cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crc32.c (9546B)


      1/*
      2 * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
      3 * cleaned up code to current version of sparse and added the slicing-by-8
      4 * algorithm to the closely similar existing slicing-by-4 algorithm.
      5 *
      6 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
      7 * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
      8 * Code was from the public domain, copyright abandoned.  Code was
      9 * subsequently included in the kernel, thus was re-licensed under the
     10 * GNU GPL v2.
     11 *
     12 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
     13 * Same crc32 function was used in 5 other places in the kernel.
     14 * I made one version, and deleted the others.
     15 * There are various incantations of crc32().  Some use a seed of 0 or ~0.
     16 * Some xor at the end with ~0.  The generic crc32() function takes
     17 * seed as an argument, and doesn't xor at the end.  Then individual
     18 * users can do whatever they need.
     19 *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
     20 *   fs/jffs2 uses seed 0, doesn't xor with ~0.
     21 *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
     22 *
     23 * This source code is licensed under the GNU General Public License,
     24 * Version 2.  See the file COPYING for more details.
     25 */
     26
     27/* see: Documentation/staging/crc32.rst for a description of algorithms */
     28
     29#include <linux/crc32.h>
     30#include <linux/crc32poly.h>
     31#include <linux/module.h>
     32#include <linux/types.h>
     33#include <linux/sched.h>
     34#include "crc32defs.h"
     35
     36#if CRC_LE_BITS > 8
     37# define tole(x) ((__force u32) cpu_to_le32(x))
     38#else
     39# define tole(x) (x)
     40#endif
     41
     42#if CRC_BE_BITS > 8
     43# define tobe(x) ((__force u32) cpu_to_be32(x))
     44#else
     45# define tobe(x) (x)
     46#endif
     47
     48#include "crc32table.h"
     49
     50MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
     51MODULE_DESCRIPTION("Various CRC32 calculations");
     52MODULE_LICENSE("GPL");
     53
     54#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
     55
     56/* implements slicing-by-4 or slicing-by-8 algorithm */
     57static inline u32 __pure
     58crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
     59{
     60# ifdef __LITTLE_ENDIAN
     61#  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
     62#  define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
     63		   t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
     64#  define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
     65		   t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
     66# else
     67#  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
     68#  define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
     69		   t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
     70#  define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
     71		   t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
     72# endif
     73	const u32 *b;
     74	size_t    rem_len;
     75# ifdef CONFIG_X86
     76	size_t i;
     77# endif
     78	const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
     79# if CRC_LE_BITS != 32
     80	const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
     81# endif
     82	u32 q;
     83
     84	/* Align it */
     85	if (unlikely((long)buf & 3 && len)) {
     86		do {
     87			DO_CRC(*buf++);
     88		} while ((--len) && ((long)buf)&3);
     89	}
     90
     91# if CRC_LE_BITS == 32
     92	rem_len = len & 3;
     93	len = len >> 2;
     94# else
     95	rem_len = len & 7;
     96	len = len >> 3;
     97# endif
     98
     99	b = (const u32 *)buf;
    100# ifdef CONFIG_X86
    101	--b;
    102	for (i = 0; i < len; i++) {
    103# else
    104	for (--b; len; --len) {
    105# endif
    106		q = crc ^ *++b; /* use pre increment for speed */
    107# if CRC_LE_BITS == 32
    108		crc = DO_CRC4;
    109# else
    110		crc = DO_CRC8;
    111		q = *++b;
    112		crc ^= DO_CRC4;
    113# endif
    114	}
    115	len = rem_len;
    116	/* And the last few bytes */
    117	if (len) {
    118		u8 *p = (u8 *)(b + 1) - 1;
    119# ifdef CONFIG_X86
    120		for (i = 0; i < len; i++)
    121			DO_CRC(*++p); /* use pre increment for speed */
    122# else
    123		do {
    124			DO_CRC(*++p); /* use pre increment for speed */
    125		} while (--len);
    126# endif
    127	}
    128	return crc;
    129#undef DO_CRC
    130#undef DO_CRC4
    131#undef DO_CRC8
    132}
    133#endif
    134
    135
    136/**
    137 * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
    138 *			CRC32/CRC32C
    139 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for other
    140 *	 uses, or the previous crc32/crc32c value if computing incrementally.
    141 * @p: pointer to buffer over which CRC32/CRC32C is run
    142 * @len: length of buffer @p
    143 * @tab: little-endian Ethernet table
    144 * @polynomial: CRC32/CRC32c LE polynomial
    145 */
    146static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
    147					  size_t len, const u32 (*tab)[256],
    148					  u32 polynomial)
    149{
    150#if CRC_LE_BITS == 1
    151	int i;
    152	while (len--) {
    153		crc ^= *p++;
    154		for (i = 0; i < 8; i++)
    155			crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
    156	}
    157# elif CRC_LE_BITS == 2
    158	while (len--) {
    159		crc ^= *p++;
    160		crc = (crc >> 2) ^ tab[0][crc & 3];
    161		crc = (crc >> 2) ^ tab[0][crc & 3];
    162		crc = (crc >> 2) ^ tab[0][crc & 3];
    163		crc = (crc >> 2) ^ tab[0][crc & 3];
    164	}
    165# elif CRC_LE_BITS == 4
    166	while (len--) {
    167		crc ^= *p++;
    168		crc = (crc >> 4) ^ tab[0][crc & 15];
    169		crc = (crc >> 4) ^ tab[0][crc & 15];
    170	}
    171# elif CRC_LE_BITS == 8
    172	/* aka Sarwate algorithm */
    173	while (len--) {
    174		crc ^= *p++;
    175		crc = (crc >> 8) ^ tab[0][crc & 255];
    176	}
    177# else
    178	crc = (__force u32) __cpu_to_le32(crc);
    179	crc = crc32_body(crc, p, len, tab);
    180	crc = __le32_to_cpu((__force __le32)crc);
    181#endif
    182	return crc;
    183}
    184
    185#if CRC_LE_BITS == 1
    186u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
    187{
    188	return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
    189}
    190u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
    191{
    192	return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
    193}
    194#else
    195u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
    196{
    197	return crc32_le_generic(crc, p, len, crc32table_le, CRC32_POLY_LE);
    198}
    199u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
    200{
    201	return crc32_le_generic(crc, p, len, crc32ctable_le, CRC32C_POLY_LE);
    202}
    203#endif
    204EXPORT_SYMBOL(crc32_le);
    205EXPORT_SYMBOL(__crc32c_le);
    206
    207u32 __pure crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le);
    208u32 __pure __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le);
    209u32 __pure crc32_be_base(u32, unsigned char const *, size_t) __alias(crc32_be);
    210
    211/*
    212 * This multiplies the polynomials x and y modulo the given modulus.
    213 * This follows the "little-endian" CRC convention that the lsbit
    214 * represents the highest power of x, and the msbit represents x^0.
    215 */
    216static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
    217{
    218	u32 product = x & 1 ? y : 0;
    219	int i;
    220
    221	for (i = 0; i < 31; i++) {
    222		product = (product >> 1) ^ (product & 1 ? modulus : 0);
    223		x >>= 1;
    224		product ^= x & 1 ? y : 0;
    225	}
    226
    227	return product;
    228}
    229
    230/**
    231 * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
    232 * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
    233 * @len: The number of bytes. @crc is multiplied by x^(8*@len)
    234 * @polynomial: The modulus used to reduce the result to 32 bits.
    235 *
    236 * It's possible to parallelize CRC computations by computing a CRC
    237 * over separate ranges of a buffer, then summing them.
    238 * This shifts the given CRC by 8*len bits (i.e. produces the same effect
    239 * as appending len bytes of zero to the data), in time proportional
    240 * to log(len).
    241 */
    242static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
    243						   u32 polynomial)
    244{
    245	u32 power = polynomial;	/* CRC of x^32 */
    246	int i;
    247
    248	/* Shift up to 32 bits in the simple linear way */
    249	for (i = 0; i < 8 * (int)(len & 3); i++)
    250		crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
    251
    252	len >>= 2;
    253	if (!len)
    254		return crc;
    255
    256	for (;;) {
    257		/* "power" is x^(2^i), modulo the polynomial */
    258		if (len & 1)
    259			crc = gf2_multiply(crc, power, polynomial);
    260
    261		len >>= 1;
    262		if (!len)
    263			break;
    264
    265		/* Square power, advancing to x^(2^(i+1)) */
    266		power = gf2_multiply(power, power, polynomial);
    267	}
    268
    269	return crc;
    270}
    271
    272u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
    273{
    274	return crc32_generic_shift(crc, len, CRC32_POLY_LE);
    275}
    276
    277u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
    278{
    279	return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
    280}
    281EXPORT_SYMBOL(crc32_le_shift);
    282EXPORT_SYMBOL(__crc32c_le_shift);
    283
    284/**
    285 * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
    286 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
    287 *	other uses, or the previous crc32 value if computing incrementally.
    288 * @p: pointer to buffer over which CRC32 is run
    289 * @len: length of buffer @p
    290 * @tab: big-endian Ethernet table
    291 * @polynomial: CRC32 BE polynomial
    292 */
    293static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
    294					  size_t len, const u32 (*tab)[256],
    295					  u32 polynomial)
    296{
    297#if CRC_BE_BITS == 1
    298	int i;
    299	while (len--) {
    300		crc ^= *p++ << 24;
    301		for (i = 0; i < 8; i++)
    302			crc =
    303			    (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
    304					  0);
    305	}
    306# elif CRC_BE_BITS == 2
    307	while (len--) {
    308		crc ^= *p++ << 24;
    309		crc = (crc << 2) ^ tab[0][crc >> 30];
    310		crc = (crc << 2) ^ tab[0][crc >> 30];
    311		crc = (crc << 2) ^ tab[0][crc >> 30];
    312		crc = (crc << 2) ^ tab[0][crc >> 30];
    313	}
    314# elif CRC_BE_BITS == 4
    315	while (len--) {
    316		crc ^= *p++ << 24;
    317		crc = (crc << 4) ^ tab[0][crc >> 28];
    318		crc = (crc << 4) ^ tab[0][crc >> 28];
    319	}
    320# elif CRC_BE_BITS == 8
    321	while (len--) {
    322		crc ^= *p++ << 24;
    323		crc = (crc << 8) ^ tab[0][crc >> 24];
    324	}
    325# else
    326	crc = (__force u32) __cpu_to_be32(crc);
    327	crc = crc32_body(crc, p, len, tab);
    328	crc = __be32_to_cpu((__force __be32)crc);
    329# endif
    330	return crc;
    331}
    332
    333#if CRC_BE_BITS == 1
    334u32 __pure __weak crc32_be(u32 crc, unsigned char const *p, size_t len)
    335{
    336	return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
    337}
    338#else
    339u32 __pure __weak crc32_be(u32 crc, unsigned char const *p, size_t len)
    340{
    341	return crc32_be_generic(crc, p, len, crc32table_be, CRC32_POLY_BE);
    342}
    343#endif
    344EXPORT_SYMBOL(crc32_be);