cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

genalloc.c (27050B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Basic general purpose allocator for managing special purpose
      4 * memory, for example, memory that is not managed by the regular
      5 * kmalloc/kfree interface.  Uses for this includes on-device special
      6 * memory, uncached memory etc.
      7 *
      8 * It is safe to use the allocator in NMI handlers and other special
      9 * unblockable contexts that could otherwise deadlock on locks.  This
     10 * is implemented by using atomic operations and retries on any
     11 * conflicts.  The disadvantage is that there may be livelocks in
     12 * extreme cases.  For better scalability, one allocator can be used
     13 * for each CPU.
     14 *
     15 * The lockless operation only works if there is enough memory
     16 * available.  If new memory is added to the pool a lock has to be
     17 * still taken.  So any user relying on locklessness has to ensure
     18 * that sufficient memory is preallocated.
     19 *
     20 * The basic atomic operation of this allocator is cmpxchg on long.
     21 * On architectures that don't have NMI-safe cmpxchg implementation,
     22 * the allocator can NOT be used in NMI handler.  So code uses the
     23 * allocator in NMI handler should depend on
     24 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
     25 *
     26 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
     27 */
     28
     29#include <linux/slab.h>
     30#include <linux/export.h>
     31#include <linux/bitmap.h>
     32#include <linux/rculist.h>
     33#include <linux/interrupt.h>
     34#include <linux/genalloc.h>
     35#include <linux/of_device.h>
     36#include <linux/vmalloc.h>
     37
     38static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
     39{
     40	return chunk->end_addr - chunk->start_addr + 1;
     41}
     42
     43static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
     44{
     45	unsigned long val, nval;
     46
     47	nval = *addr;
     48	do {
     49		val = nval;
     50		if (val & mask_to_set)
     51			return -EBUSY;
     52		cpu_relax();
     53	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
     54
     55	return 0;
     56}
     57
     58static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
     59{
     60	unsigned long val, nval;
     61
     62	nval = *addr;
     63	do {
     64		val = nval;
     65		if ((val & mask_to_clear) != mask_to_clear)
     66			return -EBUSY;
     67		cpu_relax();
     68	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
     69
     70	return 0;
     71}
     72
     73/*
     74 * bitmap_set_ll - set the specified number of bits at the specified position
     75 * @map: pointer to a bitmap
     76 * @start: a bit position in @map
     77 * @nr: number of bits to set
     78 *
     79 * Set @nr bits start from @start in @map lock-lessly. Several users
     80 * can set/clear the same bitmap simultaneously without lock. If two
     81 * users set the same bit, one user will return remain bits, otherwise
     82 * return 0.
     83 */
     84static unsigned long
     85bitmap_set_ll(unsigned long *map, unsigned long start, unsigned long nr)
     86{
     87	unsigned long *p = map + BIT_WORD(start);
     88	const unsigned long size = start + nr;
     89	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
     90	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
     91
     92	while (nr >= bits_to_set) {
     93		if (set_bits_ll(p, mask_to_set))
     94			return nr;
     95		nr -= bits_to_set;
     96		bits_to_set = BITS_PER_LONG;
     97		mask_to_set = ~0UL;
     98		p++;
     99	}
    100	if (nr) {
    101		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
    102		if (set_bits_ll(p, mask_to_set))
    103			return nr;
    104	}
    105
    106	return 0;
    107}
    108
    109/*
    110 * bitmap_clear_ll - clear the specified number of bits at the specified position
    111 * @map: pointer to a bitmap
    112 * @start: a bit position in @map
    113 * @nr: number of bits to set
    114 *
    115 * Clear @nr bits start from @start in @map lock-lessly. Several users
    116 * can set/clear the same bitmap simultaneously without lock. If two
    117 * users clear the same bit, one user will return remain bits,
    118 * otherwise return 0.
    119 */
    120static unsigned long
    121bitmap_clear_ll(unsigned long *map, unsigned long start, unsigned long nr)
    122{
    123	unsigned long *p = map + BIT_WORD(start);
    124	const unsigned long size = start + nr;
    125	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
    126	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
    127
    128	while (nr >= bits_to_clear) {
    129		if (clear_bits_ll(p, mask_to_clear))
    130			return nr;
    131		nr -= bits_to_clear;
    132		bits_to_clear = BITS_PER_LONG;
    133		mask_to_clear = ~0UL;
    134		p++;
    135	}
    136	if (nr) {
    137		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
    138		if (clear_bits_ll(p, mask_to_clear))
    139			return nr;
    140	}
    141
    142	return 0;
    143}
    144
    145/**
    146 * gen_pool_create - create a new special memory pool
    147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
    148 * @nid: node id of the node the pool structure should be allocated on, or -1
    149 *
    150 * Create a new special memory pool that can be used to manage special purpose
    151 * memory not managed by the regular kmalloc/kfree interface.
    152 */
    153struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
    154{
    155	struct gen_pool *pool;
    156
    157	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
    158	if (pool != NULL) {
    159		spin_lock_init(&pool->lock);
    160		INIT_LIST_HEAD(&pool->chunks);
    161		pool->min_alloc_order = min_alloc_order;
    162		pool->algo = gen_pool_first_fit;
    163		pool->data = NULL;
    164		pool->name = NULL;
    165	}
    166	return pool;
    167}
    168EXPORT_SYMBOL(gen_pool_create);
    169
    170/**
    171 * gen_pool_add_owner- add a new chunk of special memory to the pool
    172 * @pool: pool to add new memory chunk to
    173 * @virt: virtual starting address of memory chunk to add to pool
    174 * @phys: physical starting address of memory chunk to add to pool
    175 * @size: size in bytes of the memory chunk to add to pool
    176 * @nid: node id of the node the chunk structure and bitmap should be
    177 *       allocated on, or -1
    178 * @owner: private data the publisher would like to recall at alloc time
    179 *
    180 * Add a new chunk of special memory to the specified pool.
    181 *
    182 * Returns 0 on success or a -ve errno on failure.
    183 */
    184int gen_pool_add_owner(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
    185		 size_t size, int nid, void *owner)
    186{
    187	struct gen_pool_chunk *chunk;
    188	unsigned long nbits = size >> pool->min_alloc_order;
    189	unsigned long nbytes = sizeof(struct gen_pool_chunk) +
    190				BITS_TO_LONGS(nbits) * sizeof(long);
    191
    192	chunk = vzalloc_node(nbytes, nid);
    193	if (unlikely(chunk == NULL))
    194		return -ENOMEM;
    195
    196	chunk->phys_addr = phys;
    197	chunk->start_addr = virt;
    198	chunk->end_addr = virt + size - 1;
    199	chunk->owner = owner;
    200	atomic_long_set(&chunk->avail, size);
    201
    202	spin_lock(&pool->lock);
    203	list_add_rcu(&chunk->next_chunk, &pool->chunks);
    204	spin_unlock(&pool->lock);
    205
    206	return 0;
    207}
    208EXPORT_SYMBOL(gen_pool_add_owner);
    209
    210/**
    211 * gen_pool_virt_to_phys - return the physical address of memory
    212 * @pool: pool to allocate from
    213 * @addr: starting address of memory
    214 *
    215 * Returns the physical address on success, or -1 on error.
    216 */
    217phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
    218{
    219	struct gen_pool_chunk *chunk;
    220	phys_addr_t paddr = -1;
    221
    222	rcu_read_lock();
    223	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    224		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
    225			paddr = chunk->phys_addr + (addr - chunk->start_addr);
    226			break;
    227		}
    228	}
    229	rcu_read_unlock();
    230
    231	return paddr;
    232}
    233EXPORT_SYMBOL(gen_pool_virt_to_phys);
    234
    235/**
    236 * gen_pool_destroy - destroy a special memory pool
    237 * @pool: pool to destroy
    238 *
    239 * Destroy the specified special memory pool. Verifies that there are no
    240 * outstanding allocations.
    241 */
    242void gen_pool_destroy(struct gen_pool *pool)
    243{
    244	struct list_head *_chunk, *_next_chunk;
    245	struct gen_pool_chunk *chunk;
    246	int order = pool->min_alloc_order;
    247	unsigned long bit, end_bit;
    248
    249	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
    250		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
    251		list_del(&chunk->next_chunk);
    252
    253		end_bit = chunk_size(chunk) >> order;
    254		bit = find_first_bit(chunk->bits, end_bit);
    255		BUG_ON(bit < end_bit);
    256
    257		vfree(chunk);
    258	}
    259	kfree_const(pool->name);
    260	kfree(pool);
    261}
    262EXPORT_SYMBOL(gen_pool_destroy);
    263
    264/**
    265 * gen_pool_alloc_algo_owner - allocate special memory from the pool
    266 * @pool: pool to allocate from
    267 * @size: number of bytes to allocate from the pool
    268 * @algo: algorithm passed from caller
    269 * @data: data passed to algorithm
    270 * @owner: optionally retrieve the chunk owner
    271 *
    272 * Allocate the requested number of bytes from the specified pool.
    273 * Uses the pool allocation function (with first-fit algorithm by default).
    274 * Can not be used in NMI handler on architectures without
    275 * NMI-safe cmpxchg implementation.
    276 */
    277unsigned long gen_pool_alloc_algo_owner(struct gen_pool *pool, size_t size,
    278		genpool_algo_t algo, void *data, void **owner)
    279{
    280	struct gen_pool_chunk *chunk;
    281	unsigned long addr = 0;
    282	int order = pool->min_alloc_order;
    283	unsigned long nbits, start_bit, end_bit, remain;
    284
    285#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
    286	BUG_ON(in_nmi());
    287#endif
    288
    289	if (owner)
    290		*owner = NULL;
    291
    292	if (size == 0)
    293		return 0;
    294
    295	nbits = (size + (1UL << order) - 1) >> order;
    296	rcu_read_lock();
    297	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    298		if (size > atomic_long_read(&chunk->avail))
    299			continue;
    300
    301		start_bit = 0;
    302		end_bit = chunk_size(chunk) >> order;
    303retry:
    304		start_bit = algo(chunk->bits, end_bit, start_bit,
    305				 nbits, data, pool, chunk->start_addr);
    306		if (start_bit >= end_bit)
    307			continue;
    308		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
    309		if (remain) {
    310			remain = bitmap_clear_ll(chunk->bits, start_bit,
    311						 nbits - remain);
    312			BUG_ON(remain);
    313			goto retry;
    314		}
    315
    316		addr = chunk->start_addr + ((unsigned long)start_bit << order);
    317		size = nbits << order;
    318		atomic_long_sub(size, &chunk->avail);
    319		if (owner)
    320			*owner = chunk->owner;
    321		break;
    322	}
    323	rcu_read_unlock();
    324	return addr;
    325}
    326EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
    327
    328/**
    329 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
    330 * @pool: pool to allocate from
    331 * @size: number of bytes to allocate from the pool
    332 * @dma: dma-view physical address return value.  Use %NULL if unneeded.
    333 *
    334 * Allocate the requested number of bytes from the specified pool.
    335 * Uses the pool allocation function (with first-fit algorithm by default).
    336 * Can not be used in NMI handler on architectures without
    337 * NMI-safe cmpxchg implementation.
    338 *
    339 * Return: virtual address of the allocated memory, or %NULL on failure
    340 */
    341void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
    342{
    343	return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
    344}
    345EXPORT_SYMBOL(gen_pool_dma_alloc);
    346
    347/**
    348 * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
    349 * usage with the given pool algorithm
    350 * @pool: pool to allocate from
    351 * @size: number of bytes to allocate from the pool
    352 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
    353 * @algo: algorithm passed from caller
    354 * @data: data passed to algorithm
    355 *
    356 * Allocate the requested number of bytes from the specified pool. Uses the
    357 * given pool allocation function. Can not be used in NMI handler on
    358 * architectures without NMI-safe cmpxchg implementation.
    359 *
    360 * Return: virtual address of the allocated memory, or %NULL on failure
    361 */
    362void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
    363		dma_addr_t *dma, genpool_algo_t algo, void *data)
    364{
    365	unsigned long vaddr;
    366
    367	if (!pool)
    368		return NULL;
    369
    370	vaddr = gen_pool_alloc_algo(pool, size, algo, data);
    371	if (!vaddr)
    372		return NULL;
    373
    374	if (dma)
    375		*dma = gen_pool_virt_to_phys(pool, vaddr);
    376
    377	return (void *)vaddr;
    378}
    379EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
    380
    381/**
    382 * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
    383 * usage with the given alignment
    384 * @pool: pool to allocate from
    385 * @size: number of bytes to allocate from the pool
    386 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
    387 * @align: alignment in bytes for starting address
    388 *
    389 * Allocate the requested number bytes from the specified pool, with the given
    390 * alignment restriction. Can not be used in NMI handler on architectures
    391 * without NMI-safe cmpxchg implementation.
    392 *
    393 * Return: virtual address of the allocated memory, or %NULL on failure
    394 */
    395void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
    396		dma_addr_t *dma, int align)
    397{
    398	struct genpool_data_align data = { .align = align };
    399
    400	return gen_pool_dma_alloc_algo(pool, size, dma,
    401			gen_pool_first_fit_align, &data);
    402}
    403EXPORT_SYMBOL(gen_pool_dma_alloc_align);
    404
    405/**
    406 * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
    407 * DMA usage
    408 * @pool: pool to allocate from
    409 * @size: number of bytes to allocate from the pool
    410 * @dma: dma-view physical address return value.  Use %NULL if unneeded.
    411 *
    412 * Allocate the requested number of zeroed bytes from the specified pool.
    413 * Uses the pool allocation function (with first-fit algorithm by default).
    414 * Can not be used in NMI handler on architectures without
    415 * NMI-safe cmpxchg implementation.
    416 *
    417 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
    418 */
    419void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
    420{
    421	return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
    422}
    423EXPORT_SYMBOL(gen_pool_dma_zalloc);
    424
    425/**
    426 * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
    427 * DMA usage with the given pool algorithm
    428 * @pool: pool to allocate from
    429 * @size: number of bytes to allocate from the pool
    430 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
    431 * @algo: algorithm passed from caller
    432 * @data: data passed to algorithm
    433 *
    434 * Allocate the requested number of zeroed bytes from the specified pool. Uses
    435 * the given pool allocation function. Can not be used in NMI handler on
    436 * architectures without NMI-safe cmpxchg implementation.
    437 *
    438 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
    439 */
    440void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
    441		dma_addr_t *dma, genpool_algo_t algo, void *data)
    442{
    443	void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
    444
    445	if (vaddr)
    446		memset(vaddr, 0, size);
    447
    448	return vaddr;
    449}
    450EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
    451
    452/**
    453 * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
    454 * DMA usage with the given alignment
    455 * @pool: pool to allocate from
    456 * @size: number of bytes to allocate from the pool
    457 * @dma: DMA-view physical address return value. Use %NULL if unneeded.
    458 * @align: alignment in bytes for starting address
    459 *
    460 * Allocate the requested number of zeroed bytes from the specified pool,
    461 * with the given alignment restriction. Can not be used in NMI handler on
    462 * architectures without NMI-safe cmpxchg implementation.
    463 *
    464 * Return: virtual address of the allocated zeroed memory, or %NULL on failure
    465 */
    466void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
    467		dma_addr_t *dma, int align)
    468{
    469	struct genpool_data_align data = { .align = align };
    470
    471	return gen_pool_dma_zalloc_algo(pool, size, dma,
    472			gen_pool_first_fit_align, &data);
    473}
    474EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
    475
    476/**
    477 * gen_pool_free_owner - free allocated special memory back to the pool
    478 * @pool: pool to free to
    479 * @addr: starting address of memory to free back to pool
    480 * @size: size in bytes of memory to free
    481 * @owner: private data stashed at gen_pool_add() time
    482 *
    483 * Free previously allocated special memory back to the specified
    484 * pool.  Can not be used in NMI handler on architectures without
    485 * NMI-safe cmpxchg implementation.
    486 */
    487void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, size_t size,
    488		void **owner)
    489{
    490	struct gen_pool_chunk *chunk;
    491	int order = pool->min_alloc_order;
    492	unsigned long start_bit, nbits, remain;
    493
    494#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
    495	BUG_ON(in_nmi());
    496#endif
    497
    498	if (owner)
    499		*owner = NULL;
    500
    501	nbits = (size + (1UL << order) - 1) >> order;
    502	rcu_read_lock();
    503	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
    504		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
    505			BUG_ON(addr + size - 1 > chunk->end_addr);
    506			start_bit = (addr - chunk->start_addr) >> order;
    507			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
    508			BUG_ON(remain);
    509			size = nbits << order;
    510			atomic_long_add(size, &chunk->avail);
    511			if (owner)
    512				*owner = chunk->owner;
    513			rcu_read_unlock();
    514			return;
    515		}
    516	}
    517	rcu_read_unlock();
    518	BUG();
    519}
    520EXPORT_SYMBOL(gen_pool_free_owner);
    521
    522/**
    523 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
    524 * @pool:	the generic memory pool
    525 * @func:	func to call
    526 * @data:	additional data used by @func
    527 *
    528 * Call @func for every chunk of generic memory pool.  The @func is
    529 * called with rcu_read_lock held.
    530 */
    531void gen_pool_for_each_chunk(struct gen_pool *pool,
    532	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
    533	void *data)
    534{
    535	struct gen_pool_chunk *chunk;
    536
    537	rcu_read_lock();
    538	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
    539		func(pool, chunk, data);
    540	rcu_read_unlock();
    541}
    542EXPORT_SYMBOL(gen_pool_for_each_chunk);
    543
    544/**
    545 * gen_pool_has_addr - checks if an address falls within the range of a pool
    546 * @pool:	the generic memory pool
    547 * @start:	start address
    548 * @size:	size of the region
    549 *
    550 * Check if the range of addresses falls within the specified pool. Returns
    551 * true if the entire range is contained in the pool and false otherwise.
    552 */
    553bool gen_pool_has_addr(struct gen_pool *pool, unsigned long start,
    554			size_t size)
    555{
    556	bool found = false;
    557	unsigned long end = start + size - 1;
    558	struct gen_pool_chunk *chunk;
    559
    560	rcu_read_lock();
    561	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
    562		if (start >= chunk->start_addr && start <= chunk->end_addr) {
    563			if (end <= chunk->end_addr) {
    564				found = true;
    565				break;
    566			}
    567		}
    568	}
    569	rcu_read_unlock();
    570	return found;
    571}
    572EXPORT_SYMBOL(gen_pool_has_addr);
    573
    574/**
    575 * gen_pool_avail - get available free space of the pool
    576 * @pool: pool to get available free space
    577 *
    578 * Return available free space of the specified pool.
    579 */
    580size_t gen_pool_avail(struct gen_pool *pool)
    581{
    582	struct gen_pool_chunk *chunk;
    583	size_t avail = 0;
    584
    585	rcu_read_lock();
    586	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
    587		avail += atomic_long_read(&chunk->avail);
    588	rcu_read_unlock();
    589	return avail;
    590}
    591EXPORT_SYMBOL_GPL(gen_pool_avail);
    592
    593/**
    594 * gen_pool_size - get size in bytes of memory managed by the pool
    595 * @pool: pool to get size
    596 *
    597 * Return size in bytes of memory managed by the pool.
    598 */
    599size_t gen_pool_size(struct gen_pool *pool)
    600{
    601	struct gen_pool_chunk *chunk;
    602	size_t size = 0;
    603
    604	rcu_read_lock();
    605	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
    606		size += chunk_size(chunk);
    607	rcu_read_unlock();
    608	return size;
    609}
    610EXPORT_SYMBOL_GPL(gen_pool_size);
    611
    612/**
    613 * gen_pool_set_algo - set the allocation algorithm
    614 * @pool: pool to change allocation algorithm
    615 * @algo: custom algorithm function
    616 * @data: additional data used by @algo
    617 *
    618 * Call @algo for each memory allocation in the pool.
    619 * If @algo is NULL use gen_pool_first_fit as default
    620 * memory allocation function.
    621 */
    622void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
    623{
    624	rcu_read_lock();
    625
    626	pool->algo = algo;
    627	if (!pool->algo)
    628		pool->algo = gen_pool_first_fit;
    629
    630	pool->data = data;
    631
    632	rcu_read_unlock();
    633}
    634EXPORT_SYMBOL(gen_pool_set_algo);
    635
    636/**
    637 * gen_pool_first_fit - find the first available region
    638 * of memory matching the size requirement (no alignment constraint)
    639 * @map: The address to base the search on
    640 * @size: The bitmap size in bits
    641 * @start: The bitnumber to start searching at
    642 * @nr: The number of zeroed bits we're looking for
    643 * @data: additional data - unused
    644 * @pool: pool to find the fit region memory from
    645 * @start_addr: not used in this function
    646 */
    647unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
    648		unsigned long start, unsigned int nr, void *data,
    649		struct gen_pool *pool, unsigned long start_addr)
    650{
    651	return bitmap_find_next_zero_area(map, size, start, nr, 0);
    652}
    653EXPORT_SYMBOL(gen_pool_first_fit);
    654
    655/**
    656 * gen_pool_first_fit_align - find the first available region
    657 * of memory matching the size requirement (alignment constraint)
    658 * @map: The address to base the search on
    659 * @size: The bitmap size in bits
    660 * @start: The bitnumber to start searching at
    661 * @nr: The number of zeroed bits we're looking for
    662 * @data: data for alignment
    663 * @pool: pool to get order from
    664 * @start_addr: start addr of alloction chunk
    665 */
    666unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
    667		unsigned long start, unsigned int nr, void *data,
    668		struct gen_pool *pool, unsigned long start_addr)
    669{
    670	struct genpool_data_align *alignment;
    671	unsigned long align_mask, align_off;
    672	int order;
    673
    674	alignment = data;
    675	order = pool->min_alloc_order;
    676	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
    677	align_off = (start_addr & (alignment->align - 1)) >> order;
    678
    679	return bitmap_find_next_zero_area_off(map, size, start, nr,
    680					      align_mask, align_off);
    681}
    682EXPORT_SYMBOL(gen_pool_first_fit_align);
    683
    684/**
    685 * gen_pool_fixed_alloc - reserve a specific region
    686 * @map: The address to base the search on
    687 * @size: The bitmap size in bits
    688 * @start: The bitnumber to start searching at
    689 * @nr: The number of zeroed bits we're looking for
    690 * @data: data for alignment
    691 * @pool: pool to get order from
    692 * @start_addr: not used in this function
    693 */
    694unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
    695		unsigned long start, unsigned int nr, void *data,
    696		struct gen_pool *pool, unsigned long start_addr)
    697{
    698	struct genpool_data_fixed *fixed_data;
    699	int order;
    700	unsigned long offset_bit;
    701	unsigned long start_bit;
    702
    703	fixed_data = data;
    704	order = pool->min_alloc_order;
    705	offset_bit = fixed_data->offset >> order;
    706	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
    707		return size;
    708
    709	start_bit = bitmap_find_next_zero_area(map, size,
    710			start + offset_bit, nr, 0);
    711	if (start_bit != offset_bit)
    712		start_bit = size;
    713	return start_bit;
    714}
    715EXPORT_SYMBOL(gen_pool_fixed_alloc);
    716
    717/**
    718 * gen_pool_first_fit_order_align - find the first available region
    719 * of memory matching the size requirement. The region will be aligned
    720 * to the order of the size specified.
    721 * @map: The address to base the search on
    722 * @size: The bitmap size in bits
    723 * @start: The bitnumber to start searching at
    724 * @nr: The number of zeroed bits we're looking for
    725 * @data: additional data - unused
    726 * @pool: pool to find the fit region memory from
    727 * @start_addr: not used in this function
    728 */
    729unsigned long gen_pool_first_fit_order_align(unsigned long *map,
    730		unsigned long size, unsigned long start,
    731		unsigned int nr, void *data, struct gen_pool *pool,
    732		unsigned long start_addr)
    733{
    734	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
    735
    736	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
    737}
    738EXPORT_SYMBOL(gen_pool_first_fit_order_align);
    739
    740/**
    741 * gen_pool_best_fit - find the best fitting region of memory
    742 * matching the size requirement (no alignment constraint)
    743 * @map: The address to base the search on
    744 * @size: The bitmap size in bits
    745 * @start: The bitnumber to start searching at
    746 * @nr: The number of zeroed bits we're looking for
    747 * @data: additional data - unused
    748 * @pool: pool to find the fit region memory from
    749 * @start_addr: not used in this function
    750 *
    751 * Iterate over the bitmap to find the smallest free region
    752 * which we can allocate the memory.
    753 */
    754unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
    755		unsigned long start, unsigned int nr, void *data,
    756		struct gen_pool *pool, unsigned long start_addr)
    757{
    758	unsigned long start_bit = size;
    759	unsigned long len = size + 1;
    760	unsigned long index;
    761
    762	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
    763
    764	while (index < size) {
    765		unsigned long next_bit = find_next_bit(map, size, index + nr);
    766		if ((next_bit - index) < len) {
    767			len = next_bit - index;
    768			start_bit = index;
    769			if (len == nr)
    770				return start_bit;
    771		}
    772		index = bitmap_find_next_zero_area(map, size,
    773						   next_bit + 1, nr, 0);
    774	}
    775
    776	return start_bit;
    777}
    778EXPORT_SYMBOL(gen_pool_best_fit);
    779
    780static void devm_gen_pool_release(struct device *dev, void *res)
    781{
    782	gen_pool_destroy(*(struct gen_pool **)res);
    783}
    784
    785static int devm_gen_pool_match(struct device *dev, void *res, void *data)
    786{
    787	struct gen_pool **p = res;
    788
    789	/* NULL data matches only a pool without an assigned name */
    790	if (!data && !(*p)->name)
    791		return 1;
    792
    793	if (!data || !(*p)->name)
    794		return 0;
    795
    796	return !strcmp((*p)->name, data);
    797}
    798
    799/**
    800 * gen_pool_get - Obtain the gen_pool (if any) for a device
    801 * @dev: device to retrieve the gen_pool from
    802 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
    803 *
    804 * Returns the gen_pool for the device if one is present, or NULL.
    805 */
    806struct gen_pool *gen_pool_get(struct device *dev, const char *name)
    807{
    808	struct gen_pool **p;
    809
    810	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
    811			(void *)name);
    812	if (!p)
    813		return NULL;
    814	return *p;
    815}
    816EXPORT_SYMBOL_GPL(gen_pool_get);
    817
    818/**
    819 * devm_gen_pool_create - managed gen_pool_create
    820 * @dev: device that provides the gen_pool
    821 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
    822 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
    823 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
    824 *
    825 * Create a new special memory pool that can be used to manage special purpose
    826 * memory not managed by the regular kmalloc/kfree interface. The pool will be
    827 * automatically destroyed by the device management code.
    828 */
    829struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
    830				      int nid, const char *name)
    831{
    832	struct gen_pool **ptr, *pool;
    833	const char *pool_name = NULL;
    834
    835	/* Check that genpool to be created is uniquely addressed on device */
    836	if (gen_pool_get(dev, name))
    837		return ERR_PTR(-EINVAL);
    838
    839	if (name) {
    840		pool_name = kstrdup_const(name, GFP_KERNEL);
    841		if (!pool_name)
    842			return ERR_PTR(-ENOMEM);
    843	}
    844
    845	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
    846	if (!ptr)
    847		goto free_pool_name;
    848
    849	pool = gen_pool_create(min_alloc_order, nid);
    850	if (!pool)
    851		goto free_devres;
    852
    853	*ptr = pool;
    854	pool->name = pool_name;
    855	devres_add(dev, ptr);
    856
    857	return pool;
    858
    859free_devres:
    860	devres_free(ptr);
    861free_pool_name:
    862	kfree_const(pool_name);
    863
    864	return ERR_PTR(-ENOMEM);
    865}
    866EXPORT_SYMBOL(devm_gen_pool_create);
    867
    868#ifdef CONFIG_OF
    869/**
    870 * of_gen_pool_get - find a pool by phandle property
    871 * @np: device node
    872 * @propname: property name containing phandle(s)
    873 * @index: index into the phandle array
    874 *
    875 * Returns the pool that contains the chunk starting at the physical
    876 * address of the device tree node pointed at by the phandle property,
    877 * or NULL if not found.
    878 */
    879struct gen_pool *of_gen_pool_get(struct device_node *np,
    880	const char *propname, int index)
    881{
    882	struct platform_device *pdev;
    883	struct device_node *np_pool, *parent;
    884	const char *name = NULL;
    885	struct gen_pool *pool = NULL;
    886
    887	np_pool = of_parse_phandle(np, propname, index);
    888	if (!np_pool)
    889		return NULL;
    890
    891	pdev = of_find_device_by_node(np_pool);
    892	if (!pdev) {
    893		/* Check if named gen_pool is created by parent node device */
    894		parent = of_get_parent(np_pool);
    895		pdev = of_find_device_by_node(parent);
    896		of_node_put(parent);
    897
    898		of_property_read_string(np_pool, "label", &name);
    899		if (!name)
    900			name = np_pool->name;
    901	}
    902	if (pdev)
    903		pool = gen_pool_get(&pdev->dev, name);
    904	of_node_put(np_pool);
    905
    906	return pool;
    907}
    908EXPORT_SYMBOL_GPL(of_gen_pool_get);
    909#endif /* CONFIG_OF */