cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tick-sched.c (40555B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
      4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
      5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
      6 *
      7 *  No idle tick implementation for low and high resolution timers
      8 *
      9 *  Started by: Thomas Gleixner and Ingo Molnar
     10 */
     11#include <linux/cpu.h>
     12#include <linux/err.h>
     13#include <linux/hrtimer.h>
     14#include <linux/interrupt.h>
     15#include <linux/kernel_stat.h>
     16#include <linux/percpu.h>
     17#include <linux/nmi.h>
     18#include <linux/profile.h>
     19#include <linux/sched/signal.h>
     20#include <linux/sched/clock.h>
     21#include <linux/sched/stat.h>
     22#include <linux/sched/nohz.h>
     23#include <linux/sched/loadavg.h>
     24#include <linux/module.h>
     25#include <linux/irq_work.h>
     26#include <linux/posix-timers.h>
     27#include <linux/context_tracking.h>
     28#include <linux/mm.h>
     29
     30#include <asm/irq_regs.h>
     31
     32#include "tick-internal.h"
     33
     34#include <trace/events/timer.h>
     35
     36/*
     37 * Per-CPU nohz control structure
     38 */
     39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
     40
     41struct tick_sched *tick_get_tick_sched(int cpu)
     42{
     43	return &per_cpu(tick_cpu_sched, cpu);
     44}
     45
     46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
     47/*
     48 * The time, when the last jiffy update happened. Write access must hold
     49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
     50 * consistent view of jiffies and last_jiffies_update.
     51 */
     52static ktime_t last_jiffies_update;
     53
     54/*
     55 * Must be called with interrupts disabled !
     56 */
     57static void tick_do_update_jiffies64(ktime_t now)
     58{
     59	unsigned long ticks = 1;
     60	ktime_t delta, nextp;
     61
     62	/*
     63	 * 64bit can do a quick check without holding jiffies lock and
     64	 * without looking at the sequence count. The smp_load_acquire()
     65	 * pairs with the update done later in this function.
     66	 *
     67	 * 32bit cannot do that because the store of tick_next_period
     68	 * consists of two 32bit stores and the first store could move it
     69	 * to a random point in the future.
     70	 */
     71	if (IS_ENABLED(CONFIG_64BIT)) {
     72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
     73			return;
     74	} else {
     75		unsigned int seq;
     76
     77		/*
     78		 * Avoid contention on jiffies_lock and protect the quick
     79		 * check with the sequence count.
     80		 */
     81		do {
     82			seq = read_seqcount_begin(&jiffies_seq);
     83			nextp = tick_next_period;
     84		} while (read_seqcount_retry(&jiffies_seq, seq));
     85
     86		if (ktime_before(now, nextp))
     87			return;
     88	}
     89
     90	/* Quick check failed, i.e. update is required. */
     91	raw_spin_lock(&jiffies_lock);
     92	/*
     93	 * Reevaluate with the lock held. Another CPU might have done the
     94	 * update already.
     95	 */
     96	if (ktime_before(now, tick_next_period)) {
     97		raw_spin_unlock(&jiffies_lock);
     98		return;
     99	}
    100
    101	write_seqcount_begin(&jiffies_seq);
    102
    103	delta = ktime_sub(now, tick_next_period);
    104	if (unlikely(delta >= TICK_NSEC)) {
    105		/* Slow path for long idle sleep times */
    106		s64 incr = TICK_NSEC;
    107
    108		ticks += ktime_divns(delta, incr);
    109
    110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
    111						   incr * ticks);
    112	} else {
    113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
    114						   TICK_NSEC);
    115	}
    116
    117	/* Advance jiffies to complete the jiffies_seq protected job */
    118	jiffies_64 += ticks;
    119
    120	/*
    121	 * Keep the tick_next_period variable up to date.
    122	 */
    123	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
    124
    125	if (IS_ENABLED(CONFIG_64BIT)) {
    126		/*
    127		 * Pairs with smp_load_acquire() in the lockless quick
    128		 * check above and ensures that the update to jiffies_64 is
    129		 * not reordered vs. the store to tick_next_period, neither
    130		 * by the compiler nor by the CPU.
    131		 */
    132		smp_store_release(&tick_next_period, nextp);
    133	} else {
    134		/*
    135		 * A plain store is good enough on 32bit as the quick check
    136		 * above is protected by the sequence count.
    137		 */
    138		tick_next_period = nextp;
    139	}
    140
    141	/*
    142	 * Release the sequence count. calc_global_load() below is not
    143	 * protected by it, but jiffies_lock needs to be held to prevent
    144	 * concurrent invocations.
    145	 */
    146	write_seqcount_end(&jiffies_seq);
    147
    148	calc_global_load();
    149
    150	raw_spin_unlock(&jiffies_lock);
    151	update_wall_time();
    152}
    153
    154/*
    155 * Initialize and return retrieve the jiffies update.
    156 */
    157static ktime_t tick_init_jiffy_update(void)
    158{
    159	ktime_t period;
    160
    161	raw_spin_lock(&jiffies_lock);
    162	write_seqcount_begin(&jiffies_seq);
    163	/* Did we start the jiffies update yet ? */
    164	if (last_jiffies_update == 0)
    165		last_jiffies_update = tick_next_period;
    166	period = last_jiffies_update;
    167	write_seqcount_end(&jiffies_seq);
    168	raw_spin_unlock(&jiffies_lock);
    169	return period;
    170}
    171
    172#define MAX_STALLED_JIFFIES 5
    173
    174static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
    175{
    176	int cpu = smp_processor_id();
    177
    178#ifdef CONFIG_NO_HZ_COMMON
    179	/*
    180	 * Check if the do_timer duty was dropped. We don't care about
    181	 * concurrency: This happens only when the CPU in charge went
    182	 * into a long sleep. If two CPUs happen to assign themselves to
    183	 * this duty, then the jiffies update is still serialized by
    184	 * jiffies_lock.
    185	 *
    186	 * If nohz_full is enabled, this should not happen because the
    187	 * tick_do_timer_cpu never relinquishes.
    188	 */
    189	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
    190#ifdef CONFIG_NO_HZ_FULL
    191		WARN_ON_ONCE(tick_nohz_full_running);
    192#endif
    193		tick_do_timer_cpu = cpu;
    194	}
    195#endif
    196
    197	/* Check, if the jiffies need an update */
    198	if (tick_do_timer_cpu == cpu)
    199		tick_do_update_jiffies64(now);
    200
    201	/*
    202	 * If jiffies update stalled for too long (timekeeper in stop_machine()
    203	 * or VMEXIT'ed for several msecs), force an update.
    204	 */
    205	if (ts->last_tick_jiffies != jiffies) {
    206		ts->stalled_jiffies = 0;
    207		ts->last_tick_jiffies = READ_ONCE(jiffies);
    208	} else {
    209		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
    210			tick_do_update_jiffies64(now);
    211			ts->stalled_jiffies = 0;
    212			ts->last_tick_jiffies = READ_ONCE(jiffies);
    213		}
    214	}
    215
    216	if (ts->inidle)
    217		ts->got_idle_tick = 1;
    218}
    219
    220static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
    221{
    222#ifdef CONFIG_NO_HZ_COMMON
    223	/*
    224	 * When we are idle and the tick is stopped, we have to touch
    225	 * the watchdog as we might not schedule for a really long
    226	 * time. This happens on complete idle SMP systems while
    227	 * waiting on the login prompt. We also increment the "start of
    228	 * idle" jiffy stamp so the idle accounting adjustment we do
    229	 * when we go busy again does not account too much ticks.
    230	 */
    231	if (ts->tick_stopped) {
    232		touch_softlockup_watchdog_sched();
    233		if (is_idle_task(current))
    234			ts->idle_jiffies++;
    235		/*
    236		 * In case the current tick fired too early past its expected
    237		 * expiration, make sure we don't bypass the next clock reprogramming
    238		 * to the same deadline.
    239		 */
    240		ts->next_tick = 0;
    241	}
    242#endif
    243	update_process_times(user_mode(regs));
    244	profile_tick(CPU_PROFILING);
    245}
    246#endif
    247
    248#ifdef CONFIG_NO_HZ_FULL
    249cpumask_var_t tick_nohz_full_mask;
    250EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
    251bool tick_nohz_full_running;
    252EXPORT_SYMBOL_GPL(tick_nohz_full_running);
    253static atomic_t tick_dep_mask;
    254
    255static bool check_tick_dependency(atomic_t *dep)
    256{
    257	int val = atomic_read(dep);
    258
    259	if (val & TICK_DEP_MASK_POSIX_TIMER) {
    260		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
    261		return true;
    262	}
    263
    264	if (val & TICK_DEP_MASK_PERF_EVENTS) {
    265		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
    266		return true;
    267	}
    268
    269	if (val & TICK_DEP_MASK_SCHED) {
    270		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
    271		return true;
    272	}
    273
    274	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
    275		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
    276		return true;
    277	}
    278
    279	if (val & TICK_DEP_MASK_RCU) {
    280		trace_tick_stop(0, TICK_DEP_MASK_RCU);
    281		return true;
    282	}
    283
    284	return false;
    285}
    286
    287static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
    288{
    289	lockdep_assert_irqs_disabled();
    290
    291	if (unlikely(!cpu_online(cpu)))
    292		return false;
    293
    294	if (check_tick_dependency(&tick_dep_mask))
    295		return false;
    296
    297	if (check_tick_dependency(&ts->tick_dep_mask))
    298		return false;
    299
    300	if (check_tick_dependency(&current->tick_dep_mask))
    301		return false;
    302
    303	if (check_tick_dependency(&current->signal->tick_dep_mask))
    304		return false;
    305
    306	return true;
    307}
    308
    309static void nohz_full_kick_func(struct irq_work *work)
    310{
    311	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
    312}
    313
    314static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
    315	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
    316
    317/*
    318 * Kick this CPU if it's full dynticks in order to force it to
    319 * re-evaluate its dependency on the tick and restart it if necessary.
    320 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
    321 * is NMI safe.
    322 */
    323static void tick_nohz_full_kick(void)
    324{
    325	if (!tick_nohz_full_cpu(smp_processor_id()))
    326		return;
    327
    328	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
    329}
    330
    331/*
    332 * Kick the CPU if it's full dynticks in order to force it to
    333 * re-evaluate its dependency on the tick and restart it if necessary.
    334 */
    335void tick_nohz_full_kick_cpu(int cpu)
    336{
    337	if (!tick_nohz_full_cpu(cpu))
    338		return;
    339
    340	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
    341}
    342
    343static void tick_nohz_kick_task(struct task_struct *tsk)
    344{
    345	int cpu;
    346
    347	/*
    348	 * If the task is not running, run_posix_cpu_timers()
    349	 * has nothing to elapse, IPI can then be spared.
    350	 *
    351	 * activate_task()                      STORE p->tick_dep_mask
    352	 *   STORE p->on_rq
    353	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
    354	 *   LOCK rq->lock                      LOAD p->on_rq
    355	 *   smp_mb__after_spin_lock()
    356	 *   tick_nohz_task_switch()
    357	 *     LOAD p->tick_dep_mask
    358	 */
    359	if (!sched_task_on_rq(tsk))
    360		return;
    361
    362	/*
    363	 * If the task concurrently migrates to another CPU,
    364	 * we guarantee it sees the new tick dependency upon
    365	 * schedule.
    366	 *
    367	 * set_task_cpu(p, cpu);
    368	 *   STORE p->cpu = @cpu
    369	 * __schedule() (switch to task 'p')
    370	 *   LOCK rq->lock
    371	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
    372	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
    373	 *      LOAD p->tick_dep_mask           LOAD p->cpu
    374	 */
    375	cpu = task_cpu(tsk);
    376
    377	preempt_disable();
    378	if (cpu_online(cpu))
    379		tick_nohz_full_kick_cpu(cpu);
    380	preempt_enable();
    381}
    382
    383/*
    384 * Kick all full dynticks CPUs in order to force these to re-evaluate
    385 * their dependency on the tick and restart it if necessary.
    386 */
    387static void tick_nohz_full_kick_all(void)
    388{
    389	int cpu;
    390
    391	if (!tick_nohz_full_running)
    392		return;
    393
    394	preempt_disable();
    395	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
    396		tick_nohz_full_kick_cpu(cpu);
    397	preempt_enable();
    398}
    399
    400static void tick_nohz_dep_set_all(atomic_t *dep,
    401				  enum tick_dep_bits bit)
    402{
    403	int prev;
    404
    405	prev = atomic_fetch_or(BIT(bit), dep);
    406	if (!prev)
    407		tick_nohz_full_kick_all();
    408}
    409
    410/*
    411 * Set a global tick dependency. Used by perf events that rely on freq and
    412 * by unstable clock.
    413 */
    414void tick_nohz_dep_set(enum tick_dep_bits bit)
    415{
    416	tick_nohz_dep_set_all(&tick_dep_mask, bit);
    417}
    418
    419void tick_nohz_dep_clear(enum tick_dep_bits bit)
    420{
    421	atomic_andnot(BIT(bit), &tick_dep_mask);
    422}
    423
    424/*
    425 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
    426 * manage events throttling.
    427 */
    428void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
    429{
    430	int prev;
    431	struct tick_sched *ts;
    432
    433	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
    434
    435	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
    436	if (!prev) {
    437		preempt_disable();
    438		/* Perf needs local kick that is NMI safe */
    439		if (cpu == smp_processor_id()) {
    440			tick_nohz_full_kick();
    441		} else {
    442			/* Remote irq work not NMI-safe */
    443			if (!WARN_ON_ONCE(in_nmi()))
    444				tick_nohz_full_kick_cpu(cpu);
    445		}
    446		preempt_enable();
    447	}
    448}
    449EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
    450
    451void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
    452{
    453	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
    454
    455	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
    456}
    457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
    458
    459/*
    460 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
    461 * in order to elapse per task timers.
    462 */
    463void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
    464{
    465	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
    466		tick_nohz_kick_task(tsk);
    467}
    468EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
    469
    470void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
    471{
    472	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
    473}
    474EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
    475
    476/*
    477 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
    478 * per process timers.
    479 */
    480void tick_nohz_dep_set_signal(struct task_struct *tsk,
    481			      enum tick_dep_bits bit)
    482{
    483	int prev;
    484	struct signal_struct *sig = tsk->signal;
    485
    486	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
    487	if (!prev) {
    488		struct task_struct *t;
    489
    490		lockdep_assert_held(&tsk->sighand->siglock);
    491		__for_each_thread(sig, t)
    492			tick_nohz_kick_task(t);
    493	}
    494}
    495
    496void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
    497{
    498	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
    499}
    500
    501/*
    502 * Re-evaluate the need for the tick as we switch the current task.
    503 * It might need the tick due to per task/process properties:
    504 * perf events, posix CPU timers, ...
    505 */
    506void __tick_nohz_task_switch(void)
    507{
    508	struct tick_sched *ts;
    509
    510	if (!tick_nohz_full_cpu(smp_processor_id()))
    511		return;
    512
    513	ts = this_cpu_ptr(&tick_cpu_sched);
    514
    515	if (ts->tick_stopped) {
    516		if (atomic_read(&current->tick_dep_mask) ||
    517		    atomic_read(&current->signal->tick_dep_mask))
    518			tick_nohz_full_kick();
    519	}
    520}
    521
    522/* Get the boot-time nohz CPU list from the kernel parameters. */
    523void __init tick_nohz_full_setup(cpumask_var_t cpumask)
    524{
    525	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
    526	cpumask_copy(tick_nohz_full_mask, cpumask);
    527	tick_nohz_full_running = true;
    528}
    529
    530static int tick_nohz_cpu_down(unsigned int cpu)
    531{
    532	/*
    533	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
    534	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
    535	 * CPUs. It must remain online when nohz full is enabled.
    536	 */
    537	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
    538		return -EBUSY;
    539	return 0;
    540}
    541
    542void __init tick_nohz_init(void)
    543{
    544	int cpu, ret;
    545
    546	if (!tick_nohz_full_running)
    547		return;
    548
    549	/*
    550	 * Full dynticks uses irq work to drive the tick rescheduling on safe
    551	 * locking contexts. But then we need irq work to raise its own
    552	 * interrupts to avoid circular dependency on the tick
    553	 */
    554	if (!arch_irq_work_has_interrupt()) {
    555		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
    556		cpumask_clear(tick_nohz_full_mask);
    557		tick_nohz_full_running = false;
    558		return;
    559	}
    560
    561	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
    562			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
    563		cpu = smp_processor_id();
    564
    565		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
    566			pr_warn("NO_HZ: Clearing %d from nohz_full range "
    567				"for timekeeping\n", cpu);
    568			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
    569		}
    570	}
    571
    572	for_each_cpu(cpu, tick_nohz_full_mask)
    573		context_tracking_cpu_set(cpu);
    574
    575	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
    576					"kernel/nohz:predown", NULL,
    577					tick_nohz_cpu_down);
    578	WARN_ON(ret < 0);
    579	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
    580		cpumask_pr_args(tick_nohz_full_mask));
    581}
    582#endif
    583
    584/*
    585 * NOHZ - aka dynamic tick functionality
    586 */
    587#ifdef CONFIG_NO_HZ_COMMON
    588/*
    589 * NO HZ enabled ?
    590 */
    591bool tick_nohz_enabled __read_mostly  = true;
    592unsigned long tick_nohz_active  __read_mostly;
    593/*
    594 * Enable / Disable tickless mode
    595 */
    596static int __init setup_tick_nohz(char *str)
    597{
    598	return (kstrtobool(str, &tick_nohz_enabled) == 0);
    599}
    600
    601__setup("nohz=", setup_tick_nohz);
    602
    603bool tick_nohz_tick_stopped(void)
    604{
    605	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
    606
    607	return ts->tick_stopped;
    608}
    609
    610bool tick_nohz_tick_stopped_cpu(int cpu)
    611{
    612	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
    613
    614	return ts->tick_stopped;
    615}
    616
    617/**
    618 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
    619 *
    620 * Called from interrupt entry when the CPU was idle
    621 *
    622 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
    623 * must be updated. Otherwise an interrupt handler could use a stale jiffy
    624 * value. We do this unconditionally on any CPU, as we don't know whether the
    625 * CPU, which has the update task assigned is in a long sleep.
    626 */
    627static void tick_nohz_update_jiffies(ktime_t now)
    628{
    629	unsigned long flags;
    630
    631	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
    632
    633	local_irq_save(flags);
    634	tick_do_update_jiffies64(now);
    635	local_irq_restore(flags);
    636
    637	touch_softlockup_watchdog_sched();
    638}
    639
    640/*
    641 * Updates the per-CPU time idle statistics counters
    642 */
    643static void
    644update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
    645{
    646	ktime_t delta;
    647
    648	if (ts->idle_active) {
    649		delta = ktime_sub(now, ts->idle_entrytime);
    650		if (nr_iowait_cpu(cpu) > 0)
    651			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
    652		else
    653			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
    654		ts->idle_entrytime = now;
    655	}
    656
    657	if (last_update_time)
    658		*last_update_time = ktime_to_us(now);
    659
    660}
    661
    662static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
    663{
    664	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
    665	ts->idle_active = 0;
    666
    667	sched_clock_idle_wakeup_event();
    668}
    669
    670static void tick_nohz_start_idle(struct tick_sched *ts)
    671{
    672	ts->idle_entrytime = ktime_get();
    673	ts->idle_active = 1;
    674	sched_clock_idle_sleep_event();
    675}
    676
    677/**
    678 * get_cpu_idle_time_us - get the total idle time of a CPU
    679 * @cpu: CPU number to query
    680 * @last_update_time: variable to store update time in. Do not update
    681 * counters if NULL.
    682 *
    683 * Return the cumulative idle time (since boot) for a given
    684 * CPU, in microseconds.
    685 *
    686 * This time is measured via accounting rather than sampling,
    687 * and is as accurate as ktime_get() is.
    688 *
    689 * This function returns -1 if NOHZ is not enabled.
    690 */
    691u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
    692{
    693	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
    694	ktime_t now, idle;
    695
    696	if (!tick_nohz_active)
    697		return -1;
    698
    699	now = ktime_get();
    700	if (last_update_time) {
    701		update_ts_time_stats(cpu, ts, now, last_update_time);
    702		idle = ts->idle_sleeptime;
    703	} else {
    704		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
    705			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
    706
    707			idle = ktime_add(ts->idle_sleeptime, delta);
    708		} else {
    709			idle = ts->idle_sleeptime;
    710		}
    711	}
    712
    713	return ktime_to_us(idle);
    714
    715}
    716EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
    717
    718/**
    719 * get_cpu_iowait_time_us - get the total iowait time of a CPU
    720 * @cpu: CPU number to query
    721 * @last_update_time: variable to store update time in. Do not update
    722 * counters if NULL.
    723 *
    724 * Return the cumulative iowait time (since boot) for a given
    725 * CPU, in microseconds.
    726 *
    727 * This time is measured via accounting rather than sampling,
    728 * and is as accurate as ktime_get() is.
    729 *
    730 * This function returns -1 if NOHZ is not enabled.
    731 */
    732u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
    733{
    734	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
    735	ktime_t now, iowait;
    736
    737	if (!tick_nohz_active)
    738		return -1;
    739
    740	now = ktime_get();
    741	if (last_update_time) {
    742		update_ts_time_stats(cpu, ts, now, last_update_time);
    743		iowait = ts->iowait_sleeptime;
    744	} else {
    745		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
    746			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
    747
    748			iowait = ktime_add(ts->iowait_sleeptime, delta);
    749		} else {
    750			iowait = ts->iowait_sleeptime;
    751		}
    752	}
    753
    754	return ktime_to_us(iowait);
    755}
    756EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
    757
    758static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
    759{
    760	hrtimer_cancel(&ts->sched_timer);
    761	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
    762
    763	/* Forward the time to expire in the future */
    764	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
    765
    766	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
    767		hrtimer_start_expires(&ts->sched_timer,
    768				      HRTIMER_MODE_ABS_PINNED_HARD);
    769	} else {
    770		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
    771	}
    772
    773	/*
    774	 * Reset to make sure next tick stop doesn't get fooled by past
    775	 * cached clock deadline.
    776	 */
    777	ts->next_tick = 0;
    778}
    779
    780static inline bool local_timer_softirq_pending(void)
    781{
    782	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
    783}
    784
    785static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
    786{
    787	u64 basemono, next_tick, delta, expires;
    788	unsigned long basejiff;
    789	unsigned int seq;
    790
    791	/* Read jiffies and the time when jiffies were updated last */
    792	do {
    793		seq = read_seqcount_begin(&jiffies_seq);
    794		basemono = last_jiffies_update;
    795		basejiff = jiffies;
    796	} while (read_seqcount_retry(&jiffies_seq, seq));
    797	ts->last_jiffies = basejiff;
    798	ts->timer_expires_base = basemono;
    799
    800	/*
    801	 * Keep the periodic tick, when RCU, architecture or irq_work
    802	 * requests it.
    803	 * Aside of that check whether the local timer softirq is
    804	 * pending. If so its a bad idea to call get_next_timer_interrupt()
    805	 * because there is an already expired timer, so it will request
    806	 * immediate expiry, which rearms the hardware timer with a
    807	 * minimal delta which brings us back to this place
    808	 * immediately. Lather, rinse and repeat...
    809	 */
    810	if (rcu_needs_cpu() || arch_needs_cpu() ||
    811	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
    812		next_tick = basemono + TICK_NSEC;
    813	} else {
    814		/*
    815		 * Get the next pending timer. If high resolution
    816		 * timers are enabled this only takes the timer wheel
    817		 * timers into account. If high resolution timers are
    818		 * disabled this also looks at the next expiring
    819		 * hrtimer.
    820		 */
    821		next_tick = get_next_timer_interrupt(basejiff, basemono);
    822		ts->next_timer = next_tick;
    823	}
    824
    825	/*
    826	 * If the tick is due in the next period, keep it ticking or
    827	 * force prod the timer.
    828	 */
    829	delta = next_tick - basemono;
    830	if (delta <= (u64)TICK_NSEC) {
    831		/*
    832		 * Tell the timer code that the base is not idle, i.e. undo
    833		 * the effect of get_next_timer_interrupt():
    834		 */
    835		timer_clear_idle();
    836		/*
    837		 * We've not stopped the tick yet, and there's a timer in the
    838		 * next period, so no point in stopping it either, bail.
    839		 */
    840		if (!ts->tick_stopped) {
    841			ts->timer_expires = 0;
    842			goto out;
    843		}
    844	}
    845
    846	/*
    847	 * If this CPU is the one which had the do_timer() duty last, we limit
    848	 * the sleep time to the timekeeping max_deferment value.
    849	 * Otherwise we can sleep as long as we want.
    850	 */
    851	delta = timekeeping_max_deferment();
    852	if (cpu != tick_do_timer_cpu &&
    853	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
    854		delta = KTIME_MAX;
    855
    856	/* Calculate the next expiry time */
    857	if (delta < (KTIME_MAX - basemono))
    858		expires = basemono + delta;
    859	else
    860		expires = KTIME_MAX;
    861
    862	ts->timer_expires = min_t(u64, expires, next_tick);
    863
    864out:
    865	return ts->timer_expires;
    866}
    867
    868static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
    869{
    870	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
    871	u64 basemono = ts->timer_expires_base;
    872	u64 expires = ts->timer_expires;
    873	ktime_t tick = expires;
    874
    875	/* Make sure we won't be trying to stop it twice in a row. */
    876	ts->timer_expires_base = 0;
    877
    878	/*
    879	 * If this CPU is the one which updates jiffies, then give up
    880	 * the assignment and let it be taken by the CPU which runs
    881	 * the tick timer next, which might be this CPU as well. If we
    882	 * don't drop this here the jiffies might be stale and
    883	 * do_timer() never invoked. Keep track of the fact that it
    884	 * was the one which had the do_timer() duty last.
    885	 */
    886	if (cpu == tick_do_timer_cpu) {
    887		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
    888		ts->do_timer_last = 1;
    889	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
    890		ts->do_timer_last = 0;
    891	}
    892
    893	/* Skip reprogram of event if its not changed */
    894	if (ts->tick_stopped && (expires == ts->next_tick)) {
    895		/* Sanity check: make sure clockevent is actually programmed */
    896		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
    897			return;
    898
    899		WARN_ON_ONCE(1);
    900		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
    901			    basemono, ts->next_tick, dev->next_event,
    902			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
    903	}
    904
    905	/*
    906	 * nohz_stop_sched_tick can be called several times before
    907	 * the nohz_restart_sched_tick is called. This happens when
    908	 * interrupts arrive which do not cause a reschedule. In the
    909	 * first call we save the current tick time, so we can restart
    910	 * the scheduler tick in nohz_restart_sched_tick.
    911	 */
    912	if (!ts->tick_stopped) {
    913		calc_load_nohz_start();
    914		quiet_vmstat();
    915
    916		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
    917		ts->tick_stopped = 1;
    918		trace_tick_stop(1, TICK_DEP_MASK_NONE);
    919	}
    920
    921	ts->next_tick = tick;
    922
    923	/*
    924	 * If the expiration time == KTIME_MAX, then we simply stop
    925	 * the tick timer.
    926	 */
    927	if (unlikely(expires == KTIME_MAX)) {
    928		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
    929			hrtimer_cancel(&ts->sched_timer);
    930		else
    931			tick_program_event(KTIME_MAX, 1);
    932		return;
    933	}
    934
    935	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
    936		hrtimer_start(&ts->sched_timer, tick,
    937			      HRTIMER_MODE_ABS_PINNED_HARD);
    938	} else {
    939		hrtimer_set_expires(&ts->sched_timer, tick);
    940		tick_program_event(tick, 1);
    941	}
    942}
    943
    944static void tick_nohz_retain_tick(struct tick_sched *ts)
    945{
    946	ts->timer_expires_base = 0;
    947}
    948
    949#ifdef CONFIG_NO_HZ_FULL
    950static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
    951{
    952	if (tick_nohz_next_event(ts, cpu))
    953		tick_nohz_stop_tick(ts, cpu);
    954	else
    955		tick_nohz_retain_tick(ts);
    956}
    957#endif /* CONFIG_NO_HZ_FULL */
    958
    959static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
    960{
    961	/* Update jiffies first */
    962	tick_do_update_jiffies64(now);
    963
    964	/*
    965	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
    966	 * the clock forward checks in the enqueue path:
    967	 */
    968	timer_clear_idle();
    969
    970	calc_load_nohz_stop();
    971	touch_softlockup_watchdog_sched();
    972	/*
    973	 * Cancel the scheduled timer and restore the tick
    974	 */
    975	ts->tick_stopped  = 0;
    976	tick_nohz_restart(ts, now);
    977}
    978
    979static void __tick_nohz_full_update_tick(struct tick_sched *ts,
    980					 ktime_t now)
    981{
    982#ifdef CONFIG_NO_HZ_FULL
    983	int cpu = smp_processor_id();
    984
    985	if (can_stop_full_tick(cpu, ts))
    986		tick_nohz_stop_sched_tick(ts, cpu);
    987	else if (ts->tick_stopped)
    988		tick_nohz_restart_sched_tick(ts, now);
    989#endif
    990}
    991
    992static void tick_nohz_full_update_tick(struct tick_sched *ts)
    993{
    994	if (!tick_nohz_full_cpu(smp_processor_id()))
    995		return;
    996
    997	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
    998		return;
    999
   1000	__tick_nohz_full_update_tick(ts, ktime_get());
   1001}
   1002
   1003/*
   1004 * A pending softirq outside an IRQ (or softirq disabled section) context
   1005 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
   1006 * reach here due to the need_resched() early check in can_stop_idle_tick().
   1007 *
   1008 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
   1009 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
   1010 * triggering the below since wakep_softirqd() is ignored.
   1011 *
   1012 */
   1013static bool report_idle_softirq(void)
   1014{
   1015	static int ratelimit;
   1016	unsigned int pending = local_softirq_pending();
   1017
   1018	if (likely(!pending))
   1019		return false;
   1020
   1021	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
   1022	if (!cpu_active(smp_processor_id())) {
   1023		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
   1024		if (!pending)
   1025			return false;
   1026	}
   1027
   1028	if (ratelimit < 10)
   1029		return false;
   1030
   1031	/* On RT, softirqs handling may be waiting on some lock */
   1032	if (!local_bh_blocked())
   1033		return false;
   1034
   1035	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
   1036		pending);
   1037	ratelimit++;
   1038
   1039	return true;
   1040}
   1041
   1042static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
   1043{
   1044	/*
   1045	 * If this CPU is offline and it is the one which updates
   1046	 * jiffies, then give up the assignment and let it be taken by
   1047	 * the CPU which runs the tick timer next. If we don't drop
   1048	 * this here the jiffies might be stale and do_timer() never
   1049	 * invoked.
   1050	 */
   1051	if (unlikely(!cpu_online(cpu))) {
   1052		if (cpu == tick_do_timer_cpu)
   1053			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
   1054		/*
   1055		 * Make sure the CPU doesn't get fooled by obsolete tick
   1056		 * deadline if it comes back online later.
   1057		 */
   1058		ts->next_tick = 0;
   1059		return false;
   1060	}
   1061
   1062	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
   1063		return false;
   1064
   1065	if (need_resched())
   1066		return false;
   1067
   1068	if (unlikely(report_idle_softirq()))
   1069		return false;
   1070
   1071	if (tick_nohz_full_enabled()) {
   1072		/*
   1073		 * Keep the tick alive to guarantee timekeeping progression
   1074		 * if there are full dynticks CPUs around
   1075		 */
   1076		if (tick_do_timer_cpu == cpu)
   1077			return false;
   1078
   1079		/* Should not happen for nohz-full */
   1080		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
   1081			return false;
   1082	}
   1083
   1084	return true;
   1085}
   1086
   1087static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
   1088{
   1089	ktime_t expires;
   1090	int cpu = smp_processor_id();
   1091
   1092	/*
   1093	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
   1094	 * tick timer expiration time is known already.
   1095	 */
   1096	if (ts->timer_expires_base)
   1097		expires = ts->timer_expires;
   1098	else if (can_stop_idle_tick(cpu, ts))
   1099		expires = tick_nohz_next_event(ts, cpu);
   1100	else
   1101		return;
   1102
   1103	ts->idle_calls++;
   1104
   1105	if (expires > 0LL) {
   1106		int was_stopped = ts->tick_stopped;
   1107
   1108		tick_nohz_stop_tick(ts, cpu);
   1109
   1110		ts->idle_sleeps++;
   1111		ts->idle_expires = expires;
   1112
   1113		if (!was_stopped && ts->tick_stopped) {
   1114			ts->idle_jiffies = ts->last_jiffies;
   1115			nohz_balance_enter_idle(cpu);
   1116		}
   1117	} else {
   1118		tick_nohz_retain_tick(ts);
   1119	}
   1120}
   1121
   1122/**
   1123 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
   1124 *
   1125 * When the next event is more than a tick into the future, stop the idle tick
   1126 */
   1127void tick_nohz_idle_stop_tick(void)
   1128{
   1129	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
   1130}
   1131
   1132void tick_nohz_idle_retain_tick(void)
   1133{
   1134	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
   1135	/*
   1136	 * Undo the effect of get_next_timer_interrupt() called from
   1137	 * tick_nohz_next_event().
   1138	 */
   1139	timer_clear_idle();
   1140}
   1141
   1142/**
   1143 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
   1144 *
   1145 * Called when we start the idle loop.
   1146 */
   1147void tick_nohz_idle_enter(void)
   1148{
   1149	struct tick_sched *ts;
   1150
   1151	lockdep_assert_irqs_enabled();
   1152
   1153	local_irq_disable();
   1154
   1155	ts = this_cpu_ptr(&tick_cpu_sched);
   1156
   1157	WARN_ON_ONCE(ts->timer_expires_base);
   1158
   1159	ts->inidle = 1;
   1160	tick_nohz_start_idle(ts);
   1161
   1162	local_irq_enable();
   1163}
   1164
   1165/**
   1166 * tick_nohz_irq_exit - update next tick event from interrupt exit
   1167 *
   1168 * When an interrupt fires while we are idle and it doesn't cause
   1169 * a reschedule, it may still add, modify or delete a timer, enqueue
   1170 * an RCU callback, etc...
   1171 * So we need to re-calculate and reprogram the next tick event.
   1172 */
   1173void tick_nohz_irq_exit(void)
   1174{
   1175	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1176
   1177	if (ts->inidle)
   1178		tick_nohz_start_idle(ts);
   1179	else
   1180		tick_nohz_full_update_tick(ts);
   1181}
   1182
   1183/**
   1184 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
   1185 */
   1186bool tick_nohz_idle_got_tick(void)
   1187{
   1188	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1189
   1190	if (ts->got_idle_tick) {
   1191		ts->got_idle_tick = 0;
   1192		return true;
   1193	}
   1194	return false;
   1195}
   1196
   1197/**
   1198 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
   1199 * or the tick, whatever that expires first. Note that, if the tick has been
   1200 * stopped, it returns the next hrtimer.
   1201 *
   1202 * Called from power state control code with interrupts disabled
   1203 */
   1204ktime_t tick_nohz_get_next_hrtimer(void)
   1205{
   1206	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
   1207}
   1208
   1209/**
   1210 * tick_nohz_get_sleep_length - return the expected length of the current sleep
   1211 * @delta_next: duration until the next event if the tick cannot be stopped
   1212 *
   1213 * Called from power state control code with interrupts disabled.
   1214 *
   1215 * The return value of this function and/or the value returned by it through the
   1216 * @delta_next pointer can be negative which must be taken into account by its
   1217 * callers.
   1218 */
   1219ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
   1220{
   1221	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
   1222	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1223	int cpu = smp_processor_id();
   1224	/*
   1225	 * The idle entry time is expected to be a sufficient approximation of
   1226	 * the current time at this point.
   1227	 */
   1228	ktime_t now = ts->idle_entrytime;
   1229	ktime_t next_event;
   1230
   1231	WARN_ON_ONCE(!ts->inidle);
   1232
   1233	*delta_next = ktime_sub(dev->next_event, now);
   1234
   1235	if (!can_stop_idle_tick(cpu, ts))
   1236		return *delta_next;
   1237
   1238	next_event = tick_nohz_next_event(ts, cpu);
   1239	if (!next_event)
   1240		return *delta_next;
   1241
   1242	/*
   1243	 * If the next highres timer to expire is earlier than next_event, the
   1244	 * idle governor needs to know that.
   1245	 */
   1246	next_event = min_t(u64, next_event,
   1247			   hrtimer_next_event_without(&ts->sched_timer));
   1248
   1249	return ktime_sub(next_event, now);
   1250}
   1251
   1252/**
   1253 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
   1254 * for a particular CPU.
   1255 *
   1256 * Called from the schedutil frequency scaling governor in scheduler context.
   1257 */
   1258unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
   1259{
   1260	struct tick_sched *ts = tick_get_tick_sched(cpu);
   1261
   1262	return ts->idle_calls;
   1263}
   1264
   1265/**
   1266 * tick_nohz_get_idle_calls - return the current idle calls counter value
   1267 *
   1268 * Called from the schedutil frequency scaling governor in scheduler context.
   1269 */
   1270unsigned long tick_nohz_get_idle_calls(void)
   1271{
   1272	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1273
   1274	return ts->idle_calls;
   1275}
   1276
   1277static void tick_nohz_account_idle_time(struct tick_sched *ts,
   1278					ktime_t now)
   1279{
   1280	unsigned long ticks;
   1281
   1282	ts->idle_exittime = now;
   1283
   1284	if (vtime_accounting_enabled_this_cpu())
   1285		return;
   1286	/*
   1287	 * We stopped the tick in idle. Update process times would miss the
   1288	 * time we slept as update_process_times does only a 1 tick
   1289	 * accounting. Enforce that this is accounted to idle !
   1290	 */
   1291	ticks = jiffies - ts->idle_jiffies;
   1292	/*
   1293	 * We might be one off. Do not randomly account a huge number of ticks!
   1294	 */
   1295	if (ticks && ticks < LONG_MAX)
   1296		account_idle_ticks(ticks);
   1297}
   1298
   1299void tick_nohz_idle_restart_tick(void)
   1300{
   1301	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1302
   1303	if (ts->tick_stopped) {
   1304		ktime_t now = ktime_get();
   1305		tick_nohz_restart_sched_tick(ts, now);
   1306		tick_nohz_account_idle_time(ts, now);
   1307	}
   1308}
   1309
   1310static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
   1311{
   1312	if (tick_nohz_full_cpu(smp_processor_id()))
   1313		__tick_nohz_full_update_tick(ts, now);
   1314	else
   1315		tick_nohz_restart_sched_tick(ts, now);
   1316
   1317	tick_nohz_account_idle_time(ts, now);
   1318}
   1319
   1320/**
   1321 * tick_nohz_idle_exit - restart the idle tick from the idle task
   1322 *
   1323 * Restart the idle tick when the CPU is woken up from idle
   1324 * This also exit the RCU extended quiescent state. The CPU
   1325 * can use RCU again after this function is called.
   1326 */
   1327void tick_nohz_idle_exit(void)
   1328{
   1329	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1330	bool idle_active, tick_stopped;
   1331	ktime_t now;
   1332
   1333	local_irq_disable();
   1334
   1335	WARN_ON_ONCE(!ts->inidle);
   1336	WARN_ON_ONCE(ts->timer_expires_base);
   1337
   1338	ts->inidle = 0;
   1339	idle_active = ts->idle_active;
   1340	tick_stopped = ts->tick_stopped;
   1341
   1342	if (idle_active || tick_stopped)
   1343		now = ktime_get();
   1344
   1345	if (idle_active)
   1346		tick_nohz_stop_idle(ts, now);
   1347
   1348	if (tick_stopped)
   1349		tick_nohz_idle_update_tick(ts, now);
   1350
   1351	local_irq_enable();
   1352}
   1353
   1354/*
   1355 * The nohz low res interrupt handler
   1356 */
   1357static void tick_nohz_handler(struct clock_event_device *dev)
   1358{
   1359	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1360	struct pt_regs *regs = get_irq_regs();
   1361	ktime_t now = ktime_get();
   1362
   1363	dev->next_event = KTIME_MAX;
   1364
   1365	tick_sched_do_timer(ts, now);
   1366	tick_sched_handle(ts, regs);
   1367
   1368	if (unlikely(ts->tick_stopped)) {
   1369		/*
   1370		 * The clockevent device is not reprogrammed, so change the
   1371		 * clock event device to ONESHOT_STOPPED to avoid spurious
   1372		 * interrupts on devices which might not be truly one shot.
   1373		 */
   1374		tick_program_event(KTIME_MAX, 1);
   1375		return;
   1376	}
   1377
   1378	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
   1379	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
   1380}
   1381
   1382static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
   1383{
   1384	if (!tick_nohz_enabled)
   1385		return;
   1386	ts->nohz_mode = mode;
   1387	/* One update is enough */
   1388	if (!test_and_set_bit(0, &tick_nohz_active))
   1389		timers_update_nohz();
   1390}
   1391
   1392/**
   1393 * tick_nohz_switch_to_nohz - switch to nohz mode
   1394 */
   1395static void tick_nohz_switch_to_nohz(void)
   1396{
   1397	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1398	ktime_t next;
   1399
   1400	if (!tick_nohz_enabled)
   1401		return;
   1402
   1403	if (tick_switch_to_oneshot(tick_nohz_handler))
   1404		return;
   1405
   1406	/*
   1407	 * Recycle the hrtimer in ts, so we can share the
   1408	 * hrtimer_forward with the highres code.
   1409	 */
   1410	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
   1411	/* Get the next period */
   1412	next = tick_init_jiffy_update();
   1413
   1414	hrtimer_set_expires(&ts->sched_timer, next);
   1415	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
   1416	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
   1417	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
   1418}
   1419
   1420static inline void tick_nohz_irq_enter(void)
   1421{
   1422	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1423	ktime_t now;
   1424
   1425	if (!ts->idle_active && !ts->tick_stopped)
   1426		return;
   1427	now = ktime_get();
   1428	if (ts->idle_active)
   1429		tick_nohz_stop_idle(ts, now);
   1430	/*
   1431	 * If all CPUs are idle. We may need to update a stale jiffies value.
   1432	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
   1433	 * alive but it might be busy looping with interrupts disabled in some
   1434	 * rare case (typically stop machine). So we must make sure we have a
   1435	 * last resort.
   1436	 */
   1437	if (ts->tick_stopped)
   1438		tick_nohz_update_jiffies(now);
   1439}
   1440
   1441#else
   1442
   1443static inline void tick_nohz_switch_to_nohz(void) { }
   1444static inline void tick_nohz_irq_enter(void) { }
   1445static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
   1446
   1447#endif /* CONFIG_NO_HZ_COMMON */
   1448
   1449/*
   1450 * Called from irq_enter to notify about the possible interruption of idle()
   1451 */
   1452void tick_irq_enter(void)
   1453{
   1454	tick_check_oneshot_broadcast_this_cpu();
   1455	tick_nohz_irq_enter();
   1456}
   1457
   1458/*
   1459 * High resolution timer specific code
   1460 */
   1461#ifdef CONFIG_HIGH_RES_TIMERS
   1462/*
   1463 * We rearm the timer until we get disabled by the idle code.
   1464 * Called with interrupts disabled.
   1465 */
   1466static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
   1467{
   1468	struct tick_sched *ts =
   1469		container_of(timer, struct tick_sched, sched_timer);
   1470	struct pt_regs *regs = get_irq_regs();
   1471	ktime_t now = ktime_get();
   1472
   1473	tick_sched_do_timer(ts, now);
   1474
   1475	/*
   1476	 * Do not call, when we are not in irq context and have
   1477	 * no valid regs pointer
   1478	 */
   1479	if (regs)
   1480		tick_sched_handle(ts, regs);
   1481	else
   1482		ts->next_tick = 0;
   1483
   1484	/* No need to reprogram if we are in idle or full dynticks mode */
   1485	if (unlikely(ts->tick_stopped))
   1486		return HRTIMER_NORESTART;
   1487
   1488	hrtimer_forward(timer, now, TICK_NSEC);
   1489
   1490	return HRTIMER_RESTART;
   1491}
   1492
   1493static int sched_skew_tick;
   1494
   1495static int __init skew_tick(char *str)
   1496{
   1497	get_option(&str, &sched_skew_tick);
   1498
   1499	return 0;
   1500}
   1501early_param("skew_tick", skew_tick);
   1502
   1503/**
   1504 * tick_setup_sched_timer - setup the tick emulation timer
   1505 */
   1506void tick_setup_sched_timer(void)
   1507{
   1508	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1509	ktime_t now = ktime_get();
   1510
   1511	/*
   1512	 * Emulate tick processing via per-CPU hrtimers:
   1513	 */
   1514	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
   1515	ts->sched_timer.function = tick_sched_timer;
   1516
   1517	/* Get the next period (per-CPU) */
   1518	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
   1519
   1520	/* Offset the tick to avert jiffies_lock contention. */
   1521	if (sched_skew_tick) {
   1522		u64 offset = TICK_NSEC >> 1;
   1523		do_div(offset, num_possible_cpus());
   1524		offset *= smp_processor_id();
   1525		hrtimer_add_expires_ns(&ts->sched_timer, offset);
   1526	}
   1527
   1528	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
   1529	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
   1530	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
   1531}
   1532#endif /* HIGH_RES_TIMERS */
   1533
   1534#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
   1535void tick_cancel_sched_timer(int cpu)
   1536{
   1537	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
   1538
   1539# ifdef CONFIG_HIGH_RES_TIMERS
   1540	if (ts->sched_timer.base)
   1541		hrtimer_cancel(&ts->sched_timer);
   1542# endif
   1543
   1544	memset(ts, 0, sizeof(*ts));
   1545}
   1546#endif
   1547
   1548/*
   1549 * Async notification about clocksource changes
   1550 */
   1551void tick_clock_notify(void)
   1552{
   1553	int cpu;
   1554
   1555	for_each_possible_cpu(cpu)
   1556		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
   1557}
   1558
   1559/*
   1560 * Async notification about clock event changes
   1561 */
   1562void tick_oneshot_notify(void)
   1563{
   1564	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1565
   1566	set_bit(0, &ts->check_clocks);
   1567}
   1568
   1569/*
   1570 * Check, if a change happened, which makes oneshot possible.
   1571 *
   1572 * Called cyclic from the hrtimer softirq (driven by the timer
   1573 * softirq) allow_nohz signals, that we can switch into low-res nohz
   1574 * mode, because high resolution timers are disabled (either compile
   1575 * or runtime). Called with interrupts disabled.
   1576 */
   1577int tick_check_oneshot_change(int allow_nohz)
   1578{
   1579	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
   1580
   1581	if (!test_and_clear_bit(0, &ts->check_clocks))
   1582		return 0;
   1583
   1584	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
   1585		return 0;
   1586
   1587	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
   1588		return 0;
   1589
   1590	if (!allow_nohz)
   1591		return 1;
   1592
   1593	tick_nohz_switch_to_nohz();
   1594	return 0;
   1595}