cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

iov_iter.c (50417B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2#include <crypto/hash.h>
      3#include <linux/export.h>
      4#include <linux/bvec.h>
      5#include <linux/fault-inject-usercopy.h>
      6#include <linux/uio.h>
      7#include <linux/pagemap.h>
      8#include <linux/highmem.h>
      9#include <linux/slab.h>
     10#include <linux/vmalloc.h>
     11#include <linux/splice.h>
     12#include <linux/compat.h>
     13#include <net/checksum.h>
     14#include <linux/scatterlist.h>
     15#include <linux/instrumented.h>
     16
     17#define PIPE_PARANOIA /* for now */
     18
     19/* covers iovec and kvec alike */
     20#define iterate_iovec(i, n, base, len, off, __p, STEP) {	\
     21	size_t off = 0;						\
     22	size_t skip = i->iov_offset;				\
     23	do {							\
     24		len = min(n, __p->iov_len - skip);		\
     25		if (likely(len)) {				\
     26			base = __p->iov_base + skip;		\
     27			len -= (STEP);				\
     28			off += len;				\
     29			skip += len;				\
     30			n -= len;				\
     31			if (skip < __p->iov_len)		\
     32				break;				\
     33		}						\
     34		__p++;						\
     35		skip = 0;					\
     36	} while (n);						\
     37	i->iov_offset = skip;					\
     38	n = off;						\
     39}
     40
     41#define iterate_bvec(i, n, base, len, off, p, STEP) {		\
     42	size_t off = 0;						\
     43	unsigned skip = i->iov_offset;				\
     44	while (n) {						\
     45		unsigned offset = p->bv_offset + skip;		\
     46		unsigned left;					\
     47		void *kaddr = kmap_local_page(p->bv_page +	\
     48					offset / PAGE_SIZE);	\
     49		base = kaddr + offset % PAGE_SIZE;		\
     50		len = min(min(n, (size_t)(p->bv_len - skip)),	\
     51		     (size_t)(PAGE_SIZE - offset % PAGE_SIZE));	\
     52		left = (STEP);					\
     53		kunmap_local(kaddr);				\
     54		len -= left;					\
     55		off += len;					\
     56		skip += len;					\
     57		if (skip == p->bv_len) {			\
     58			skip = 0;				\
     59			p++;					\
     60		}						\
     61		n -= len;					\
     62		if (left)					\
     63			break;					\
     64	}							\
     65	i->iov_offset = skip;					\
     66	n = off;						\
     67}
     68
     69#define iterate_xarray(i, n, base, len, __off, STEP) {		\
     70	__label__ __out;					\
     71	size_t __off = 0;					\
     72	struct folio *folio;					\
     73	loff_t start = i->xarray_start + i->iov_offset;		\
     74	pgoff_t index = start / PAGE_SIZE;			\
     75	XA_STATE(xas, i->xarray, index);			\
     76								\
     77	len = PAGE_SIZE - offset_in_page(start);		\
     78	rcu_read_lock();					\
     79	xas_for_each(&xas, folio, ULONG_MAX) {			\
     80		unsigned left;					\
     81		size_t offset;					\
     82		if (xas_retry(&xas, folio))			\
     83			continue;				\
     84		if (WARN_ON(xa_is_value(folio)))		\
     85			break;					\
     86		if (WARN_ON(folio_test_hugetlb(folio)))		\
     87			break;					\
     88		offset = offset_in_folio(folio, start + __off);	\
     89		while (offset < folio_size(folio)) {		\
     90			base = kmap_local_folio(folio, offset);	\
     91			len = min(n, len);			\
     92			left = (STEP);				\
     93			kunmap_local(base);			\
     94			len -= left;				\
     95			__off += len;				\
     96			n -= len;				\
     97			if (left || n == 0)			\
     98				goto __out;			\
     99			offset += len;				\
    100			len = PAGE_SIZE;			\
    101		}						\
    102	}							\
    103__out:								\
    104	rcu_read_unlock();					\
    105	i->iov_offset += __off;					\
    106	n = __off;						\
    107}
    108
    109#define __iterate_and_advance(i, n, base, len, off, I, K) {	\
    110	if (unlikely(i->count < n))				\
    111		n = i->count;					\
    112	if (likely(n)) {					\
    113		if (likely(iter_is_iovec(i))) {			\
    114			const struct iovec *iov = i->iov;	\
    115			void __user *base;			\
    116			size_t len;				\
    117			iterate_iovec(i, n, base, len, off,	\
    118						iov, (I))	\
    119			i->nr_segs -= iov - i->iov;		\
    120			i->iov = iov;				\
    121		} else if (iov_iter_is_bvec(i)) {		\
    122			const struct bio_vec *bvec = i->bvec;	\
    123			void *base;				\
    124			size_t len;				\
    125			iterate_bvec(i, n, base, len, off,	\
    126						bvec, (K))	\
    127			i->nr_segs -= bvec - i->bvec;		\
    128			i->bvec = bvec;				\
    129		} else if (iov_iter_is_kvec(i)) {		\
    130			const struct kvec *kvec = i->kvec;	\
    131			void *base;				\
    132			size_t len;				\
    133			iterate_iovec(i, n, base, len, off,	\
    134						kvec, (K))	\
    135			i->nr_segs -= kvec - i->kvec;		\
    136			i->kvec = kvec;				\
    137		} else if (iov_iter_is_xarray(i)) {		\
    138			void *base;				\
    139			size_t len;				\
    140			iterate_xarray(i, n, base, len, off,	\
    141							(K))	\
    142		}						\
    143		i->count -= n;					\
    144	}							\
    145}
    146#define iterate_and_advance(i, n, base, len, off, I, K) \
    147	__iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
    148
    149static int copyout(void __user *to, const void *from, size_t n)
    150{
    151	if (should_fail_usercopy())
    152		return n;
    153	if (access_ok(to, n)) {
    154		instrument_copy_to_user(to, from, n);
    155		n = raw_copy_to_user(to, from, n);
    156	}
    157	return n;
    158}
    159
    160static int copyin(void *to, const void __user *from, size_t n)
    161{
    162	if (should_fail_usercopy())
    163		return n;
    164	if (access_ok(from, n)) {
    165		instrument_copy_from_user(to, from, n);
    166		n = raw_copy_from_user(to, from, n);
    167	}
    168	return n;
    169}
    170
    171static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
    172			 struct iov_iter *i)
    173{
    174	size_t skip, copy, left, wanted;
    175	const struct iovec *iov;
    176	char __user *buf;
    177	void *kaddr, *from;
    178
    179	if (unlikely(bytes > i->count))
    180		bytes = i->count;
    181
    182	if (unlikely(!bytes))
    183		return 0;
    184
    185	might_fault();
    186	wanted = bytes;
    187	iov = i->iov;
    188	skip = i->iov_offset;
    189	buf = iov->iov_base + skip;
    190	copy = min(bytes, iov->iov_len - skip);
    191
    192	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) {
    193		kaddr = kmap_atomic(page);
    194		from = kaddr + offset;
    195
    196		/* first chunk, usually the only one */
    197		left = copyout(buf, from, copy);
    198		copy -= left;
    199		skip += copy;
    200		from += copy;
    201		bytes -= copy;
    202
    203		while (unlikely(!left && bytes)) {
    204			iov++;
    205			buf = iov->iov_base;
    206			copy = min(bytes, iov->iov_len);
    207			left = copyout(buf, from, copy);
    208			copy -= left;
    209			skip = copy;
    210			from += copy;
    211			bytes -= copy;
    212		}
    213		if (likely(!bytes)) {
    214			kunmap_atomic(kaddr);
    215			goto done;
    216		}
    217		offset = from - kaddr;
    218		buf += copy;
    219		kunmap_atomic(kaddr);
    220		copy = min(bytes, iov->iov_len - skip);
    221	}
    222	/* Too bad - revert to non-atomic kmap */
    223
    224	kaddr = kmap(page);
    225	from = kaddr + offset;
    226	left = copyout(buf, from, copy);
    227	copy -= left;
    228	skip += copy;
    229	from += copy;
    230	bytes -= copy;
    231	while (unlikely(!left && bytes)) {
    232		iov++;
    233		buf = iov->iov_base;
    234		copy = min(bytes, iov->iov_len);
    235		left = copyout(buf, from, copy);
    236		copy -= left;
    237		skip = copy;
    238		from += copy;
    239		bytes -= copy;
    240	}
    241	kunmap(page);
    242
    243done:
    244	if (skip == iov->iov_len) {
    245		iov++;
    246		skip = 0;
    247	}
    248	i->count -= wanted - bytes;
    249	i->nr_segs -= iov - i->iov;
    250	i->iov = iov;
    251	i->iov_offset = skip;
    252	return wanted - bytes;
    253}
    254
    255static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
    256			 struct iov_iter *i)
    257{
    258	size_t skip, copy, left, wanted;
    259	const struct iovec *iov;
    260	char __user *buf;
    261	void *kaddr, *to;
    262
    263	if (unlikely(bytes > i->count))
    264		bytes = i->count;
    265
    266	if (unlikely(!bytes))
    267		return 0;
    268
    269	might_fault();
    270	wanted = bytes;
    271	iov = i->iov;
    272	skip = i->iov_offset;
    273	buf = iov->iov_base + skip;
    274	copy = min(bytes, iov->iov_len - skip);
    275
    276	if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) {
    277		kaddr = kmap_atomic(page);
    278		to = kaddr + offset;
    279
    280		/* first chunk, usually the only one */
    281		left = copyin(to, buf, copy);
    282		copy -= left;
    283		skip += copy;
    284		to += copy;
    285		bytes -= copy;
    286
    287		while (unlikely(!left && bytes)) {
    288			iov++;
    289			buf = iov->iov_base;
    290			copy = min(bytes, iov->iov_len);
    291			left = copyin(to, buf, copy);
    292			copy -= left;
    293			skip = copy;
    294			to += copy;
    295			bytes -= copy;
    296		}
    297		if (likely(!bytes)) {
    298			kunmap_atomic(kaddr);
    299			goto done;
    300		}
    301		offset = to - kaddr;
    302		buf += copy;
    303		kunmap_atomic(kaddr);
    304		copy = min(bytes, iov->iov_len - skip);
    305	}
    306	/* Too bad - revert to non-atomic kmap */
    307
    308	kaddr = kmap(page);
    309	to = kaddr + offset;
    310	left = copyin(to, buf, copy);
    311	copy -= left;
    312	skip += copy;
    313	to += copy;
    314	bytes -= copy;
    315	while (unlikely(!left && bytes)) {
    316		iov++;
    317		buf = iov->iov_base;
    318		copy = min(bytes, iov->iov_len);
    319		left = copyin(to, buf, copy);
    320		copy -= left;
    321		skip = copy;
    322		to += copy;
    323		bytes -= copy;
    324	}
    325	kunmap(page);
    326
    327done:
    328	if (skip == iov->iov_len) {
    329		iov++;
    330		skip = 0;
    331	}
    332	i->count -= wanted - bytes;
    333	i->nr_segs -= iov - i->iov;
    334	i->iov = iov;
    335	i->iov_offset = skip;
    336	return wanted - bytes;
    337}
    338
    339#ifdef PIPE_PARANOIA
    340static bool sanity(const struct iov_iter *i)
    341{
    342	struct pipe_inode_info *pipe = i->pipe;
    343	unsigned int p_head = pipe->head;
    344	unsigned int p_tail = pipe->tail;
    345	unsigned int p_mask = pipe->ring_size - 1;
    346	unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
    347	unsigned int i_head = i->head;
    348	unsigned int idx;
    349
    350	if (i->iov_offset) {
    351		struct pipe_buffer *p;
    352		if (unlikely(p_occupancy == 0))
    353			goto Bad;	// pipe must be non-empty
    354		if (unlikely(i_head != p_head - 1))
    355			goto Bad;	// must be at the last buffer...
    356
    357		p = &pipe->bufs[i_head & p_mask];
    358		if (unlikely(p->offset + p->len != i->iov_offset))
    359			goto Bad;	// ... at the end of segment
    360	} else {
    361		if (i_head != p_head)
    362			goto Bad;	// must be right after the last buffer
    363	}
    364	return true;
    365Bad:
    366	printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
    367	printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
    368			p_head, p_tail, pipe->ring_size);
    369	for (idx = 0; idx < pipe->ring_size; idx++)
    370		printk(KERN_ERR "[%p %p %d %d]\n",
    371			pipe->bufs[idx].ops,
    372			pipe->bufs[idx].page,
    373			pipe->bufs[idx].offset,
    374			pipe->bufs[idx].len);
    375	WARN_ON(1);
    376	return false;
    377}
    378#else
    379#define sanity(i) true
    380#endif
    381
    382static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
    383			 struct iov_iter *i)
    384{
    385	struct pipe_inode_info *pipe = i->pipe;
    386	struct pipe_buffer *buf;
    387	unsigned int p_tail = pipe->tail;
    388	unsigned int p_mask = pipe->ring_size - 1;
    389	unsigned int i_head = i->head;
    390	size_t off;
    391
    392	if (unlikely(bytes > i->count))
    393		bytes = i->count;
    394
    395	if (unlikely(!bytes))
    396		return 0;
    397
    398	if (!sanity(i))
    399		return 0;
    400
    401	off = i->iov_offset;
    402	buf = &pipe->bufs[i_head & p_mask];
    403	if (off) {
    404		if (offset == off && buf->page == page) {
    405			/* merge with the last one */
    406			buf->len += bytes;
    407			i->iov_offset += bytes;
    408			goto out;
    409		}
    410		i_head++;
    411		buf = &pipe->bufs[i_head & p_mask];
    412	}
    413	if (pipe_full(i_head, p_tail, pipe->max_usage))
    414		return 0;
    415
    416	buf->ops = &page_cache_pipe_buf_ops;
    417	buf->flags = 0;
    418	get_page(page);
    419	buf->page = page;
    420	buf->offset = offset;
    421	buf->len = bytes;
    422
    423	pipe->head = i_head + 1;
    424	i->iov_offset = offset + bytes;
    425	i->head = i_head;
    426out:
    427	i->count -= bytes;
    428	return bytes;
    429}
    430
    431/*
    432 * fault_in_iov_iter_readable - fault in iov iterator for reading
    433 * @i: iterator
    434 * @size: maximum length
    435 *
    436 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
    437 * @size.  For each iovec, fault in each page that constitutes the iovec.
    438 *
    439 * Returns the number of bytes not faulted in (like copy_to_user() and
    440 * copy_from_user()).
    441 *
    442 * Always returns 0 for non-userspace iterators.
    443 */
    444size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
    445{
    446	if (iter_is_iovec(i)) {
    447		size_t count = min(size, iov_iter_count(i));
    448		const struct iovec *p;
    449		size_t skip;
    450
    451		size -= count;
    452		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
    453			size_t len = min(count, p->iov_len - skip);
    454			size_t ret;
    455
    456			if (unlikely(!len))
    457				continue;
    458			ret = fault_in_readable(p->iov_base + skip, len);
    459			count -= len - ret;
    460			if (ret)
    461				break;
    462		}
    463		return count + size;
    464	}
    465	return 0;
    466}
    467EXPORT_SYMBOL(fault_in_iov_iter_readable);
    468
    469/*
    470 * fault_in_iov_iter_writeable - fault in iov iterator for writing
    471 * @i: iterator
    472 * @size: maximum length
    473 *
    474 * Faults in the iterator using get_user_pages(), i.e., without triggering
    475 * hardware page faults.  This is primarily useful when we already know that
    476 * some or all of the pages in @i aren't in memory.
    477 *
    478 * Returns the number of bytes not faulted in, like copy_to_user() and
    479 * copy_from_user().
    480 *
    481 * Always returns 0 for non-user-space iterators.
    482 */
    483size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
    484{
    485	if (iter_is_iovec(i)) {
    486		size_t count = min(size, iov_iter_count(i));
    487		const struct iovec *p;
    488		size_t skip;
    489
    490		size -= count;
    491		for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
    492			size_t len = min(count, p->iov_len - skip);
    493			size_t ret;
    494
    495			if (unlikely(!len))
    496				continue;
    497			ret = fault_in_safe_writeable(p->iov_base + skip, len);
    498			count -= len - ret;
    499			if (ret)
    500				break;
    501		}
    502		return count + size;
    503	}
    504	return 0;
    505}
    506EXPORT_SYMBOL(fault_in_iov_iter_writeable);
    507
    508void iov_iter_init(struct iov_iter *i, unsigned int direction,
    509			const struct iovec *iov, unsigned long nr_segs,
    510			size_t count)
    511{
    512	WARN_ON(direction & ~(READ | WRITE));
    513	*i = (struct iov_iter) {
    514		.iter_type = ITER_IOVEC,
    515		.nofault = false,
    516		.data_source = direction,
    517		.iov = iov,
    518		.nr_segs = nr_segs,
    519		.iov_offset = 0,
    520		.count = count
    521	};
    522}
    523EXPORT_SYMBOL(iov_iter_init);
    524
    525static inline bool allocated(struct pipe_buffer *buf)
    526{
    527	return buf->ops == &default_pipe_buf_ops;
    528}
    529
    530static inline void data_start(const struct iov_iter *i,
    531			      unsigned int *iter_headp, size_t *offp)
    532{
    533	unsigned int p_mask = i->pipe->ring_size - 1;
    534	unsigned int iter_head = i->head;
    535	size_t off = i->iov_offset;
    536
    537	if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
    538		    off == PAGE_SIZE)) {
    539		iter_head++;
    540		off = 0;
    541	}
    542	*iter_headp = iter_head;
    543	*offp = off;
    544}
    545
    546static size_t push_pipe(struct iov_iter *i, size_t size,
    547			int *iter_headp, size_t *offp)
    548{
    549	struct pipe_inode_info *pipe = i->pipe;
    550	unsigned int p_tail = pipe->tail;
    551	unsigned int p_mask = pipe->ring_size - 1;
    552	unsigned int iter_head;
    553	size_t off;
    554	ssize_t left;
    555
    556	if (unlikely(size > i->count))
    557		size = i->count;
    558	if (unlikely(!size))
    559		return 0;
    560
    561	left = size;
    562	data_start(i, &iter_head, &off);
    563	*iter_headp = iter_head;
    564	*offp = off;
    565	if (off) {
    566		left -= PAGE_SIZE - off;
    567		if (left <= 0) {
    568			pipe->bufs[iter_head & p_mask].len += size;
    569			return size;
    570		}
    571		pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
    572		iter_head++;
    573	}
    574	while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
    575		struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
    576		struct page *page = alloc_page(GFP_USER);
    577		if (!page)
    578			break;
    579
    580		buf->ops = &default_pipe_buf_ops;
    581		buf->flags = 0;
    582		buf->page = page;
    583		buf->offset = 0;
    584		buf->len = min_t(ssize_t, left, PAGE_SIZE);
    585		left -= buf->len;
    586		iter_head++;
    587		pipe->head = iter_head;
    588
    589		if (left == 0)
    590			return size;
    591	}
    592	return size - left;
    593}
    594
    595static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
    596				struct iov_iter *i)
    597{
    598	struct pipe_inode_info *pipe = i->pipe;
    599	unsigned int p_mask = pipe->ring_size - 1;
    600	unsigned int i_head;
    601	size_t n, off;
    602
    603	if (!sanity(i))
    604		return 0;
    605
    606	bytes = n = push_pipe(i, bytes, &i_head, &off);
    607	if (unlikely(!n))
    608		return 0;
    609	do {
    610		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
    611		memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
    612		i->head = i_head;
    613		i->iov_offset = off + chunk;
    614		n -= chunk;
    615		addr += chunk;
    616		off = 0;
    617		i_head++;
    618	} while (n);
    619	i->count -= bytes;
    620	return bytes;
    621}
    622
    623static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
    624			      __wsum sum, size_t off)
    625{
    626	__wsum next = csum_partial_copy_nocheck(from, to, len);
    627	return csum_block_add(sum, next, off);
    628}
    629
    630static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
    631					 struct iov_iter *i, __wsum *sump)
    632{
    633	struct pipe_inode_info *pipe = i->pipe;
    634	unsigned int p_mask = pipe->ring_size - 1;
    635	__wsum sum = *sump;
    636	size_t off = 0;
    637	unsigned int i_head;
    638	size_t r;
    639
    640	if (!sanity(i))
    641		return 0;
    642
    643	bytes = push_pipe(i, bytes, &i_head, &r);
    644	while (bytes) {
    645		size_t chunk = min_t(size_t, bytes, PAGE_SIZE - r);
    646		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
    647		sum = csum_and_memcpy(p + r, addr + off, chunk, sum, off);
    648		kunmap_local(p);
    649		i->head = i_head;
    650		i->iov_offset = r + chunk;
    651		bytes -= chunk;
    652		off += chunk;
    653		r = 0;
    654		i_head++;
    655	}
    656	*sump = sum;
    657	i->count -= off;
    658	return off;
    659}
    660
    661size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
    662{
    663	if (unlikely(iov_iter_is_pipe(i)))
    664		return copy_pipe_to_iter(addr, bytes, i);
    665	if (iter_is_iovec(i))
    666		might_fault();
    667	iterate_and_advance(i, bytes, base, len, off,
    668		copyout(base, addr + off, len),
    669		memcpy(base, addr + off, len)
    670	)
    671
    672	return bytes;
    673}
    674EXPORT_SYMBOL(_copy_to_iter);
    675
    676#ifdef CONFIG_ARCH_HAS_COPY_MC
    677static int copyout_mc(void __user *to, const void *from, size_t n)
    678{
    679	if (access_ok(to, n)) {
    680		instrument_copy_to_user(to, from, n);
    681		n = copy_mc_to_user((__force void *) to, from, n);
    682	}
    683	return n;
    684}
    685
    686static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
    687				struct iov_iter *i)
    688{
    689	struct pipe_inode_info *pipe = i->pipe;
    690	unsigned int p_mask = pipe->ring_size - 1;
    691	unsigned int i_head;
    692	size_t n, off, xfer = 0;
    693
    694	if (!sanity(i))
    695		return 0;
    696
    697	n = push_pipe(i, bytes, &i_head, &off);
    698	while (n) {
    699		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
    700		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
    701		unsigned long rem;
    702		rem = copy_mc_to_kernel(p + off, addr + xfer, chunk);
    703		chunk -= rem;
    704		kunmap_local(p);
    705		i->head = i_head;
    706		i->iov_offset = off + chunk;
    707		xfer += chunk;
    708		if (rem)
    709			break;
    710		n -= chunk;
    711		off = 0;
    712		i_head++;
    713	}
    714	i->count -= xfer;
    715	return xfer;
    716}
    717
    718/**
    719 * _copy_mc_to_iter - copy to iter with source memory error exception handling
    720 * @addr: source kernel address
    721 * @bytes: total transfer length
    722 * @i: destination iterator
    723 *
    724 * The pmem driver deploys this for the dax operation
    725 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
    726 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
    727 * successfully copied.
    728 *
    729 * The main differences between this and typical _copy_to_iter().
    730 *
    731 * * Typical tail/residue handling after a fault retries the copy
    732 *   byte-by-byte until the fault happens again. Re-triggering machine
    733 *   checks is potentially fatal so the implementation uses source
    734 *   alignment and poison alignment assumptions to avoid re-triggering
    735 *   hardware exceptions.
    736 *
    737 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
    738 *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
    739 *   a short copy.
    740 *
    741 * Return: number of bytes copied (may be %0)
    742 */
    743size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
    744{
    745	if (unlikely(iov_iter_is_pipe(i)))
    746		return copy_mc_pipe_to_iter(addr, bytes, i);
    747	if (iter_is_iovec(i))
    748		might_fault();
    749	__iterate_and_advance(i, bytes, base, len, off,
    750		copyout_mc(base, addr + off, len),
    751		copy_mc_to_kernel(base, addr + off, len)
    752	)
    753
    754	return bytes;
    755}
    756EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
    757#endif /* CONFIG_ARCH_HAS_COPY_MC */
    758
    759size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
    760{
    761	if (unlikely(iov_iter_is_pipe(i))) {
    762		WARN_ON(1);
    763		return 0;
    764	}
    765	if (iter_is_iovec(i))
    766		might_fault();
    767	iterate_and_advance(i, bytes, base, len, off,
    768		copyin(addr + off, base, len),
    769		memcpy(addr + off, base, len)
    770	)
    771
    772	return bytes;
    773}
    774EXPORT_SYMBOL(_copy_from_iter);
    775
    776size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
    777{
    778	if (unlikely(iov_iter_is_pipe(i))) {
    779		WARN_ON(1);
    780		return 0;
    781	}
    782	iterate_and_advance(i, bytes, base, len, off,
    783		__copy_from_user_inatomic_nocache(addr + off, base, len),
    784		memcpy(addr + off, base, len)
    785	)
    786
    787	return bytes;
    788}
    789EXPORT_SYMBOL(_copy_from_iter_nocache);
    790
    791#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
    792/**
    793 * _copy_from_iter_flushcache - write destination through cpu cache
    794 * @addr: destination kernel address
    795 * @bytes: total transfer length
    796 * @i: source iterator
    797 *
    798 * The pmem driver arranges for filesystem-dax to use this facility via
    799 * dax_copy_from_iter() for ensuring that writes to persistent memory
    800 * are flushed through the CPU cache. It is differentiated from
    801 * _copy_from_iter_nocache() in that guarantees all data is flushed for
    802 * all iterator types. The _copy_from_iter_nocache() only attempts to
    803 * bypass the cache for the ITER_IOVEC case, and on some archs may use
    804 * instructions that strand dirty-data in the cache.
    805 *
    806 * Return: number of bytes copied (may be %0)
    807 */
    808size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
    809{
    810	if (unlikely(iov_iter_is_pipe(i))) {
    811		WARN_ON(1);
    812		return 0;
    813	}
    814	iterate_and_advance(i, bytes, base, len, off,
    815		__copy_from_user_flushcache(addr + off, base, len),
    816		memcpy_flushcache(addr + off, base, len)
    817	)
    818
    819	return bytes;
    820}
    821EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
    822#endif
    823
    824static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
    825{
    826	struct page *head;
    827	size_t v = n + offset;
    828
    829	/*
    830	 * The general case needs to access the page order in order
    831	 * to compute the page size.
    832	 * However, we mostly deal with order-0 pages and thus can
    833	 * avoid a possible cache line miss for requests that fit all
    834	 * page orders.
    835	 */
    836	if (n <= v && v <= PAGE_SIZE)
    837		return true;
    838
    839	head = compound_head(page);
    840	v += (page - head) << PAGE_SHIFT;
    841
    842	if (likely(n <= v && v <= (page_size(head))))
    843		return true;
    844	WARN_ON(1);
    845	return false;
    846}
    847
    848static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
    849			 struct iov_iter *i)
    850{
    851	if (likely(iter_is_iovec(i)))
    852		return copy_page_to_iter_iovec(page, offset, bytes, i);
    853	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
    854		void *kaddr = kmap_local_page(page);
    855		size_t wanted = _copy_to_iter(kaddr + offset, bytes, i);
    856		kunmap_local(kaddr);
    857		return wanted;
    858	}
    859	if (iov_iter_is_pipe(i))
    860		return copy_page_to_iter_pipe(page, offset, bytes, i);
    861	if (unlikely(iov_iter_is_discard(i))) {
    862		if (unlikely(i->count < bytes))
    863			bytes = i->count;
    864		i->count -= bytes;
    865		return bytes;
    866	}
    867	WARN_ON(1);
    868	return 0;
    869}
    870
    871size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
    872			 struct iov_iter *i)
    873{
    874	size_t res = 0;
    875	if (unlikely(!page_copy_sane(page, offset, bytes)))
    876		return 0;
    877	page += offset / PAGE_SIZE; // first subpage
    878	offset %= PAGE_SIZE;
    879	while (1) {
    880		size_t n = __copy_page_to_iter(page, offset,
    881				min(bytes, (size_t)PAGE_SIZE - offset), i);
    882		res += n;
    883		bytes -= n;
    884		if (!bytes || !n)
    885			break;
    886		offset += n;
    887		if (offset == PAGE_SIZE) {
    888			page++;
    889			offset = 0;
    890		}
    891	}
    892	return res;
    893}
    894EXPORT_SYMBOL(copy_page_to_iter);
    895
    896size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
    897			 struct iov_iter *i)
    898{
    899	if (unlikely(!page_copy_sane(page, offset, bytes)))
    900		return 0;
    901	if (likely(iter_is_iovec(i)))
    902		return copy_page_from_iter_iovec(page, offset, bytes, i);
    903	if (iov_iter_is_bvec(i) || iov_iter_is_kvec(i) || iov_iter_is_xarray(i)) {
    904		void *kaddr = kmap_local_page(page);
    905		size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
    906		kunmap_local(kaddr);
    907		return wanted;
    908	}
    909	WARN_ON(1);
    910	return 0;
    911}
    912EXPORT_SYMBOL(copy_page_from_iter);
    913
    914static size_t pipe_zero(size_t bytes, struct iov_iter *i)
    915{
    916	struct pipe_inode_info *pipe = i->pipe;
    917	unsigned int p_mask = pipe->ring_size - 1;
    918	unsigned int i_head;
    919	size_t n, off;
    920
    921	if (!sanity(i))
    922		return 0;
    923
    924	bytes = n = push_pipe(i, bytes, &i_head, &off);
    925	if (unlikely(!n))
    926		return 0;
    927
    928	do {
    929		size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
    930		char *p = kmap_local_page(pipe->bufs[i_head & p_mask].page);
    931		memset(p + off, 0, chunk);
    932		kunmap_local(p);
    933		i->head = i_head;
    934		i->iov_offset = off + chunk;
    935		n -= chunk;
    936		off = 0;
    937		i_head++;
    938	} while (n);
    939	i->count -= bytes;
    940	return bytes;
    941}
    942
    943size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
    944{
    945	if (unlikely(iov_iter_is_pipe(i)))
    946		return pipe_zero(bytes, i);
    947	iterate_and_advance(i, bytes, base, len, count,
    948		clear_user(base, len),
    949		memset(base, 0, len)
    950	)
    951
    952	return bytes;
    953}
    954EXPORT_SYMBOL(iov_iter_zero);
    955
    956size_t copy_page_from_iter_atomic(struct page *page, unsigned offset, size_t bytes,
    957				  struct iov_iter *i)
    958{
    959	char *kaddr = kmap_atomic(page), *p = kaddr + offset;
    960	if (unlikely(!page_copy_sane(page, offset, bytes))) {
    961		kunmap_atomic(kaddr);
    962		return 0;
    963	}
    964	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
    965		kunmap_atomic(kaddr);
    966		WARN_ON(1);
    967		return 0;
    968	}
    969	iterate_and_advance(i, bytes, base, len, off,
    970		copyin(p + off, base, len),
    971		memcpy(p + off, base, len)
    972	)
    973	kunmap_atomic(kaddr);
    974	return bytes;
    975}
    976EXPORT_SYMBOL(copy_page_from_iter_atomic);
    977
    978static inline void pipe_truncate(struct iov_iter *i)
    979{
    980	struct pipe_inode_info *pipe = i->pipe;
    981	unsigned int p_tail = pipe->tail;
    982	unsigned int p_head = pipe->head;
    983	unsigned int p_mask = pipe->ring_size - 1;
    984
    985	if (!pipe_empty(p_head, p_tail)) {
    986		struct pipe_buffer *buf;
    987		unsigned int i_head = i->head;
    988		size_t off = i->iov_offset;
    989
    990		if (off) {
    991			buf = &pipe->bufs[i_head & p_mask];
    992			buf->len = off - buf->offset;
    993			i_head++;
    994		}
    995		while (p_head != i_head) {
    996			p_head--;
    997			pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
    998		}
    999
   1000		pipe->head = p_head;
   1001	}
   1002}
   1003
   1004static void pipe_advance(struct iov_iter *i, size_t size)
   1005{
   1006	struct pipe_inode_info *pipe = i->pipe;
   1007	if (size) {
   1008		struct pipe_buffer *buf;
   1009		unsigned int p_mask = pipe->ring_size - 1;
   1010		unsigned int i_head = i->head;
   1011		size_t off = i->iov_offset, left = size;
   1012
   1013		if (off) /* make it relative to the beginning of buffer */
   1014			left += off - pipe->bufs[i_head & p_mask].offset;
   1015		while (1) {
   1016			buf = &pipe->bufs[i_head & p_mask];
   1017			if (left <= buf->len)
   1018				break;
   1019			left -= buf->len;
   1020			i_head++;
   1021		}
   1022		i->head = i_head;
   1023		i->iov_offset = buf->offset + left;
   1024	}
   1025	i->count -= size;
   1026	/* ... and discard everything past that point */
   1027	pipe_truncate(i);
   1028}
   1029
   1030static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
   1031{
   1032	struct bvec_iter bi;
   1033
   1034	bi.bi_size = i->count;
   1035	bi.bi_bvec_done = i->iov_offset;
   1036	bi.bi_idx = 0;
   1037	bvec_iter_advance(i->bvec, &bi, size);
   1038
   1039	i->bvec += bi.bi_idx;
   1040	i->nr_segs -= bi.bi_idx;
   1041	i->count = bi.bi_size;
   1042	i->iov_offset = bi.bi_bvec_done;
   1043}
   1044
   1045static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
   1046{
   1047	const struct iovec *iov, *end;
   1048
   1049	if (!i->count)
   1050		return;
   1051	i->count -= size;
   1052
   1053	size += i->iov_offset; // from beginning of current segment
   1054	for (iov = i->iov, end = iov + i->nr_segs; iov < end; iov++) {
   1055		if (likely(size < iov->iov_len))
   1056			break;
   1057		size -= iov->iov_len;
   1058	}
   1059	i->iov_offset = size;
   1060	i->nr_segs -= iov - i->iov;
   1061	i->iov = iov;
   1062}
   1063
   1064void iov_iter_advance(struct iov_iter *i, size_t size)
   1065{
   1066	if (unlikely(i->count < size))
   1067		size = i->count;
   1068	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
   1069		/* iovec and kvec have identical layouts */
   1070		iov_iter_iovec_advance(i, size);
   1071	} else if (iov_iter_is_bvec(i)) {
   1072		iov_iter_bvec_advance(i, size);
   1073	} else if (iov_iter_is_pipe(i)) {
   1074		pipe_advance(i, size);
   1075	} else if (unlikely(iov_iter_is_xarray(i))) {
   1076		i->iov_offset += size;
   1077		i->count -= size;
   1078	} else if (iov_iter_is_discard(i)) {
   1079		i->count -= size;
   1080	}
   1081}
   1082EXPORT_SYMBOL(iov_iter_advance);
   1083
   1084void iov_iter_revert(struct iov_iter *i, size_t unroll)
   1085{
   1086	if (!unroll)
   1087		return;
   1088	if (WARN_ON(unroll > MAX_RW_COUNT))
   1089		return;
   1090	i->count += unroll;
   1091	if (unlikely(iov_iter_is_pipe(i))) {
   1092		struct pipe_inode_info *pipe = i->pipe;
   1093		unsigned int p_mask = pipe->ring_size - 1;
   1094		unsigned int i_head = i->head;
   1095		size_t off = i->iov_offset;
   1096		while (1) {
   1097			struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
   1098			size_t n = off - b->offset;
   1099			if (unroll < n) {
   1100				off -= unroll;
   1101				break;
   1102			}
   1103			unroll -= n;
   1104			if (!unroll && i_head == i->start_head) {
   1105				off = 0;
   1106				break;
   1107			}
   1108			i_head--;
   1109			b = &pipe->bufs[i_head & p_mask];
   1110			off = b->offset + b->len;
   1111		}
   1112		i->iov_offset = off;
   1113		i->head = i_head;
   1114		pipe_truncate(i);
   1115		return;
   1116	}
   1117	if (unlikely(iov_iter_is_discard(i)))
   1118		return;
   1119	if (unroll <= i->iov_offset) {
   1120		i->iov_offset -= unroll;
   1121		return;
   1122	}
   1123	unroll -= i->iov_offset;
   1124	if (iov_iter_is_xarray(i)) {
   1125		BUG(); /* We should never go beyond the start of the specified
   1126			* range since we might then be straying into pages that
   1127			* aren't pinned.
   1128			*/
   1129	} else if (iov_iter_is_bvec(i)) {
   1130		const struct bio_vec *bvec = i->bvec;
   1131		while (1) {
   1132			size_t n = (--bvec)->bv_len;
   1133			i->nr_segs++;
   1134			if (unroll <= n) {
   1135				i->bvec = bvec;
   1136				i->iov_offset = n - unroll;
   1137				return;
   1138			}
   1139			unroll -= n;
   1140		}
   1141	} else { /* same logics for iovec and kvec */
   1142		const struct iovec *iov = i->iov;
   1143		while (1) {
   1144			size_t n = (--iov)->iov_len;
   1145			i->nr_segs++;
   1146			if (unroll <= n) {
   1147				i->iov = iov;
   1148				i->iov_offset = n - unroll;
   1149				return;
   1150			}
   1151			unroll -= n;
   1152		}
   1153	}
   1154}
   1155EXPORT_SYMBOL(iov_iter_revert);
   1156
   1157/*
   1158 * Return the count of just the current iov_iter segment.
   1159 */
   1160size_t iov_iter_single_seg_count(const struct iov_iter *i)
   1161{
   1162	if (i->nr_segs > 1) {
   1163		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
   1164			return min(i->count, i->iov->iov_len - i->iov_offset);
   1165		if (iov_iter_is_bvec(i))
   1166			return min(i->count, i->bvec->bv_len - i->iov_offset);
   1167	}
   1168	return i->count;
   1169}
   1170EXPORT_SYMBOL(iov_iter_single_seg_count);
   1171
   1172void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
   1173			const struct kvec *kvec, unsigned long nr_segs,
   1174			size_t count)
   1175{
   1176	WARN_ON(direction & ~(READ | WRITE));
   1177	*i = (struct iov_iter){
   1178		.iter_type = ITER_KVEC,
   1179		.data_source = direction,
   1180		.kvec = kvec,
   1181		.nr_segs = nr_segs,
   1182		.iov_offset = 0,
   1183		.count = count
   1184	};
   1185}
   1186EXPORT_SYMBOL(iov_iter_kvec);
   1187
   1188void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
   1189			const struct bio_vec *bvec, unsigned long nr_segs,
   1190			size_t count)
   1191{
   1192	WARN_ON(direction & ~(READ | WRITE));
   1193	*i = (struct iov_iter){
   1194		.iter_type = ITER_BVEC,
   1195		.data_source = direction,
   1196		.bvec = bvec,
   1197		.nr_segs = nr_segs,
   1198		.iov_offset = 0,
   1199		.count = count
   1200	};
   1201}
   1202EXPORT_SYMBOL(iov_iter_bvec);
   1203
   1204void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
   1205			struct pipe_inode_info *pipe,
   1206			size_t count)
   1207{
   1208	BUG_ON(direction != READ);
   1209	WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
   1210	*i = (struct iov_iter){
   1211		.iter_type = ITER_PIPE,
   1212		.data_source = false,
   1213		.pipe = pipe,
   1214		.head = pipe->head,
   1215		.start_head = pipe->head,
   1216		.iov_offset = 0,
   1217		.count = count
   1218	};
   1219}
   1220EXPORT_SYMBOL(iov_iter_pipe);
   1221
   1222/**
   1223 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
   1224 * @i: The iterator to initialise.
   1225 * @direction: The direction of the transfer.
   1226 * @xarray: The xarray to access.
   1227 * @start: The start file position.
   1228 * @count: The size of the I/O buffer in bytes.
   1229 *
   1230 * Set up an I/O iterator to either draw data out of the pages attached to an
   1231 * inode or to inject data into those pages.  The pages *must* be prevented
   1232 * from evaporation, either by taking a ref on them or locking them by the
   1233 * caller.
   1234 */
   1235void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
   1236		     struct xarray *xarray, loff_t start, size_t count)
   1237{
   1238	BUG_ON(direction & ~1);
   1239	*i = (struct iov_iter) {
   1240		.iter_type = ITER_XARRAY,
   1241		.data_source = direction,
   1242		.xarray = xarray,
   1243		.xarray_start = start,
   1244		.count = count,
   1245		.iov_offset = 0
   1246	};
   1247}
   1248EXPORT_SYMBOL(iov_iter_xarray);
   1249
   1250/**
   1251 * iov_iter_discard - Initialise an I/O iterator that discards data
   1252 * @i: The iterator to initialise.
   1253 * @direction: The direction of the transfer.
   1254 * @count: The size of the I/O buffer in bytes.
   1255 *
   1256 * Set up an I/O iterator that just discards everything that's written to it.
   1257 * It's only available as a READ iterator.
   1258 */
   1259void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
   1260{
   1261	BUG_ON(direction != READ);
   1262	*i = (struct iov_iter){
   1263		.iter_type = ITER_DISCARD,
   1264		.data_source = false,
   1265		.count = count,
   1266		.iov_offset = 0
   1267	};
   1268}
   1269EXPORT_SYMBOL(iov_iter_discard);
   1270
   1271static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
   1272{
   1273	unsigned long res = 0;
   1274	size_t size = i->count;
   1275	size_t skip = i->iov_offset;
   1276	unsigned k;
   1277
   1278	for (k = 0; k < i->nr_segs; k++, skip = 0) {
   1279		size_t len = i->iov[k].iov_len - skip;
   1280		if (len) {
   1281			res |= (unsigned long)i->iov[k].iov_base + skip;
   1282			if (len > size)
   1283				len = size;
   1284			res |= len;
   1285			size -= len;
   1286			if (!size)
   1287				break;
   1288		}
   1289	}
   1290	return res;
   1291}
   1292
   1293static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
   1294{
   1295	unsigned res = 0;
   1296	size_t size = i->count;
   1297	unsigned skip = i->iov_offset;
   1298	unsigned k;
   1299
   1300	for (k = 0; k < i->nr_segs; k++, skip = 0) {
   1301		size_t len = i->bvec[k].bv_len - skip;
   1302		res |= (unsigned long)i->bvec[k].bv_offset + skip;
   1303		if (len > size)
   1304			len = size;
   1305		res |= len;
   1306		size -= len;
   1307		if (!size)
   1308			break;
   1309	}
   1310	return res;
   1311}
   1312
   1313unsigned long iov_iter_alignment(const struct iov_iter *i)
   1314{
   1315	/* iovec and kvec have identical layouts */
   1316	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
   1317		return iov_iter_alignment_iovec(i);
   1318
   1319	if (iov_iter_is_bvec(i))
   1320		return iov_iter_alignment_bvec(i);
   1321
   1322	if (iov_iter_is_pipe(i)) {
   1323		unsigned int p_mask = i->pipe->ring_size - 1;
   1324		size_t size = i->count;
   1325
   1326		if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
   1327			return size | i->iov_offset;
   1328		return size;
   1329	}
   1330
   1331	if (iov_iter_is_xarray(i))
   1332		return (i->xarray_start + i->iov_offset) | i->count;
   1333
   1334	return 0;
   1335}
   1336EXPORT_SYMBOL(iov_iter_alignment);
   1337
   1338unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
   1339{
   1340	unsigned long res = 0;
   1341	unsigned long v = 0;
   1342	size_t size = i->count;
   1343	unsigned k;
   1344
   1345	if (WARN_ON(!iter_is_iovec(i)))
   1346		return ~0U;
   1347
   1348	for (k = 0; k < i->nr_segs; k++) {
   1349		if (i->iov[k].iov_len) {
   1350			unsigned long base = (unsigned long)i->iov[k].iov_base;
   1351			if (v) // if not the first one
   1352				res |= base | v; // this start | previous end
   1353			v = base + i->iov[k].iov_len;
   1354			if (size <= i->iov[k].iov_len)
   1355				break;
   1356			size -= i->iov[k].iov_len;
   1357		}
   1358	}
   1359	return res;
   1360}
   1361EXPORT_SYMBOL(iov_iter_gap_alignment);
   1362
   1363static inline ssize_t __pipe_get_pages(struct iov_iter *i,
   1364				size_t maxsize,
   1365				struct page **pages,
   1366				int iter_head,
   1367				size_t *start)
   1368{
   1369	struct pipe_inode_info *pipe = i->pipe;
   1370	unsigned int p_mask = pipe->ring_size - 1;
   1371	ssize_t n = push_pipe(i, maxsize, &iter_head, start);
   1372	if (!n)
   1373		return -EFAULT;
   1374
   1375	maxsize = n;
   1376	n += *start;
   1377	while (n > 0) {
   1378		get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
   1379		iter_head++;
   1380		n -= PAGE_SIZE;
   1381	}
   1382
   1383	return maxsize;
   1384}
   1385
   1386static ssize_t pipe_get_pages(struct iov_iter *i,
   1387		   struct page **pages, size_t maxsize, unsigned maxpages,
   1388		   size_t *start)
   1389{
   1390	unsigned int iter_head, npages;
   1391	size_t capacity;
   1392
   1393	if (!sanity(i))
   1394		return -EFAULT;
   1395
   1396	data_start(i, &iter_head, start);
   1397	/* Amount of free space: some of this one + all after this one */
   1398	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
   1399	capacity = min(npages, maxpages) * PAGE_SIZE - *start;
   1400
   1401	return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
   1402}
   1403
   1404static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
   1405					  pgoff_t index, unsigned int nr_pages)
   1406{
   1407	XA_STATE(xas, xa, index);
   1408	struct page *page;
   1409	unsigned int ret = 0;
   1410
   1411	rcu_read_lock();
   1412	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
   1413		if (xas_retry(&xas, page))
   1414			continue;
   1415
   1416		/* Has the page moved or been split? */
   1417		if (unlikely(page != xas_reload(&xas))) {
   1418			xas_reset(&xas);
   1419			continue;
   1420		}
   1421
   1422		pages[ret] = find_subpage(page, xas.xa_index);
   1423		get_page(pages[ret]);
   1424		if (++ret == nr_pages)
   1425			break;
   1426	}
   1427	rcu_read_unlock();
   1428	return ret;
   1429}
   1430
   1431static ssize_t iter_xarray_get_pages(struct iov_iter *i,
   1432				     struct page **pages, size_t maxsize,
   1433				     unsigned maxpages, size_t *_start_offset)
   1434{
   1435	unsigned nr, offset;
   1436	pgoff_t index, count;
   1437	size_t size = maxsize;
   1438	loff_t pos;
   1439
   1440	if (!size || !maxpages)
   1441		return 0;
   1442
   1443	pos = i->xarray_start + i->iov_offset;
   1444	index = pos >> PAGE_SHIFT;
   1445	offset = pos & ~PAGE_MASK;
   1446	*_start_offset = offset;
   1447
   1448	count = 1;
   1449	if (size > PAGE_SIZE - offset) {
   1450		size -= PAGE_SIZE - offset;
   1451		count += size >> PAGE_SHIFT;
   1452		size &= ~PAGE_MASK;
   1453		if (size)
   1454			count++;
   1455	}
   1456
   1457	if (count > maxpages)
   1458		count = maxpages;
   1459
   1460	nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
   1461	if (nr == 0)
   1462		return 0;
   1463
   1464	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
   1465}
   1466
   1467/* must be done on non-empty ITER_IOVEC one */
   1468static unsigned long first_iovec_segment(const struct iov_iter *i,
   1469					 size_t *size, size_t *start,
   1470					 size_t maxsize, unsigned maxpages)
   1471{
   1472	size_t skip;
   1473	long k;
   1474
   1475	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
   1476		unsigned long addr = (unsigned long)i->iov[k].iov_base + skip;
   1477		size_t len = i->iov[k].iov_len - skip;
   1478
   1479		if (unlikely(!len))
   1480			continue;
   1481		if (len > maxsize)
   1482			len = maxsize;
   1483		len += (*start = addr % PAGE_SIZE);
   1484		if (len > maxpages * PAGE_SIZE)
   1485			len = maxpages * PAGE_SIZE;
   1486		*size = len;
   1487		return addr & PAGE_MASK;
   1488	}
   1489	BUG(); // if it had been empty, we wouldn't get called
   1490}
   1491
   1492/* must be done on non-empty ITER_BVEC one */
   1493static struct page *first_bvec_segment(const struct iov_iter *i,
   1494				       size_t *size, size_t *start,
   1495				       size_t maxsize, unsigned maxpages)
   1496{
   1497	struct page *page;
   1498	size_t skip = i->iov_offset, len;
   1499
   1500	len = i->bvec->bv_len - skip;
   1501	if (len > maxsize)
   1502		len = maxsize;
   1503	skip += i->bvec->bv_offset;
   1504	page = i->bvec->bv_page + skip / PAGE_SIZE;
   1505	len += (*start = skip % PAGE_SIZE);
   1506	if (len > maxpages * PAGE_SIZE)
   1507		len = maxpages * PAGE_SIZE;
   1508	*size = len;
   1509	return page;
   1510}
   1511
   1512ssize_t iov_iter_get_pages(struct iov_iter *i,
   1513		   struct page **pages, size_t maxsize, unsigned maxpages,
   1514		   size_t *start)
   1515{
   1516	size_t len;
   1517	int n, res;
   1518
   1519	if (maxsize > i->count)
   1520		maxsize = i->count;
   1521	if (!maxsize)
   1522		return 0;
   1523
   1524	if (likely(iter_is_iovec(i))) {
   1525		unsigned int gup_flags = 0;
   1526		unsigned long addr;
   1527
   1528		if (iov_iter_rw(i) != WRITE)
   1529			gup_flags |= FOLL_WRITE;
   1530		if (i->nofault)
   1531			gup_flags |= FOLL_NOFAULT;
   1532
   1533		addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
   1534		n = DIV_ROUND_UP(len, PAGE_SIZE);
   1535		res = get_user_pages_fast(addr, n, gup_flags, pages);
   1536		if (unlikely(res <= 0))
   1537			return res;
   1538		return (res == n ? len : res * PAGE_SIZE) - *start;
   1539	}
   1540	if (iov_iter_is_bvec(i)) {
   1541		struct page *page;
   1542
   1543		page = first_bvec_segment(i, &len, start, maxsize, maxpages);
   1544		n = DIV_ROUND_UP(len, PAGE_SIZE);
   1545		while (n--)
   1546			get_page(*pages++ = page++);
   1547		return len - *start;
   1548	}
   1549	if (iov_iter_is_pipe(i))
   1550		return pipe_get_pages(i, pages, maxsize, maxpages, start);
   1551	if (iov_iter_is_xarray(i))
   1552		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
   1553	return -EFAULT;
   1554}
   1555EXPORT_SYMBOL(iov_iter_get_pages);
   1556
   1557static struct page **get_pages_array(size_t n)
   1558{
   1559	return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
   1560}
   1561
   1562static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
   1563		   struct page ***pages, size_t maxsize,
   1564		   size_t *start)
   1565{
   1566	struct page **p;
   1567	unsigned int iter_head, npages;
   1568	ssize_t n;
   1569
   1570	if (!sanity(i))
   1571		return -EFAULT;
   1572
   1573	data_start(i, &iter_head, start);
   1574	/* Amount of free space: some of this one + all after this one */
   1575	npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
   1576	n = npages * PAGE_SIZE - *start;
   1577	if (maxsize > n)
   1578		maxsize = n;
   1579	else
   1580		npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
   1581	p = get_pages_array(npages);
   1582	if (!p)
   1583		return -ENOMEM;
   1584	n = __pipe_get_pages(i, maxsize, p, iter_head, start);
   1585	if (n > 0)
   1586		*pages = p;
   1587	else
   1588		kvfree(p);
   1589	return n;
   1590}
   1591
   1592static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
   1593					   struct page ***pages, size_t maxsize,
   1594					   size_t *_start_offset)
   1595{
   1596	struct page **p;
   1597	unsigned nr, offset;
   1598	pgoff_t index, count;
   1599	size_t size = maxsize;
   1600	loff_t pos;
   1601
   1602	if (!size)
   1603		return 0;
   1604
   1605	pos = i->xarray_start + i->iov_offset;
   1606	index = pos >> PAGE_SHIFT;
   1607	offset = pos & ~PAGE_MASK;
   1608	*_start_offset = offset;
   1609
   1610	count = 1;
   1611	if (size > PAGE_SIZE - offset) {
   1612		size -= PAGE_SIZE - offset;
   1613		count += size >> PAGE_SHIFT;
   1614		size &= ~PAGE_MASK;
   1615		if (size)
   1616			count++;
   1617	}
   1618
   1619	p = get_pages_array(count);
   1620	if (!p)
   1621		return -ENOMEM;
   1622	*pages = p;
   1623
   1624	nr = iter_xarray_populate_pages(p, i->xarray, index, count);
   1625	if (nr == 0)
   1626		return 0;
   1627
   1628	return min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
   1629}
   1630
   1631ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
   1632		   struct page ***pages, size_t maxsize,
   1633		   size_t *start)
   1634{
   1635	struct page **p;
   1636	size_t len;
   1637	int n, res;
   1638
   1639	if (maxsize > i->count)
   1640		maxsize = i->count;
   1641	if (!maxsize)
   1642		return 0;
   1643
   1644	if (likely(iter_is_iovec(i))) {
   1645		unsigned int gup_flags = 0;
   1646		unsigned long addr;
   1647
   1648		if (iov_iter_rw(i) != WRITE)
   1649			gup_flags |= FOLL_WRITE;
   1650		if (i->nofault)
   1651			gup_flags |= FOLL_NOFAULT;
   1652
   1653		addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
   1654		n = DIV_ROUND_UP(len, PAGE_SIZE);
   1655		p = get_pages_array(n);
   1656		if (!p)
   1657			return -ENOMEM;
   1658		res = get_user_pages_fast(addr, n, gup_flags, p);
   1659		if (unlikely(res <= 0)) {
   1660			kvfree(p);
   1661			*pages = NULL;
   1662			return res;
   1663		}
   1664		*pages = p;
   1665		return (res == n ? len : res * PAGE_SIZE) - *start;
   1666	}
   1667	if (iov_iter_is_bvec(i)) {
   1668		struct page *page;
   1669
   1670		page = first_bvec_segment(i, &len, start, maxsize, ~0U);
   1671		n = DIV_ROUND_UP(len, PAGE_SIZE);
   1672		*pages = p = get_pages_array(n);
   1673		if (!p)
   1674			return -ENOMEM;
   1675		while (n--)
   1676			get_page(*p++ = page++);
   1677		return len - *start;
   1678	}
   1679	if (iov_iter_is_pipe(i))
   1680		return pipe_get_pages_alloc(i, pages, maxsize, start);
   1681	if (iov_iter_is_xarray(i))
   1682		return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
   1683	return -EFAULT;
   1684}
   1685EXPORT_SYMBOL(iov_iter_get_pages_alloc);
   1686
   1687size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
   1688			       struct iov_iter *i)
   1689{
   1690	__wsum sum, next;
   1691	sum = *csum;
   1692	if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
   1693		WARN_ON(1);
   1694		return 0;
   1695	}
   1696	iterate_and_advance(i, bytes, base, len, off, ({
   1697		next = csum_and_copy_from_user(base, addr + off, len);
   1698		sum = csum_block_add(sum, next, off);
   1699		next ? 0 : len;
   1700	}), ({
   1701		sum = csum_and_memcpy(addr + off, base, len, sum, off);
   1702	})
   1703	)
   1704	*csum = sum;
   1705	return bytes;
   1706}
   1707EXPORT_SYMBOL(csum_and_copy_from_iter);
   1708
   1709size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
   1710			     struct iov_iter *i)
   1711{
   1712	struct csum_state *csstate = _csstate;
   1713	__wsum sum, next;
   1714
   1715	if (unlikely(iov_iter_is_discard(i))) {
   1716		WARN_ON(1);	/* for now */
   1717		return 0;
   1718	}
   1719
   1720	sum = csum_shift(csstate->csum, csstate->off);
   1721	if (unlikely(iov_iter_is_pipe(i)))
   1722		bytes = csum_and_copy_to_pipe_iter(addr, bytes, i, &sum);
   1723	else iterate_and_advance(i, bytes, base, len, off, ({
   1724		next = csum_and_copy_to_user(addr + off, base, len);
   1725		sum = csum_block_add(sum, next, off);
   1726		next ? 0 : len;
   1727	}), ({
   1728		sum = csum_and_memcpy(base, addr + off, len, sum, off);
   1729	})
   1730	)
   1731	csstate->csum = csum_shift(sum, csstate->off);
   1732	csstate->off += bytes;
   1733	return bytes;
   1734}
   1735EXPORT_SYMBOL(csum_and_copy_to_iter);
   1736
   1737size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
   1738		struct iov_iter *i)
   1739{
   1740#ifdef CONFIG_CRYPTO_HASH
   1741	struct ahash_request *hash = hashp;
   1742	struct scatterlist sg;
   1743	size_t copied;
   1744
   1745	copied = copy_to_iter(addr, bytes, i);
   1746	sg_init_one(&sg, addr, copied);
   1747	ahash_request_set_crypt(hash, &sg, NULL, copied);
   1748	crypto_ahash_update(hash);
   1749	return copied;
   1750#else
   1751	return 0;
   1752#endif
   1753}
   1754EXPORT_SYMBOL(hash_and_copy_to_iter);
   1755
   1756static int iov_npages(const struct iov_iter *i, int maxpages)
   1757{
   1758	size_t skip = i->iov_offset, size = i->count;
   1759	const struct iovec *p;
   1760	int npages = 0;
   1761
   1762	for (p = i->iov; size; skip = 0, p++) {
   1763		unsigned offs = offset_in_page(p->iov_base + skip);
   1764		size_t len = min(p->iov_len - skip, size);
   1765
   1766		if (len) {
   1767			size -= len;
   1768			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
   1769			if (unlikely(npages > maxpages))
   1770				return maxpages;
   1771		}
   1772	}
   1773	return npages;
   1774}
   1775
   1776static int bvec_npages(const struct iov_iter *i, int maxpages)
   1777{
   1778	size_t skip = i->iov_offset, size = i->count;
   1779	const struct bio_vec *p;
   1780	int npages = 0;
   1781
   1782	for (p = i->bvec; size; skip = 0, p++) {
   1783		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
   1784		size_t len = min(p->bv_len - skip, size);
   1785
   1786		size -= len;
   1787		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
   1788		if (unlikely(npages > maxpages))
   1789			return maxpages;
   1790	}
   1791	return npages;
   1792}
   1793
   1794int iov_iter_npages(const struct iov_iter *i, int maxpages)
   1795{
   1796	if (unlikely(!i->count))
   1797		return 0;
   1798	/* iovec and kvec have identical layouts */
   1799	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
   1800		return iov_npages(i, maxpages);
   1801	if (iov_iter_is_bvec(i))
   1802		return bvec_npages(i, maxpages);
   1803	if (iov_iter_is_pipe(i)) {
   1804		unsigned int iter_head;
   1805		int npages;
   1806		size_t off;
   1807
   1808		if (!sanity(i))
   1809			return 0;
   1810
   1811		data_start(i, &iter_head, &off);
   1812		/* some of this one + all after this one */
   1813		npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
   1814		return min(npages, maxpages);
   1815	}
   1816	if (iov_iter_is_xarray(i)) {
   1817		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
   1818		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
   1819		return min(npages, maxpages);
   1820	}
   1821	return 0;
   1822}
   1823EXPORT_SYMBOL(iov_iter_npages);
   1824
   1825const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
   1826{
   1827	*new = *old;
   1828	if (unlikely(iov_iter_is_pipe(new))) {
   1829		WARN_ON(1);
   1830		return NULL;
   1831	}
   1832	if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
   1833		return NULL;
   1834	if (iov_iter_is_bvec(new))
   1835		return new->bvec = kmemdup(new->bvec,
   1836				    new->nr_segs * sizeof(struct bio_vec),
   1837				    flags);
   1838	else
   1839		/* iovec and kvec have identical layout */
   1840		return new->iov = kmemdup(new->iov,
   1841				   new->nr_segs * sizeof(struct iovec),
   1842				   flags);
   1843}
   1844EXPORT_SYMBOL(dup_iter);
   1845
   1846static int copy_compat_iovec_from_user(struct iovec *iov,
   1847		const struct iovec __user *uvec, unsigned long nr_segs)
   1848{
   1849	const struct compat_iovec __user *uiov =
   1850		(const struct compat_iovec __user *)uvec;
   1851	int ret = -EFAULT, i;
   1852
   1853	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
   1854		return -EFAULT;
   1855
   1856	for (i = 0; i < nr_segs; i++) {
   1857		compat_uptr_t buf;
   1858		compat_ssize_t len;
   1859
   1860		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
   1861		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
   1862
   1863		/* check for compat_size_t not fitting in compat_ssize_t .. */
   1864		if (len < 0) {
   1865			ret = -EINVAL;
   1866			goto uaccess_end;
   1867		}
   1868		iov[i].iov_base = compat_ptr(buf);
   1869		iov[i].iov_len = len;
   1870	}
   1871
   1872	ret = 0;
   1873uaccess_end:
   1874	user_access_end();
   1875	return ret;
   1876}
   1877
   1878static int copy_iovec_from_user(struct iovec *iov,
   1879		const struct iovec __user *uvec, unsigned long nr_segs)
   1880{
   1881	unsigned long seg;
   1882
   1883	if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
   1884		return -EFAULT;
   1885	for (seg = 0; seg < nr_segs; seg++) {
   1886		if ((ssize_t)iov[seg].iov_len < 0)
   1887			return -EINVAL;
   1888	}
   1889
   1890	return 0;
   1891}
   1892
   1893struct iovec *iovec_from_user(const struct iovec __user *uvec,
   1894		unsigned long nr_segs, unsigned long fast_segs,
   1895		struct iovec *fast_iov, bool compat)
   1896{
   1897	struct iovec *iov = fast_iov;
   1898	int ret;
   1899
   1900	/*
   1901	 * SuS says "The readv() function *may* fail if the iovcnt argument was
   1902	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
   1903	 * traditionally returned zero for zero segments, so...
   1904	 */
   1905	if (nr_segs == 0)
   1906		return iov;
   1907	if (nr_segs > UIO_MAXIOV)
   1908		return ERR_PTR(-EINVAL);
   1909	if (nr_segs > fast_segs) {
   1910		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
   1911		if (!iov)
   1912			return ERR_PTR(-ENOMEM);
   1913	}
   1914
   1915	if (compat)
   1916		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
   1917	else
   1918		ret = copy_iovec_from_user(iov, uvec, nr_segs);
   1919	if (ret) {
   1920		if (iov != fast_iov)
   1921			kfree(iov);
   1922		return ERR_PTR(ret);
   1923	}
   1924
   1925	return iov;
   1926}
   1927
   1928ssize_t __import_iovec(int type, const struct iovec __user *uvec,
   1929		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
   1930		 struct iov_iter *i, bool compat)
   1931{
   1932	ssize_t total_len = 0;
   1933	unsigned long seg;
   1934	struct iovec *iov;
   1935
   1936	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
   1937	if (IS_ERR(iov)) {
   1938		*iovp = NULL;
   1939		return PTR_ERR(iov);
   1940	}
   1941
   1942	/*
   1943	 * According to the Single Unix Specification we should return EINVAL if
   1944	 * an element length is < 0 when cast to ssize_t or if the total length
   1945	 * would overflow the ssize_t return value of the system call.
   1946	 *
   1947	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
   1948	 * overflow case.
   1949	 */
   1950	for (seg = 0; seg < nr_segs; seg++) {
   1951		ssize_t len = (ssize_t)iov[seg].iov_len;
   1952
   1953		if (!access_ok(iov[seg].iov_base, len)) {
   1954			if (iov != *iovp)
   1955				kfree(iov);
   1956			*iovp = NULL;
   1957			return -EFAULT;
   1958		}
   1959
   1960		if (len > MAX_RW_COUNT - total_len) {
   1961			len = MAX_RW_COUNT - total_len;
   1962			iov[seg].iov_len = len;
   1963		}
   1964		total_len += len;
   1965	}
   1966
   1967	iov_iter_init(i, type, iov, nr_segs, total_len);
   1968	if (iov == *iovp)
   1969		*iovp = NULL;
   1970	else
   1971		*iovp = iov;
   1972	return total_len;
   1973}
   1974
   1975/**
   1976 * import_iovec() - Copy an array of &struct iovec from userspace
   1977 *     into the kernel, check that it is valid, and initialize a new
   1978 *     &struct iov_iter iterator to access it.
   1979 *
   1980 * @type: One of %READ or %WRITE.
   1981 * @uvec: Pointer to the userspace array.
   1982 * @nr_segs: Number of elements in userspace array.
   1983 * @fast_segs: Number of elements in @iov.
   1984 * @iovp: (input and output parameter) Pointer to pointer to (usually small
   1985 *     on-stack) kernel array.
   1986 * @i: Pointer to iterator that will be initialized on success.
   1987 *
   1988 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
   1989 * then this function places %NULL in *@iov on return. Otherwise, a new
   1990 * array will be allocated and the result placed in *@iov. This means that
   1991 * the caller may call kfree() on *@iov regardless of whether the small
   1992 * on-stack array was used or not (and regardless of whether this function
   1993 * returns an error or not).
   1994 *
   1995 * Return: Negative error code on error, bytes imported on success
   1996 */
   1997ssize_t import_iovec(int type, const struct iovec __user *uvec,
   1998		 unsigned nr_segs, unsigned fast_segs,
   1999		 struct iovec **iovp, struct iov_iter *i)
   2000{
   2001	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
   2002			      in_compat_syscall());
   2003}
   2004EXPORT_SYMBOL(import_iovec);
   2005
   2006int import_single_range(int rw, void __user *buf, size_t len,
   2007		 struct iovec *iov, struct iov_iter *i)
   2008{
   2009	if (len > MAX_RW_COUNT)
   2010		len = MAX_RW_COUNT;
   2011	if (unlikely(!access_ok(buf, len)))
   2012		return -EFAULT;
   2013
   2014	iov->iov_base = buf;
   2015	iov->iov_len = len;
   2016	iov_iter_init(i, rw, iov, 1, len);
   2017	return 0;
   2018}
   2019EXPORT_SYMBOL(import_single_range);
   2020
   2021/**
   2022 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
   2023 *     iov_iter_save_state() was called.
   2024 *
   2025 * @i: &struct iov_iter to restore
   2026 * @state: state to restore from
   2027 *
   2028 * Used after iov_iter_save_state() to bring restore @i, if operations may
   2029 * have advanced it.
   2030 *
   2031 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
   2032 */
   2033void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
   2034{
   2035	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i)) &&
   2036			 !iov_iter_is_kvec(i))
   2037		return;
   2038	i->iov_offset = state->iov_offset;
   2039	i->count = state->count;
   2040	/*
   2041	 * For the *vec iters, nr_segs + iov is constant - if we increment
   2042	 * the vec, then we also decrement the nr_segs count. Hence we don't
   2043	 * need to track both of these, just one is enough and we can deduct
   2044	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
   2045	 * size, so we can just increment the iov pointer as they are unionzed.
   2046	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
   2047	 * not. Be safe and handle it separately.
   2048	 */
   2049	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
   2050	if (iov_iter_is_bvec(i))
   2051		i->bvec -= state->nr_segs - i->nr_segs;
   2052	else
   2053		i->iov -= state->nr_segs - i->nr_segs;
   2054	i->nr_segs = state->nr_segs;
   2055}