cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

posix-timers.c (38046B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * 2002-10-15  Posix Clocks & timers
      4 *                           by George Anzinger george@mvista.com
      5 *			     Copyright (C) 2002 2003 by MontaVista Software.
      6 *
      7 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
      8 *			     Copyright (C) 2004 Boris Hu
      9 *
     10 * These are all the functions necessary to implement POSIX clocks & timers
     11 */
     12#include <linux/mm.h>
     13#include <linux/interrupt.h>
     14#include <linux/slab.h>
     15#include <linux/time.h>
     16#include <linux/mutex.h>
     17#include <linux/sched/task.h>
     18
     19#include <linux/uaccess.h>
     20#include <linux/list.h>
     21#include <linux/init.h>
     22#include <linux/compiler.h>
     23#include <linux/hash.h>
     24#include <linux/posix-clock.h>
     25#include <linux/posix-timers.h>
     26#include <linux/syscalls.h>
     27#include <linux/wait.h>
     28#include <linux/workqueue.h>
     29#include <linux/export.h>
     30#include <linux/hashtable.h>
     31#include <linux/compat.h>
     32#include <linux/nospec.h>
     33#include <linux/time_namespace.h>
     34
     35#include "timekeeping.h"
     36#include "posix-timers.h"
     37
     38/*
     39 * Management arrays for POSIX timers. Timers are now kept in static hash table
     40 * with 512 entries.
     41 * Timer ids are allocated by local routine, which selects proper hash head by
     42 * key, constructed from current->signal address and per signal struct counter.
     43 * This keeps timer ids unique per process, but now they can intersect between
     44 * processes.
     45 */
     46
     47/*
     48 * Lets keep our timers in a slab cache :-)
     49 */
     50static struct kmem_cache *posix_timers_cache;
     51
     52static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
     53static DEFINE_SPINLOCK(hash_lock);
     54
     55static const struct k_clock * const posix_clocks[];
     56static const struct k_clock *clockid_to_kclock(const clockid_t id);
     57static const struct k_clock clock_realtime, clock_monotonic;
     58
     59/*
     60 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
     61 * SIGEV values.  Here we put out an error if this assumption fails.
     62 */
     63#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
     64                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
     65#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
     66#endif
     67
     68/*
     69 * The timer ID is turned into a timer address by idr_find().
     70 * Verifying a valid ID consists of:
     71 *
     72 * a) checking that idr_find() returns other than -1.
     73 * b) checking that the timer id matches the one in the timer itself.
     74 * c) that the timer owner is in the callers thread group.
     75 */
     76
     77/*
     78 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
     79 *	    to implement others.  This structure defines the various
     80 *	    clocks.
     81 *
     82 * RESOLUTION: Clock resolution is used to round up timer and interval
     83 *	    times, NOT to report clock times, which are reported with as
     84 *	    much resolution as the system can muster.  In some cases this
     85 *	    resolution may depend on the underlying clock hardware and
     86 *	    may not be quantifiable until run time, and only then is the
     87 *	    necessary code is written.	The standard says we should say
     88 *	    something about this issue in the documentation...
     89 *
     90 * FUNCTIONS: The CLOCKs structure defines possible functions to
     91 *	    handle various clock functions.
     92 *
     93 *	    The standard POSIX timer management code assumes the
     94 *	    following: 1.) The k_itimer struct (sched.h) is used for
     95 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
     96 *	    it_pid fields are not modified by timer code.
     97 *
     98 * Permissions: It is assumed that the clock_settime() function defined
     99 *	    for each clock will take care of permission checks.	 Some
    100 *	    clocks may be set able by any user (i.e. local process
    101 *	    clocks) others not.	 Currently the only set able clock we
    102 *	    have is CLOCK_REALTIME and its high res counter part, both of
    103 *	    which we beg off on and pass to do_sys_settimeofday().
    104 */
    105static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
    106
    107#define lock_timer(tid, flags)						   \
    108({	struct k_itimer *__timr;					   \
    109	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
    110	__timr;								   \
    111})
    112
    113static int hash(struct signal_struct *sig, unsigned int nr)
    114{
    115	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
    116}
    117
    118static struct k_itimer *__posix_timers_find(struct hlist_head *head,
    119					    struct signal_struct *sig,
    120					    timer_t id)
    121{
    122	struct k_itimer *timer;
    123
    124	hlist_for_each_entry_rcu(timer, head, t_hash,
    125				 lockdep_is_held(&hash_lock)) {
    126		if ((timer->it_signal == sig) && (timer->it_id == id))
    127			return timer;
    128	}
    129	return NULL;
    130}
    131
    132static struct k_itimer *posix_timer_by_id(timer_t id)
    133{
    134	struct signal_struct *sig = current->signal;
    135	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
    136
    137	return __posix_timers_find(head, sig, id);
    138}
    139
    140static int posix_timer_add(struct k_itimer *timer)
    141{
    142	struct signal_struct *sig = current->signal;
    143	int first_free_id = sig->posix_timer_id;
    144	struct hlist_head *head;
    145	int ret = -ENOENT;
    146
    147	do {
    148		spin_lock(&hash_lock);
    149		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
    150		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
    151			hlist_add_head_rcu(&timer->t_hash, head);
    152			ret = sig->posix_timer_id;
    153		}
    154		if (++sig->posix_timer_id < 0)
    155			sig->posix_timer_id = 0;
    156		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
    157			/* Loop over all possible ids completed */
    158			ret = -EAGAIN;
    159		spin_unlock(&hash_lock);
    160	} while (ret == -ENOENT);
    161	return ret;
    162}
    163
    164static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
    165{
    166	spin_unlock_irqrestore(&timr->it_lock, flags);
    167}
    168
    169/* Get clock_realtime */
    170static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
    171{
    172	ktime_get_real_ts64(tp);
    173	return 0;
    174}
    175
    176static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
    177{
    178	return ktime_get_real();
    179}
    180
    181/* Set clock_realtime */
    182static int posix_clock_realtime_set(const clockid_t which_clock,
    183				    const struct timespec64 *tp)
    184{
    185	return do_sys_settimeofday64(tp, NULL);
    186}
    187
    188static int posix_clock_realtime_adj(const clockid_t which_clock,
    189				    struct __kernel_timex *t)
    190{
    191	return do_adjtimex(t);
    192}
    193
    194/*
    195 * Get monotonic time for posix timers
    196 */
    197static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
    198{
    199	ktime_get_ts64(tp);
    200	timens_add_monotonic(tp);
    201	return 0;
    202}
    203
    204static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
    205{
    206	return ktime_get();
    207}
    208
    209/*
    210 * Get monotonic-raw time for posix timers
    211 */
    212static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
    213{
    214	ktime_get_raw_ts64(tp);
    215	timens_add_monotonic(tp);
    216	return 0;
    217}
    218
    219
    220static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
    221{
    222	ktime_get_coarse_real_ts64(tp);
    223	return 0;
    224}
    225
    226static int posix_get_monotonic_coarse(clockid_t which_clock,
    227						struct timespec64 *tp)
    228{
    229	ktime_get_coarse_ts64(tp);
    230	timens_add_monotonic(tp);
    231	return 0;
    232}
    233
    234static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
    235{
    236	*tp = ktime_to_timespec64(KTIME_LOW_RES);
    237	return 0;
    238}
    239
    240static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
    241{
    242	ktime_get_boottime_ts64(tp);
    243	timens_add_boottime(tp);
    244	return 0;
    245}
    246
    247static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
    248{
    249	return ktime_get_boottime();
    250}
    251
    252static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
    253{
    254	ktime_get_clocktai_ts64(tp);
    255	return 0;
    256}
    257
    258static ktime_t posix_get_tai_ktime(clockid_t which_clock)
    259{
    260	return ktime_get_clocktai();
    261}
    262
    263static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
    264{
    265	tp->tv_sec = 0;
    266	tp->tv_nsec = hrtimer_resolution;
    267	return 0;
    268}
    269
    270/*
    271 * Initialize everything, well, just everything in Posix clocks/timers ;)
    272 */
    273static __init int init_posix_timers(void)
    274{
    275	posix_timers_cache = kmem_cache_create("posix_timers_cache",
    276					sizeof(struct k_itimer), 0,
    277					SLAB_PANIC | SLAB_ACCOUNT, NULL);
    278	return 0;
    279}
    280__initcall(init_posix_timers);
    281
    282/*
    283 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
    284 * are of type int. Clamp the overrun value to INT_MAX
    285 */
    286static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
    287{
    288	s64 sum = timr->it_overrun_last + (s64)baseval;
    289
    290	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
    291}
    292
    293static void common_hrtimer_rearm(struct k_itimer *timr)
    294{
    295	struct hrtimer *timer = &timr->it.real.timer;
    296
    297	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
    298					    timr->it_interval);
    299	hrtimer_restart(timer);
    300}
    301
    302/*
    303 * This function is exported for use by the signal deliver code.  It is
    304 * called just prior to the info block being released and passes that
    305 * block to us.  It's function is to update the overrun entry AND to
    306 * restart the timer.  It should only be called if the timer is to be
    307 * restarted (i.e. we have flagged this in the sys_private entry of the
    308 * info block).
    309 *
    310 * To protect against the timer going away while the interrupt is queued,
    311 * we require that the it_requeue_pending flag be set.
    312 */
    313void posixtimer_rearm(struct kernel_siginfo *info)
    314{
    315	struct k_itimer *timr;
    316	unsigned long flags;
    317
    318	timr = lock_timer(info->si_tid, &flags);
    319	if (!timr)
    320		return;
    321
    322	if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
    323		timr->kclock->timer_rearm(timr);
    324
    325		timr->it_active = 1;
    326		timr->it_overrun_last = timr->it_overrun;
    327		timr->it_overrun = -1LL;
    328		++timr->it_requeue_pending;
    329
    330		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
    331	}
    332
    333	unlock_timer(timr, flags);
    334}
    335
    336int posix_timer_event(struct k_itimer *timr, int si_private)
    337{
    338	enum pid_type type;
    339	int ret;
    340	/*
    341	 * FIXME: if ->sigq is queued we can race with
    342	 * dequeue_signal()->posixtimer_rearm().
    343	 *
    344	 * If dequeue_signal() sees the "right" value of
    345	 * si_sys_private it calls posixtimer_rearm().
    346	 * We re-queue ->sigq and drop ->it_lock().
    347	 * posixtimer_rearm() locks the timer
    348	 * and re-schedules it while ->sigq is pending.
    349	 * Not really bad, but not that we want.
    350	 */
    351	timr->sigq->info.si_sys_private = si_private;
    352
    353	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
    354	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
    355	/* If we failed to send the signal the timer stops. */
    356	return ret > 0;
    357}
    358
    359/*
    360 * This function gets called when a POSIX.1b interval timer expires.  It
    361 * is used as a callback from the kernel internal timer.  The
    362 * run_timer_list code ALWAYS calls with interrupts on.
    363
    364 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
    365 */
    366static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
    367{
    368	struct k_itimer *timr;
    369	unsigned long flags;
    370	int si_private = 0;
    371	enum hrtimer_restart ret = HRTIMER_NORESTART;
    372
    373	timr = container_of(timer, struct k_itimer, it.real.timer);
    374	spin_lock_irqsave(&timr->it_lock, flags);
    375
    376	timr->it_active = 0;
    377	if (timr->it_interval != 0)
    378		si_private = ++timr->it_requeue_pending;
    379
    380	if (posix_timer_event(timr, si_private)) {
    381		/*
    382		 * signal was not sent because of sig_ignor
    383		 * we will not get a call back to restart it AND
    384		 * it should be restarted.
    385		 */
    386		if (timr->it_interval != 0) {
    387			ktime_t now = hrtimer_cb_get_time(timer);
    388
    389			/*
    390			 * FIXME: What we really want, is to stop this
    391			 * timer completely and restart it in case the
    392			 * SIG_IGN is removed. This is a non trivial
    393			 * change which involves sighand locking
    394			 * (sigh !), which we don't want to do late in
    395			 * the release cycle.
    396			 *
    397			 * For now we just let timers with an interval
    398			 * less than a jiffie expire every jiffie to
    399			 * avoid softirq starvation in case of SIG_IGN
    400			 * and a very small interval, which would put
    401			 * the timer right back on the softirq pending
    402			 * list. By moving now ahead of time we trick
    403			 * hrtimer_forward() to expire the timer
    404			 * later, while we still maintain the overrun
    405			 * accuracy, but have some inconsistency in
    406			 * the timer_gettime() case. This is at least
    407			 * better than a starved softirq. A more
    408			 * complex fix which solves also another related
    409			 * inconsistency is already in the pipeline.
    410			 */
    411#ifdef CONFIG_HIGH_RES_TIMERS
    412			{
    413				ktime_t kj = NSEC_PER_SEC / HZ;
    414
    415				if (timr->it_interval < kj)
    416					now = ktime_add(now, kj);
    417			}
    418#endif
    419			timr->it_overrun += hrtimer_forward(timer, now,
    420							    timr->it_interval);
    421			ret = HRTIMER_RESTART;
    422			++timr->it_requeue_pending;
    423			timr->it_active = 1;
    424		}
    425	}
    426
    427	unlock_timer(timr, flags);
    428	return ret;
    429}
    430
    431static struct pid *good_sigevent(sigevent_t * event)
    432{
    433	struct pid *pid = task_tgid(current);
    434	struct task_struct *rtn;
    435
    436	switch (event->sigev_notify) {
    437	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
    438		pid = find_vpid(event->sigev_notify_thread_id);
    439		rtn = pid_task(pid, PIDTYPE_PID);
    440		if (!rtn || !same_thread_group(rtn, current))
    441			return NULL;
    442		fallthrough;
    443	case SIGEV_SIGNAL:
    444	case SIGEV_THREAD:
    445		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
    446			return NULL;
    447		fallthrough;
    448	case SIGEV_NONE:
    449		return pid;
    450	default:
    451		return NULL;
    452	}
    453}
    454
    455static struct k_itimer * alloc_posix_timer(void)
    456{
    457	struct k_itimer *tmr;
    458	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
    459	if (!tmr)
    460		return tmr;
    461	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
    462		kmem_cache_free(posix_timers_cache, tmr);
    463		return NULL;
    464	}
    465	clear_siginfo(&tmr->sigq->info);
    466	return tmr;
    467}
    468
    469static void k_itimer_rcu_free(struct rcu_head *head)
    470{
    471	struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
    472
    473	kmem_cache_free(posix_timers_cache, tmr);
    474}
    475
    476#define IT_ID_SET	1
    477#define IT_ID_NOT_SET	0
    478static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
    479{
    480	if (it_id_set) {
    481		unsigned long flags;
    482		spin_lock_irqsave(&hash_lock, flags);
    483		hlist_del_rcu(&tmr->t_hash);
    484		spin_unlock_irqrestore(&hash_lock, flags);
    485	}
    486	put_pid(tmr->it_pid);
    487	sigqueue_free(tmr->sigq);
    488	call_rcu(&tmr->rcu, k_itimer_rcu_free);
    489}
    490
    491static int common_timer_create(struct k_itimer *new_timer)
    492{
    493	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
    494	return 0;
    495}
    496
    497/* Create a POSIX.1b interval timer. */
    498static int do_timer_create(clockid_t which_clock, struct sigevent *event,
    499			   timer_t __user *created_timer_id)
    500{
    501	const struct k_clock *kc = clockid_to_kclock(which_clock);
    502	struct k_itimer *new_timer;
    503	int error, new_timer_id;
    504	int it_id_set = IT_ID_NOT_SET;
    505
    506	if (!kc)
    507		return -EINVAL;
    508	if (!kc->timer_create)
    509		return -EOPNOTSUPP;
    510
    511	new_timer = alloc_posix_timer();
    512	if (unlikely(!new_timer))
    513		return -EAGAIN;
    514
    515	spin_lock_init(&new_timer->it_lock);
    516	new_timer_id = posix_timer_add(new_timer);
    517	if (new_timer_id < 0) {
    518		error = new_timer_id;
    519		goto out;
    520	}
    521
    522	it_id_set = IT_ID_SET;
    523	new_timer->it_id = (timer_t) new_timer_id;
    524	new_timer->it_clock = which_clock;
    525	new_timer->kclock = kc;
    526	new_timer->it_overrun = -1LL;
    527
    528	if (event) {
    529		rcu_read_lock();
    530		new_timer->it_pid = get_pid(good_sigevent(event));
    531		rcu_read_unlock();
    532		if (!new_timer->it_pid) {
    533			error = -EINVAL;
    534			goto out;
    535		}
    536		new_timer->it_sigev_notify     = event->sigev_notify;
    537		new_timer->sigq->info.si_signo = event->sigev_signo;
    538		new_timer->sigq->info.si_value = event->sigev_value;
    539	} else {
    540		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
    541		new_timer->sigq->info.si_signo = SIGALRM;
    542		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
    543		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
    544		new_timer->it_pid = get_pid(task_tgid(current));
    545	}
    546
    547	new_timer->sigq->info.si_tid   = new_timer->it_id;
    548	new_timer->sigq->info.si_code  = SI_TIMER;
    549
    550	if (copy_to_user(created_timer_id,
    551			 &new_timer_id, sizeof (new_timer_id))) {
    552		error = -EFAULT;
    553		goto out;
    554	}
    555
    556	error = kc->timer_create(new_timer);
    557	if (error)
    558		goto out;
    559
    560	spin_lock_irq(&current->sighand->siglock);
    561	new_timer->it_signal = current->signal;
    562	list_add(&new_timer->list, &current->signal->posix_timers);
    563	spin_unlock_irq(&current->sighand->siglock);
    564
    565	return 0;
    566	/*
    567	 * In the case of the timer belonging to another task, after
    568	 * the task is unlocked, the timer is owned by the other task
    569	 * and may cease to exist at any time.  Don't use or modify
    570	 * new_timer after the unlock call.
    571	 */
    572out:
    573	release_posix_timer(new_timer, it_id_set);
    574	return error;
    575}
    576
    577SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
    578		struct sigevent __user *, timer_event_spec,
    579		timer_t __user *, created_timer_id)
    580{
    581	if (timer_event_spec) {
    582		sigevent_t event;
    583
    584		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
    585			return -EFAULT;
    586		return do_timer_create(which_clock, &event, created_timer_id);
    587	}
    588	return do_timer_create(which_clock, NULL, created_timer_id);
    589}
    590
    591#ifdef CONFIG_COMPAT
    592COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
    593		       struct compat_sigevent __user *, timer_event_spec,
    594		       timer_t __user *, created_timer_id)
    595{
    596	if (timer_event_spec) {
    597		sigevent_t event;
    598
    599		if (get_compat_sigevent(&event, timer_event_spec))
    600			return -EFAULT;
    601		return do_timer_create(which_clock, &event, created_timer_id);
    602	}
    603	return do_timer_create(which_clock, NULL, created_timer_id);
    604}
    605#endif
    606
    607/*
    608 * Locking issues: We need to protect the result of the id look up until
    609 * we get the timer locked down so it is not deleted under us.  The
    610 * removal is done under the idr spinlock so we use that here to bridge
    611 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
    612 * be release with out holding the timer lock.
    613 */
    614static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
    615{
    616	struct k_itimer *timr;
    617
    618	/*
    619	 * timer_t could be any type >= int and we want to make sure any
    620	 * @timer_id outside positive int range fails lookup.
    621	 */
    622	if ((unsigned long long)timer_id > INT_MAX)
    623		return NULL;
    624
    625	rcu_read_lock();
    626	timr = posix_timer_by_id(timer_id);
    627	if (timr) {
    628		spin_lock_irqsave(&timr->it_lock, *flags);
    629		if (timr->it_signal == current->signal) {
    630			rcu_read_unlock();
    631			return timr;
    632		}
    633		spin_unlock_irqrestore(&timr->it_lock, *flags);
    634	}
    635	rcu_read_unlock();
    636
    637	return NULL;
    638}
    639
    640static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
    641{
    642	struct hrtimer *timer = &timr->it.real.timer;
    643
    644	return __hrtimer_expires_remaining_adjusted(timer, now);
    645}
    646
    647static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
    648{
    649	struct hrtimer *timer = &timr->it.real.timer;
    650
    651	return hrtimer_forward(timer, now, timr->it_interval);
    652}
    653
    654/*
    655 * Get the time remaining on a POSIX.1b interval timer.  This function
    656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
    657 * mess with irq.
    658 *
    659 * We have a couple of messes to clean up here.  First there is the case
    660 * of a timer that has a requeue pending.  These timers should appear to
    661 * be in the timer list with an expiry as if we were to requeue them
    662 * now.
    663 *
    664 * The second issue is the SIGEV_NONE timer which may be active but is
    665 * not really ever put in the timer list (to save system resources).
    666 * This timer may be expired, and if so, we will do it here.  Otherwise
    667 * it is the same as a requeue pending timer WRT to what we should
    668 * report.
    669 */
    670void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
    671{
    672	const struct k_clock *kc = timr->kclock;
    673	ktime_t now, remaining, iv;
    674	bool sig_none;
    675
    676	sig_none = timr->it_sigev_notify == SIGEV_NONE;
    677	iv = timr->it_interval;
    678
    679	/* interval timer ? */
    680	if (iv) {
    681		cur_setting->it_interval = ktime_to_timespec64(iv);
    682	} else if (!timr->it_active) {
    683		/*
    684		 * SIGEV_NONE oneshot timers are never queued. Check them
    685		 * below.
    686		 */
    687		if (!sig_none)
    688			return;
    689	}
    690
    691	now = kc->clock_get_ktime(timr->it_clock);
    692
    693	/*
    694	 * When a requeue is pending or this is a SIGEV_NONE timer move the
    695	 * expiry time forward by intervals, so expiry is > now.
    696	 */
    697	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
    698		timr->it_overrun += kc->timer_forward(timr, now);
    699
    700	remaining = kc->timer_remaining(timr, now);
    701	/* Return 0 only, when the timer is expired and not pending */
    702	if (remaining <= 0) {
    703		/*
    704		 * A single shot SIGEV_NONE timer must return 0, when
    705		 * it is expired !
    706		 */
    707		if (!sig_none)
    708			cur_setting->it_value.tv_nsec = 1;
    709	} else {
    710		cur_setting->it_value = ktime_to_timespec64(remaining);
    711	}
    712}
    713
    714/* Get the time remaining on a POSIX.1b interval timer. */
    715static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
    716{
    717	struct k_itimer *timr;
    718	const struct k_clock *kc;
    719	unsigned long flags;
    720	int ret = 0;
    721
    722	timr = lock_timer(timer_id, &flags);
    723	if (!timr)
    724		return -EINVAL;
    725
    726	memset(setting, 0, sizeof(*setting));
    727	kc = timr->kclock;
    728	if (WARN_ON_ONCE(!kc || !kc->timer_get))
    729		ret = -EINVAL;
    730	else
    731		kc->timer_get(timr, setting);
    732
    733	unlock_timer(timr, flags);
    734	return ret;
    735}
    736
    737/* Get the time remaining on a POSIX.1b interval timer. */
    738SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
    739		struct __kernel_itimerspec __user *, setting)
    740{
    741	struct itimerspec64 cur_setting;
    742
    743	int ret = do_timer_gettime(timer_id, &cur_setting);
    744	if (!ret) {
    745		if (put_itimerspec64(&cur_setting, setting))
    746			ret = -EFAULT;
    747	}
    748	return ret;
    749}
    750
    751#ifdef CONFIG_COMPAT_32BIT_TIME
    752
    753SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
    754		struct old_itimerspec32 __user *, setting)
    755{
    756	struct itimerspec64 cur_setting;
    757
    758	int ret = do_timer_gettime(timer_id, &cur_setting);
    759	if (!ret) {
    760		if (put_old_itimerspec32(&cur_setting, setting))
    761			ret = -EFAULT;
    762	}
    763	return ret;
    764}
    765
    766#endif
    767
    768/*
    769 * Get the number of overruns of a POSIX.1b interval timer.  This is to
    770 * be the overrun of the timer last delivered.  At the same time we are
    771 * accumulating overruns on the next timer.  The overrun is frozen when
    772 * the signal is delivered, either at the notify time (if the info block
    773 * is not queued) or at the actual delivery time (as we are informed by
    774 * the call back to posixtimer_rearm().  So all we need to do is
    775 * to pick up the frozen overrun.
    776 */
    777SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
    778{
    779	struct k_itimer *timr;
    780	int overrun;
    781	unsigned long flags;
    782
    783	timr = lock_timer(timer_id, &flags);
    784	if (!timr)
    785		return -EINVAL;
    786
    787	overrun = timer_overrun_to_int(timr, 0);
    788	unlock_timer(timr, flags);
    789
    790	return overrun;
    791}
    792
    793static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
    794			       bool absolute, bool sigev_none)
    795{
    796	struct hrtimer *timer = &timr->it.real.timer;
    797	enum hrtimer_mode mode;
    798
    799	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
    800	/*
    801	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
    802	 * clock modifications, so they become CLOCK_MONOTONIC based under the
    803	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
    804	 * functions which use timr->kclock->clock_get_*() work.
    805	 *
    806	 * Note: it_clock stays unmodified, because the next timer_set() might
    807	 * use ABSTIME, so it needs to switch back.
    808	 */
    809	if (timr->it_clock == CLOCK_REALTIME)
    810		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
    811
    812	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
    813	timr->it.real.timer.function = posix_timer_fn;
    814
    815	if (!absolute)
    816		expires = ktime_add_safe(expires, timer->base->get_time());
    817	hrtimer_set_expires(timer, expires);
    818
    819	if (!sigev_none)
    820		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
    821}
    822
    823static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
    824{
    825	return hrtimer_try_to_cancel(&timr->it.real.timer);
    826}
    827
    828static void common_timer_wait_running(struct k_itimer *timer)
    829{
    830	hrtimer_cancel_wait_running(&timer->it.real.timer);
    831}
    832
    833/*
    834 * On PREEMPT_RT this prevent priority inversion against softirq kthread in
    835 * case it gets preempted while executing a timer callback. See comments in
    836 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
    837 * cpu_relax().
    838 */
    839static struct k_itimer *timer_wait_running(struct k_itimer *timer,
    840					   unsigned long *flags)
    841{
    842	const struct k_clock *kc = READ_ONCE(timer->kclock);
    843	timer_t timer_id = READ_ONCE(timer->it_id);
    844
    845	/* Prevent kfree(timer) after dropping the lock */
    846	rcu_read_lock();
    847	unlock_timer(timer, *flags);
    848
    849	if (!WARN_ON_ONCE(!kc->timer_wait_running))
    850		kc->timer_wait_running(timer);
    851
    852	rcu_read_unlock();
    853	/* Relock the timer. It might be not longer hashed. */
    854	return lock_timer(timer_id, flags);
    855}
    856
    857/* Set a POSIX.1b interval timer. */
    858int common_timer_set(struct k_itimer *timr, int flags,
    859		     struct itimerspec64 *new_setting,
    860		     struct itimerspec64 *old_setting)
    861{
    862	const struct k_clock *kc = timr->kclock;
    863	bool sigev_none;
    864	ktime_t expires;
    865
    866	if (old_setting)
    867		common_timer_get(timr, old_setting);
    868
    869	/* Prevent rearming by clearing the interval */
    870	timr->it_interval = 0;
    871	/*
    872	 * Careful here. On SMP systems the timer expiry function could be
    873	 * active and spinning on timr->it_lock.
    874	 */
    875	if (kc->timer_try_to_cancel(timr) < 0)
    876		return TIMER_RETRY;
    877
    878	timr->it_active = 0;
    879	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
    880		~REQUEUE_PENDING;
    881	timr->it_overrun_last = 0;
    882
    883	/* Switch off the timer when it_value is zero */
    884	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
    885		return 0;
    886
    887	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
    888	expires = timespec64_to_ktime(new_setting->it_value);
    889	if (flags & TIMER_ABSTIME)
    890		expires = timens_ktime_to_host(timr->it_clock, expires);
    891	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
    892
    893	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
    894	timr->it_active = !sigev_none;
    895	return 0;
    896}
    897
    898static int do_timer_settime(timer_t timer_id, int tmr_flags,
    899			    struct itimerspec64 *new_spec64,
    900			    struct itimerspec64 *old_spec64)
    901{
    902	const struct k_clock *kc;
    903	struct k_itimer *timr;
    904	unsigned long flags;
    905	int error = 0;
    906
    907	if (!timespec64_valid(&new_spec64->it_interval) ||
    908	    !timespec64_valid(&new_spec64->it_value))
    909		return -EINVAL;
    910
    911	if (old_spec64)
    912		memset(old_spec64, 0, sizeof(*old_spec64));
    913
    914	timr = lock_timer(timer_id, &flags);
    915retry:
    916	if (!timr)
    917		return -EINVAL;
    918
    919	kc = timr->kclock;
    920	if (WARN_ON_ONCE(!kc || !kc->timer_set))
    921		error = -EINVAL;
    922	else
    923		error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
    924
    925	if (error == TIMER_RETRY) {
    926		// We already got the old time...
    927		old_spec64 = NULL;
    928		/* Unlocks and relocks the timer if it still exists */
    929		timr = timer_wait_running(timr, &flags);
    930		goto retry;
    931	}
    932	unlock_timer(timr, flags);
    933
    934	return error;
    935}
    936
    937/* Set a POSIX.1b interval timer */
    938SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
    939		const struct __kernel_itimerspec __user *, new_setting,
    940		struct __kernel_itimerspec __user *, old_setting)
    941{
    942	struct itimerspec64 new_spec, old_spec;
    943	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
    944	int error = 0;
    945
    946	if (!new_setting)
    947		return -EINVAL;
    948
    949	if (get_itimerspec64(&new_spec, new_setting))
    950		return -EFAULT;
    951
    952	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
    953	if (!error && old_setting) {
    954		if (put_itimerspec64(&old_spec, old_setting))
    955			error = -EFAULT;
    956	}
    957	return error;
    958}
    959
    960#ifdef CONFIG_COMPAT_32BIT_TIME
    961SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
    962		struct old_itimerspec32 __user *, new,
    963		struct old_itimerspec32 __user *, old)
    964{
    965	struct itimerspec64 new_spec, old_spec;
    966	struct itimerspec64 *rtn = old ? &old_spec : NULL;
    967	int error = 0;
    968
    969	if (!new)
    970		return -EINVAL;
    971	if (get_old_itimerspec32(&new_spec, new))
    972		return -EFAULT;
    973
    974	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
    975	if (!error && old) {
    976		if (put_old_itimerspec32(&old_spec, old))
    977			error = -EFAULT;
    978	}
    979	return error;
    980}
    981#endif
    982
    983int common_timer_del(struct k_itimer *timer)
    984{
    985	const struct k_clock *kc = timer->kclock;
    986
    987	timer->it_interval = 0;
    988	if (kc->timer_try_to_cancel(timer) < 0)
    989		return TIMER_RETRY;
    990	timer->it_active = 0;
    991	return 0;
    992}
    993
    994static inline int timer_delete_hook(struct k_itimer *timer)
    995{
    996	const struct k_clock *kc = timer->kclock;
    997
    998	if (WARN_ON_ONCE(!kc || !kc->timer_del))
    999		return -EINVAL;
   1000	return kc->timer_del(timer);
   1001}
   1002
   1003/* Delete a POSIX.1b interval timer. */
   1004SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
   1005{
   1006	struct k_itimer *timer;
   1007	unsigned long flags;
   1008
   1009	timer = lock_timer(timer_id, &flags);
   1010
   1011retry_delete:
   1012	if (!timer)
   1013		return -EINVAL;
   1014
   1015	if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
   1016		/* Unlocks and relocks the timer if it still exists */
   1017		timer = timer_wait_running(timer, &flags);
   1018		goto retry_delete;
   1019	}
   1020
   1021	spin_lock(&current->sighand->siglock);
   1022	list_del(&timer->list);
   1023	spin_unlock(&current->sighand->siglock);
   1024	/*
   1025	 * This keeps any tasks waiting on the spin lock from thinking
   1026	 * they got something (see the lock code above).
   1027	 */
   1028	timer->it_signal = NULL;
   1029
   1030	unlock_timer(timer, flags);
   1031	release_posix_timer(timer, IT_ID_SET);
   1032	return 0;
   1033}
   1034
   1035/*
   1036 * return timer owned by the process, used by exit_itimers
   1037 */
   1038static void itimer_delete(struct k_itimer *timer)
   1039{
   1040retry_delete:
   1041	spin_lock_irq(&timer->it_lock);
   1042
   1043	if (timer_delete_hook(timer) == TIMER_RETRY) {
   1044		spin_unlock_irq(&timer->it_lock);
   1045		goto retry_delete;
   1046	}
   1047	list_del(&timer->list);
   1048
   1049	spin_unlock_irq(&timer->it_lock);
   1050	release_posix_timer(timer, IT_ID_SET);
   1051}
   1052
   1053/*
   1054 * This is called by do_exit or de_thread, only when there are no more
   1055 * references to the shared signal_struct.
   1056 */
   1057void exit_itimers(struct signal_struct *sig)
   1058{
   1059	struct k_itimer *tmr;
   1060
   1061	while (!list_empty(&sig->posix_timers)) {
   1062		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
   1063		itimer_delete(tmr);
   1064	}
   1065}
   1066
   1067SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
   1068		const struct __kernel_timespec __user *, tp)
   1069{
   1070	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1071	struct timespec64 new_tp;
   1072
   1073	if (!kc || !kc->clock_set)
   1074		return -EINVAL;
   1075
   1076	if (get_timespec64(&new_tp, tp))
   1077		return -EFAULT;
   1078
   1079	return kc->clock_set(which_clock, &new_tp);
   1080}
   1081
   1082SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
   1083		struct __kernel_timespec __user *, tp)
   1084{
   1085	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1086	struct timespec64 kernel_tp;
   1087	int error;
   1088
   1089	if (!kc)
   1090		return -EINVAL;
   1091
   1092	error = kc->clock_get_timespec(which_clock, &kernel_tp);
   1093
   1094	if (!error && put_timespec64(&kernel_tp, tp))
   1095		error = -EFAULT;
   1096
   1097	return error;
   1098}
   1099
   1100int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
   1101{
   1102	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1103
   1104	if (!kc)
   1105		return -EINVAL;
   1106	if (!kc->clock_adj)
   1107		return -EOPNOTSUPP;
   1108
   1109	return kc->clock_adj(which_clock, ktx);
   1110}
   1111
   1112SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
   1113		struct __kernel_timex __user *, utx)
   1114{
   1115	struct __kernel_timex ktx;
   1116	int err;
   1117
   1118	if (copy_from_user(&ktx, utx, sizeof(ktx)))
   1119		return -EFAULT;
   1120
   1121	err = do_clock_adjtime(which_clock, &ktx);
   1122
   1123	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
   1124		return -EFAULT;
   1125
   1126	return err;
   1127}
   1128
   1129SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
   1130		struct __kernel_timespec __user *, tp)
   1131{
   1132	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1133	struct timespec64 rtn_tp;
   1134	int error;
   1135
   1136	if (!kc)
   1137		return -EINVAL;
   1138
   1139	error = kc->clock_getres(which_clock, &rtn_tp);
   1140
   1141	if (!error && tp && put_timespec64(&rtn_tp, tp))
   1142		error = -EFAULT;
   1143
   1144	return error;
   1145}
   1146
   1147#ifdef CONFIG_COMPAT_32BIT_TIME
   1148
   1149SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
   1150		struct old_timespec32 __user *, tp)
   1151{
   1152	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1153	struct timespec64 ts;
   1154
   1155	if (!kc || !kc->clock_set)
   1156		return -EINVAL;
   1157
   1158	if (get_old_timespec32(&ts, tp))
   1159		return -EFAULT;
   1160
   1161	return kc->clock_set(which_clock, &ts);
   1162}
   1163
   1164SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
   1165		struct old_timespec32 __user *, tp)
   1166{
   1167	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1168	struct timespec64 ts;
   1169	int err;
   1170
   1171	if (!kc)
   1172		return -EINVAL;
   1173
   1174	err = kc->clock_get_timespec(which_clock, &ts);
   1175
   1176	if (!err && put_old_timespec32(&ts, tp))
   1177		err = -EFAULT;
   1178
   1179	return err;
   1180}
   1181
   1182SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
   1183		struct old_timex32 __user *, utp)
   1184{
   1185	struct __kernel_timex ktx;
   1186	int err;
   1187
   1188	err = get_old_timex32(&ktx, utp);
   1189	if (err)
   1190		return err;
   1191
   1192	err = do_clock_adjtime(which_clock, &ktx);
   1193
   1194	if (err >= 0 && put_old_timex32(utp, &ktx))
   1195		return -EFAULT;
   1196
   1197	return err;
   1198}
   1199
   1200SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
   1201		struct old_timespec32 __user *, tp)
   1202{
   1203	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1204	struct timespec64 ts;
   1205	int err;
   1206
   1207	if (!kc)
   1208		return -EINVAL;
   1209
   1210	err = kc->clock_getres(which_clock, &ts);
   1211	if (!err && tp && put_old_timespec32(&ts, tp))
   1212		return -EFAULT;
   1213
   1214	return err;
   1215}
   1216
   1217#endif
   1218
   1219/*
   1220 * nanosleep for monotonic and realtime clocks
   1221 */
   1222static int common_nsleep(const clockid_t which_clock, int flags,
   1223			 const struct timespec64 *rqtp)
   1224{
   1225	ktime_t texp = timespec64_to_ktime(*rqtp);
   1226
   1227	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
   1228				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
   1229				 which_clock);
   1230}
   1231
   1232static int common_nsleep_timens(const clockid_t which_clock, int flags,
   1233			 const struct timespec64 *rqtp)
   1234{
   1235	ktime_t texp = timespec64_to_ktime(*rqtp);
   1236
   1237	if (flags & TIMER_ABSTIME)
   1238		texp = timens_ktime_to_host(which_clock, texp);
   1239
   1240	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
   1241				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
   1242				 which_clock);
   1243}
   1244
   1245SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
   1246		const struct __kernel_timespec __user *, rqtp,
   1247		struct __kernel_timespec __user *, rmtp)
   1248{
   1249	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1250	struct timespec64 t;
   1251
   1252	if (!kc)
   1253		return -EINVAL;
   1254	if (!kc->nsleep)
   1255		return -EOPNOTSUPP;
   1256
   1257	if (get_timespec64(&t, rqtp))
   1258		return -EFAULT;
   1259
   1260	if (!timespec64_valid(&t))
   1261		return -EINVAL;
   1262	if (flags & TIMER_ABSTIME)
   1263		rmtp = NULL;
   1264	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
   1265	current->restart_block.nanosleep.rmtp = rmtp;
   1266
   1267	return kc->nsleep(which_clock, flags, &t);
   1268}
   1269
   1270#ifdef CONFIG_COMPAT_32BIT_TIME
   1271
   1272SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
   1273		struct old_timespec32 __user *, rqtp,
   1274		struct old_timespec32 __user *, rmtp)
   1275{
   1276	const struct k_clock *kc = clockid_to_kclock(which_clock);
   1277	struct timespec64 t;
   1278
   1279	if (!kc)
   1280		return -EINVAL;
   1281	if (!kc->nsleep)
   1282		return -EOPNOTSUPP;
   1283
   1284	if (get_old_timespec32(&t, rqtp))
   1285		return -EFAULT;
   1286
   1287	if (!timespec64_valid(&t))
   1288		return -EINVAL;
   1289	if (flags & TIMER_ABSTIME)
   1290		rmtp = NULL;
   1291	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
   1292	current->restart_block.nanosleep.compat_rmtp = rmtp;
   1293
   1294	return kc->nsleep(which_clock, flags, &t);
   1295}
   1296
   1297#endif
   1298
   1299static const struct k_clock clock_realtime = {
   1300	.clock_getres		= posix_get_hrtimer_res,
   1301	.clock_get_timespec	= posix_get_realtime_timespec,
   1302	.clock_get_ktime	= posix_get_realtime_ktime,
   1303	.clock_set		= posix_clock_realtime_set,
   1304	.clock_adj		= posix_clock_realtime_adj,
   1305	.nsleep			= common_nsleep,
   1306	.timer_create		= common_timer_create,
   1307	.timer_set		= common_timer_set,
   1308	.timer_get		= common_timer_get,
   1309	.timer_del		= common_timer_del,
   1310	.timer_rearm		= common_hrtimer_rearm,
   1311	.timer_forward		= common_hrtimer_forward,
   1312	.timer_remaining	= common_hrtimer_remaining,
   1313	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
   1314	.timer_wait_running	= common_timer_wait_running,
   1315	.timer_arm		= common_hrtimer_arm,
   1316};
   1317
   1318static const struct k_clock clock_monotonic = {
   1319	.clock_getres		= posix_get_hrtimer_res,
   1320	.clock_get_timespec	= posix_get_monotonic_timespec,
   1321	.clock_get_ktime	= posix_get_monotonic_ktime,
   1322	.nsleep			= common_nsleep_timens,
   1323	.timer_create		= common_timer_create,
   1324	.timer_set		= common_timer_set,
   1325	.timer_get		= common_timer_get,
   1326	.timer_del		= common_timer_del,
   1327	.timer_rearm		= common_hrtimer_rearm,
   1328	.timer_forward		= common_hrtimer_forward,
   1329	.timer_remaining	= common_hrtimer_remaining,
   1330	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
   1331	.timer_wait_running	= common_timer_wait_running,
   1332	.timer_arm		= common_hrtimer_arm,
   1333};
   1334
   1335static const struct k_clock clock_monotonic_raw = {
   1336	.clock_getres		= posix_get_hrtimer_res,
   1337	.clock_get_timespec	= posix_get_monotonic_raw,
   1338};
   1339
   1340static const struct k_clock clock_realtime_coarse = {
   1341	.clock_getres		= posix_get_coarse_res,
   1342	.clock_get_timespec	= posix_get_realtime_coarse,
   1343};
   1344
   1345static const struct k_clock clock_monotonic_coarse = {
   1346	.clock_getres		= posix_get_coarse_res,
   1347	.clock_get_timespec	= posix_get_monotonic_coarse,
   1348};
   1349
   1350static const struct k_clock clock_tai = {
   1351	.clock_getres		= posix_get_hrtimer_res,
   1352	.clock_get_ktime	= posix_get_tai_ktime,
   1353	.clock_get_timespec	= posix_get_tai_timespec,
   1354	.nsleep			= common_nsleep,
   1355	.timer_create		= common_timer_create,
   1356	.timer_set		= common_timer_set,
   1357	.timer_get		= common_timer_get,
   1358	.timer_del		= common_timer_del,
   1359	.timer_rearm		= common_hrtimer_rearm,
   1360	.timer_forward		= common_hrtimer_forward,
   1361	.timer_remaining	= common_hrtimer_remaining,
   1362	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
   1363	.timer_wait_running	= common_timer_wait_running,
   1364	.timer_arm		= common_hrtimer_arm,
   1365};
   1366
   1367static const struct k_clock clock_boottime = {
   1368	.clock_getres		= posix_get_hrtimer_res,
   1369	.clock_get_ktime	= posix_get_boottime_ktime,
   1370	.clock_get_timespec	= posix_get_boottime_timespec,
   1371	.nsleep			= common_nsleep_timens,
   1372	.timer_create		= common_timer_create,
   1373	.timer_set		= common_timer_set,
   1374	.timer_get		= common_timer_get,
   1375	.timer_del		= common_timer_del,
   1376	.timer_rearm		= common_hrtimer_rearm,
   1377	.timer_forward		= common_hrtimer_forward,
   1378	.timer_remaining	= common_hrtimer_remaining,
   1379	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
   1380	.timer_wait_running	= common_timer_wait_running,
   1381	.timer_arm		= common_hrtimer_arm,
   1382};
   1383
   1384static const struct k_clock * const posix_clocks[] = {
   1385	[CLOCK_REALTIME]		= &clock_realtime,
   1386	[CLOCK_MONOTONIC]		= &clock_monotonic,
   1387	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
   1388	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
   1389	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
   1390	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
   1391	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
   1392	[CLOCK_BOOTTIME]		= &clock_boottime,
   1393	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
   1394	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
   1395	[CLOCK_TAI]			= &clock_tai,
   1396};
   1397
   1398static const struct k_clock *clockid_to_kclock(const clockid_t id)
   1399{
   1400	clockid_t idx = id;
   1401
   1402	if (id < 0) {
   1403		return (id & CLOCKFD_MASK) == CLOCKFD ?
   1404			&clock_posix_dynamic : &clock_posix_cpu;
   1405	}
   1406
   1407	if (id >= ARRAY_SIZE(posix_clocks))
   1408		return NULL;
   1409
   1410	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
   1411}