 3911 if (!error && sig) { 3912 error = do_send_sig_info(sig, info, p, PIDTYPE_PID); 3913 /* 3914 * If lock_task_sighand() failed we pretend the task 3915 * dies after receiving the signal. The window is tiny, 3916 * and the signal is private anyway. 3917 */ 3918 if (unlikely(error == -ESRCH)) 3919 error = 0; 3920 } 3921 } 3922 rcu_read_unlock(); 3923 3924 return error; 3925} 3926 3927static int do_tkill(pid_t tgid, pid_t pid, int sig) 3928{ 3929 struct kernel_siginfo info; 3930 3931 clear_siginfo(&info); 3932 info.si_signo = sig; 3933 info.si_errno = 0; 3934 info.si_code = SI_TKILL; 3935 info.si_pid = task_tgid_vnr(current); 3936 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 3937 3938 return do_send_specific(tgid, pid, sig, &info); 3939} 3940 3941/** 3942 * sys_tgkill - send signal to one specific thread 3943 * @tgid: the thread group ID of the thread 3944 * @pid: the PID of the thread 3945 * @sig: signal to be sent 3946 * 3947 * This syscall also checks the @tgid and returns -ESRCH even if the PID 3948 * exists but it's not belonging to the target process anymore. This 3949 * method solves the problem of threads exiting and PIDs getting reused. 3950 */ 3951SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 3952{ 3953 /* This is only valid for single tasks */ 3954 if (pid <= 0 || tgid <= 0) 3955 return -EINVAL; 3956 3957 return do_tkill(tgid, pid, sig); 3958} 3959 3960/** 3961 * sys_tkill - send signal to one specific task 3962 * @pid: the PID of the task 3963 * @sig: signal to be sent 3964 * 3965 * Send a signal to only one task, even if it's a CLONE_THREAD task. 3966 */ 3967SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 3968{ 3969 /* This is only valid for single tasks */ 3970 if (pid <= 0) 3971 return -EINVAL; 3972 3973 return do_tkill(0, pid, sig); 3974} 3975 3976static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info) 3977{ 3978 /* Not even root can pretend to send signals from the kernel. 3979 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3980 */ 3981 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 3982 (task_pid_vnr(current) != pid)) 3983 return -EPERM; 3984 3985 /* POSIX.1b doesn't mention process groups. */ 3986 return kill_proc_info(sig, info, pid); 3987} 3988 3989/** 3990 * sys_rt_sigqueueinfo - send signal information to a signal 3991 * @pid: the PID of the thread 3992 * @sig: signal to be sent 3993 * @uinfo: signal info to be sent 3994 */ 3995SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3996 siginfo_t __user *, uinfo) 3997{ 3998 kernel_siginfo_t info; 3999 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4000 if (unlikely(ret)) 4001 return ret; 4002 return do_rt_sigqueueinfo(pid, sig, &info); 4003} 4004 4005#ifdef CONFIG_COMPAT 4006COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 4007 compat_pid_t, pid, 4008 int, sig, 4009 struct compat_siginfo __user *, uinfo) 4010{ 4011 kernel_siginfo_t info; 4012 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4013 if (unlikely(ret)) 4014 return ret; 4015 return do_rt_sigqueueinfo(pid, sig, &info); 4016} 4017#endif 4018 4019static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info) 4020{ 4021 /* This is only valid for single tasks */ 4022 if (pid <= 0 || tgid <= 0) 4023 return -EINVAL; 4024 4025 /* Not even root can pretend to send signals from the kernel. 4026 * Nor can they impersonate a kill()/tgkill(), which adds source info. 4027 */ 4028 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 4029 (task_pid_vnr(current) != pid)) 4030 return -EPERM; 4031 4032 return do_send_specific(tgid, pid, sig, info); 4033} 4034 4035SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 4036 siginfo_t __user *, uinfo) 4037{ 4038 kernel_siginfo_t info; 4039 int ret = __copy_siginfo_from_user(sig, &info, uinfo); 4040 if (unlikely(ret)) 4041 return ret; 4042 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4043} 4044 4045#ifdef CONFIG_COMPAT 4046COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 4047 compat_pid_t, tgid, 4048 compat_pid_t, pid, 4049 int, sig, 4050 struct compat_siginfo __user *, uinfo) 4051{ 4052 kernel_siginfo_t info; 4053 int ret = __copy_siginfo_from_user32(sig, &info, uinfo); 4054 if (unlikely(ret)) 4055 return ret; 4056 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 4057} 4058#endif 4059 4060/* 4061 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 4062 */ 4063void kernel_sigaction(int sig, __sighandler_t action) 4064{ 4065 spin_lock_irq(¤t->sighand->siglock); 4066 current->sighand->action[sig - 1].sa.sa_handler = action; 4067 if (action == SIG_IGN) { 4068 sigset_t mask; 4069 4070 sigemptyset(&mask); 4071 sigaddset(&mask, sig); 4072 4073 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 4074 flush_sigqueue_mask(&mask, ¤t->pending); 4075 recalc_sigpending(); 4076 } 4077 spin_unlock_irq(¤t->sighand->siglock); 4078} 4079EXPORT_SYMBOL(kernel_sigaction); 4080 4081void __weak sigaction_compat_abi(struct k_sigaction *act, 4082 struct k_sigaction *oact) 4083{ 4084} 4085 4086int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 4087{ 4088 struct task_struct *p = current, *t; 4089 struct k_sigaction *k; 4090 sigset_t mask; 4091 4092 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 4093 return -EINVAL; 4094 4095 k = &p->sighand->action[sig-1]; 4096 4097 spin_lock_irq(&p->sighand->siglock); 4098 if (k->sa.sa_flags & SA_IMMUTABLE) { 4099 spin_unlock_irq(&p->sighand->siglock); 4100 return -EINVAL; 4101 } 4102 if (oact) 4103 *oact = *k; 4104 4105 /* 4106 * Make sure that we never accidentally claim to support SA_UNSUPPORTED, 4107 * e.g. by having an architecture use the bit in their uapi. 4108 */ 4109 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED); 4110 4111 /* 4112 * Clear unknown flag bits in order to allow userspace to detect missing 4113 * support for flag bits and to allow the kernel to use non-uapi bits 4114 * internally. 4115 */ 4116 if (act) 4117 act->sa.sa_flags &= UAPI_SA_FLAGS; 4118 if (oact) 4119 oact->sa.sa_flags &= UAPI_SA_FLAGS; 4120 4121 sigaction_compat_abi(act, oact); 4122 4123 if (act) { 4124 sigdelsetmask(&act->sa.sa_mask, 4125 sigmask(SIGKILL) | sigmask(SIGSTOP)); 4126 *k = *act; 4127 /* 4128 * POSIX 3.3.1.3: 4129 * "Setting a signal action to SIG_IGN for a signal that is 4130 * pending shall cause the pending signal to be discarded, 4131 * whether or not it is blocked." 4132 * 4133 * "Setting a signal action to SIG_DFL for a signal that is 4134 * pending and whose default action is to ignore the signal 4135 * (for example, SIGCHLD), shall cause the pending signal to 4136 * be discarded, whether or not it is blocked" 4137 */ 4138 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 4139 sigemptyset(&mask); 4140 sigaddset(&mask, sig); 4141 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 4142 for_each_thread(p, t) 4143 flush_sigqueue_mask(&mask, &t->pending); 4144 } 4145 } 4146 4147 spin_unlock_irq(&p->sighand->siglock); 4148 return 0; 4149} 4150 4151#ifdef CONFIG_DYNAMIC_SIGFRAME 4152static inline void sigaltstack_lock(void) 4153 __acquires(¤t->sighand->siglock) 4154{ 4155 spin_lock_irq(¤t->sighand->siglock); 4156} 4157 4158static inline void sigaltstack_unlock(void) 4159 __releases(¤t->sighand->siglock) 4160{ 4161 spin_unlock_irq(¤t->sighand->siglock); 4162} 4163#else 4164static inline void sigaltstack_lock(void) { } 4165static inline void sigaltstack_unlock(void) { } 4166#endif 4167 4168static int 4169do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp, 4170 size_t min_ss_size) 4171{ 4172 struct task_struct *t = current; 4173 int ret = 0; 4174 4175 if (oss) { 4176 memset(oss, 0, sizeof(stack_t)); 4177 oss->ss_sp = (void __user *) t->sas_ss_sp; 4178 oss->ss_size = t->sas_ss_size; 4179 oss->ss_flags = sas_ss_flags(sp) | 4180 (current->sas_ss_flags & SS_FLAG_BITS); 4181 } 4182 4183 if (ss) { 4184 void __user *ss_sp = ss->ss_sp; 4185 size_t ss_size = ss->ss_size; 4186 unsigned ss_flags = ss->ss_flags; 4187 int ss_mode; 4188 4189 if (unlikely(on_sig_stack(sp))) 4190 return -EPERM; 4191 4192 ss_mode = ss_flags & ~SS_FLAG_BITS; 4193 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK && 4194 ss_mode != 0)) 4195 return -EINVAL; 4196 4197 /* 4198 * Return before taking any locks if no actual 4199 * sigaltstack changes were requested. 4200 */ 4201 if (t->sas_ss_sp == (unsigned long)ss_sp && 4202 t->sas_ss_size == ss_size && 4203 t->sas_ss_flags == ss_flags) 4204 return 0; 4205 4206 sigaltstack_lock(); 4207 if (ss_mode == SS_DISABLE) { 4208 ss_size = 0; 4209 ss_sp = NULL; 4210 } else { 4211 if (unlikely(ss_size < min_ss_size)) 4212 ret = -ENOMEM; 4213 if (!sigaltstack_size_valid(ss_size)) 4214 ret = -ENOMEM; 4215 } 4216 if (!ret) { 4217 t->sas_ss_sp = (unsigned long) ss_sp; 4218 t->sas_ss_size = ss_size; 4219 t->sas_ss_flags = ss_flags; 4220 } 4221 sigaltstack_unlock(); 4222 } 4223 return ret; 4224} 4225 4226SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 4227{ 4228 stack_t new, old; 4229 int err; 4230 if (uss && copy_from_user(&new, uss, sizeof(stack_t))) 4231 return -EFAULT; 4232 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL, 4233 current_user_stack_pointer(), 4234 MINSIGSTKSZ); 4235 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t))) 4236 err = -EFAULT; 4237 return err; 4238} 4239 4240int restore_altstack(const stack_t __user *uss) 4241{ 4242 stack_t new; 4243 if (copy_from_user(&new, uss, sizeof(stack_t))) 4244 return -EFAULT; 4245 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(), 4246 MINSIGSTKSZ); 4247 /* squash all but EFAULT for now */ 4248 return 0; 4249} 4250 4251int __save_altstack(stack_t __user *uss, unsigned long sp) 4252{ 4253 struct task_struct *t = current; 4254 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 4255 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4256 __put_user(t->sas_ss_size, &uss->ss_size); 4257 return err; 4258} 4259 4260#ifdef CONFIG_COMPAT 4261static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr, 4262 compat_stack_t __user *uoss_ptr) 4263{ 4264 stack_t uss, uoss; 4265 int ret; 4266 4267 if (uss_ptr) { 4268 compat_stack_t uss32; 4269 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 4270 return -EFAULT; 4271 uss.ss_sp = compat_ptr(uss32.ss_sp); 4272 uss.ss_flags = uss32.ss_flags; 4273 uss.ss_size = uss32.ss_size; 4274 } 4275 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss, 4276 compat_user_stack_pointer(), 4277 COMPAT_MINSIGSTKSZ); 4278 if (ret >= 0 && uoss_ptr) { 4279 compat_stack_t old; 4280 memset(&old, 0, sizeof(old)); 4281 old.ss_sp = ptr_to_compat(uoss.ss_sp); 4282 old.ss_flags = uoss.ss_flags; 4283 old.ss_size = uoss.ss_size; 4284 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t))) 4285 ret = -EFAULT; 4286 } 4287 return ret; 4288} 4289 4290COMPAT_SYSCALL_DEFINE2(sigaltstack, 4291 const compat_stack_t __user *, uss_ptr, 4292 compat_stack_t __user *, uoss_ptr) 4293{ 4294 return do_compat_sigaltstack(uss_ptr, uoss_ptr); 4295} 4296 4297int compat_restore_altstack(const compat_stack_t __user *uss) 4298{ 4299 int err = do_compat_sigaltstack(uss, NULL); 4300 /* squash all but -EFAULT for now */ 4301 return err == -EFAULT ? err : 0; 4302} 4303 4304int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 4305{ 4306 int err; 4307 struct task_struct *t = current; 4308 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), 4309 &uss->ss_sp) | 4310 __put_user(t->sas_ss_flags, &uss->ss_flags) | 4311 __put_user(t->sas_ss_size, &uss->ss_size); 4312 return err; 4313} 4314#endif 4315 4316#ifdef __ARCH_WANT_SYS_SIGPENDING 4317 4318/** 4319 * sys_sigpending - examine pending signals 4320 * @uset: where mask of pending signal is returned 4321 */ 4322SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset) 4323{ 4324 sigset_t set; 4325 4326 if (sizeof(old_sigset_t) > sizeof(*uset)) 4327 return -EINVAL; 4328 4329 do_sigpending(&set); 4330 4331 if (copy_to_user(uset, &set, sizeof(old_sigset_t))) 4332 return -EFAULT; 4333 4334 return 0; 4335} 4336 4337#ifdef CONFIG_COMPAT 4338COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32) 4339{ 4340 sigset_t set; 4341 4342 do_sigpending(&set); 4343 4344 return put_user(set.sig[0], set32); 4345} 4346#endif 4347 4348#endif 4349 4350#ifdef __ARCH_WANT_SYS_SIGPROCMASK 4351/** 4352 * sys_sigprocmask - examine and change blocked signals 4353 * @how: whether to add, remove, or set signals 4354 * @nset: signals to add or remove (if non-null) 4355 * @oset: previous value of signal mask if non-null 4356 * 4357 * Some platforms have their own version with special arguments; 4358 * others support only sys_rt_sigprocmask. 4359 */ 4360 4361SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 4362 old_sigset_t __user *, oset) 4363{ 4364 old_sigset_t old_set, new_set; 4365 sigset_t new_blocked; 4366 4367 old_set = current->blocked.sig[0]; 4368 4369 if (nset) { 4370 if (copy_from_user(&new_set, nset, sizeof(*nset))) 4371 return -EFAULT; 4372 4373 new_blocked = current->blocked; 4374 4375 switch (how) { 4376 case SIG_BLOCK: 4377 sigaddsetmask(&new_blocked, new_set); 4378 break; 4379 case SIG_UNBLOCK: 4380 sigdelsetmask(&new_blocked, new_set); 4381 break; 4382 case SIG_SETMASK: 4383 new_blocked.sig[0] = new_set; 4384 break; 4385 default: 4386 return -EINVAL; 4387 } 4388 4389 set_current_blocked(&new_blocked); 4390 } 4391 4392 if (oset) { 4393 if (copy_to_user(oset, &old_set, sizeof(*oset))) 4394 return -EFAULT; 4395 } 4396 4397 return 0; 4398} 4399#endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 4400 4401#ifndef CONFIG_ODD_RT_SIGACTION 4402/** 4403 * sys_rt_sigaction - alter an action taken by a process 4404 * @sig: signal to be sent 4405 * @act: new sigaction 4406 * @oact: used to save the previous sigaction 4407 * @sigsetsize: size of sigset_t type 4408 */ 4409SYSCALL_DEFINE4(rt_sigaction, int, sig, 4410 const struct sigaction __user *, act, 4411 struct sigaction __user *, oact, 4412 size_t, sigsetsize) 4413{ 4414 struct k_sigaction new_sa, old_sa; 4415 int ret; 4416 4417 /* XXX: Don't preclude handling different sized sigset_t's. */ 4418 if (sigsetsize != sizeof(sigset_t)) 4419 return -EINVAL; 4420 4421 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 4422 return -EFAULT; 4423 4424 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 4425 if (ret) 4426 return ret; 4427 4428 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 4429 return -EFAULT; 4430 4431 return 0; 4432} 4433#ifdef CONFIG_COMPAT 4434COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 4435 const struct compat_sigaction __user *, act, 4436 struct compat_sigaction __user *, oact, 4437 compat_size_t, sigsetsize) 4438{ 4439 struct k_sigaction new_ka, old_ka; 4440#ifdef __ARCH_HAS_SA_RESTORER 4441 compat_uptr_t restorer; 4442#endif 4443 int ret; 4444 4445 /* XXX: Don't preclude handling different sized sigset_t's. */ 4446 if (sigsetsize != sizeof(compat_sigset_t)) 4447 return -EINVAL; 4448 4449 if (act) { 4450 compat_uptr_t handler; 4451 ret = get_user(handler, &act->sa_handler); 4452 new_ka.sa.sa_handler = compat_ptr(handler); 4453#ifdef __ARCH_HAS_SA_RESTORER 4454 ret |= get_user(restorer, &act->sa_restorer); 4455 new_ka.sa.sa_restorer = compat_ptr(restorer); 4456#endif 4457 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask); 4458 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 4459 if (ret) 4460 return -EFAULT; 4461 } 4462 4463 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4464 if (!ret && oact) { 4465 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 4466 &oact->sa_handler); 4467 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask, 4468 sizeof(oact->sa_mask)); 4469 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 4470#ifdef __ARCH_HAS_SA_RESTORER 4471 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4472 &oact->sa_restorer); 4473#endif 4474 } 4475 return ret; 4476} 4477#endif 4478#endif /* !CONFIG_ODD_RT_SIGACTION */ 4479 4480#ifdef CONFIG_OLD_SIGACTION 4481SYSCALL_DEFINE3(sigaction, int, sig, 4482 const struct old_sigaction __user *, act, 4483 struct old_sigaction __user *, oact) 4484{ 4485 struct k_sigaction new_ka, old_ka; 4486 int ret; 4487 4488 if (act) { 4489 old_sigset_t mask; 4490 if (!access_ok(act, sizeof(*act)) || 4491 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 4492 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 4493 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4494 __get_user(mask, &act->sa_mask)) 4495 return -EFAULT; 4496#ifdef __ARCH_HAS_KA_RESTORER 4497 new_ka.ka_restorer = NULL; 4498#endif 4499 siginitset(&new_ka.sa.sa_mask, mask); 4500 } 4501 4502 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4503 4504 if (!ret && oact) { 4505 if (!access_ok(oact, sizeof(*oact)) || 4506 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 4507 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 4508 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4509 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4510 return -EFAULT; 4511 } 4512 4513 return ret; 4514} 4515#endif 4516#ifdef CONFIG_COMPAT_OLD_SIGACTION 4517COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 4518 const struct compat_old_sigaction __user *, act, 4519 struct compat_old_sigaction __user *, oact) 4520{ 4521 struct k_sigaction new_ka, old_ka; 4522 int ret; 4523 compat_old_sigset_t mask; 4524 compat_uptr_t handler, restorer; 4525 4526 if (act) { 4527 if (!access_ok(act, sizeof(*act)) || 4528 __get_user(handler, &act->sa_handler) || 4529 __get_user(restorer, &act->sa_restorer) || 4530 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 4531 __get_user(mask, &act->sa_mask)) 4532 return -EFAULT; 4533 4534#ifdef __ARCH_HAS_KA_RESTORER 4535 new_ka.ka_restorer = NULL; 4536#endif 4537 new_ka.sa.sa_handler = compat_ptr(handler); 4538 new_ka.sa.sa_restorer = compat_ptr(restorer); 4539 siginitset(&new_ka.sa.sa_mask, mask); 4540 } 4541 4542 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 4543 4544 if (!ret && oact) { 4545 if (!access_ok(oact, sizeof(*oact)) || 4546 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 4547 &oact->sa_handler) || 4548 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 4549 &oact->sa_restorer) || 4550 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 4551 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 4552 return -EFAULT; 4553 } 4554 return ret; 4555} 4556#endif 4557 4558#ifdef CONFIG_SGETMASK_SYSCALL 4559 4560/* 4561 * For backwards compatibility. Functionality superseded by sigprocmask. 4562 */ 4563SYSCALL_DEFINE0(sgetmask) 4564{ 4565 /* SMP safe */ 4566 return current->blocked.sig[0]; 4567} 4568 4569SYSCALL_DEFINE1(ssetmask, int, newmask) 4570{ 4571 int old = current->blocked.sig[0]; 4572 sigset_t newset; 4573 4574 siginitset(&newset, newmask); 4575 set_current_blocked(&newset); 4576 4577 return old; 4578} 4579#endif /* CONFIG_SGETMASK_SYSCALL */ 4580 4581#ifdef __ARCH_WANT_SYS_SIGNAL 4582/* 4583 * For backwards compatibility. Functionality superseded by sigaction. 4584 */ 4585SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 4586{ 4587 struct k_sigaction new_sa, old_sa; 4588 int ret; 4589 4590 new_sa.sa.sa_handler = handler; 4591 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 4592 sigemptyset(&new_sa.sa.sa_mask); 4593 4594 ret = do_sigaction(sig, &new_sa, &old_sa); 4595 4596 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 4597} 4598#endif /* __ARCH_WANT_SYS_SIGNAL */ 4599 4600#ifdef __ARCH_WANT_SYS_PAUSE 4601 4602SYSCALL_DEFINE0(pause) 4603{ 4604 while (!signal_pending(current)) { 4605 __set_current_state(TASK_INTERRUPTIBLE); 4606 schedule(); 4607 } 4608 return -ERESTARTNOHAND; 4609} 4610 4611#endif 4612 4613static int sigsuspend(sigset_t *set) 4614{ 4615 current->saved_sigmask = current->blocked; 4616 set_current_blocked(set); 4617 4618 while (!signal_pending(current)) { 4619 __set_current_state(TASK_INTERRUPTIBLE); 4620 schedule(); 4621 } 4622 set_restore_sigmask(); 4623 return -ERESTARTNOHAND; 4624} 4625 4626/** 4627 * sys_rt_sigsuspend - replace the signal mask for a value with the 4628 * @unewset value until a signal is received 4629 * @unewset: new signal mask value 4630 * @sigsetsize: size of sigset_t type 4631 */ 4632SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 4633{ 4634 sigset_t newset; 4635 4636 /* XXX: Don't preclude handling different sized sigset_t's. */ 4637 if (sigsetsize != sizeof(sigset_t)) 4638 return -EINVAL; 4639 4640 if (copy_from_user(&newset, unewset, sizeof(newset))) 4641 return -EFAULT; 4642 return sigsuspend(&newset); 4643} 4644 4645#ifdef CONFIG_COMPAT 4646COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 4647{ 4648 sigset_t newset; 4649 4650 /* XXX: Don't preclude handling different sized sigset_t's. */ 4651 if (sigsetsize != sizeof(sigset_t)) 4652 return -EINVAL; 4653 4654 if (get_compat_sigset(&newset, unewset)) 4655 return -EFAULT; 4656 return sigsuspend(&newset); 4657} 4658#endif 4659 4660#ifdef CONFIG_OLD_SIGSUSPEND 4661SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 4662{ 4663 sigset_t blocked; 4664 siginitset(&blocked, mask); 4665 return sigsuspend(&blocked); 4666} 4667#endif 4668#ifdef CONFIG_OLD_SIGSUSPEND3 4669SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 4670{ 4671 sigset_t blocked; 4672 siginitset(&blocked, mask); 4673 return sigsuspend(&blocked); 4674} 4675#endif 4676 4677__weak const char *arch_vma_name(struct vm_area_struct *vma) 4678{ 4679 return NULL; 4680} 4681 4682static inline void siginfo_buildtime_checks(void) 4683{ 4684 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE); 4685 4686 /* Verify the offsets in the two siginfos match */ 4687#define CHECK_OFFSET(field) \ 4688 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field)) 4689 4690 /* kill */ 4691 CHECK_OFFSET(si_pid); 4692 CHECK_OFFSET(si_uid); 4693 4694 /* timer */ 4695 CHECK_OFFSET(si_tid); 4696 CHECK_OFFSET(si_overrun); 4697 CHECK_OFFSET(si_value); 4698 4699 /* rt */ 4700 CHECK_OFFSET(si_pid); 4701 CHECK_OFFSET(si_uid); 4702 CHECK_OFFSET(si_value); 4703 4704 /* sigchld */ 4705 CHECK_OFFSET(si_pid); 4706 CHECK_OFFSET(si_uid); 4707 CHECK_OFFSET(si_status); 4708 CHECK_OFFSET(si_utime); 4709 CHECK_OFFSET(si_stime); 4710 4711 /* sigfault */ 4712 CHECK_OFFSET(si_addr); 4713 CHECK_OFFSET(si_trapno); 4714 CHECK_OFFSET(si_addr_lsb); 4715 CHECK_OFFSET(si_lower); 4716 CHECK_OFFSET(si_upper); 4717 CHECK_OFFSET(si_pkey); 4718 CHECK_OFFSET(si_perf_data); 4719 CHECK_OFFSET(si_perf_type); 4720 CHECK_OFFSET(si_perf_flags); 4721 4722 /* sigpoll */ 4723 CHECK_OFFSET(si_band); 4724 CHECK_OFFSET(si_fd); 4725 4726 /* sigsys */ 4727 CHECK_OFFSET(si_call_addr); 4728 CHECK_OFFSET(si_syscall); 4729 CHECK_OFFSET(si_arch); 4730#undef CHECK_OFFSET 4731 4732 /* usb asyncio */ 4733 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) != 4734 offsetof(struct siginfo, si_addr)); 4735 if (sizeof(int) == sizeof(void __user *)) { 4736 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) != 4737 sizeof(void __user *)); 4738 } else { 4739 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) + 4740 sizeof_field(struct siginfo, si_uid)) != 4741 sizeof(void __user *)); 4742 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) != 4743 offsetof(struct siginfo, si_uid)); 4744 } 4745#ifdef CONFIG_COMPAT 4746 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) != 4747 offsetof(struct compat_siginfo, si_addr)); 4748 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4749 sizeof(compat_uptr_t)); 4750 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) != 4751 sizeof_field(struct siginfo, si_pid)); 4752#endif 4753} 4754 4755void __init signals_init(void) 4756{ 4757 siginfo_buildtime_checks(); 4758 4759 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT); 4760} 4761 4762#ifdef CONFIG_KGDB_KDB 4763#include <linux/kdb.h> 4764/* 4765 * kdb_send_sig - Allows kdb to send signals without exposing 4766 * signal internals. This function checks if the required locks are 4767 * available before calling the main signal code, to avoid kdb 4768 * deadlocks. 4769 */ 4770void kdb_send_sig(struct task_struct *t, int sig) 4771{ 4772 static struct task_struct *kdb_prev_t; 4773 int new_t, ret; 4774 if (!spin_trylock(&t->sighand->siglock)) { 4775 kdb_printf("Can't do kill command now.\n" 4776 "The sigmask lock is held somewhere else in " 4777 "kernel, try again later\n"); 4778 return; 4779 } 4780 new_t = kdb_prev_t != t; 4781 kdb_prev_t = t; 4782 if (!task_is_running(t) && new_t) { 4783 spin_unlock(&t->sighand->siglock); 4784 kdb_printf("Process is not RUNNING, sending a signal from " 4785 "kdb risks deadlock\n" 4786 "on the run queue locks. " 4787 "The signal has _not_ been sent.\n" 4788 "Reissue the kill command if you want to risk " 4789 "the deadlock.\n"); 4790 return; 4791 } 4792 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID); 4793 spin_unlock(&t->sighand->siglock); 4794 if (ret) 4795 kdb_printf("Fail to deliver Signal %d to process %d.\n", 4796 sig, t->pid); 4797 else 4798 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 4799} 4800#endif /* CONFIG_KGDB_KDB */