cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

decompress_bunzip2.c (24044B)


      1/*	Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
      2
      3	Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
      4	which also acknowledges contributions by Mike Burrows, David Wheeler,
      5	Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
      6	Robert Sedgewick, and Jon L. Bentley.
      7
      8	This code is licensed under the LGPLv2:
      9		LGPL (http://www.gnu.org/copyleft/lgpl.html
     10*/
     11
     12/*
     13	Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
     14
     15	More efficient reading of Huffman codes, a streamlined read_bunzip()
     16	function, and various other tweaks.  In (limited) tests, approximately
     17	20% faster than bzcat on x86 and about 10% faster on arm.
     18
     19	Note that about 2/3 of the time is spent in read_unzip() reversing
     20	the Burrows-Wheeler transformation.  Much of that time is delay
     21	resulting from cache misses.
     22
     23	I would ask that anyone benefiting from this work, especially those
     24	using it in commercial products, consider making a donation to my local
     25	non-profit hospice organization in the name of the woman I loved, who
     26	passed away Feb. 12, 2003.
     27
     28		In memory of Toni W. Hagan
     29
     30		Hospice of Acadiana, Inc.
     31		2600 Johnston St., Suite 200
     32		Lafayette, LA 70503-3240
     33
     34		Phone (337) 232-1234 or 1-800-738-2226
     35		Fax   (337) 232-1297
     36
     37		https://www.hospiceacadiana.com/
     38
     39	Manuel
     40 */
     41
     42/*
     43	Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu)
     44*/
     45
     46
     47#ifdef STATIC
     48#define PREBOOT
     49#else
     50#include <linux/decompress/bunzip2.h>
     51#endif /* STATIC */
     52
     53#include <linux/decompress/mm.h>
     54#include <linux/crc32poly.h>
     55
     56#ifndef INT_MAX
     57#define INT_MAX 0x7fffffff
     58#endif
     59
     60/* Constants for Huffman coding */
     61#define MAX_GROUPS		6
     62#define GROUP_SIZE   		50	/* 64 would have been more efficient */
     63#define MAX_HUFCODE_BITS 	20	/* Longest Huffman code allowed */
     64#define MAX_SYMBOLS 		258	/* 256 literals + RUNA + RUNB */
     65#define SYMBOL_RUNA		0
     66#define SYMBOL_RUNB		1
     67
     68/* Status return values */
     69#define RETVAL_OK			0
     70#define RETVAL_LAST_BLOCK		(-1)
     71#define RETVAL_NOT_BZIP_DATA		(-2)
     72#define RETVAL_UNEXPECTED_INPUT_EOF	(-3)
     73#define RETVAL_UNEXPECTED_OUTPUT_EOF	(-4)
     74#define RETVAL_DATA_ERROR		(-5)
     75#define RETVAL_OUT_OF_MEMORY		(-6)
     76#define RETVAL_OBSOLETE_INPUT		(-7)
     77
     78/* Other housekeeping constants */
     79#define BZIP2_IOBUF_SIZE		4096
     80
     81/* This is what we know about each Huffman coding group */
     82struct group_data {
     83	/* We have an extra slot at the end of limit[] for a sentinel value. */
     84	int limit[MAX_HUFCODE_BITS+1];
     85	int base[MAX_HUFCODE_BITS];
     86	int permute[MAX_SYMBOLS];
     87	int minLen, maxLen;
     88};
     89
     90/* Structure holding all the housekeeping data, including IO buffers and
     91   memory that persists between calls to bunzip */
     92struct bunzip_data {
     93	/* State for interrupting output loop */
     94	int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
     95	/* I/O tracking data (file handles, buffers, positions, etc.) */
     96	long (*fill)(void*, unsigned long);
     97	long inbufCount, inbufPos /*, outbufPos*/;
     98	unsigned char *inbuf /*,*outbuf*/;
     99	unsigned int inbufBitCount, inbufBits;
    100	/* The CRC values stored in the block header and calculated from the
    101	data */
    102	unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC;
    103	/* Intermediate buffer and its size (in bytes) */
    104	unsigned int *dbuf, dbufSize;
    105	/* These things are a bit too big to go on the stack */
    106	unsigned char selectors[32768];		/* nSelectors = 15 bits */
    107	struct group_data groups[MAX_GROUPS];	/* Huffman coding tables */
    108	int io_error;			/* non-zero if we have IO error */
    109	int byteCount[256];
    110	unsigned char symToByte[256], mtfSymbol[256];
    111};
    112
    113
    114/* Return the next nnn bits of input.  All reads from the compressed input
    115   are done through this function.  All reads are big endian */
    116static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted)
    117{
    118	unsigned int bits = 0;
    119
    120	/* If we need to get more data from the byte buffer, do so.
    121	   (Loop getting one byte at a time to enforce endianness and avoid
    122	   unaligned access.) */
    123	while (bd->inbufBitCount < bits_wanted) {
    124		/* If we need to read more data from file into byte buffer, do
    125		   so */
    126		if (bd->inbufPos == bd->inbufCount) {
    127			if (bd->io_error)
    128				return 0;
    129			bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE);
    130			if (bd->inbufCount <= 0) {
    131				bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF;
    132				return 0;
    133			}
    134			bd->inbufPos = 0;
    135		}
    136		/* Avoid 32-bit overflow (dump bit buffer to top of output) */
    137		if (bd->inbufBitCount >= 24) {
    138			bits = bd->inbufBits&((1 << bd->inbufBitCount)-1);
    139			bits_wanted -= bd->inbufBitCount;
    140			bits <<= bits_wanted;
    141			bd->inbufBitCount = 0;
    142		}
    143		/* Grab next 8 bits of input from buffer. */
    144		bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
    145		bd->inbufBitCount += 8;
    146	}
    147	/* Calculate result */
    148	bd->inbufBitCount -= bits_wanted;
    149	bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1);
    150
    151	return bits;
    152}
    153
    154/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
    155
    156static int INIT get_next_block(struct bunzip_data *bd)
    157{
    158	struct group_data *hufGroup = NULL;
    159	int *base = NULL;
    160	int *limit = NULL;
    161	int dbufCount, nextSym, dbufSize, groupCount, selector,
    162		i, j, k, t, runPos, symCount, symTotal, nSelectors, *byteCount;
    163	unsigned char uc, *symToByte, *mtfSymbol, *selectors;
    164	unsigned int *dbuf, origPtr;
    165
    166	dbuf = bd->dbuf;
    167	dbufSize = bd->dbufSize;
    168	selectors = bd->selectors;
    169	byteCount = bd->byteCount;
    170	symToByte = bd->symToByte;
    171	mtfSymbol = bd->mtfSymbol;
    172
    173	/* Read in header signature and CRC, then validate signature.
    174	   (last block signature means CRC is for whole file, return now) */
    175	i = get_bits(bd, 24);
    176	j = get_bits(bd, 24);
    177	bd->headerCRC = get_bits(bd, 32);
    178	if ((i == 0x177245) && (j == 0x385090))
    179		return RETVAL_LAST_BLOCK;
    180	if ((i != 0x314159) || (j != 0x265359))
    181		return RETVAL_NOT_BZIP_DATA;
    182	/* We can add support for blockRandomised if anybody complains.
    183	   There was some code for this in busybox 1.0.0-pre3, but nobody ever
    184	   noticed that it didn't actually work. */
    185	if (get_bits(bd, 1))
    186		return RETVAL_OBSOLETE_INPUT;
    187	origPtr = get_bits(bd, 24);
    188	if (origPtr >= dbufSize)
    189		return RETVAL_DATA_ERROR;
    190	/* mapping table: if some byte values are never used (encoding things
    191	   like ascii text), the compression code removes the gaps to have fewer
    192	   symbols to deal with, and writes a sparse bitfield indicating which
    193	   values were present.  We make a translation table to convert the
    194	   symbols back to the corresponding bytes. */
    195	t = get_bits(bd, 16);
    196	symTotal = 0;
    197	for (i = 0; i < 16; i++) {
    198		if (t&(1 << (15-i))) {
    199			k = get_bits(bd, 16);
    200			for (j = 0; j < 16; j++)
    201				if (k&(1 << (15-j)))
    202					symToByte[symTotal++] = (16*i)+j;
    203		}
    204	}
    205	/* How many different Huffman coding groups does this block use? */
    206	groupCount = get_bits(bd, 3);
    207	if (groupCount < 2 || groupCount > MAX_GROUPS)
    208		return RETVAL_DATA_ERROR;
    209	/* nSelectors: Every GROUP_SIZE many symbols we select a new
    210	   Huffman coding group.  Read in the group selector list,
    211	   which is stored as MTF encoded bit runs.  (MTF = Move To
    212	   Front, as each value is used it's moved to the start of the
    213	   list.) */
    214	nSelectors = get_bits(bd, 15);
    215	if (!nSelectors)
    216		return RETVAL_DATA_ERROR;
    217	for (i = 0; i < groupCount; i++)
    218		mtfSymbol[i] = i;
    219	for (i = 0; i < nSelectors; i++) {
    220		/* Get next value */
    221		for (j = 0; get_bits(bd, 1); j++)
    222			if (j >= groupCount)
    223				return RETVAL_DATA_ERROR;
    224		/* Decode MTF to get the next selector */
    225		uc = mtfSymbol[j];
    226		for (; j; j--)
    227			mtfSymbol[j] = mtfSymbol[j-1];
    228		mtfSymbol[0] = selectors[i] = uc;
    229	}
    230	/* Read the Huffman coding tables for each group, which code
    231	   for symTotal literal symbols, plus two run symbols (RUNA,
    232	   RUNB) */
    233	symCount = symTotal+2;
    234	for (j = 0; j < groupCount; j++) {
    235		unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1];
    236		int	minLen,	maxLen, pp;
    237		/* Read Huffman code lengths for each symbol.  They're
    238		   stored in a way similar to mtf; record a starting
    239		   value for the first symbol, and an offset from the
    240		   previous value for everys symbol after that.
    241		   (Subtracting 1 before the loop and then adding it
    242		   back at the end is an optimization that makes the
    243		   test inside the loop simpler: symbol length 0
    244		   becomes negative, so an unsigned inequality catches
    245		   it.) */
    246		t = get_bits(bd, 5)-1;
    247		for (i = 0; i < symCount; i++) {
    248			for (;;) {
    249				if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
    250					return RETVAL_DATA_ERROR;
    251
    252				/* If first bit is 0, stop.  Else
    253				   second bit indicates whether to
    254				   increment or decrement the value.
    255				   Optimization: grab 2 bits and unget
    256				   the second if the first was 0. */
    257
    258				k = get_bits(bd, 2);
    259				if (k < 2) {
    260					bd->inbufBitCount++;
    261					break;
    262				}
    263				/* Add one if second bit 1, else
    264				 * subtract 1.  Avoids if/else */
    265				t += (((k+1)&2)-1);
    266			}
    267			/* Correct for the initial -1, to get the
    268			 * final symbol length */
    269			length[i] = t+1;
    270		}
    271		/* Find largest and smallest lengths in this group */
    272		minLen = maxLen = length[0];
    273
    274		for (i = 1; i < symCount; i++) {
    275			if (length[i] > maxLen)
    276				maxLen = length[i];
    277			else if (length[i] < minLen)
    278				minLen = length[i];
    279		}
    280
    281		/* Calculate permute[], base[], and limit[] tables from
    282		 * length[].
    283		 *
    284		 * permute[] is the lookup table for converting
    285		 * Huffman coded symbols into decoded symbols.  base[]
    286		 * is the amount to subtract from the value of a
    287		 * Huffman symbol of a given length when using
    288		 * permute[].
    289		 *
    290		 * limit[] indicates the largest numerical value a
    291		 * symbol with a given number of bits can have.  This
    292		 * is how the Huffman codes can vary in length: each
    293		 * code with a value > limit[length] needs another
    294		 * bit.
    295		 */
    296		hufGroup = bd->groups+j;
    297		hufGroup->minLen = minLen;
    298		hufGroup->maxLen = maxLen;
    299		/* Note that minLen can't be smaller than 1, so we
    300		   adjust the base and limit array pointers so we're
    301		   not always wasting the first entry.  We do this
    302		   again when using them (during symbol decoding).*/
    303		base = hufGroup->base-1;
    304		limit = hufGroup->limit-1;
    305		/* Calculate permute[].  Concurrently, initialize
    306		 * temp[] and limit[]. */
    307		pp = 0;
    308		for (i = minLen; i <= maxLen; i++) {
    309			temp[i] = limit[i] = 0;
    310			for (t = 0; t < symCount; t++)
    311				if (length[t] == i)
    312					hufGroup->permute[pp++] = t;
    313		}
    314		/* Count symbols coded for at each bit length */
    315		for (i = 0; i < symCount; i++)
    316			temp[length[i]]++;
    317		/* Calculate limit[] (the largest symbol-coding value
    318		 *at each bit length, which is (previous limit <<
    319		 *1)+symbols at this level), and base[] (number of
    320		 *symbols to ignore at each bit length, which is limit
    321		 *minus the cumulative count of symbols coded for
    322		 *already). */
    323		pp = t = 0;
    324		for (i = minLen; i < maxLen; i++) {
    325			pp += temp[i];
    326			/* We read the largest possible symbol size
    327			   and then unget bits after determining how
    328			   many we need, and those extra bits could be
    329			   set to anything.  (They're noise from
    330			   future symbols.)  At each level we're
    331			   really only interested in the first few
    332			   bits, so here we set all the trailing
    333			   to-be-ignored bits to 1 so they don't
    334			   affect the value > limit[length]
    335			   comparison. */
    336			limit[i] = (pp << (maxLen - i)) - 1;
    337			pp <<= 1;
    338			base[i+1] = pp-(t += temp[i]);
    339		}
    340		limit[maxLen+1] = INT_MAX; /* Sentinel value for
    341					    * reading next sym. */
    342		limit[maxLen] = pp+temp[maxLen]-1;
    343		base[minLen] = 0;
    344	}
    345	/* We've finished reading and digesting the block header.  Now
    346	   read this block's Huffman coded symbols from the file and
    347	   undo the Huffman coding and run length encoding, saving the
    348	   result into dbuf[dbufCount++] = uc */
    349
    350	/* Initialize symbol occurrence counters and symbol Move To
    351	 * Front table */
    352	for (i = 0; i < 256; i++) {
    353		byteCount[i] = 0;
    354		mtfSymbol[i] = (unsigned char)i;
    355	}
    356	/* Loop through compressed symbols. */
    357	runPos = dbufCount = symCount = selector = 0;
    358	for (;;) {
    359		/* Determine which Huffman coding group to use. */
    360		if (!(symCount--)) {
    361			symCount = GROUP_SIZE-1;
    362			if (selector >= nSelectors)
    363				return RETVAL_DATA_ERROR;
    364			hufGroup = bd->groups+selectors[selector++];
    365			base = hufGroup->base-1;
    366			limit = hufGroup->limit-1;
    367		}
    368		/* Read next Huffman-coded symbol. */
    369		/* Note: It is far cheaper to read maxLen bits and
    370		   back up than it is to read minLen bits and then an
    371		   additional bit at a time, testing as we go.
    372		   Because there is a trailing last block (with file
    373		   CRC), there is no danger of the overread causing an
    374		   unexpected EOF for a valid compressed file.  As a
    375		   further optimization, we do the read inline
    376		   (falling back to a call to get_bits if the buffer
    377		   runs dry).  The following (up to got_huff_bits:) is
    378		   equivalent to j = get_bits(bd, hufGroup->maxLen);
    379		 */
    380		while (bd->inbufBitCount < hufGroup->maxLen) {
    381			if (bd->inbufPos == bd->inbufCount) {
    382				j = get_bits(bd, hufGroup->maxLen);
    383				goto got_huff_bits;
    384			}
    385			bd->inbufBits =
    386				(bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++];
    387			bd->inbufBitCount += 8;
    388		}
    389		bd->inbufBitCount -= hufGroup->maxLen;
    390		j = (bd->inbufBits >> bd->inbufBitCount)&
    391			((1 << hufGroup->maxLen)-1);
    392got_huff_bits:
    393		/* Figure how many bits are in next symbol and
    394		 * unget extras */
    395		i = hufGroup->minLen;
    396		while (j > limit[i])
    397			++i;
    398		bd->inbufBitCount += (hufGroup->maxLen - i);
    399		/* Huffman decode value to get nextSym (with bounds checking) */
    400		if ((i > hufGroup->maxLen)
    401			|| (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i]))
    402				>= MAX_SYMBOLS))
    403			return RETVAL_DATA_ERROR;
    404		nextSym = hufGroup->permute[j];
    405		/* We have now decoded the symbol, which indicates
    406		   either a new literal byte, or a repeated run of the
    407		   most recent literal byte.  First, check if nextSym
    408		   indicates a repeated run, and if so loop collecting
    409		   how many times to repeat the last literal. */
    410		if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
    411			/* If this is the start of a new run, zero out
    412			 * counter */
    413			if (!runPos) {
    414				runPos = 1;
    415				t = 0;
    416			}
    417			/* Neat trick that saves 1 symbol: instead of
    418			   or-ing 0 or 1 at each bit position, add 1
    419			   or 2 instead.  For example, 1011 is 1 << 0
    420			   + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1
    421			   + 1 << 2.  You can make any bit pattern
    422			   that way using 1 less symbol than the basic
    423			   or 0/1 method (except all bits 0, which
    424			   would use no symbols, but a run of length 0
    425			   doesn't mean anything in this context).
    426			   Thus space is saved. */
    427			t += (runPos << nextSym);
    428			/* +runPos if RUNA; +2*runPos if RUNB */
    429
    430			runPos <<= 1;
    431			continue;
    432		}
    433		/* When we hit the first non-run symbol after a run,
    434		   we now know how many times to repeat the last
    435		   literal, so append that many copies to our buffer
    436		   of decoded symbols (dbuf) now.  (The last literal
    437		   used is the one at the head of the mtfSymbol
    438		   array.) */
    439		if (runPos) {
    440			runPos = 0;
    441			if (dbufCount+t >= dbufSize)
    442				return RETVAL_DATA_ERROR;
    443
    444			uc = symToByte[mtfSymbol[0]];
    445			byteCount[uc] += t;
    446			while (t--)
    447				dbuf[dbufCount++] = uc;
    448		}
    449		/* Is this the terminating symbol? */
    450		if (nextSym > symTotal)
    451			break;
    452		/* At this point, nextSym indicates a new literal
    453		   character.  Subtract one to get the position in the
    454		   MTF array at which this literal is currently to be
    455		   found.  (Note that the result can't be -1 or 0,
    456		   because 0 and 1 are RUNA and RUNB.  But another
    457		   instance of the first symbol in the mtf array,
    458		   position 0, would have been handled as part of a
    459		   run above.  Therefore 1 unused mtf position minus 2
    460		   non-literal nextSym values equals -1.) */
    461		if (dbufCount >= dbufSize)
    462			return RETVAL_DATA_ERROR;
    463		i = nextSym - 1;
    464		uc = mtfSymbol[i];
    465		/* Adjust the MTF array.  Since we typically expect to
    466		 *move only a small number of symbols, and are bound
    467		 *by 256 in any case, using memmove here would
    468		 *typically be bigger and slower due to function call
    469		 *overhead and other assorted setup costs. */
    470		do {
    471			mtfSymbol[i] = mtfSymbol[i-1];
    472		} while (--i);
    473		mtfSymbol[0] = uc;
    474		uc = symToByte[uc];
    475		/* We have our literal byte.  Save it into dbuf. */
    476		byteCount[uc]++;
    477		dbuf[dbufCount++] = (unsigned int)uc;
    478	}
    479	/* At this point, we've read all the Huffman-coded symbols
    480	   (and repeated runs) for this block from the input stream,
    481	   and decoded them into the intermediate buffer.  There are
    482	   dbufCount many decoded bytes in dbuf[].  Now undo the
    483	   Burrows-Wheeler transform on dbuf.  See
    484	   http://dogma.net/markn/articles/bwt/bwt.htm
    485	 */
    486	/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
    487	j = 0;
    488	for (i = 0; i < 256; i++) {
    489		k = j+byteCount[i];
    490		byteCount[i] = j;
    491		j = k;
    492	}
    493	/* Figure out what order dbuf would be in if we sorted it. */
    494	for (i = 0; i < dbufCount; i++) {
    495		uc = (unsigned char)(dbuf[i] & 0xff);
    496		dbuf[byteCount[uc]] |= (i << 8);
    497		byteCount[uc]++;
    498	}
    499	/* Decode first byte by hand to initialize "previous" byte.
    500	   Note that it doesn't get output, and if the first three
    501	   characters are identical it doesn't qualify as a run (hence
    502	   writeRunCountdown = 5). */
    503	if (dbufCount) {
    504		if (origPtr >= dbufCount)
    505			return RETVAL_DATA_ERROR;
    506		bd->writePos = dbuf[origPtr];
    507		bd->writeCurrent = (unsigned char)(bd->writePos&0xff);
    508		bd->writePos >>= 8;
    509		bd->writeRunCountdown = 5;
    510	}
    511	bd->writeCount = dbufCount;
    512
    513	return RETVAL_OK;
    514}
    515
    516/* Undo burrows-wheeler transform on intermediate buffer to produce output.
    517   If start_bunzip was initialized with out_fd =-1, then up to len bytes of
    518   data are written to outbuf.  Return value is number of bytes written or
    519   error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
    520   are ignored, data is written to out_fd and return is RETVAL_OK or error.
    521*/
    522
    523static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len)
    524{
    525	const unsigned int *dbuf;
    526	int pos, xcurrent, previous, gotcount;
    527
    528	/* If last read was short due to end of file, return last block now */
    529	if (bd->writeCount < 0)
    530		return bd->writeCount;
    531
    532	gotcount = 0;
    533	dbuf = bd->dbuf;
    534	pos = bd->writePos;
    535	xcurrent = bd->writeCurrent;
    536
    537	/* We will always have pending decoded data to write into the output
    538	   buffer unless this is the very first call (in which case we haven't
    539	   Huffman-decoded a block into the intermediate buffer yet). */
    540
    541	if (bd->writeCopies) {
    542		/* Inside the loop, writeCopies means extra copies (beyond 1) */
    543		--bd->writeCopies;
    544		/* Loop outputting bytes */
    545		for (;;) {
    546			/* If the output buffer is full, snapshot
    547			 * state and return */
    548			if (gotcount >= len) {
    549				bd->writePos = pos;
    550				bd->writeCurrent = xcurrent;
    551				bd->writeCopies++;
    552				return len;
    553			}
    554			/* Write next byte into output buffer, updating CRC */
    555			outbuf[gotcount++] = xcurrent;
    556			bd->writeCRC = (((bd->writeCRC) << 8)
    557				^bd->crc32Table[((bd->writeCRC) >> 24)
    558				^xcurrent]);
    559			/* Loop now if we're outputting multiple
    560			 * copies of this byte */
    561			if (bd->writeCopies) {
    562				--bd->writeCopies;
    563				continue;
    564			}
    565decode_next_byte:
    566			if (!bd->writeCount--)
    567				break;
    568			/* Follow sequence vector to undo
    569			 * Burrows-Wheeler transform */
    570			previous = xcurrent;
    571			pos = dbuf[pos];
    572			xcurrent = pos&0xff;
    573			pos >>= 8;
    574			/* After 3 consecutive copies of the same
    575			   byte, the 4th is a repeat count.  We count
    576			   down from 4 instead *of counting up because
    577			   testing for non-zero is faster */
    578			if (--bd->writeRunCountdown) {
    579				if (xcurrent != previous)
    580					bd->writeRunCountdown = 4;
    581			} else {
    582				/* We have a repeated run, this byte
    583				 * indicates the count */
    584				bd->writeCopies = xcurrent;
    585				xcurrent = previous;
    586				bd->writeRunCountdown = 5;
    587				/* Sometimes there are just 3 bytes
    588				 * (run length 0) */
    589				if (!bd->writeCopies)
    590					goto decode_next_byte;
    591				/* Subtract the 1 copy we'd output
    592				 * anyway to get extras */
    593				--bd->writeCopies;
    594			}
    595		}
    596		/* Decompression of this block completed successfully */
    597		bd->writeCRC = ~bd->writeCRC;
    598		bd->totalCRC = ((bd->totalCRC << 1) |
    599				(bd->totalCRC >> 31)) ^ bd->writeCRC;
    600		/* If this block had a CRC error, force file level CRC error. */
    601		if (bd->writeCRC != bd->headerCRC) {
    602			bd->totalCRC = bd->headerCRC+1;
    603			return RETVAL_LAST_BLOCK;
    604		}
    605	}
    606
    607	/* Refill the intermediate buffer by Huffman-decoding next
    608	 * block of input */
    609	/* (previous is just a convenient unused temp variable here) */
    610	previous = get_next_block(bd);
    611	if (previous) {
    612		bd->writeCount = previous;
    613		return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
    614	}
    615	bd->writeCRC = 0xffffffffUL;
    616	pos = bd->writePos;
    617	xcurrent = bd->writeCurrent;
    618	goto decode_next_byte;
    619}
    620
    621static long INIT nofill(void *buf, unsigned long len)
    622{
    623	return -1;
    624}
    625
    626/* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain
    627   a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
    628   ignored, and data is read from file handle into temporary buffer. */
    629static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, long len,
    630			     long (*fill)(void*, unsigned long))
    631{
    632	struct bunzip_data *bd;
    633	unsigned int i, j, c;
    634	const unsigned int BZh0 =
    635		(((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16)
    636		+(((unsigned int)'h') << 8)+(unsigned int)'0';
    637
    638	/* Figure out how much data to allocate */
    639	i = sizeof(struct bunzip_data);
    640
    641	/* Allocate bunzip_data.  Most fields initialize to zero. */
    642	bd = *bdp = malloc(i);
    643	if (!bd)
    644		return RETVAL_OUT_OF_MEMORY;
    645	memset(bd, 0, sizeof(struct bunzip_data));
    646	/* Setup input buffer */
    647	bd->inbuf = inbuf;
    648	bd->inbufCount = len;
    649	if (fill != NULL)
    650		bd->fill = fill;
    651	else
    652		bd->fill = nofill;
    653
    654	/* Init the CRC32 table (big endian) */
    655	for (i = 0; i < 256; i++) {
    656		c = i << 24;
    657		for (j = 8; j; j--)
    658			c = c&0x80000000 ? (c << 1)^(CRC32_POLY_BE) : (c << 1);
    659		bd->crc32Table[i] = c;
    660	}
    661
    662	/* Ensure that file starts with "BZh['1'-'9']." */
    663	i = get_bits(bd, 32);
    664	if (((unsigned int)(i-BZh0-1)) >= 9)
    665		return RETVAL_NOT_BZIP_DATA;
    666
    667	/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
    668	   uncompressed data.  Allocate intermediate buffer for block. */
    669	bd->dbufSize = 100000*(i-BZh0);
    670
    671	bd->dbuf = large_malloc(bd->dbufSize * sizeof(int));
    672	if (!bd->dbuf)
    673		return RETVAL_OUT_OF_MEMORY;
    674	return RETVAL_OK;
    675}
    676
    677/* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data,
    678   not end of file.) */
    679STATIC int INIT bunzip2(unsigned char *buf, long len,
    680			long (*fill)(void*, unsigned long),
    681			long (*flush)(void*, unsigned long),
    682			unsigned char *outbuf,
    683			long *pos,
    684			void(*error)(char *x))
    685{
    686	struct bunzip_data *bd;
    687	int i = -1;
    688	unsigned char *inbuf;
    689
    690	if (flush)
    691		outbuf = malloc(BZIP2_IOBUF_SIZE);
    692
    693	if (!outbuf) {
    694		error("Could not allocate output buffer");
    695		return RETVAL_OUT_OF_MEMORY;
    696	}
    697	if (buf)
    698		inbuf = buf;
    699	else
    700		inbuf = malloc(BZIP2_IOBUF_SIZE);
    701	if (!inbuf) {
    702		error("Could not allocate input buffer");
    703		i = RETVAL_OUT_OF_MEMORY;
    704		goto exit_0;
    705	}
    706	i = start_bunzip(&bd, inbuf, len, fill);
    707	if (!i) {
    708		for (;;) {
    709			i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE);
    710			if (i <= 0)
    711				break;
    712			if (!flush)
    713				outbuf += i;
    714			else
    715				if (i != flush(outbuf, i)) {
    716					i = RETVAL_UNEXPECTED_OUTPUT_EOF;
    717					break;
    718				}
    719		}
    720	}
    721	/* Check CRC and release memory */
    722	if (i == RETVAL_LAST_BLOCK) {
    723		if (bd->headerCRC != bd->totalCRC)
    724			error("Data integrity error when decompressing.");
    725		else
    726			i = RETVAL_OK;
    727	} else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) {
    728		error("Compressed file ends unexpectedly");
    729	}
    730	if (!bd)
    731		goto exit_1;
    732	if (bd->dbuf)
    733		large_free(bd->dbuf);
    734	if (pos)
    735		*pos = bd->inbufPos;
    736	free(bd);
    737exit_1:
    738	if (!buf)
    739		free(inbuf);
    740exit_0:
    741	if (flush)
    742		free(outbuf);
    743	return i;
    744}
    745
    746#ifdef PREBOOT
    747STATIC int INIT __decompress(unsigned char *buf, long len,
    748			long (*fill)(void*, unsigned long),
    749			long (*flush)(void*, unsigned long),
    750			unsigned char *outbuf, long olen,
    751			long *pos,
    752			void (*error)(char *x))
    753{
    754	return bunzip2(buf, len - 4, fill, flush, outbuf, pos, error);
    755}
    756#endif