cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ec.c (36379B)


      1/* ec.c -  Elliptic Curve functions
      2 * Copyright (C) 2007 Free Software Foundation, Inc.
      3 * Copyright (C) 2013 g10 Code GmbH
      4 *
      5 * This file is part of Libgcrypt.
      6 *
      7 * Libgcrypt is free software; you can redistribute it and/or modify
      8 * it under the terms of the GNU Lesser General Public License as
      9 * published by the Free Software Foundation; either version 2.1 of
     10 * the License, or (at your option) any later version.
     11 *
     12 * Libgcrypt is distributed in the hope that it will be useful,
     13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 * GNU Lesser General Public License for more details.
     16 *
     17 * You should have received a copy of the GNU Lesser General Public
     18 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
     19 */
     20
     21#include "mpi-internal.h"
     22#include "longlong.h"
     23
     24#define point_init(a)  mpi_point_init((a))
     25#define point_free(a)  mpi_point_free_parts((a))
     26
     27#define log_error(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
     28#define log_fatal(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
     29
     30#define DIM(v) (sizeof(v)/sizeof((v)[0]))
     31
     32
     33/* Create a new point option.  NBITS gives the size in bits of one
     34 * coordinate; it is only used to pre-allocate some resources and
     35 * might also be passed as 0 to use a default value.
     36 */
     37MPI_POINT mpi_point_new(unsigned int nbits)
     38{
     39	MPI_POINT p;
     40
     41	(void)nbits;  /* Currently not used.  */
     42
     43	p = kmalloc(sizeof(*p), GFP_KERNEL);
     44	if (p)
     45		mpi_point_init(p);
     46	return p;
     47}
     48EXPORT_SYMBOL_GPL(mpi_point_new);
     49
     50/* Release the point object P.  P may be NULL. */
     51void mpi_point_release(MPI_POINT p)
     52{
     53	if (p) {
     54		mpi_point_free_parts(p);
     55		kfree(p);
     56	}
     57}
     58EXPORT_SYMBOL_GPL(mpi_point_release);
     59
     60/* Initialize the fields of a point object.  gcry_mpi_point_free_parts
     61 * may be used to release the fields.
     62 */
     63void mpi_point_init(MPI_POINT p)
     64{
     65	p->x = mpi_new(0);
     66	p->y = mpi_new(0);
     67	p->z = mpi_new(0);
     68}
     69EXPORT_SYMBOL_GPL(mpi_point_init);
     70
     71/* Release the parts of a point object. */
     72void mpi_point_free_parts(MPI_POINT p)
     73{
     74	mpi_free(p->x); p->x = NULL;
     75	mpi_free(p->y); p->y = NULL;
     76	mpi_free(p->z); p->z = NULL;
     77}
     78EXPORT_SYMBOL_GPL(mpi_point_free_parts);
     79
     80/* Set the value from S into D.  */
     81static void point_set(MPI_POINT d, MPI_POINT s)
     82{
     83	mpi_set(d->x, s->x);
     84	mpi_set(d->y, s->y);
     85	mpi_set(d->z, s->z);
     86}
     87
     88static void point_resize(MPI_POINT p, struct mpi_ec_ctx *ctx)
     89{
     90	size_t nlimbs = ctx->p->nlimbs;
     91
     92	mpi_resize(p->x, nlimbs);
     93	p->x->nlimbs = nlimbs;
     94	mpi_resize(p->z, nlimbs);
     95	p->z->nlimbs = nlimbs;
     96
     97	if (ctx->model != MPI_EC_MONTGOMERY) {
     98		mpi_resize(p->y, nlimbs);
     99		p->y->nlimbs = nlimbs;
    100	}
    101}
    102
    103static void point_swap_cond(MPI_POINT d, MPI_POINT s, unsigned long swap,
    104		struct mpi_ec_ctx *ctx)
    105{
    106	mpi_swap_cond(d->x, s->x, swap);
    107	if (ctx->model != MPI_EC_MONTGOMERY)
    108		mpi_swap_cond(d->y, s->y, swap);
    109	mpi_swap_cond(d->z, s->z, swap);
    110}
    111
    112
    113/* W = W mod P.  */
    114static void ec_mod(MPI w, struct mpi_ec_ctx *ec)
    115{
    116	if (ec->t.p_barrett)
    117		mpi_mod_barrett(w, w, ec->t.p_barrett);
    118	else
    119		mpi_mod(w, w, ec->p);
    120}
    121
    122static void ec_addm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
    123{
    124	mpi_add(w, u, v);
    125	ec_mod(w, ctx);
    126}
    127
    128static void ec_subm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec)
    129{
    130	mpi_sub(w, u, v);
    131	while (w->sign)
    132		mpi_add(w, w, ec->p);
    133	/*ec_mod(w, ec);*/
    134}
    135
    136static void ec_mulm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
    137{
    138	mpi_mul(w, u, v);
    139	ec_mod(w, ctx);
    140}
    141
    142/* W = 2 * U mod P.  */
    143static void ec_mul2(MPI w, MPI u, struct mpi_ec_ctx *ctx)
    144{
    145	mpi_lshift(w, u, 1);
    146	ec_mod(w, ctx);
    147}
    148
    149static void ec_powm(MPI w, const MPI b, const MPI e,
    150		struct mpi_ec_ctx *ctx)
    151{
    152	mpi_powm(w, b, e, ctx->p);
    153	/* mpi_abs(w); */
    154}
    155
    156/* Shortcut for
    157 * ec_powm(B, B, mpi_const(MPI_C_TWO), ctx);
    158 * for easier optimization.
    159 */
    160static void ec_pow2(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
    161{
    162	/* Using mpi_mul is slightly faster (at least on amd64).  */
    163	/* mpi_powm(w, b, mpi_const(MPI_C_TWO), ctx->p); */
    164	ec_mulm(w, b, b, ctx);
    165}
    166
    167/* Shortcut for
    168 * ec_powm(B, B, mpi_const(MPI_C_THREE), ctx);
    169 * for easier optimization.
    170 */
    171static void ec_pow3(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
    172{
    173	mpi_powm(w, b, mpi_const(MPI_C_THREE), ctx->p);
    174}
    175
    176static void ec_invm(MPI x, MPI a, struct mpi_ec_ctx *ctx)
    177{
    178	if (!mpi_invm(x, a, ctx->p))
    179		log_error("ec_invm: inverse does not exist:\n");
    180}
    181
    182static void mpih_set_cond(mpi_ptr_t wp, mpi_ptr_t up,
    183		mpi_size_t usize, unsigned long set)
    184{
    185	mpi_size_t i;
    186	mpi_limb_t mask = ((mpi_limb_t)0) - set;
    187	mpi_limb_t x;
    188
    189	for (i = 0; i < usize; i++) {
    190		x = mask & (wp[i] ^ up[i]);
    191		wp[i] = wp[i] ^ x;
    192	}
    193}
    194
    195/* Routines for 2^255 - 19.  */
    196
    197#define LIMB_SIZE_25519 ((256+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
    198
    199static void ec_addm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
    200{
    201	mpi_ptr_t wp, up, vp;
    202	mpi_size_t wsize = LIMB_SIZE_25519;
    203	mpi_limb_t n[LIMB_SIZE_25519];
    204	mpi_limb_t borrow;
    205
    206	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
    207		log_bug("addm_25519: different sizes\n");
    208
    209	memset(n, 0, sizeof(n));
    210	up = u->d;
    211	vp = v->d;
    212	wp = w->d;
    213
    214	mpihelp_add_n(wp, up, vp, wsize);
    215	borrow = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
    216	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
    217	mpihelp_add_n(wp, wp, n, wsize);
    218	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
    219}
    220
    221static void ec_subm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
    222{
    223	mpi_ptr_t wp, up, vp;
    224	mpi_size_t wsize = LIMB_SIZE_25519;
    225	mpi_limb_t n[LIMB_SIZE_25519];
    226	mpi_limb_t borrow;
    227
    228	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
    229		log_bug("subm_25519: different sizes\n");
    230
    231	memset(n, 0, sizeof(n));
    232	up = u->d;
    233	vp = v->d;
    234	wp = w->d;
    235
    236	borrow = mpihelp_sub_n(wp, up, vp, wsize);
    237	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
    238	mpihelp_add_n(wp, wp, n, wsize);
    239	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
    240}
    241
    242static void ec_mulm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
    243{
    244	mpi_ptr_t wp, up, vp;
    245	mpi_size_t wsize = LIMB_SIZE_25519;
    246	mpi_limb_t n[LIMB_SIZE_25519*2];
    247	mpi_limb_t m[LIMB_SIZE_25519+1];
    248	mpi_limb_t cy;
    249	int msb;
    250
    251	(void)ctx;
    252	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
    253		log_bug("mulm_25519: different sizes\n");
    254
    255	up = u->d;
    256	vp = v->d;
    257	wp = w->d;
    258
    259	mpihelp_mul_n(n, up, vp, wsize);
    260	memcpy(wp, n, wsize * BYTES_PER_MPI_LIMB);
    261	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
    262
    263	memcpy(m, n+LIMB_SIZE_25519-1, (wsize+1) * BYTES_PER_MPI_LIMB);
    264	mpihelp_rshift(m, m, LIMB_SIZE_25519+1, (255 % BITS_PER_MPI_LIMB));
    265
    266	memcpy(n, m, wsize * BYTES_PER_MPI_LIMB);
    267	cy = mpihelp_lshift(m, m, LIMB_SIZE_25519, 4);
    268	m[LIMB_SIZE_25519] = cy;
    269	cy = mpihelp_add_n(m, m, n, wsize);
    270	m[LIMB_SIZE_25519] += cy;
    271	cy = mpihelp_add_n(m, m, n, wsize);
    272	m[LIMB_SIZE_25519] += cy;
    273	cy = mpihelp_add_n(m, m, n, wsize);
    274	m[LIMB_SIZE_25519] += cy;
    275
    276	cy = mpihelp_add_n(wp, wp, m, wsize);
    277	m[LIMB_SIZE_25519] += cy;
    278
    279	memset(m, 0, wsize * BYTES_PER_MPI_LIMB);
    280	msb = (wp[LIMB_SIZE_25519-1] >> (255 % BITS_PER_MPI_LIMB));
    281	m[0] = (m[LIMB_SIZE_25519] * 2 + msb) * 19;
    282	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
    283	mpihelp_add_n(wp, wp, m, wsize);
    284
    285	m[0] = 0;
    286	cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
    287	mpih_set_cond(m, ctx->p->d, wsize, (cy != 0UL));
    288	mpihelp_add_n(wp, wp, m, wsize);
    289}
    290
    291static void ec_mul2_25519(MPI w, MPI u, struct mpi_ec_ctx *ctx)
    292{
    293	ec_addm_25519(w, u, u, ctx);
    294}
    295
    296static void ec_pow2_25519(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
    297{
    298	ec_mulm_25519(w, b, b, ctx);
    299}
    300
    301/* Routines for 2^448 - 2^224 - 1.  */
    302
    303#define LIMB_SIZE_448 ((448+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
    304#define LIMB_SIZE_HALF_448 ((LIMB_SIZE_448+1)/2)
    305
    306static void ec_addm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
    307{
    308	mpi_ptr_t wp, up, vp;
    309	mpi_size_t wsize = LIMB_SIZE_448;
    310	mpi_limb_t n[LIMB_SIZE_448];
    311	mpi_limb_t cy;
    312
    313	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
    314		log_bug("addm_448: different sizes\n");
    315
    316	memset(n, 0, sizeof(n));
    317	up = u->d;
    318	vp = v->d;
    319	wp = w->d;
    320
    321	cy = mpihelp_add_n(wp, up, vp, wsize);
    322	mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL));
    323	mpihelp_sub_n(wp, wp, n, wsize);
    324}
    325
    326static void ec_subm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
    327{
    328	mpi_ptr_t wp, up, vp;
    329	mpi_size_t wsize = LIMB_SIZE_448;
    330	mpi_limb_t n[LIMB_SIZE_448];
    331	mpi_limb_t borrow;
    332
    333	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
    334		log_bug("subm_448: different sizes\n");
    335
    336	memset(n, 0, sizeof(n));
    337	up = u->d;
    338	vp = v->d;
    339	wp = w->d;
    340
    341	borrow = mpihelp_sub_n(wp, up, vp, wsize);
    342	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
    343	mpihelp_add_n(wp, wp, n, wsize);
    344}
    345
    346static void ec_mulm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
    347{
    348	mpi_ptr_t wp, up, vp;
    349	mpi_size_t wsize = LIMB_SIZE_448;
    350	mpi_limb_t n[LIMB_SIZE_448*2];
    351	mpi_limb_t a2[LIMB_SIZE_HALF_448];
    352	mpi_limb_t a3[LIMB_SIZE_HALF_448];
    353	mpi_limb_t b0[LIMB_SIZE_HALF_448];
    354	mpi_limb_t b1[LIMB_SIZE_HALF_448];
    355	mpi_limb_t cy;
    356	int i;
    357#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
    358	mpi_limb_t b1_rest, a3_rest;
    359#endif
    360
    361	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
    362		log_bug("mulm_448: different sizes\n");
    363
    364	up = u->d;
    365	vp = v->d;
    366	wp = w->d;
    367
    368	mpihelp_mul_n(n, up, vp, wsize);
    369
    370	for (i = 0; i < (wsize + 1) / 2; i++) {
    371		b0[i] = n[i];
    372		b1[i] = n[i+wsize/2];
    373		a2[i] = n[i+wsize];
    374		a3[i] = n[i+wsize+wsize/2];
    375	}
    376
    377#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
    378	b0[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1;
    379	a2[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1;
    380
    381	b1_rest = 0;
    382	a3_rest = 0;
    383
    384	for (i = (wsize + 1) / 2 - 1; i >= 0; i--) {
    385		mpi_limb_t b1v, a3v;
    386		b1v = b1[i];
    387		a3v = a3[i];
    388		b1[i] = (b1_rest << 32) | (b1v >> 32);
    389		a3[i] = (a3_rest << 32) | (a3v >> 32);
    390		b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1);
    391		a3_rest = a3v & (((mpi_limb_t)1UL << 32)-1);
    392	}
    393#endif
    394
    395	cy = mpihelp_add_n(b0, b0, a2, LIMB_SIZE_HALF_448);
    396	cy += mpihelp_add_n(b0, b0, a3, LIMB_SIZE_HALF_448);
    397	for (i = 0; i < (wsize + 1) / 2; i++)
    398		wp[i] = b0[i];
    399#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
    400	wp[LIMB_SIZE_HALF_448-1] &= (((mpi_limb_t)1UL << 32)-1);
    401#endif
    402
    403#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
    404	cy = b0[LIMB_SIZE_HALF_448-1] >> 32;
    405#endif
    406
    407	cy = mpihelp_add_1(b1, b1, LIMB_SIZE_HALF_448, cy);
    408	cy += mpihelp_add_n(b1, b1, a2, LIMB_SIZE_HALF_448);
    409	cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448);
    410	cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448);
    411#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
    412	b1_rest = 0;
    413	for (i = (wsize + 1) / 2 - 1; i >= 0; i--) {
    414		mpi_limb_t b1v = b1[i];
    415		b1[i] = (b1_rest << 32) | (b1v >> 32);
    416		b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1);
    417	}
    418	wp[LIMB_SIZE_HALF_448-1] |= (b1_rest << 32);
    419#endif
    420	for (i = 0; i < wsize / 2; i++)
    421		wp[i+(wsize + 1) / 2] = b1[i];
    422
    423#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
    424	cy = b1[LIMB_SIZE_HALF_448-1];
    425#endif
    426
    427	memset(n, 0, wsize * BYTES_PER_MPI_LIMB);
    428
    429#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
    430	n[LIMB_SIZE_HALF_448-1] = cy << 32;
    431#else
    432	n[LIMB_SIZE_HALF_448] = cy;
    433#endif
    434	n[0] = cy;
    435	mpihelp_add_n(wp, wp, n, wsize);
    436
    437	memset(n, 0, wsize * BYTES_PER_MPI_LIMB);
    438	cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
    439	mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL));
    440	mpihelp_add_n(wp, wp, n, wsize);
    441}
    442
    443static void ec_mul2_448(MPI w, MPI u, struct mpi_ec_ctx *ctx)
    444{
    445	ec_addm_448(w, u, u, ctx);
    446}
    447
    448static void ec_pow2_448(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
    449{
    450	ec_mulm_448(w, b, b, ctx);
    451}
    452
    453struct field_table {
    454	const char *p;
    455
    456	/* computation routines for the field.  */
    457	void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
    458	void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
    459	void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
    460	void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx);
    461	void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx);
    462};
    463
    464static const struct field_table field_table[] = {
    465	{
    466		"0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED",
    467		ec_addm_25519,
    468		ec_subm_25519,
    469		ec_mulm_25519,
    470		ec_mul2_25519,
    471		ec_pow2_25519
    472	},
    473	{
    474		"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
    475		"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
    476		ec_addm_448,
    477		ec_subm_448,
    478		ec_mulm_448,
    479		ec_mul2_448,
    480		ec_pow2_448
    481	},
    482	{ NULL, NULL, NULL, NULL, NULL, NULL },
    483};
    484
    485/* Force recomputation of all helper variables.  */
    486static void mpi_ec_get_reset(struct mpi_ec_ctx *ec)
    487{
    488	ec->t.valid.a_is_pminus3 = 0;
    489	ec->t.valid.two_inv_p = 0;
    490}
    491
    492/* Accessor for helper variable.  */
    493static int ec_get_a_is_pminus3(struct mpi_ec_ctx *ec)
    494{
    495	MPI tmp;
    496
    497	if (!ec->t.valid.a_is_pminus3) {
    498		ec->t.valid.a_is_pminus3 = 1;
    499		tmp = mpi_alloc_like(ec->p);
    500		mpi_sub_ui(tmp, ec->p, 3);
    501		ec->t.a_is_pminus3 = !mpi_cmp(ec->a, tmp);
    502		mpi_free(tmp);
    503	}
    504
    505	return ec->t.a_is_pminus3;
    506}
    507
    508/* Accessor for helper variable.  */
    509static MPI ec_get_two_inv_p(struct mpi_ec_ctx *ec)
    510{
    511	if (!ec->t.valid.two_inv_p) {
    512		ec->t.valid.two_inv_p = 1;
    513		if (!ec->t.two_inv_p)
    514			ec->t.two_inv_p = mpi_alloc(0);
    515		ec_invm(ec->t.two_inv_p, mpi_const(MPI_C_TWO), ec);
    516	}
    517	return ec->t.two_inv_p;
    518}
    519
    520static const char *const curve25519_bad_points[] = {
    521	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed",
    522	"0x0000000000000000000000000000000000000000000000000000000000000000",
    523	"0x0000000000000000000000000000000000000000000000000000000000000001",
    524	"0x00b8495f16056286fdb1329ceb8d09da6ac49ff1fae35616aeb8413b7c7aebe0",
    525	"0x57119fd0dd4e22d8868e1c58c45c44045bef839c55b1d0b1248c50a3bc959c5f",
    526	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec",
    527	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee",
    528	NULL
    529};
    530
    531static const char *const curve448_bad_points[] = {
    532	"0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
    533	"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
    534	"0x00000000000000000000000000000000000000000000000000000000"
    535	"00000000000000000000000000000000000000000000000000000000",
    536	"0x00000000000000000000000000000000000000000000000000000000"
    537	"00000000000000000000000000000000000000000000000000000001",
    538	"0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
    539	"fffffffffffffffffffffffffffffffffffffffffffffffffffffffe",
    540	"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
    541	"00000000000000000000000000000000000000000000000000000000",
    542	NULL
    543};
    544
    545static const char *const *bad_points_table[] = {
    546	curve25519_bad_points,
    547	curve448_bad_points,
    548};
    549
    550static void mpi_ec_coefficient_normalize(MPI a, MPI p)
    551{
    552	if (a->sign) {
    553		mpi_resize(a, p->nlimbs);
    554		mpihelp_sub_n(a->d, p->d, a->d, p->nlimbs);
    555		a->nlimbs = p->nlimbs;
    556		a->sign = 0;
    557	}
    558}
    559
    560/* This function initialized a context for elliptic curve based on the
    561 * field GF(p).  P is the prime specifying this field, A is the first
    562 * coefficient.  CTX is expected to be zeroized.
    563 */
    564void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model,
    565			enum ecc_dialects dialect,
    566			int flags, MPI p, MPI a, MPI b)
    567{
    568	int i;
    569	static int use_barrett = -1 /* TODO: 1 or -1 */;
    570
    571	mpi_ec_coefficient_normalize(a, p);
    572	mpi_ec_coefficient_normalize(b, p);
    573
    574	/* Fixme: Do we want to check some constraints? e.g.  a < p  */
    575
    576	ctx->model = model;
    577	ctx->dialect = dialect;
    578	ctx->flags = flags;
    579	if (dialect == ECC_DIALECT_ED25519)
    580		ctx->nbits = 256;
    581	else
    582		ctx->nbits = mpi_get_nbits(p);
    583	ctx->p = mpi_copy(p);
    584	ctx->a = mpi_copy(a);
    585	ctx->b = mpi_copy(b);
    586
    587	ctx->t.p_barrett = use_barrett > 0 ? mpi_barrett_init(ctx->p, 0) : NULL;
    588
    589	mpi_ec_get_reset(ctx);
    590
    591	if (model == MPI_EC_MONTGOMERY) {
    592		for (i = 0; i < DIM(bad_points_table); i++) {
    593			MPI p_candidate = mpi_scanval(bad_points_table[i][0]);
    594			int match_p = !mpi_cmp(ctx->p, p_candidate);
    595			int j;
    596
    597			mpi_free(p_candidate);
    598			if (!match_p)
    599				continue;
    600
    601			for (j = 0; i < DIM(ctx->t.scratch) && bad_points_table[i][j]; j++)
    602				ctx->t.scratch[j] = mpi_scanval(bad_points_table[i][j]);
    603		}
    604	} else {
    605		/* Allocate scratch variables.  */
    606		for (i = 0; i < DIM(ctx->t.scratch); i++)
    607			ctx->t.scratch[i] = mpi_alloc_like(ctx->p);
    608	}
    609
    610	ctx->addm = ec_addm;
    611	ctx->subm = ec_subm;
    612	ctx->mulm = ec_mulm;
    613	ctx->mul2 = ec_mul2;
    614	ctx->pow2 = ec_pow2;
    615
    616	for (i = 0; field_table[i].p; i++) {
    617		MPI f_p;
    618
    619		f_p = mpi_scanval(field_table[i].p);
    620		if (!f_p)
    621			break;
    622
    623		if (!mpi_cmp(p, f_p)) {
    624			ctx->addm = field_table[i].addm;
    625			ctx->subm = field_table[i].subm;
    626			ctx->mulm = field_table[i].mulm;
    627			ctx->mul2 = field_table[i].mul2;
    628			ctx->pow2 = field_table[i].pow2;
    629			mpi_free(f_p);
    630
    631			mpi_resize(ctx->a, ctx->p->nlimbs);
    632			ctx->a->nlimbs = ctx->p->nlimbs;
    633
    634			mpi_resize(ctx->b, ctx->p->nlimbs);
    635			ctx->b->nlimbs = ctx->p->nlimbs;
    636
    637			for (i = 0; i < DIM(ctx->t.scratch) && ctx->t.scratch[i]; i++)
    638				ctx->t.scratch[i]->nlimbs = ctx->p->nlimbs;
    639
    640			break;
    641		}
    642
    643		mpi_free(f_p);
    644	}
    645}
    646EXPORT_SYMBOL_GPL(mpi_ec_init);
    647
    648void mpi_ec_deinit(struct mpi_ec_ctx *ctx)
    649{
    650	int i;
    651
    652	mpi_barrett_free(ctx->t.p_barrett);
    653
    654	/* Domain parameter.  */
    655	mpi_free(ctx->p);
    656	mpi_free(ctx->a);
    657	mpi_free(ctx->b);
    658	mpi_point_release(ctx->G);
    659	mpi_free(ctx->n);
    660
    661	/* The key.  */
    662	mpi_point_release(ctx->Q);
    663	mpi_free(ctx->d);
    664
    665	/* Private data of ec.c.  */
    666	mpi_free(ctx->t.two_inv_p);
    667
    668	for (i = 0; i < DIM(ctx->t.scratch); i++)
    669		mpi_free(ctx->t.scratch[i]);
    670}
    671EXPORT_SYMBOL_GPL(mpi_ec_deinit);
    672
    673/* Compute the affine coordinates from the projective coordinates in
    674 * POINT.  Set them into X and Y.  If one coordinate is not required,
    675 * X or Y may be passed as NULL.  CTX is the usual context. Returns: 0
    676 * on success or !0 if POINT is at infinity.
    677 */
    678int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx)
    679{
    680	if (!mpi_cmp_ui(point->z, 0))
    681		return -1;
    682
    683	switch (ctx->model) {
    684	case MPI_EC_WEIERSTRASS: /* Using Jacobian coordinates.  */
    685		{
    686			MPI z1, z2, z3;
    687
    688			z1 = mpi_new(0);
    689			z2 = mpi_new(0);
    690			ec_invm(z1, point->z, ctx);  /* z1 = z^(-1) mod p  */
    691			ec_mulm(z2, z1, z1, ctx);    /* z2 = z^(-2) mod p  */
    692
    693			if (x)
    694				ec_mulm(x, point->x, z2, ctx);
    695
    696			if (y) {
    697				z3 = mpi_new(0);
    698				ec_mulm(z3, z2, z1, ctx);      /* z3 = z^(-3) mod p */
    699				ec_mulm(y, point->y, z3, ctx);
    700				mpi_free(z3);
    701			}
    702
    703			mpi_free(z2);
    704			mpi_free(z1);
    705		}
    706		return 0;
    707
    708	case MPI_EC_MONTGOMERY:
    709		{
    710			if (x)
    711				mpi_set(x, point->x);
    712
    713			if (y) {
    714				log_fatal("%s: Getting Y-coordinate on %s is not supported\n",
    715						"mpi_ec_get_affine", "Montgomery");
    716				return -1;
    717			}
    718		}
    719		return 0;
    720
    721	case MPI_EC_EDWARDS:
    722		{
    723			MPI z;
    724
    725			z = mpi_new(0);
    726			ec_invm(z, point->z, ctx);
    727
    728			mpi_resize(z, ctx->p->nlimbs);
    729			z->nlimbs = ctx->p->nlimbs;
    730
    731			if (x) {
    732				mpi_resize(x, ctx->p->nlimbs);
    733				x->nlimbs = ctx->p->nlimbs;
    734				ctx->mulm(x, point->x, z, ctx);
    735			}
    736			if (y) {
    737				mpi_resize(y, ctx->p->nlimbs);
    738				y->nlimbs = ctx->p->nlimbs;
    739				ctx->mulm(y, point->y, z, ctx);
    740			}
    741
    742			mpi_free(z);
    743		}
    744		return 0;
    745
    746	default:
    747		return -1;
    748	}
    749}
    750EXPORT_SYMBOL_GPL(mpi_ec_get_affine);
    751
    752/*  RESULT = 2 * POINT  (Weierstrass version). */
    753static void dup_point_weierstrass(MPI_POINT result,
    754		MPI_POINT point, struct mpi_ec_ctx *ctx)
    755{
    756#define x3 (result->x)
    757#define y3 (result->y)
    758#define z3 (result->z)
    759#define t1 (ctx->t.scratch[0])
    760#define t2 (ctx->t.scratch[1])
    761#define t3 (ctx->t.scratch[2])
    762#define l1 (ctx->t.scratch[3])
    763#define l2 (ctx->t.scratch[4])
    764#define l3 (ctx->t.scratch[5])
    765
    766	if (!mpi_cmp_ui(point->y, 0) || !mpi_cmp_ui(point->z, 0)) {
    767		/* P_y == 0 || P_z == 0 => [1:1:0] */
    768		mpi_set_ui(x3, 1);
    769		mpi_set_ui(y3, 1);
    770		mpi_set_ui(z3, 0);
    771	} else {
    772		if (ec_get_a_is_pminus3(ctx)) {
    773			/* Use the faster case.  */
    774			/* L1 = 3(X - Z^2)(X + Z^2) */
    775			/*                          T1: used for Z^2. */
    776			/*                          T2: used for the right term. */
    777			ec_pow2(t1, point->z, ctx);
    778			ec_subm(l1, point->x, t1, ctx);
    779			ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx);
    780			ec_addm(t2, point->x, t1, ctx);
    781			ec_mulm(l1, l1, t2, ctx);
    782		} else {
    783			/* Standard case. */
    784			/* L1 = 3X^2 + aZ^4 */
    785			/*                          T1: used for aZ^4. */
    786			ec_pow2(l1, point->x, ctx);
    787			ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx);
    788			ec_powm(t1, point->z, mpi_const(MPI_C_FOUR), ctx);
    789			ec_mulm(t1, t1, ctx->a, ctx);
    790			ec_addm(l1, l1, t1, ctx);
    791		}
    792		/* Z3 = 2YZ */
    793		ec_mulm(z3, point->y, point->z, ctx);
    794		ec_mul2(z3, z3, ctx);
    795
    796		/* L2 = 4XY^2 */
    797		/*                              T2: used for Y2; required later. */
    798		ec_pow2(t2, point->y, ctx);
    799		ec_mulm(l2, t2, point->x, ctx);
    800		ec_mulm(l2, l2, mpi_const(MPI_C_FOUR), ctx);
    801
    802		/* X3 = L1^2 - 2L2 */
    803		/*                              T1: used for L2^2. */
    804		ec_pow2(x3, l1, ctx);
    805		ec_mul2(t1, l2, ctx);
    806		ec_subm(x3, x3, t1, ctx);
    807
    808		/* L3 = 8Y^4 */
    809		/*                              T2: taken from above. */
    810		ec_pow2(t2, t2, ctx);
    811		ec_mulm(l3, t2, mpi_const(MPI_C_EIGHT), ctx);
    812
    813		/* Y3 = L1(L2 - X3) - L3 */
    814		ec_subm(y3, l2, x3, ctx);
    815		ec_mulm(y3, y3, l1, ctx);
    816		ec_subm(y3, y3, l3, ctx);
    817	}
    818
    819#undef x3
    820#undef y3
    821#undef z3
    822#undef t1
    823#undef t2
    824#undef t3
    825#undef l1
    826#undef l2
    827#undef l3
    828}
    829
    830/*  RESULT = 2 * POINT  (Montgomery version). */
    831static void dup_point_montgomery(MPI_POINT result,
    832				MPI_POINT point, struct mpi_ec_ctx *ctx)
    833{
    834	(void)result;
    835	(void)point;
    836	(void)ctx;
    837	log_fatal("%s: %s not yet supported\n",
    838			"mpi_ec_dup_point", "Montgomery");
    839}
    840
    841/*  RESULT = 2 * POINT  (Twisted Edwards version). */
    842static void dup_point_edwards(MPI_POINT result,
    843		MPI_POINT point, struct mpi_ec_ctx *ctx)
    844{
    845#define X1 (point->x)
    846#define Y1 (point->y)
    847#define Z1 (point->z)
    848#define X3 (result->x)
    849#define Y3 (result->y)
    850#define Z3 (result->z)
    851#define B (ctx->t.scratch[0])
    852#define C (ctx->t.scratch[1])
    853#define D (ctx->t.scratch[2])
    854#define E (ctx->t.scratch[3])
    855#define F (ctx->t.scratch[4])
    856#define H (ctx->t.scratch[5])
    857#define J (ctx->t.scratch[6])
    858
    859	/* Compute: (X_3 : Y_3 : Z_3) = 2( X_1 : Y_1 : Z_1 ) */
    860
    861	/* B = (X_1 + Y_1)^2  */
    862	ctx->addm(B, X1, Y1, ctx);
    863	ctx->pow2(B, B, ctx);
    864
    865	/* C = X_1^2 */
    866	/* D = Y_1^2 */
    867	ctx->pow2(C, X1, ctx);
    868	ctx->pow2(D, Y1, ctx);
    869
    870	/* E = aC */
    871	if (ctx->dialect == ECC_DIALECT_ED25519)
    872		ctx->subm(E, ctx->p, C, ctx);
    873	else
    874		ctx->mulm(E, ctx->a, C, ctx);
    875
    876	/* F = E + D */
    877	ctx->addm(F, E, D, ctx);
    878
    879	/* H = Z_1^2 */
    880	ctx->pow2(H, Z1, ctx);
    881
    882	/* J = F - 2H */
    883	ctx->mul2(J, H, ctx);
    884	ctx->subm(J, F, J, ctx);
    885
    886	/* X_3 = (B - C - D) · J */
    887	ctx->subm(X3, B, C, ctx);
    888	ctx->subm(X3, X3, D, ctx);
    889	ctx->mulm(X3, X3, J, ctx);
    890
    891	/* Y_3 = F · (E - D) */
    892	ctx->subm(Y3, E, D, ctx);
    893	ctx->mulm(Y3, Y3, F, ctx);
    894
    895	/* Z_3 = F · J */
    896	ctx->mulm(Z3, F, J, ctx);
    897
    898#undef X1
    899#undef Y1
    900#undef Z1
    901#undef X3
    902#undef Y3
    903#undef Z3
    904#undef B
    905#undef C
    906#undef D
    907#undef E
    908#undef F
    909#undef H
    910#undef J
    911}
    912
    913/*  RESULT = 2 * POINT  */
    914static void
    915mpi_ec_dup_point(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx)
    916{
    917	switch (ctx->model) {
    918	case MPI_EC_WEIERSTRASS:
    919		dup_point_weierstrass(result, point, ctx);
    920		break;
    921	case MPI_EC_MONTGOMERY:
    922		dup_point_montgomery(result, point, ctx);
    923		break;
    924	case MPI_EC_EDWARDS:
    925		dup_point_edwards(result, point, ctx);
    926		break;
    927	}
    928}
    929
    930/* RESULT = P1 + P2  (Weierstrass version).*/
    931static void add_points_weierstrass(MPI_POINT result,
    932		MPI_POINT p1, MPI_POINT p2,
    933		struct mpi_ec_ctx *ctx)
    934{
    935#define x1 (p1->x)
    936#define y1 (p1->y)
    937#define z1 (p1->z)
    938#define x2 (p2->x)
    939#define y2 (p2->y)
    940#define z2 (p2->z)
    941#define x3 (result->x)
    942#define y3 (result->y)
    943#define z3 (result->z)
    944#define l1 (ctx->t.scratch[0])
    945#define l2 (ctx->t.scratch[1])
    946#define l3 (ctx->t.scratch[2])
    947#define l4 (ctx->t.scratch[3])
    948#define l5 (ctx->t.scratch[4])
    949#define l6 (ctx->t.scratch[5])
    950#define l7 (ctx->t.scratch[6])
    951#define l8 (ctx->t.scratch[7])
    952#define l9 (ctx->t.scratch[8])
    953#define t1 (ctx->t.scratch[9])
    954#define t2 (ctx->t.scratch[10])
    955
    956	if ((!mpi_cmp(x1, x2)) && (!mpi_cmp(y1, y2)) && (!mpi_cmp(z1, z2))) {
    957		/* Same point; need to call the duplicate function.  */
    958		mpi_ec_dup_point(result, p1, ctx);
    959	} else if (!mpi_cmp_ui(z1, 0)) {
    960		/* P1 is at infinity.  */
    961		mpi_set(x3, p2->x);
    962		mpi_set(y3, p2->y);
    963		mpi_set(z3, p2->z);
    964	} else if (!mpi_cmp_ui(z2, 0)) {
    965		/* P2 is at infinity.  */
    966		mpi_set(x3, p1->x);
    967		mpi_set(y3, p1->y);
    968		mpi_set(z3, p1->z);
    969	} else {
    970		int z1_is_one = !mpi_cmp_ui(z1, 1);
    971		int z2_is_one = !mpi_cmp_ui(z2, 1);
    972
    973		/* l1 = x1 z2^2  */
    974		/* l2 = x2 z1^2  */
    975		if (z2_is_one)
    976			mpi_set(l1, x1);
    977		else {
    978			ec_pow2(l1, z2, ctx);
    979			ec_mulm(l1, l1, x1, ctx);
    980		}
    981		if (z1_is_one)
    982			mpi_set(l2, x2);
    983		else {
    984			ec_pow2(l2, z1, ctx);
    985			ec_mulm(l2, l2, x2, ctx);
    986		}
    987		/* l3 = l1 - l2 */
    988		ec_subm(l3, l1, l2, ctx);
    989		/* l4 = y1 z2^3  */
    990		ec_powm(l4, z2, mpi_const(MPI_C_THREE), ctx);
    991		ec_mulm(l4, l4, y1, ctx);
    992		/* l5 = y2 z1^3  */
    993		ec_powm(l5, z1, mpi_const(MPI_C_THREE), ctx);
    994		ec_mulm(l5, l5, y2, ctx);
    995		/* l6 = l4 - l5  */
    996		ec_subm(l6, l4, l5, ctx);
    997
    998		if (!mpi_cmp_ui(l3, 0)) {
    999			if (!mpi_cmp_ui(l6, 0)) {
   1000				/* P1 and P2 are the same - use duplicate function. */
   1001				mpi_ec_dup_point(result, p1, ctx);
   1002			} else {
   1003				/* P1 is the inverse of P2.  */
   1004				mpi_set_ui(x3, 1);
   1005				mpi_set_ui(y3, 1);
   1006				mpi_set_ui(z3, 0);
   1007			}
   1008		} else {
   1009			/* l7 = l1 + l2  */
   1010			ec_addm(l7, l1, l2, ctx);
   1011			/* l8 = l4 + l5  */
   1012			ec_addm(l8, l4, l5, ctx);
   1013			/* z3 = z1 z2 l3  */
   1014			ec_mulm(z3, z1, z2, ctx);
   1015			ec_mulm(z3, z3, l3, ctx);
   1016			/* x3 = l6^2 - l7 l3^2  */
   1017			ec_pow2(t1, l6, ctx);
   1018			ec_pow2(t2, l3, ctx);
   1019			ec_mulm(t2, t2, l7, ctx);
   1020			ec_subm(x3, t1, t2, ctx);
   1021			/* l9 = l7 l3^2 - 2 x3  */
   1022			ec_mul2(t1, x3, ctx);
   1023			ec_subm(l9, t2, t1, ctx);
   1024			/* y3 = (l9 l6 - l8 l3^3)/2  */
   1025			ec_mulm(l9, l9, l6, ctx);
   1026			ec_powm(t1, l3, mpi_const(MPI_C_THREE), ctx); /* fixme: Use saved value*/
   1027			ec_mulm(t1, t1, l8, ctx);
   1028			ec_subm(y3, l9, t1, ctx);
   1029			ec_mulm(y3, y3, ec_get_two_inv_p(ctx), ctx);
   1030		}
   1031	}
   1032
   1033#undef x1
   1034#undef y1
   1035#undef z1
   1036#undef x2
   1037#undef y2
   1038#undef z2
   1039#undef x3
   1040#undef y3
   1041#undef z3
   1042#undef l1
   1043#undef l2
   1044#undef l3
   1045#undef l4
   1046#undef l5
   1047#undef l6
   1048#undef l7
   1049#undef l8
   1050#undef l9
   1051#undef t1
   1052#undef t2
   1053}
   1054
   1055/* RESULT = P1 + P2  (Montgomery version).*/
   1056static void add_points_montgomery(MPI_POINT result,
   1057		MPI_POINT p1, MPI_POINT p2,
   1058		struct mpi_ec_ctx *ctx)
   1059{
   1060	(void)result;
   1061	(void)p1;
   1062	(void)p2;
   1063	(void)ctx;
   1064	log_fatal("%s: %s not yet supported\n",
   1065			"mpi_ec_add_points", "Montgomery");
   1066}
   1067
   1068/* RESULT = P1 + P2  (Twisted Edwards version).*/
   1069static void add_points_edwards(MPI_POINT result,
   1070		MPI_POINT p1, MPI_POINT p2,
   1071		struct mpi_ec_ctx *ctx)
   1072{
   1073#define X1 (p1->x)
   1074#define Y1 (p1->y)
   1075#define Z1 (p1->z)
   1076#define X2 (p2->x)
   1077#define Y2 (p2->y)
   1078#define Z2 (p2->z)
   1079#define X3 (result->x)
   1080#define Y3 (result->y)
   1081#define Z3 (result->z)
   1082#define A (ctx->t.scratch[0])
   1083#define B (ctx->t.scratch[1])
   1084#define C (ctx->t.scratch[2])
   1085#define D (ctx->t.scratch[3])
   1086#define E (ctx->t.scratch[4])
   1087#define F (ctx->t.scratch[5])
   1088#define G (ctx->t.scratch[6])
   1089#define tmp (ctx->t.scratch[7])
   1090
   1091	point_resize(result, ctx);
   1092
   1093	/* Compute: (X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : Z_3) */
   1094
   1095	/* A = Z1 · Z2 */
   1096	ctx->mulm(A, Z1, Z2, ctx);
   1097
   1098	/* B = A^2 */
   1099	ctx->pow2(B, A, ctx);
   1100
   1101	/* C = X1 · X2 */
   1102	ctx->mulm(C, X1, X2, ctx);
   1103
   1104	/* D = Y1 · Y2 */
   1105	ctx->mulm(D, Y1, Y2, ctx);
   1106
   1107	/* E = d · C · D */
   1108	ctx->mulm(E, ctx->b, C, ctx);
   1109	ctx->mulm(E, E, D, ctx);
   1110
   1111	/* F = B - E */
   1112	ctx->subm(F, B, E, ctx);
   1113
   1114	/* G = B + E */
   1115	ctx->addm(G, B, E, ctx);
   1116
   1117	/* X_3 = A · F · ((X_1 + Y_1) · (X_2 + Y_2) - C - D) */
   1118	ctx->addm(tmp, X1, Y1, ctx);
   1119	ctx->addm(X3, X2, Y2, ctx);
   1120	ctx->mulm(X3, X3, tmp, ctx);
   1121	ctx->subm(X3, X3, C, ctx);
   1122	ctx->subm(X3, X3, D, ctx);
   1123	ctx->mulm(X3, X3, F, ctx);
   1124	ctx->mulm(X3, X3, A, ctx);
   1125
   1126	/* Y_3 = A · G · (D - aC) */
   1127	if (ctx->dialect == ECC_DIALECT_ED25519) {
   1128		ctx->addm(Y3, D, C, ctx);
   1129	} else {
   1130		ctx->mulm(Y3, ctx->a, C, ctx);
   1131		ctx->subm(Y3, D, Y3, ctx);
   1132	}
   1133	ctx->mulm(Y3, Y3, G, ctx);
   1134	ctx->mulm(Y3, Y3, A, ctx);
   1135
   1136	/* Z_3 = F · G */
   1137	ctx->mulm(Z3, F, G, ctx);
   1138
   1139
   1140#undef X1
   1141#undef Y1
   1142#undef Z1
   1143#undef X2
   1144#undef Y2
   1145#undef Z2
   1146#undef X3
   1147#undef Y3
   1148#undef Z3
   1149#undef A
   1150#undef B
   1151#undef C
   1152#undef D
   1153#undef E
   1154#undef F
   1155#undef G
   1156#undef tmp
   1157}
   1158
   1159/* Compute a step of Montgomery Ladder (only use X and Z in the point).
   1160 * Inputs:  P1, P2, and x-coordinate of DIF = P1 - P1.
   1161 * Outputs: PRD = 2 * P1 and  SUM = P1 + P2.
   1162 */
   1163static void montgomery_ladder(MPI_POINT prd, MPI_POINT sum,
   1164		MPI_POINT p1, MPI_POINT p2, MPI dif_x,
   1165		struct mpi_ec_ctx *ctx)
   1166{
   1167	ctx->addm(sum->x, p2->x, p2->z, ctx);
   1168	ctx->subm(p2->z, p2->x, p2->z, ctx);
   1169	ctx->addm(prd->x, p1->x, p1->z, ctx);
   1170	ctx->subm(p1->z, p1->x, p1->z, ctx);
   1171	ctx->mulm(p2->x, p1->z, sum->x, ctx);
   1172	ctx->mulm(p2->z, prd->x, p2->z, ctx);
   1173	ctx->pow2(p1->x, prd->x, ctx);
   1174	ctx->pow2(p1->z, p1->z, ctx);
   1175	ctx->addm(sum->x, p2->x, p2->z, ctx);
   1176	ctx->subm(p2->z, p2->x, p2->z, ctx);
   1177	ctx->mulm(prd->x, p1->x, p1->z, ctx);
   1178	ctx->subm(p1->z, p1->x, p1->z, ctx);
   1179	ctx->pow2(sum->x, sum->x, ctx);
   1180	ctx->pow2(sum->z, p2->z, ctx);
   1181	ctx->mulm(prd->z, p1->z, ctx->a, ctx); /* CTX->A: (a-2)/4 */
   1182	ctx->mulm(sum->z, sum->z, dif_x, ctx);
   1183	ctx->addm(prd->z, p1->x, prd->z, ctx);
   1184	ctx->mulm(prd->z, prd->z, p1->z, ctx);
   1185}
   1186
   1187/* RESULT = P1 + P2 */
   1188void mpi_ec_add_points(MPI_POINT result,
   1189		MPI_POINT p1, MPI_POINT p2,
   1190		struct mpi_ec_ctx *ctx)
   1191{
   1192	switch (ctx->model) {
   1193	case MPI_EC_WEIERSTRASS:
   1194		add_points_weierstrass(result, p1, p2, ctx);
   1195		break;
   1196	case MPI_EC_MONTGOMERY:
   1197		add_points_montgomery(result, p1, p2, ctx);
   1198		break;
   1199	case MPI_EC_EDWARDS:
   1200		add_points_edwards(result, p1, p2, ctx);
   1201		break;
   1202	}
   1203}
   1204EXPORT_SYMBOL_GPL(mpi_ec_add_points);
   1205
   1206/* Scalar point multiplication - the main function for ECC.  If takes
   1207 * an integer SCALAR and a POINT as well as the usual context CTX.
   1208 * RESULT will be set to the resulting point.
   1209 */
   1210void mpi_ec_mul_point(MPI_POINT result,
   1211			MPI scalar, MPI_POINT point,
   1212			struct mpi_ec_ctx *ctx)
   1213{
   1214	MPI x1, y1, z1, k, h, yy;
   1215	unsigned int i, loops;
   1216	struct gcry_mpi_point p1, p2, p1inv;
   1217
   1218	if (ctx->model == MPI_EC_EDWARDS) {
   1219		/* Simple left to right binary method.  Algorithm 3.27 from
   1220		 * {author={Hankerson, Darrel and Menezes, Alfred J. and Vanstone, Scott},
   1221		 *  title = {Guide to Elliptic Curve Cryptography},
   1222		 *  year = {2003}, isbn = {038795273X},
   1223		 *  url = {http://www.cacr.math.uwaterloo.ca/ecc/},
   1224		 *  publisher = {Springer-Verlag New York, Inc.}}
   1225		 */
   1226		unsigned int nbits;
   1227		int j;
   1228
   1229		if (mpi_cmp(scalar, ctx->p) >= 0)
   1230			nbits = mpi_get_nbits(scalar);
   1231		else
   1232			nbits = mpi_get_nbits(ctx->p);
   1233
   1234		mpi_set_ui(result->x, 0);
   1235		mpi_set_ui(result->y, 1);
   1236		mpi_set_ui(result->z, 1);
   1237		point_resize(point, ctx);
   1238
   1239		point_resize(result, ctx);
   1240		point_resize(point, ctx);
   1241
   1242		for (j = nbits-1; j >= 0; j--) {
   1243			mpi_ec_dup_point(result, result, ctx);
   1244			if (mpi_test_bit(scalar, j))
   1245				mpi_ec_add_points(result, result, point, ctx);
   1246		}
   1247		return;
   1248	} else if (ctx->model == MPI_EC_MONTGOMERY) {
   1249		unsigned int nbits;
   1250		int j;
   1251		struct gcry_mpi_point p1_, p2_;
   1252		MPI_POINT q1, q2, prd, sum;
   1253		unsigned long sw;
   1254		mpi_size_t rsize;
   1255
   1256		/* Compute scalar point multiplication with Montgomery Ladder.
   1257		 * Note that we don't use Y-coordinate in the points at all.
   1258		 * RESULT->Y will be filled by zero.
   1259		 */
   1260
   1261		nbits = mpi_get_nbits(scalar);
   1262		point_init(&p1);
   1263		point_init(&p2);
   1264		point_init(&p1_);
   1265		point_init(&p2_);
   1266		mpi_set_ui(p1.x, 1);
   1267		mpi_free(p2.x);
   1268		p2.x = mpi_copy(point->x);
   1269		mpi_set_ui(p2.z, 1);
   1270
   1271		point_resize(&p1, ctx);
   1272		point_resize(&p2, ctx);
   1273		point_resize(&p1_, ctx);
   1274		point_resize(&p2_, ctx);
   1275
   1276		mpi_resize(point->x, ctx->p->nlimbs);
   1277		point->x->nlimbs = ctx->p->nlimbs;
   1278
   1279		q1 = &p1;
   1280		q2 = &p2;
   1281		prd = &p1_;
   1282		sum = &p2_;
   1283
   1284		for (j = nbits-1; j >= 0; j--) {
   1285			MPI_POINT t;
   1286
   1287			sw = mpi_test_bit(scalar, j);
   1288			point_swap_cond(q1, q2, sw, ctx);
   1289			montgomery_ladder(prd, sum, q1, q2, point->x, ctx);
   1290			point_swap_cond(prd, sum, sw, ctx);
   1291			t = q1;  q1 = prd;  prd = t;
   1292			t = q2;  q2 = sum;  sum = t;
   1293		}
   1294
   1295		mpi_clear(result->y);
   1296		sw = (nbits & 1);
   1297		point_swap_cond(&p1, &p1_, sw, ctx);
   1298
   1299		rsize = p1.z->nlimbs;
   1300		MPN_NORMALIZE(p1.z->d, rsize);
   1301		if (rsize == 0) {
   1302			mpi_set_ui(result->x, 1);
   1303			mpi_set_ui(result->z, 0);
   1304		} else {
   1305			z1 = mpi_new(0);
   1306			ec_invm(z1, p1.z, ctx);
   1307			ec_mulm(result->x, p1.x, z1, ctx);
   1308			mpi_set_ui(result->z, 1);
   1309			mpi_free(z1);
   1310		}
   1311
   1312		point_free(&p1);
   1313		point_free(&p2);
   1314		point_free(&p1_);
   1315		point_free(&p2_);
   1316		return;
   1317	}
   1318
   1319	x1 = mpi_alloc_like(ctx->p);
   1320	y1 = mpi_alloc_like(ctx->p);
   1321	h  = mpi_alloc_like(ctx->p);
   1322	k  = mpi_copy(scalar);
   1323	yy = mpi_copy(point->y);
   1324
   1325	if (mpi_has_sign(k)) {
   1326		k->sign = 0;
   1327		ec_invm(yy, yy, ctx);
   1328	}
   1329
   1330	if (!mpi_cmp_ui(point->z, 1)) {
   1331		mpi_set(x1, point->x);
   1332		mpi_set(y1, yy);
   1333	} else {
   1334		MPI z2, z3;
   1335
   1336		z2 = mpi_alloc_like(ctx->p);
   1337		z3 = mpi_alloc_like(ctx->p);
   1338		ec_mulm(z2, point->z, point->z, ctx);
   1339		ec_mulm(z3, point->z, z2, ctx);
   1340		ec_invm(z2, z2, ctx);
   1341		ec_mulm(x1, point->x, z2, ctx);
   1342		ec_invm(z3, z3, ctx);
   1343		ec_mulm(y1, yy, z3, ctx);
   1344		mpi_free(z2);
   1345		mpi_free(z3);
   1346	}
   1347	z1 = mpi_copy(mpi_const(MPI_C_ONE));
   1348
   1349	mpi_mul(h, k, mpi_const(MPI_C_THREE)); /* h = 3k */
   1350	loops = mpi_get_nbits(h);
   1351	if (loops < 2) {
   1352		/* If SCALAR is zero, the above mpi_mul sets H to zero and thus
   1353		 * LOOPs will be zero.  To avoid an underflow of I in the main
   1354		 * loop we set LOOP to 2 and the result to (0,0,0).
   1355		 */
   1356		loops = 2;
   1357		mpi_clear(result->x);
   1358		mpi_clear(result->y);
   1359		mpi_clear(result->z);
   1360	} else {
   1361		mpi_set(result->x, point->x);
   1362		mpi_set(result->y, yy);
   1363		mpi_set(result->z, point->z);
   1364	}
   1365	mpi_free(yy); yy = NULL;
   1366
   1367	p1.x = x1; x1 = NULL;
   1368	p1.y = y1; y1 = NULL;
   1369	p1.z = z1; z1 = NULL;
   1370	point_init(&p2);
   1371	point_init(&p1inv);
   1372
   1373	/* Invert point: y = p - y mod p  */
   1374	point_set(&p1inv, &p1);
   1375	ec_subm(p1inv.y, ctx->p, p1inv.y, ctx);
   1376
   1377	for (i = loops-2; i > 0; i--) {
   1378		mpi_ec_dup_point(result, result, ctx);
   1379		if (mpi_test_bit(h, i) == 1 && mpi_test_bit(k, i) == 0) {
   1380			point_set(&p2, result);
   1381			mpi_ec_add_points(result, &p2, &p1, ctx);
   1382		}
   1383		if (mpi_test_bit(h, i) == 0 && mpi_test_bit(k, i) == 1) {
   1384			point_set(&p2, result);
   1385			mpi_ec_add_points(result, &p2, &p1inv, ctx);
   1386		}
   1387	}
   1388
   1389	point_free(&p1);
   1390	point_free(&p2);
   1391	point_free(&p1inv);
   1392	mpi_free(h);
   1393	mpi_free(k);
   1394}
   1395EXPORT_SYMBOL_GPL(mpi_ec_mul_point);
   1396
   1397/* Return true if POINT is on the curve described by CTX.  */
   1398int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx)
   1399{
   1400	int res = 0;
   1401	MPI x, y, w;
   1402
   1403	x = mpi_new(0);
   1404	y = mpi_new(0);
   1405	w = mpi_new(0);
   1406
   1407	/* Check that the point is in range.  This needs to be done here and
   1408	 * not after conversion to affine coordinates.
   1409	 */
   1410	if (mpi_cmpabs(point->x, ctx->p) >= 0)
   1411		goto leave;
   1412	if (mpi_cmpabs(point->y, ctx->p) >= 0)
   1413		goto leave;
   1414	if (mpi_cmpabs(point->z, ctx->p) >= 0)
   1415		goto leave;
   1416
   1417	switch (ctx->model) {
   1418	case MPI_EC_WEIERSTRASS:
   1419		{
   1420			MPI xxx;
   1421
   1422			if (mpi_ec_get_affine(x, y, point, ctx))
   1423				goto leave;
   1424
   1425			xxx = mpi_new(0);
   1426
   1427			/* y^2 == x^3 + a·x + b */
   1428			ec_pow2(y, y, ctx);
   1429
   1430			ec_pow3(xxx, x, ctx);
   1431			ec_mulm(w, ctx->a, x, ctx);
   1432			ec_addm(w, w, ctx->b, ctx);
   1433			ec_addm(w, w, xxx, ctx);
   1434
   1435			if (!mpi_cmp(y, w))
   1436				res = 1;
   1437
   1438			mpi_free(xxx);
   1439		}
   1440		break;
   1441
   1442	case MPI_EC_MONTGOMERY:
   1443		{
   1444#define xx y
   1445			/* With Montgomery curve, only X-coordinate is valid. */
   1446			if (mpi_ec_get_affine(x, NULL, point, ctx))
   1447				goto leave;
   1448
   1449			/* The equation is: b * y^2 == x^3 + a · x^2 + x */
   1450			/* We check if right hand is quadratic residue or not by
   1451			 * Euler's criterion.
   1452			 */
   1453			/* CTX->A has (a-2)/4 and CTX->B has b^-1 */
   1454			ec_mulm(w, ctx->a, mpi_const(MPI_C_FOUR), ctx);
   1455			ec_addm(w, w, mpi_const(MPI_C_TWO), ctx);
   1456			ec_mulm(w, w, x, ctx);
   1457			ec_pow2(xx, x, ctx);
   1458			ec_addm(w, w, xx, ctx);
   1459			ec_addm(w, w, mpi_const(MPI_C_ONE), ctx);
   1460			ec_mulm(w, w, x, ctx);
   1461			ec_mulm(w, w, ctx->b, ctx);
   1462#undef xx
   1463			/* Compute Euler's criterion: w^(p-1)/2 */
   1464#define p_minus1 y
   1465			ec_subm(p_minus1, ctx->p, mpi_const(MPI_C_ONE), ctx);
   1466			mpi_rshift(p_minus1, p_minus1, 1);
   1467			ec_powm(w, w, p_minus1, ctx);
   1468
   1469			res = !mpi_cmp_ui(w, 1);
   1470#undef p_minus1
   1471		}
   1472		break;
   1473
   1474	case MPI_EC_EDWARDS:
   1475		{
   1476			if (mpi_ec_get_affine(x, y, point, ctx))
   1477				goto leave;
   1478
   1479			mpi_resize(w, ctx->p->nlimbs);
   1480			w->nlimbs = ctx->p->nlimbs;
   1481
   1482			/* a · x^2 + y^2 - 1 - b · x^2 · y^2 == 0 */
   1483			ctx->pow2(x, x, ctx);
   1484			ctx->pow2(y, y, ctx);
   1485			if (ctx->dialect == ECC_DIALECT_ED25519)
   1486				ctx->subm(w, ctx->p, x, ctx);
   1487			else
   1488				ctx->mulm(w, ctx->a, x, ctx);
   1489			ctx->addm(w, w, y, ctx);
   1490			ctx->mulm(x, x, y, ctx);
   1491			ctx->mulm(x, x, ctx->b, ctx);
   1492			ctx->subm(w, w, x, ctx);
   1493			if (!mpi_cmp_ui(w, 1))
   1494				res = 1;
   1495		}
   1496		break;
   1497	}
   1498
   1499leave:
   1500	mpi_free(w);
   1501	mpi_free(x);
   1502	mpi_free(y);
   1503
   1504	return res;
   1505}
   1506EXPORT_SYMBOL_GPL(mpi_ec_curve_point);