cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

klist.c (10680B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * klist.c - Routines for manipulating klists.
      4 *
      5 * Copyright (C) 2005 Patrick Mochel
      6 *
      7 * This klist interface provides a couple of structures that wrap around
      8 * struct list_head to provide explicit list "head" (struct klist) and list
      9 * "node" (struct klist_node) objects. For struct klist, a spinlock is
     10 * included that protects access to the actual list itself. struct
     11 * klist_node provides a pointer to the klist that owns it and a kref
     12 * reference count that indicates the number of current users of that node
     13 * in the list.
     14 *
     15 * The entire point is to provide an interface for iterating over a list
     16 * that is safe and allows for modification of the list during the
     17 * iteration (e.g. insertion and removal), including modification of the
     18 * current node on the list.
     19 *
     20 * It works using a 3rd object type - struct klist_iter - that is declared
     21 * and initialized before an iteration. klist_next() is used to acquire the
     22 * next element in the list. It returns NULL if there are no more items.
     23 * Internally, that routine takes the klist's lock, decrements the
     24 * reference count of the previous klist_node and increments the count of
     25 * the next klist_node. It then drops the lock and returns.
     26 *
     27 * There are primitives for adding and removing nodes to/from a klist.
     28 * When deleting, klist_del() will simply decrement the reference count.
     29 * Only when the count goes to 0 is the node removed from the list.
     30 * klist_remove() will try to delete the node from the list and block until
     31 * it is actually removed. This is useful for objects (like devices) that
     32 * have been removed from the system and must be freed (but must wait until
     33 * all accessors have finished).
     34 */
     35
     36#include <linux/klist.h>
     37#include <linux/export.h>
     38#include <linux/sched.h>
     39
     40/*
     41 * Use the lowest bit of n_klist to mark deleted nodes and exclude
     42 * dead ones from iteration.
     43 */
     44#define KNODE_DEAD		1LU
     45#define KNODE_KLIST_MASK	~KNODE_DEAD
     46
     47static struct klist *knode_klist(struct klist_node *knode)
     48{
     49	return (struct klist *)
     50		((unsigned long)knode->n_klist & KNODE_KLIST_MASK);
     51}
     52
     53static bool knode_dead(struct klist_node *knode)
     54{
     55	return (unsigned long)knode->n_klist & KNODE_DEAD;
     56}
     57
     58static void knode_set_klist(struct klist_node *knode, struct klist *klist)
     59{
     60	knode->n_klist = klist;
     61	/* no knode deserves to start its life dead */
     62	WARN_ON(knode_dead(knode));
     63}
     64
     65static void knode_kill(struct klist_node *knode)
     66{
     67	/* and no knode should die twice ever either, see we're very humane */
     68	WARN_ON(knode_dead(knode));
     69	*(unsigned long *)&knode->n_klist |= KNODE_DEAD;
     70}
     71
     72/**
     73 * klist_init - Initialize a klist structure.
     74 * @k: The klist we're initializing.
     75 * @get: The get function for the embedding object (NULL if none)
     76 * @put: The put function for the embedding object (NULL if none)
     77 *
     78 * Initialises the klist structure.  If the klist_node structures are
     79 * going to be embedded in refcounted objects (necessary for safe
     80 * deletion) then the get/put arguments are used to initialise
     81 * functions that take and release references on the embedding
     82 * objects.
     83 */
     84void klist_init(struct klist *k, void (*get)(struct klist_node *),
     85		void (*put)(struct klist_node *))
     86{
     87	INIT_LIST_HEAD(&k->k_list);
     88	spin_lock_init(&k->k_lock);
     89	k->get = get;
     90	k->put = put;
     91}
     92EXPORT_SYMBOL_GPL(klist_init);
     93
     94static void add_head(struct klist *k, struct klist_node *n)
     95{
     96	spin_lock(&k->k_lock);
     97	list_add(&n->n_node, &k->k_list);
     98	spin_unlock(&k->k_lock);
     99}
    100
    101static void add_tail(struct klist *k, struct klist_node *n)
    102{
    103	spin_lock(&k->k_lock);
    104	list_add_tail(&n->n_node, &k->k_list);
    105	spin_unlock(&k->k_lock);
    106}
    107
    108static void klist_node_init(struct klist *k, struct klist_node *n)
    109{
    110	INIT_LIST_HEAD(&n->n_node);
    111	kref_init(&n->n_ref);
    112	knode_set_klist(n, k);
    113	if (k->get)
    114		k->get(n);
    115}
    116
    117/**
    118 * klist_add_head - Initialize a klist_node and add it to front.
    119 * @n: node we're adding.
    120 * @k: klist it's going on.
    121 */
    122void klist_add_head(struct klist_node *n, struct klist *k)
    123{
    124	klist_node_init(k, n);
    125	add_head(k, n);
    126}
    127EXPORT_SYMBOL_GPL(klist_add_head);
    128
    129/**
    130 * klist_add_tail - Initialize a klist_node and add it to back.
    131 * @n: node we're adding.
    132 * @k: klist it's going on.
    133 */
    134void klist_add_tail(struct klist_node *n, struct klist *k)
    135{
    136	klist_node_init(k, n);
    137	add_tail(k, n);
    138}
    139EXPORT_SYMBOL_GPL(klist_add_tail);
    140
    141/**
    142 * klist_add_behind - Init a klist_node and add it after an existing node
    143 * @n: node we're adding.
    144 * @pos: node to put @n after
    145 */
    146void klist_add_behind(struct klist_node *n, struct klist_node *pos)
    147{
    148	struct klist *k = knode_klist(pos);
    149
    150	klist_node_init(k, n);
    151	spin_lock(&k->k_lock);
    152	list_add(&n->n_node, &pos->n_node);
    153	spin_unlock(&k->k_lock);
    154}
    155EXPORT_SYMBOL_GPL(klist_add_behind);
    156
    157/**
    158 * klist_add_before - Init a klist_node and add it before an existing node
    159 * @n: node we're adding.
    160 * @pos: node to put @n after
    161 */
    162void klist_add_before(struct klist_node *n, struct klist_node *pos)
    163{
    164	struct klist *k = knode_klist(pos);
    165
    166	klist_node_init(k, n);
    167	spin_lock(&k->k_lock);
    168	list_add_tail(&n->n_node, &pos->n_node);
    169	spin_unlock(&k->k_lock);
    170}
    171EXPORT_SYMBOL_GPL(klist_add_before);
    172
    173struct klist_waiter {
    174	struct list_head list;
    175	struct klist_node *node;
    176	struct task_struct *process;
    177	int woken;
    178};
    179
    180static DEFINE_SPINLOCK(klist_remove_lock);
    181static LIST_HEAD(klist_remove_waiters);
    182
    183static void klist_release(struct kref *kref)
    184{
    185	struct klist_waiter *waiter, *tmp;
    186	struct klist_node *n = container_of(kref, struct klist_node, n_ref);
    187
    188	WARN_ON(!knode_dead(n));
    189	list_del(&n->n_node);
    190	spin_lock(&klist_remove_lock);
    191	list_for_each_entry_safe(waiter, tmp, &klist_remove_waiters, list) {
    192		if (waiter->node != n)
    193			continue;
    194
    195		list_del(&waiter->list);
    196		waiter->woken = 1;
    197		mb();
    198		wake_up_process(waiter->process);
    199	}
    200	spin_unlock(&klist_remove_lock);
    201	knode_set_klist(n, NULL);
    202}
    203
    204static int klist_dec_and_del(struct klist_node *n)
    205{
    206	return kref_put(&n->n_ref, klist_release);
    207}
    208
    209static void klist_put(struct klist_node *n, bool kill)
    210{
    211	struct klist *k = knode_klist(n);
    212	void (*put)(struct klist_node *) = k->put;
    213
    214	spin_lock(&k->k_lock);
    215	if (kill)
    216		knode_kill(n);
    217	if (!klist_dec_and_del(n))
    218		put = NULL;
    219	spin_unlock(&k->k_lock);
    220	if (put)
    221		put(n);
    222}
    223
    224/**
    225 * klist_del - Decrement the reference count of node and try to remove.
    226 * @n: node we're deleting.
    227 */
    228void klist_del(struct klist_node *n)
    229{
    230	klist_put(n, true);
    231}
    232EXPORT_SYMBOL_GPL(klist_del);
    233
    234/**
    235 * klist_remove - Decrement the refcount of node and wait for it to go away.
    236 * @n: node we're removing.
    237 */
    238void klist_remove(struct klist_node *n)
    239{
    240	struct klist_waiter waiter;
    241
    242	waiter.node = n;
    243	waiter.process = current;
    244	waiter.woken = 0;
    245	spin_lock(&klist_remove_lock);
    246	list_add(&waiter.list, &klist_remove_waiters);
    247	spin_unlock(&klist_remove_lock);
    248
    249	klist_del(n);
    250
    251	for (;;) {
    252		set_current_state(TASK_UNINTERRUPTIBLE);
    253		if (waiter.woken)
    254			break;
    255		schedule();
    256	}
    257	__set_current_state(TASK_RUNNING);
    258}
    259EXPORT_SYMBOL_GPL(klist_remove);
    260
    261/**
    262 * klist_node_attached - Say whether a node is bound to a list or not.
    263 * @n: Node that we're testing.
    264 */
    265int klist_node_attached(struct klist_node *n)
    266{
    267	return (n->n_klist != NULL);
    268}
    269EXPORT_SYMBOL_GPL(klist_node_attached);
    270
    271/**
    272 * klist_iter_init_node - Initialize a klist_iter structure.
    273 * @k: klist we're iterating.
    274 * @i: klist_iter we're filling.
    275 * @n: node to start with.
    276 *
    277 * Similar to klist_iter_init(), but starts the action off with @n,
    278 * instead of with the list head.
    279 */
    280void klist_iter_init_node(struct klist *k, struct klist_iter *i,
    281			  struct klist_node *n)
    282{
    283	i->i_klist = k;
    284	i->i_cur = NULL;
    285	if (n && kref_get_unless_zero(&n->n_ref))
    286		i->i_cur = n;
    287}
    288EXPORT_SYMBOL_GPL(klist_iter_init_node);
    289
    290/**
    291 * klist_iter_init - Iniitalize a klist_iter structure.
    292 * @k: klist we're iterating.
    293 * @i: klist_iter structure we're filling.
    294 *
    295 * Similar to klist_iter_init_node(), but start with the list head.
    296 */
    297void klist_iter_init(struct klist *k, struct klist_iter *i)
    298{
    299	klist_iter_init_node(k, i, NULL);
    300}
    301EXPORT_SYMBOL_GPL(klist_iter_init);
    302
    303/**
    304 * klist_iter_exit - Finish a list iteration.
    305 * @i: Iterator structure.
    306 *
    307 * Must be called when done iterating over list, as it decrements the
    308 * refcount of the current node. Necessary in case iteration exited before
    309 * the end of the list was reached, and always good form.
    310 */
    311void klist_iter_exit(struct klist_iter *i)
    312{
    313	if (i->i_cur) {
    314		klist_put(i->i_cur, false);
    315		i->i_cur = NULL;
    316	}
    317}
    318EXPORT_SYMBOL_GPL(klist_iter_exit);
    319
    320static struct klist_node *to_klist_node(struct list_head *n)
    321{
    322	return container_of(n, struct klist_node, n_node);
    323}
    324
    325/**
    326 * klist_prev - Ante up prev node in list.
    327 * @i: Iterator structure.
    328 *
    329 * First grab list lock. Decrement the reference count of the previous
    330 * node, if there was one. Grab the prev node, increment its reference
    331 * count, drop the lock, and return that prev node.
    332 */
    333struct klist_node *klist_prev(struct klist_iter *i)
    334{
    335	void (*put)(struct klist_node *) = i->i_klist->put;
    336	struct klist_node *last = i->i_cur;
    337	struct klist_node *prev;
    338	unsigned long flags;
    339
    340	spin_lock_irqsave(&i->i_klist->k_lock, flags);
    341
    342	if (last) {
    343		prev = to_klist_node(last->n_node.prev);
    344		if (!klist_dec_and_del(last))
    345			put = NULL;
    346	} else
    347		prev = to_klist_node(i->i_klist->k_list.prev);
    348
    349	i->i_cur = NULL;
    350	while (prev != to_klist_node(&i->i_klist->k_list)) {
    351		if (likely(!knode_dead(prev))) {
    352			kref_get(&prev->n_ref);
    353			i->i_cur = prev;
    354			break;
    355		}
    356		prev = to_klist_node(prev->n_node.prev);
    357	}
    358
    359	spin_unlock_irqrestore(&i->i_klist->k_lock, flags);
    360
    361	if (put && last)
    362		put(last);
    363	return i->i_cur;
    364}
    365EXPORT_SYMBOL_GPL(klist_prev);
    366
    367/**
    368 * klist_next - Ante up next node in list.
    369 * @i: Iterator structure.
    370 *
    371 * First grab list lock. Decrement the reference count of the previous
    372 * node, if there was one. Grab the next node, increment its reference
    373 * count, drop the lock, and return that next node.
    374 */
    375struct klist_node *klist_next(struct klist_iter *i)
    376{
    377	void (*put)(struct klist_node *) = i->i_klist->put;
    378	struct klist_node *last = i->i_cur;
    379	struct klist_node *next;
    380	unsigned long flags;
    381
    382	spin_lock_irqsave(&i->i_klist->k_lock, flags);
    383
    384	if (last) {
    385		next = to_klist_node(last->n_node.next);
    386		if (!klist_dec_and_del(last))
    387			put = NULL;
    388	} else
    389		next = to_klist_node(i->i_klist->k_list.next);
    390
    391	i->i_cur = NULL;
    392	while (next != to_klist_node(&i->i_klist->k_list)) {
    393		if (likely(!knode_dead(next))) {
    394			kref_get(&next->n_ref);
    395			i->i_cur = next;
    396			break;
    397		}
    398		next = to_klist_node(next->n_node.next);
    399	}
    400
    401	spin_unlock_irqrestore(&i->i_klist->k_lock, flags);
    402
    403	if (put && last)
    404		put(last);
    405	return i->i_cur;
    406}
    407EXPORT_SYMBOL_GPL(klist_next);