cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tick-common.c (15075B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * This file contains the base functions to manage periodic tick
      4 * related events.
      5 *
      6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
      7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
      8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
      9 */
     10#include <linux/cpu.h>
     11#include <linux/err.h>
     12#include <linux/hrtimer.h>
     13#include <linux/interrupt.h>
     14#include <linux/nmi.h>
     15#include <linux/percpu.h>
     16#include <linux/profile.h>
     17#include <linux/sched.h>
     18#include <linux/module.h>
     19#include <trace/events/power.h>
     20
     21#include <asm/irq_regs.h>
     22
     23#include "tick-internal.h"
     24
     25/*
     26 * Tick devices
     27 */
     28DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
     29/*
     30 * Tick next event: keeps track of the tick time. It's updated by the
     31 * CPU which handles the tick and protected by jiffies_lock. There is
     32 * no requirement to write hold the jiffies seqcount for it.
     33 */
     34ktime_t tick_next_period;
     35
     36/*
     37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
     38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
     39 * variable has two functions:
     40 *
     41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
     42 *    timekeeping lock all at once. Only the CPU which is assigned to do the
     43 *    update is handling it.
     44 *
     45 * 2) Hand off the duty in the NOHZ idle case by setting the value to
     46 *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
     47 *    at it will take over and keep the time keeping alive.  The handover
     48 *    procedure also covers cpu hotplug.
     49 */
     50int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
     51#ifdef CONFIG_NO_HZ_FULL
     52/*
     53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
     54 * tick_do_timer_cpu and it should be taken over by an eligible secondary
     55 * when one comes online.
     56 */
     57static int tick_do_timer_boot_cpu __read_mostly = -1;
     58#endif
     59
     60/*
     61 * Debugging: see timer_list.c
     62 */
     63struct tick_device *tick_get_device(int cpu)
     64{
     65	return &per_cpu(tick_cpu_device, cpu);
     66}
     67
     68/**
     69 * tick_is_oneshot_available - check for a oneshot capable event device
     70 */
     71int tick_is_oneshot_available(void)
     72{
     73	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
     74
     75	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
     76		return 0;
     77	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
     78		return 1;
     79	return tick_broadcast_oneshot_available();
     80}
     81
     82/*
     83 * Periodic tick
     84 */
     85static void tick_periodic(int cpu)
     86{
     87	if (tick_do_timer_cpu == cpu) {
     88		raw_spin_lock(&jiffies_lock);
     89		write_seqcount_begin(&jiffies_seq);
     90
     91		/* Keep track of the next tick event */
     92		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
     93
     94		do_timer(1);
     95		write_seqcount_end(&jiffies_seq);
     96		raw_spin_unlock(&jiffies_lock);
     97		update_wall_time();
     98	}
     99
    100	update_process_times(user_mode(get_irq_regs()));
    101	profile_tick(CPU_PROFILING);
    102}
    103
    104/*
    105 * Event handler for periodic ticks
    106 */
    107void tick_handle_periodic(struct clock_event_device *dev)
    108{
    109	int cpu = smp_processor_id();
    110	ktime_t next = dev->next_event;
    111
    112	tick_periodic(cpu);
    113
    114#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
    115	/*
    116	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
    117	 * update_process_times() -> run_local_timers() ->
    118	 * hrtimer_run_queues().
    119	 */
    120	if (dev->event_handler != tick_handle_periodic)
    121		return;
    122#endif
    123
    124	if (!clockevent_state_oneshot(dev))
    125		return;
    126	for (;;) {
    127		/*
    128		 * Setup the next period for devices, which do not have
    129		 * periodic mode:
    130		 */
    131		next = ktime_add_ns(next, TICK_NSEC);
    132
    133		if (!clockevents_program_event(dev, next, false))
    134			return;
    135		/*
    136		 * Have to be careful here. If we're in oneshot mode,
    137		 * before we call tick_periodic() in a loop, we need
    138		 * to be sure we're using a real hardware clocksource.
    139		 * Otherwise we could get trapped in an infinite
    140		 * loop, as the tick_periodic() increments jiffies,
    141		 * which then will increment time, possibly causing
    142		 * the loop to trigger again and again.
    143		 */
    144		if (timekeeping_valid_for_hres())
    145			tick_periodic(cpu);
    146	}
    147}
    148
    149/*
    150 * Setup the device for a periodic tick
    151 */
    152void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
    153{
    154	tick_set_periodic_handler(dev, broadcast);
    155
    156	/* Broadcast setup ? */
    157	if (!tick_device_is_functional(dev))
    158		return;
    159
    160	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
    161	    !tick_broadcast_oneshot_active()) {
    162		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
    163	} else {
    164		unsigned int seq;
    165		ktime_t next;
    166
    167		do {
    168			seq = read_seqcount_begin(&jiffies_seq);
    169			next = tick_next_period;
    170		} while (read_seqcount_retry(&jiffies_seq, seq));
    171
    172		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
    173
    174		for (;;) {
    175			if (!clockevents_program_event(dev, next, false))
    176				return;
    177			next = ktime_add_ns(next, TICK_NSEC);
    178		}
    179	}
    180}
    181
    182#ifdef CONFIG_NO_HZ_FULL
    183static void giveup_do_timer(void *info)
    184{
    185	int cpu = *(unsigned int *)info;
    186
    187	WARN_ON(tick_do_timer_cpu != smp_processor_id());
    188
    189	tick_do_timer_cpu = cpu;
    190}
    191
    192static void tick_take_do_timer_from_boot(void)
    193{
    194	int cpu = smp_processor_id();
    195	int from = tick_do_timer_boot_cpu;
    196
    197	if (from >= 0 && from != cpu)
    198		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
    199}
    200#endif
    201
    202/*
    203 * Setup the tick device
    204 */
    205static void tick_setup_device(struct tick_device *td,
    206			      struct clock_event_device *newdev, int cpu,
    207			      const struct cpumask *cpumask)
    208{
    209	void (*handler)(struct clock_event_device *) = NULL;
    210	ktime_t next_event = 0;
    211
    212	/*
    213	 * First device setup ?
    214	 */
    215	if (!td->evtdev) {
    216		/*
    217		 * If no cpu took the do_timer update, assign it to
    218		 * this cpu:
    219		 */
    220		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
    221			tick_do_timer_cpu = cpu;
    222
    223			tick_next_period = ktime_get();
    224#ifdef CONFIG_NO_HZ_FULL
    225			/*
    226			 * The boot CPU may be nohz_full, in which case set
    227			 * tick_do_timer_boot_cpu so the first housekeeping
    228			 * secondary that comes up will take do_timer from
    229			 * us.
    230			 */
    231			if (tick_nohz_full_cpu(cpu))
    232				tick_do_timer_boot_cpu = cpu;
    233
    234		} else if (tick_do_timer_boot_cpu != -1 &&
    235						!tick_nohz_full_cpu(cpu)) {
    236			tick_take_do_timer_from_boot();
    237			tick_do_timer_boot_cpu = -1;
    238			WARN_ON(tick_do_timer_cpu != cpu);
    239#endif
    240		}
    241
    242		/*
    243		 * Startup in periodic mode first.
    244		 */
    245		td->mode = TICKDEV_MODE_PERIODIC;
    246	} else {
    247		handler = td->evtdev->event_handler;
    248		next_event = td->evtdev->next_event;
    249		td->evtdev->event_handler = clockevents_handle_noop;
    250	}
    251
    252	td->evtdev = newdev;
    253
    254	/*
    255	 * When the device is not per cpu, pin the interrupt to the
    256	 * current cpu:
    257	 */
    258	if (!cpumask_equal(newdev->cpumask, cpumask))
    259		irq_set_affinity(newdev->irq, cpumask);
    260
    261	/*
    262	 * When global broadcasting is active, check if the current
    263	 * device is registered as a placeholder for broadcast mode.
    264	 * This allows us to handle this x86 misfeature in a generic
    265	 * way. This function also returns !=0 when we keep the
    266	 * current active broadcast state for this CPU.
    267	 */
    268	if (tick_device_uses_broadcast(newdev, cpu))
    269		return;
    270
    271	if (td->mode == TICKDEV_MODE_PERIODIC)
    272		tick_setup_periodic(newdev, 0);
    273	else
    274		tick_setup_oneshot(newdev, handler, next_event);
    275}
    276
    277void tick_install_replacement(struct clock_event_device *newdev)
    278{
    279	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
    280	int cpu = smp_processor_id();
    281
    282	clockevents_exchange_device(td->evtdev, newdev);
    283	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
    284	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
    285		tick_oneshot_notify();
    286}
    287
    288static bool tick_check_percpu(struct clock_event_device *curdev,
    289			      struct clock_event_device *newdev, int cpu)
    290{
    291	if (!cpumask_test_cpu(cpu, newdev->cpumask))
    292		return false;
    293	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
    294		return true;
    295	/* Check if irq affinity can be set */
    296	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
    297		return false;
    298	/* Prefer an existing cpu local device */
    299	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
    300		return false;
    301	return true;
    302}
    303
    304static bool tick_check_preferred(struct clock_event_device *curdev,
    305				 struct clock_event_device *newdev)
    306{
    307	/* Prefer oneshot capable device */
    308	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
    309		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
    310			return false;
    311		if (tick_oneshot_mode_active())
    312			return false;
    313	}
    314
    315	/*
    316	 * Use the higher rated one, but prefer a CPU local device with a lower
    317	 * rating than a non-CPU local device
    318	 */
    319	return !curdev ||
    320		newdev->rating > curdev->rating ||
    321	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
    322}
    323
    324/*
    325 * Check whether the new device is a better fit than curdev. curdev
    326 * can be NULL !
    327 */
    328bool tick_check_replacement(struct clock_event_device *curdev,
    329			    struct clock_event_device *newdev)
    330{
    331	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
    332		return false;
    333
    334	return tick_check_preferred(curdev, newdev);
    335}
    336
    337/*
    338 * Check, if the new registered device should be used. Called with
    339 * clockevents_lock held and interrupts disabled.
    340 */
    341void tick_check_new_device(struct clock_event_device *newdev)
    342{
    343	struct clock_event_device *curdev;
    344	struct tick_device *td;
    345	int cpu;
    346
    347	cpu = smp_processor_id();
    348	td = &per_cpu(tick_cpu_device, cpu);
    349	curdev = td->evtdev;
    350
    351	if (!tick_check_replacement(curdev, newdev))
    352		goto out_bc;
    353
    354	if (!try_module_get(newdev->owner))
    355		return;
    356
    357	/*
    358	 * Replace the eventually existing device by the new
    359	 * device. If the current device is the broadcast device, do
    360	 * not give it back to the clockevents layer !
    361	 */
    362	if (tick_is_broadcast_device(curdev)) {
    363		clockevents_shutdown(curdev);
    364		curdev = NULL;
    365	}
    366	clockevents_exchange_device(curdev, newdev);
    367	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
    368	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
    369		tick_oneshot_notify();
    370	return;
    371
    372out_bc:
    373	/*
    374	 * Can the new device be used as a broadcast device ?
    375	 */
    376	tick_install_broadcast_device(newdev, cpu);
    377}
    378
    379/**
    380 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
    381 * @state:	The target state (enter/exit)
    382 *
    383 * The system enters/leaves a state, where affected devices might stop
    384 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
    385 *
    386 * Called with interrupts disabled, so clockevents_lock is not
    387 * required here because the local clock event device cannot go away
    388 * under us.
    389 */
    390int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
    391{
    392	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
    393
    394	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
    395		return 0;
    396
    397	return __tick_broadcast_oneshot_control(state);
    398}
    399EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
    400
    401#ifdef CONFIG_HOTPLUG_CPU
    402/*
    403 * Transfer the do_timer job away from a dying cpu.
    404 *
    405 * Called with interrupts disabled. No locking required. If
    406 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
    407 */
    408void tick_handover_do_timer(void)
    409{
    410	if (tick_do_timer_cpu == smp_processor_id())
    411		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
    412}
    413
    414/*
    415 * Shutdown an event device on a given cpu:
    416 *
    417 * This is called on a life CPU, when a CPU is dead. So we cannot
    418 * access the hardware device itself.
    419 * We just set the mode and remove it from the lists.
    420 */
    421void tick_shutdown(unsigned int cpu)
    422{
    423	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
    424	struct clock_event_device *dev = td->evtdev;
    425
    426	td->mode = TICKDEV_MODE_PERIODIC;
    427	if (dev) {
    428		/*
    429		 * Prevent that the clock events layer tries to call
    430		 * the set mode function!
    431		 */
    432		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
    433		clockevents_exchange_device(dev, NULL);
    434		dev->event_handler = clockevents_handle_noop;
    435		td->evtdev = NULL;
    436	}
    437}
    438#endif
    439
    440/**
    441 * tick_suspend_local - Suspend the local tick device
    442 *
    443 * Called from the local cpu for freeze with interrupts disabled.
    444 *
    445 * No locks required. Nothing can change the per cpu device.
    446 */
    447void tick_suspend_local(void)
    448{
    449	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
    450
    451	clockevents_shutdown(td->evtdev);
    452}
    453
    454/**
    455 * tick_resume_local - Resume the local tick device
    456 *
    457 * Called from the local CPU for unfreeze or XEN resume magic.
    458 *
    459 * No locks required. Nothing can change the per cpu device.
    460 */
    461void tick_resume_local(void)
    462{
    463	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
    464	bool broadcast = tick_resume_check_broadcast();
    465
    466	clockevents_tick_resume(td->evtdev);
    467	if (!broadcast) {
    468		if (td->mode == TICKDEV_MODE_PERIODIC)
    469			tick_setup_periodic(td->evtdev, 0);
    470		else
    471			tick_resume_oneshot();
    472	}
    473
    474	/*
    475	 * Ensure that hrtimers are up to date and the clockevents device
    476	 * is reprogrammed correctly when high resolution timers are
    477	 * enabled.
    478	 */
    479	hrtimers_resume_local();
    480}
    481
    482/**
    483 * tick_suspend - Suspend the tick and the broadcast device
    484 *
    485 * Called from syscore_suspend() via timekeeping_suspend with only one
    486 * CPU online and interrupts disabled or from tick_unfreeze() under
    487 * tick_freeze_lock.
    488 *
    489 * No locks required. Nothing can change the per cpu device.
    490 */
    491void tick_suspend(void)
    492{
    493	tick_suspend_local();
    494	tick_suspend_broadcast();
    495}
    496
    497/**
    498 * tick_resume - Resume the tick and the broadcast device
    499 *
    500 * Called from syscore_resume() via timekeeping_resume with only one
    501 * CPU online and interrupts disabled.
    502 *
    503 * No locks required. Nothing can change the per cpu device.
    504 */
    505void tick_resume(void)
    506{
    507	tick_resume_broadcast();
    508	tick_resume_local();
    509}
    510
    511#ifdef CONFIG_SUSPEND
    512static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
    513static unsigned int tick_freeze_depth;
    514
    515/**
    516 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
    517 *
    518 * Check if this is the last online CPU executing the function and if so,
    519 * suspend timekeeping.  Otherwise suspend the local tick.
    520 *
    521 * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
    522 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
    523 */
    524void tick_freeze(void)
    525{
    526	raw_spin_lock(&tick_freeze_lock);
    527
    528	tick_freeze_depth++;
    529	if (tick_freeze_depth == num_online_cpus()) {
    530		trace_suspend_resume(TPS("timekeeping_freeze"),
    531				     smp_processor_id(), true);
    532		system_state = SYSTEM_SUSPEND;
    533		sched_clock_suspend();
    534		timekeeping_suspend();
    535	} else {
    536		tick_suspend_local();
    537	}
    538
    539	raw_spin_unlock(&tick_freeze_lock);
    540}
    541
    542/**
    543 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
    544 *
    545 * Check if this is the first CPU executing the function and if so, resume
    546 * timekeeping.  Otherwise resume the local tick.
    547 *
    548 * Call with interrupts disabled.  Must be balanced with %tick_freeze().
    549 * Interrupts must not be enabled after the preceding %tick_freeze().
    550 */
    551void tick_unfreeze(void)
    552{
    553	raw_spin_lock(&tick_freeze_lock);
    554
    555	if (tick_freeze_depth == num_online_cpus()) {
    556		timekeeping_resume();
    557		sched_clock_resume();
    558		system_state = SYSTEM_RUNNING;
    559		trace_suspend_resume(TPS("timekeeping_freeze"),
    560				     smp_processor_id(), false);
    561	} else {
    562		touch_softlockup_watchdog();
    563		tick_resume_local();
    564	}
    565
    566	tick_freeze_depth--;
    567
    568	raw_spin_unlock(&tick_freeze_lock);
    569}
    570#endif /* CONFIG_SUSPEND */
    571
    572/**
    573 * tick_init - initialize the tick control
    574 */
    575void __init tick_init(void)
    576{
    577	tick_broadcast_init();
    578	tick_nohz_init();
    579}