cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

smpboot.c (12155B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Common SMP CPU bringup/teardown functions
      4 */
      5#include <linux/cpu.h>
      6#include <linux/err.h>
      7#include <linux/smp.h>
      8#include <linux/delay.h>
      9#include <linux/init.h>
     10#include <linux/list.h>
     11#include <linux/slab.h>
     12#include <linux/sched.h>
     13#include <linux/sched/task.h>
     14#include <linux/export.h>
     15#include <linux/percpu.h>
     16#include <linux/kthread.h>
     17#include <linux/smpboot.h>
     18
     19#include "smpboot.h"
     20
     21#ifdef CONFIG_SMP
     22
     23#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
     24/*
     25 * For the hotplug case we keep the task structs around and reuse
     26 * them.
     27 */
     28static DEFINE_PER_CPU(struct task_struct *, idle_threads);
     29
     30struct task_struct *idle_thread_get(unsigned int cpu)
     31{
     32	struct task_struct *tsk = per_cpu(idle_threads, cpu);
     33
     34	if (!tsk)
     35		return ERR_PTR(-ENOMEM);
     36	return tsk;
     37}
     38
     39void __init idle_thread_set_boot_cpu(void)
     40{
     41	per_cpu(idle_threads, smp_processor_id()) = current;
     42}
     43
     44/**
     45 * idle_init - Initialize the idle thread for a cpu
     46 * @cpu:	The cpu for which the idle thread should be initialized
     47 *
     48 * Creates the thread if it does not exist.
     49 */
     50static __always_inline void idle_init(unsigned int cpu)
     51{
     52	struct task_struct *tsk = per_cpu(idle_threads, cpu);
     53
     54	if (!tsk) {
     55		tsk = fork_idle(cpu);
     56		if (IS_ERR(tsk))
     57			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
     58		else
     59			per_cpu(idle_threads, cpu) = tsk;
     60	}
     61}
     62
     63/**
     64 * idle_threads_init - Initialize idle threads for all cpus
     65 */
     66void __init idle_threads_init(void)
     67{
     68	unsigned int cpu, boot_cpu;
     69
     70	boot_cpu = smp_processor_id();
     71
     72	for_each_possible_cpu(cpu) {
     73		if (cpu != boot_cpu)
     74			idle_init(cpu);
     75	}
     76}
     77#endif
     78
     79#endif /* #ifdef CONFIG_SMP */
     80
     81static LIST_HEAD(hotplug_threads);
     82static DEFINE_MUTEX(smpboot_threads_lock);
     83
     84struct smpboot_thread_data {
     85	unsigned int			cpu;
     86	unsigned int			status;
     87	struct smp_hotplug_thread	*ht;
     88};
     89
     90enum {
     91	HP_THREAD_NONE = 0,
     92	HP_THREAD_ACTIVE,
     93	HP_THREAD_PARKED,
     94};
     95
     96/**
     97 * smpboot_thread_fn - percpu hotplug thread loop function
     98 * @data:	thread data pointer
     99 *
    100 * Checks for thread stop and park conditions. Calls the necessary
    101 * setup, cleanup, park and unpark functions for the registered
    102 * thread.
    103 *
    104 * Returns 1 when the thread should exit, 0 otherwise.
    105 */
    106static int smpboot_thread_fn(void *data)
    107{
    108	struct smpboot_thread_data *td = data;
    109	struct smp_hotplug_thread *ht = td->ht;
    110
    111	while (1) {
    112		set_current_state(TASK_INTERRUPTIBLE);
    113		preempt_disable();
    114		if (kthread_should_stop()) {
    115			__set_current_state(TASK_RUNNING);
    116			preempt_enable();
    117			/* cleanup must mirror setup */
    118			if (ht->cleanup && td->status != HP_THREAD_NONE)
    119				ht->cleanup(td->cpu, cpu_online(td->cpu));
    120			kfree(td);
    121			return 0;
    122		}
    123
    124		if (kthread_should_park()) {
    125			__set_current_state(TASK_RUNNING);
    126			preempt_enable();
    127			if (ht->park && td->status == HP_THREAD_ACTIVE) {
    128				BUG_ON(td->cpu != smp_processor_id());
    129				ht->park(td->cpu);
    130				td->status = HP_THREAD_PARKED;
    131			}
    132			kthread_parkme();
    133			/* We might have been woken for stop */
    134			continue;
    135		}
    136
    137		BUG_ON(td->cpu != smp_processor_id());
    138
    139		/* Check for state change setup */
    140		switch (td->status) {
    141		case HP_THREAD_NONE:
    142			__set_current_state(TASK_RUNNING);
    143			preempt_enable();
    144			if (ht->setup)
    145				ht->setup(td->cpu);
    146			td->status = HP_THREAD_ACTIVE;
    147			continue;
    148
    149		case HP_THREAD_PARKED:
    150			__set_current_state(TASK_RUNNING);
    151			preempt_enable();
    152			if (ht->unpark)
    153				ht->unpark(td->cpu);
    154			td->status = HP_THREAD_ACTIVE;
    155			continue;
    156		}
    157
    158		if (!ht->thread_should_run(td->cpu)) {
    159			preempt_enable_no_resched();
    160			schedule();
    161		} else {
    162			__set_current_state(TASK_RUNNING);
    163			preempt_enable();
    164			ht->thread_fn(td->cpu);
    165		}
    166	}
    167}
    168
    169static int
    170__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
    171{
    172	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
    173	struct smpboot_thread_data *td;
    174
    175	if (tsk)
    176		return 0;
    177
    178	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
    179	if (!td)
    180		return -ENOMEM;
    181	td->cpu = cpu;
    182	td->ht = ht;
    183
    184	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
    185				    ht->thread_comm);
    186	if (IS_ERR(tsk)) {
    187		kfree(td);
    188		return PTR_ERR(tsk);
    189	}
    190	kthread_set_per_cpu(tsk, cpu);
    191	/*
    192	 * Park the thread so that it could start right on the CPU
    193	 * when it is available.
    194	 */
    195	kthread_park(tsk);
    196	get_task_struct(tsk);
    197	*per_cpu_ptr(ht->store, cpu) = tsk;
    198	if (ht->create) {
    199		/*
    200		 * Make sure that the task has actually scheduled out
    201		 * into park position, before calling the create
    202		 * callback. At least the migration thread callback
    203		 * requires that the task is off the runqueue.
    204		 */
    205		if (!wait_task_inactive(tsk, TASK_PARKED))
    206			WARN_ON(1);
    207		else
    208			ht->create(cpu);
    209	}
    210	return 0;
    211}
    212
    213int smpboot_create_threads(unsigned int cpu)
    214{
    215	struct smp_hotplug_thread *cur;
    216	int ret = 0;
    217
    218	mutex_lock(&smpboot_threads_lock);
    219	list_for_each_entry(cur, &hotplug_threads, list) {
    220		ret = __smpboot_create_thread(cur, cpu);
    221		if (ret)
    222			break;
    223	}
    224	mutex_unlock(&smpboot_threads_lock);
    225	return ret;
    226}
    227
    228static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
    229{
    230	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
    231
    232	if (!ht->selfparking)
    233		kthread_unpark(tsk);
    234}
    235
    236int smpboot_unpark_threads(unsigned int cpu)
    237{
    238	struct smp_hotplug_thread *cur;
    239
    240	mutex_lock(&smpboot_threads_lock);
    241	list_for_each_entry(cur, &hotplug_threads, list)
    242		smpboot_unpark_thread(cur, cpu);
    243	mutex_unlock(&smpboot_threads_lock);
    244	return 0;
    245}
    246
    247static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
    248{
    249	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
    250
    251	if (tsk && !ht->selfparking)
    252		kthread_park(tsk);
    253}
    254
    255int smpboot_park_threads(unsigned int cpu)
    256{
    257	struct smp_hotplug_thread *cur;
    258
    259	mutex_lock(&smpboot_threads_lock);
    260	list_for_each_entry_reverse(cur, &hotplug_threads, list)
    261		smpboot_park_thread(cur, cpu);
    262	mutex_unlock(&smpboot_threads_lock);
    263	return 0;
    264}
    265
    266static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
    267{
    268	unsigned int cpu;
    269
    270	/* We need to destroy also the parked threads of offline cpus */
    271	for_each_possible_cpu(cpu) {
    272		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
    273
    274		if (tsk) {
    275			kthread_stop(tsk);
    276			put_task_struct(tsk);
    277			*per_cpu_ptr(ht->store, cpu) = NULL;
    278		}
    279	}
    280}
    281
    282/**
    283 * smpboot_register_percpu_thread - Register a per_cpu thread related
    284 * 					    to hotplug
    285 * @plug_thread:	Hotplug thread descriptor
    286 *
    287 * Creates and starts the threads on all online cpus.
    288 */
    289int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
    290{
    291	unsigned int cpu;
    292	int ret = 0;
    293
    294	cpus_read_lock();
    295	mutex_lock(&smpboot_threads_lock);
    296	for_each_online_cpu(cpu) {
    297		ret = __smpboot_create_thread(plug_thread, cpu);
    298		if (ret) {
    299			smpboot_destroy_threads(plug_thread);
    300			goto out;
    301		}
    302		smpboot_unpark_thread(plug_thread, cpu);
    303	}
    304	list_add(&plug_thread->list, &hotplug_threads);
    305out:
    306	mutex_unlock(&smpboot_threads_lock);
    307	cpus_read_unlock();
    308	return ret;
    309}
    310EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
    311
    312/**
    313 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
    314 * @plug_thread:	Hotplug thread descriptor
    315 *
    316 * Stops all threads on all possible cpus.
    317 */
    318void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
    319{
    320	cpus_read_lock();
    321	mutex_lock(&smpboot_threads_lock);
    322	list_del(&plug_thread->list);
    323	smpboot_destroy_threads(plug_thread);
    324	mutex_unlock(&smpboot_threads_lock);
    325	cpus_read_unlock();
    326}
    327EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
    328
    329static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
    330
    331/*
    332 * Called to poll specified CPU's state, for example, when waiting for
    333 * a CPU to come online.
    334 */
    335int cpu_report_state(int cpu)
    336{
    337	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
    338}
    339
    340/*
    341 * If CPU has died properly, set its state to CPU_UP_PREPARE and
    342 * return success.  Otherwise, return -EBUSY if the CPU died after
    343 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
    344 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
    345 * to dying.  In the latter two cases, the CPU might not be set up
    346 * properly, but it is up to the arch-specific code to decide.
    347 * Finally, -EIO indicates an unanticipated problem.
    348 *
    349 * Note that it is permissible to omit this call entirely, as is
    350 * done in architectures that do no CPU-hotplug error checking.
    351 */
    352int cpu_check_up_prepare(int cpu)
    353{
    354	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
    355		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
    356		return 0;
    357	}
    358
    359	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
    360
    361	case CPU_POST_DEAD:
    362
    363		/* The CPU died properly, so just start it up again. */
    364		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
    365		return 0;
    366
    367	case CPU_DEAD_FROZEN:
    368
    369		/*
    370		 * Timeout during CPU death, so let caller know.
    371		 * The outgoing CPU completed its processing, but after
    372		 * cpu_wait_death() timed out and reported the error. The
    373		 * caller is free to proceed, in which case the state
    374		 * will be reset properly by cpu_set_state_online().
    375		 * Proceeding despite this -EBUSY return makes sense
    376		 * for systems where the outgoing CPUs take themselves
    377		 * offline, with no post-death manipulation required from
    378		 * a surviving CPU.
    379		 */
    380		return -EBUSY;
    381
    382	case CPU_BROKEN:
    383
    384		/*
    385		 * The most likely reason we got here is that there was
    386		 * a timeout during CPU death, and the outgoing CPU never
    387		 * did complete its processing.  This could happen on
    388		 * a virtualized system if the outgoing VCPU gets preempted
    389		 * for more than five seconds, and the user attempts to
    390		 * immediately online that same CPU.  Trying again later
    391		 * might return -EBUSY above, hence -EAGAIN.
    392		 */
    393		return -EAGAIN;
    394
    395	case CPU_UP_PREPARE:
    396		/*
    397		 * Timeout while waiting for the CPU to show up. Allow to try
    398		 * again later.
    399		 */
    400		return 0;
    401
    402	default:
    403
    404		/* Should not happen.  Famous last words. */
    405		return -EIO;
    406	}
    407}
    408
    409/*
    410 * Mark the specified CPU online.
    411 *
    412 * Note that it is permissible to omit this call entirely, as is
    413 * done in architectures that do no CPU-hotplug error checking.
    414 */
    415void cpu_set_state_online(int cpu)
    416{
    417	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
    418}
    419
    420#ifdef CONFIG_HOTPLUG_CPU
    421
    422/*
    423 * Wait for the specified CPU to exit the idle loop and die.
    424 */
    425bool cpu_wait_death(unsigned int cpu, int seconds)
    426{
    427	int jf_left = seconds * HZ;
    428	int oldstate;
    429	bool ret = true;
    430	int sleep_jf = 1;
    431
    432	might_sleep();
    433
    434	/* The outgoing CPU will normally get done quite quickly. */
    435	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
    436		goto update_state;
    437	udelay(5);
    438
    439	/* But if the outgoing CPU dawdles, wait increasingly long times. */
    440	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
    441		schedule_timeout_uninterruptible(sleep_jf);
    442		jf_left -= sleep_jf;
    443		if (jf_left <= 0)
    444			break;
    445		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
    446	}
    447update_state:
    448	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
    449	if (oldstate == CPU_DEAD) {
    450		/* Outgoing CPU died normally, update state. */
    451		smp_mb(); /* atomic_read() before update. */
    452		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
    453	} else {
    454		/* Outgoing CPU still hasn't died, set state accordingly. */
    455		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
    456				   oldstate, CPU_BROKEN) != oldstate)
    457			goto update_state;
    458		ret = false;
    459	}
    460	return ret;
    461}
    462
    463/*
    464 * Called by the outgoing CPU to report its successful death.  Return
    465 * false if this report follows the surviving CPU's timing out.
    466 *
    467 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
    468 * timed out.  This approach allows architectures to omit calls to
    469 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
    470 * the next cpu_wait_death()'s polling loop.
    471 */
    472bool cpu_report_death(void)
    473{
    474	int oldstate;
    475	int newstate;
    476	int cpu = smp_processor_id();
    477
    478	do {
    479		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
    480		if (oldstate != CPU_BROKEN)
    481			newstate = CPU_DEAD;
    482		else
    483			newstate = CPU_DEAD_FROZEN;
    484	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
    485				oldstate, newstate) != oldstate);
    486	return newstate == CPU_DEAD;
    487}
    488
    489#endif /* #ifdef CONFIG_HOTPLUG_CPU */