klist.c (10680B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * klist.c - Routines for manipulating klists. 4 * 5 * Copyright (C) 2005 Patrick Mochel 6 * 7 * This klist interface provides a couple of structures that wrap around 8 * struct list_head to provide explicit list "head" (struct klist) and list 9 * "node" (struct klist_node) objects. For struct klist, a spinlock is 10 * included that protects access to the actual list itself. struct 11 * klist_node provides a pointer to the klist that owns it and a kref 12 * reference count that indicates the number of current users of that node 13 * in the list. 14 * 15 * The entire point is to provide an interface for iterating over a list 16 * that is safe and allows for modification of the list during the 17 * iteration (e.g. insertion and removal), including modification of the 18 * current node on the list. 19 * 20 * It works using a 3rd object type - struct klist_iter - that is declared 21 * and initialized before an iteration. klist_next() is used to acquire the 22 * next element in the list. It returns NULL if there are no more items. 23 * Internally, that routine takes the klist's lock, decrements the 24 * reference count of the previous klist_node and increments the count of 25 * the next klist_node. It then drops the lock and returns. 26 * 27 * There are primitives for adding and removing nodes to/from a klist. 28 * When deleting, klist_del() will simply decrement the reference count. 29 * Only when the count goes to 0 is the node removed from the list. 30 * klist_remove() will try to delete the node from the list and block until 31 * it is actually removed. This is useful for objects (like devices) that 32 * have been removed from the system and must be freed (but must wait until 33 * all accessors have finished). 34 */ 35 36#include <linux/klist.h> 37#include <linux/export.h> 38#include <linux/sched.h> 39 40/* 41 * Use the lowest bit of n_klist to mark deleted nodes and exclude 42 * dead ones from iteration. 43 */ 44#define KNODE_DEAD 1LU 45#define KNODE_KLIST_MASK ~KNODE_DEAD 46 47static struct klist *knode_klist(struct klist_node *knode) 48{ 49 return (struct klist *) 50 ((unsigned long)knode->n_klist & KNODE_KLIST_MASK); 51} 52 53static bool knode_dead(struct klist_node *knode) 54{ 55 return (unsigned long)knode->n_klist & KNODE_DEAD; 56} 57 58static void knode_set_klist(struct klist_node *knode, struct klist *klist) 59{ 60 knode->n_klist = klist; 61 /* no knode deserves to start its life dead */ 62 WARN_ON(knode_dead(knode)); 63} 64 65static void knode_kill(struct klist_node *knode) 66{ 67 /* and no knode should die twice ever either, see we're very humane */ 68 WARN_ON(knode_dead(knode)); 69 *(unsigned long *)&knode->n_klist |= KNODE_DEAD; 70} 71 72/** 73 * klist_init - Initialize a klist structure. 74 * @k: The klist we're initializing. 75 * @get: The get function for the embedding object (NULL if none) 76 * @put: The put function for the embedding object (NULL if none) 77 * 78 * Initialises the klist structure. If the klist_node structures are 79 * going to be embedded in refcounted objects (necessary for safe 80 * deletion) then the get/put arguments are used to initialise 81 * functions that take and release references on the embedding 82 * objects. 83 */ 84void klist_init(struct klist *k, void (*get)(struct klist_node *), 85 void (*put)(struct klist_node *)) 86{ 87 INIT_LIST_HEAD(&k->k_list); 88 spin_lock_init(&k->k_lock); 89 k->get = get; 90 k->put = put; 91} 92EXPORT_SYMBOL_GPL(klist_init); 93 94static void add_head(struct klist *k, struct klist_node *n) 95{ 96 spin_lock(&k->k_lock); 97 list_add(&n->n_node, &k->k_list); 98 spin_unlock(&k->k_lock); 99} 100 101static void add_tail(struct klist *k, struct klist_node *n) 102{ 103 spin_lock(&k->k_lock); 104 list_add_tail(&n->n_node, &k->k_list); 105 spin_unlock(&k->k_lock); 106} 107 108static void klist_node_init(struct klist *k, struct klist_node *n) 109{ 110 INIT_LIST_HEAD(&n->n_node); 111 kref_init(&n->n_ref); 112 knode_set_klist(n, k); 113 if (k->get) 114 k->get(n); 115} 116 117/** 118 * klist_add_head - Initialize a klist_node and add it to front. 119 * @n: node we're adding. 120 * @k: klist it's going on. 121 */ 122void klist_add_head(struct klist_node *n, struct klist *k) 123{ 124 klist_node_init(k, n); 125 add_head(k, n); 126} 127EXPORT_SYMBOL_GPL(klist_add_head); 128 129/** 130 * klist_add_tail - Initialize a klist_node and add it to back. 131 * @n: node we're adding. 132 * @k: klist it's going on. 133 */ 134void klist_add_tail(struct klist_node *n, struct klist *k) 135{ 136 klist_node_init(k, n); 137 add_tail(k, n); 138} 139EXPORT_SYMBOL_GPL(klist_add_tail); 140 141/** 142 * klist_add_behind - Init a klist_node and add it after an existing node 143 * @n: node we're adding. 144 * @pos: node to put @n after 145 */ 146void klist_add_behind(struct klist_node *n, struct klist_node *pos) 147{ 148 struct klist *k = knode_klist(pos); 149 150 klist_node_init(k, n); 151 spin_lock(&k->k_lock); 152 list_add(&n->n_node, &pos->n_node); 153 spin_unlock(&k->k_lock); 154} 155EXPORT_SYMBOL_GPL(klist_add_behind); 156 157/** 158 * klist_add_before - Init a klist_node and add it before an existing node 159 * @n: node we're adding. 160 * @pos: node to put @n after 161 */ 162void klist_add_before(struct klist_node *n, struct klist_node *pos) 163{ 164 struct klist *k = knode_klist(pos); 165 166 klist_node_init(k, n); 167 spin_lock(&k->k_lock); 168 list_add_tail(&n->n_node, &pos->n_node); 169 spin_unlock(&k->k_lock); 170} 171EXPORT_SYMBOL_GPL(klist_add_before); 172 173struct klist_waiter { 174 struct list_head list; 175 struct klist_node *node; 176 struct task_struct *process; 177 int woken; 178}; 179 180static DEFINE_SPINLOCK(klist_remove_lock); 181static LIST_HEAD(klist_remove_waiters); 182 183static void klist_release(struct kref *kref) 184{ 185 struct klist_waiter *waiter, *tmp; 186 struct klist_node *n = container_of(kref, struct klist_node, n_ref); 187 188 WARN_ON(!knode_dead(n)); 189 list_del(&n->n_node); 190 spin_lock(&klist_remove_lock); 191 list_for_each_entry_safe(waiter, tmp, &klist_remove_waiters, list) { 192 if (waiter->node != n) 193 continue; 194 195 list_del(&waiter->list); 196 waiter->woken = 1; 197 mb(); 198 wake_up_process(waiter->process); 199 } 200 spin_unlock(&klist_remove_lock); 201 knode_set_klist(n, NULL); 202} 203 204static int klist_dec_and_del(struct klist_node *n) 205{ 206 return kref_put(&n->n_ref, klist_release); 207} 208 209static void klist_put(struct klist_node *n, bool kill) 210{ 211 struct klist *k = knode_klist(n); 212 void (*put)(struct klist_node *) = k->put; 213 214 spin_lock(&k->k_lock); 215 if (kill) 216 knode_kill(n); 217 if (!klist_dec_and_del(n)) 218 put = NULL; 219 spin_unlock(&k->k_lock); 220 if (put) 221 put(n); 222} 223 224/** 225 * klist_del - Decrement the reference count of node and try to remove. 226 * @n: node we're deleting. 227 */ 228void klist_del(struct klist_node *n) 229{ 230 klist_put(n, true); 231} 232EXPORT_SYMBOL_GPL(klist_del); 233 234/** 235 * klist_remove - Decrement the refcount of node and wait for it to go away. 236 * @n: node we're removing. 237 */ 238void klist_remove(struct klist_node *n) 239{ 240 struct klist_waiter waiter; 241 242 waiter.node = n; 243 waiter.process = current; 244 waiter.woken = 0; 245 spin_lock(&klist_remove_lock); 246 list_add(&waiter.list, &klist_remove_waiters); 247 spin_unlock(&klist_remove_lock); 248 249 klist_del(n); 250 251 for (;;) { 252 set_current_state(TASK_UNINTERRUPTIBLE); 253 if (waiter.woken) 254 break; 255 schedule(); 256 } 257 __set_current_state(TASK_RUNNING); 258} 259EXPORT_SYMBOL_GPL(klist_remove); 260 261/** 262 * klist_node_attached - Say whether a node is bound to a list or not. 263 * @n: Node that we're testing. 264 */ 265int klist_node_attached(struct klist_node *n) 266{ 267 return (n->n_klist != NULL); 268} 269EXPORT_SYMBOL_GPL(klist_node_attached); 270 271/** 272 * klist_iter_init_node - Initialize a klist_iter structure. 273 * @k: klist we're iterating. 274 * @i: klist_iter we're filling. 275 * @n: node to start with. 276 * 277 * Similar to klist_iter_init(), but starts the action off with @n, 278 * instead of with the list head. 279 */ 280void klist_iter_init_node(struct klist *k, struct klist_iter *i, 281 struct klist_node *n) 282{ 283 i->i_klist = k; 284 i->i_cur = NULL; 285 if (n && kref_get_unless_zero(&n->n_ref)) 286 i->i_cur = n; 287} 288EXPORT_SYMBOL_GPL(klist_iter_init_node); 289 290/** 291 * klist_iter_init - Iniitalize a klist_iter structure. 292 * @k: klist we're iterating. 293 * @i: klist_iter structure we're filling. 294 * 295 * Similar to klist_iter_init_node(), but start with the list head. 296 */ 297void klist_iter_init(struct klist *k, struct klist_iter *i) 298{ 299 klist_iter_init_node(k, i, NULL); 300} 301EXPORT_SYMBOL_GPL(klist_iter_init); 302 303/** 304 * klist_iter_exit - Finish a list iteration. 305 * @i: Iterator structure. 306 * 307 * Must be called when done iterating over list, as it decrements the 308 * refcount of the current node. Necessary in case iteration exited before 309 * the end of the list was reached, and always good form. 310 */ 311void klist_iter_exit(struct klist_iter *i) 312{ 313 if (i->i_cur) { 314 klist_put(i->i_cur, false); 315 i->i_cur = NULL; 316 } 317} 318EXPORT_SYMBOL_GPL(klist_iter_exit); 319 320static struct klist_node *to_klist_node(struct list_head *n) 321{ 322 return container_of(n, struct klist_node, n_node); 323} 324 325/** 326 * klist_prev - Ante up prev node in list. 327 * @i: Iterator structure. 328 * 329 * First grab list lock. Decrement the reference count of the previous 330 * node, if there was one. Grab the prev node, increment its reference 331 * count, drop the lock, and return that prev node. 332 */ 333struct klist_node *klist_prev(struct klist_iter *i) 334{ 335 void (*put)(struct klist_node *) = i->i_klist->put; 336 struct klist_node *last = i->i_cur; 337 struct klist_node *prev; 338 unsigned long flags; 339 340 spin_lock_irqsave(&i->i_klist->k_lock, flags); 341 342 if (last) { 343 prev = to_klist_node(last->n_node.prev); 344 if (!klist_dec_and_del(last)) 345 put = NULL; 346 } else 347 prev = to_klist_node(i->i_klist->k_list.prev); 348 349 i->i_cur = NULL; 350 while (prev != to_klist_node(&i->i_klist->k_list)) { 351 if (likely(!knode_dead(prev))) { 352 kref_get(&prev->n_ref); 353 i->i_cur = prev; 354 break; 355 } 356 prev = to_klist_node(prev->n_node.prev); 357 } 358 359 spin_unlock_irqrestore(&i->i_klist->k_lock, flags); 360 361 if (put && last) 362 put(last); 363 return i->i_cur; 364} 365EXPORT_SYMBOL_GPL(klist_prev); 366 367/** 368 * klist_next - Ante up next node in list. 369 * @i: Iterator structure. 370 * 371 * First grab list lock. Decrement the reference count of the previous 372 * node, if there was one. Grab the next node, increment its reference 373 * count, drop the lock, and return that next node. 374 */ 375struct klist_node *klist_next(struct klist_iter *i) 376{ 377 void (*put)(struct klist_node *) = i->i_klist->put; 378 struct klist_node *last = i->i_cur; 379 struct klist_node *next; 380 unsigned long flags; 381 382 spin_lock_irqsave(&i->i_klist->k_lock, flags); 383 384 if (last) { 385 next = to_klist_node(last->n_node.next); 386 if (!klist_dec_and_del(last)) 387 put = NULL; 388 } else 389 next = to_klist_node(i->i_klist->k_list.next); 390 391 i->i_cur = NULL; 392 while (next != to_klist_node(&i->i_klist->k_list)) { 393 if (likely(!knode_dead(next))) { 394 kref_get(&next->n_ref); 395 i->i_cur = next; 396 break; 397 } 398 next = to_klist_node(next->n_node.next); 399 } 400 401 spin_unlock_irqrestore(&i->i_klist->k_lock, flags); 402 403 if (put && last) 404 put(last); 405 return i->i_cur; 406} 407EXPORT_SYMBOL_GPL(klist_next);