cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mpih-div.c (13559B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* mpihelp-div.c  -  MPI helper functions
      3 *	Copyright (C) 1994, 1996 Free Software Foundation, Inc.
      4 *	Copyright (C) 1998, 1999 Free Software Foundation, Inc.
      5 *
      6 * This file is part of GnuPG.
      7 *
      8 * Note: This code is heavily based on the GNU MP Library.
      9 *	 Actually it's the same code with only minor changes in the
     10 *	 way the data is stored; this is to support the abstraction
     11 *	 of an optional secure memory allocation which may be used
     12 *	 to avoid revealing of sensitive data due to paging etc.
     13 *	 The GNU MP Library itself is published under the LGPL;
     14 *	 however I decided to publish this code under the plain GPL.
     15 */
     16
     17#include "mpi-internal.h"
     18#include "longlong.h"
     19
     20#ifndef UMUL_TIME
     21#define UMUL_TIME 1
     22#endif
     23#ifndef UDIV_TIME
     24#define UDIV_TIME UMUL_TIME
     25#endif
     26
     27
     28mpi_limb_t
     29mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
     30			mpi_limb_t divisor_limb)
     31{
     32	mpi_size_t i;
     33	mpi_limb_t n1, n0, r;
     34	mpi_limb_t dummy __maybe_unused;
     35
     36	/* Botch: Should this be handled at all?  Rely on callers?	*/
     37	if (!dividend_size)
     38		return 0;
     39
     40	/* If multiplication is much faster than division, and the
     41	 * dividend is large, pre-invert the divisor, and use
     42	 * only multiplications in the inner loop.
     43	 *
     44	 * This test should be read:
     45	 *	 Does it ever help to use udiv_qrnnd_preinv?
     46	 *	   && Does what we save compensate for the inversion overhead?
     47	 */
     48	if (UDIV_TIME > (2 * UMUL_TIME + 6)
     49			&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
     50		int normalization_steps;
     51
     52		normalization_steps = count_leading_zeros(divisor_limb);
     53		if (normalization_steps) {
     54			mpi_limb_t divisor_limb_inverted;
     55
     56			divisor_limb <<= normalization_steps;
     57
     58			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
     59			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
     60			 * most significant bit (with weight 2**N) implicit.
     61			 *
     62			 * Special case for DIVISOR_LIMB == 100...000.
     63			 */
     64			if (!(divisor_limb << 1))
     65				divisor_limb_inverted = ~(mpi_limb_t)0;
     66			else
     67				udiv_qrnnd(divisor_limb_inverted, dummy,
     68						-divisor_limb, 0, divisor_limb);
     69
     70			n1 = dividend_ptr[dividend_size - 1];
     71			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
     72
     73			/* Possible optimization:
     74			 * if (r == 0
     75			 * && divisor_limb > ((n1 << normalization_steps)
     76			 *		       | (dividend_ptr[dividend_size - 2] >> ...)))
     77			 * ...one division less...
     78			 */
     79			for (i = dividend_size - 2; i >= 0; i--) {
     80				n0 = dividend_ptr[i];
     81				UDIV_QRNND_PREINV(dummy, r, r,
     82						((n1 << normalization_steps)
     83						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
     84						divisor_limb, divisor_limb_inverted);
     85				n1 = n0;
     86			}
     87			UDIV_QRNND_PREINV(dummy, r, r,
     88					n1 << normalization_steps,
     89					divisor_limb, divisor_limb_inverted);
     90			return r >> normalization_steps;
     91		} else {
     92			mpi_limb_t divisor_limb_inverted;
     93
     94			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
     95			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
     96			 * most significant bit (with weight 2**N) implicit.
     97			 *
     98			 * Special case for DIVISOR_LIMB == 100...000.
     99			 */
    100			if (!(divisor_limb << 1))
    101				divisor_limb_inverted = ~(mpi_limb_t)0;
    102			else
    103				udiv_qrnnd(divisor_limb_inverted, dummy,
    104						-divisor_limb, 0, divisor_limb);
    105
    106			i = dividend_size - 1;
    107			r = dividend_ptr[i];
    108
    109			if (r >= divisor_limb)
    110				r = 0;
    111			else
    112				i--;
    113
    114			for ( ; i >= 0; i--) {
    115				n0 = dividend_ptr[i];
    116				UDIV_QRNND_PREINV(dummy, r, r,
    117						n0, divisor_limb, divisor_limb_inverted);
    118			}
    119			return r;
    120		}
    121	} else {
    122		if (UDIV_NEEDS_NORMALIZATION) {
    123			int normalization_steps;
    124
    125			normalization_steps = count_leading_zeros(divisor_limb);
    126			if (normalization_steps) {
    127				divisor_limb <<= normalization_steps;
    128
    129				n1 = dividend_ptr[dividend_size - 1];
    130				r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
    131
    132				/* Possible optimization:
    133				 * if (r == 0
    134				 * && divisor_limb > ((n1 << normalization_steps)
    135				 *		   | (dividend_ptr[dividend_size - 2] >> ...)))
    136				 * ...one division less...
    137				 */
    138				for (i = dividend_size - 2; i >= 0; i--) {
    139					n0 = dividend_ptr[i];
    140					udiv_qrnnd(dummy, r, r,
    141						((n1 << normalization_steps)
    142						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
    143						divisor_limb);
    144					n1 = n0;
    145				}
    146				udiv_qrnnd(dummy, r, r,
    147						n1 << normalization_steps,
    148						divisor_limb);
    149				return r >> normalization_steps;
    150			}
    151		}
    152		/* No normalization needed, either because udiv_qrnnd doesn't require
    153		 * it, or because DIVISOR_LIMB is already normalized.
    154		 */
    155		i = dividend_size - 1;
    156		r = dividend_ptr[i];
    157
    158		if (r >= divisor_limb)
    159			r = 0;
    160		else
    161			i--;
    162
    163		for (; i >= 0; i--) {
    164			n0 = dividend_ptr[i];
    165			udiv_qrnnd(dummy, r, r, n0, divisor_limb);
    166		}
    167		return r;
    168	}
    169}
    170
    171/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
    172 * the NSIZE-DSIZE least significant quotient limbs at QP
    173 * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is
    174 * non-zero, generate that many fraction bits and append them after the
    175 * other quotient limbs.
    176 * Return the most significant limb of the quotient, this is always 0 or 1.
    177 *
    178 * Preconditions:
    179 * 0. NSIZE >= DSIZE.
    180 * 1. The most significant bit of the divisor must be set.
    181 * 2. QP must either not overlap with the input operands at all, or
    182 *    QP + DSIZE >= NP must hold true.	(This means that it's
    183 *    possible to put the quotient in the high part of NUM, right after the
    184 *    remainder in NUM.
    185 * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
    186 */
    187
    188mpi_limb_t
    189mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
    190	       mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
    191{
    192	mpi_limb_t most_significant_q_limb = 0;
    193
    194	switch (dsize) {
    195	case 0:
    196		/* We are asked to divide by zero, so go ahead and do it!  (To make
    197		   the compiler not remove this statement, return the value.)  */
    198		/*
    199		 * existing clients of this function have been modified
    200		 * not to call it with dsize == 0, so this should not happen
    201		 */
    202		return 1 / dsize;
    203
    204	case 1:
    205		{
    206			mpi_size_t i;
    207			mpi_limb_t n1;
    208			mpi_limb_t d;
    209
    210			d = dp[0];
    211			n1 = np[nsize - 1];
    212
    213			if (n1 >= d) {
    214				n1 -= d;
    215				most_significant_q_limb = 1;
    216			}
    217
    218			qp += qextra_limbs;
    219			for (i = nsize - 2; i >= 0; i--)
    220				udiv_qrnnd(qp[i], n1, n1, np[i], d);
    221			qp -= qextra_limbs;
    222
    223			for (i = qextra_limbs - 1; i >= 0; i--)
    224				udiv_qrnnd(qp[i], n1, n1, 0, d);
    225
    226			np[0] = n1;
    227		}
    228		break;
    229
    230	case 2:
    231		{
    232			mpi_size_t i;
    233			mpi_limb_t n1, n0, n2;
    234			mpi_limb_t d1, d0;
    235
    236			np += nsize - 2;
    237			d1 = dp[1];
    238			d0 = dp[0];
    239			n1 = np[1];
    240			n0 = np[0];
    241
    242			if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
    243				sub_ddmmss(n1, n0, n1, n0, d1, d0);
    244				most_significant_q_limb = 1;
    245			}
    246
    247			for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
    248				mpi_limb_t q;
    249				mpi_limb_t r;
    250
    251				if (i >= qextra_limbs)
    252					np--;
    253				else
    254					np[0] = 0;
    255
    256				if (n1 == d1) {
    257					/* Q should be either 111..111 or 111..110.  Need special
    258					 * treatment of this rare case as normal division would
    259					 * give overflow.  */
    260					q = ~(mpi_limb_t) 0;
    261
    262					r = n0 + d1;
    263					if (r < d1) {	/* Carry in the addition? */
    264						add_ssaaaa(n1, n0, r - d0,
    265							   np[0], 0, d0);
    266						qp[i] = q;
    267						continue;
    268					}
    269					n1 = d0 - (d0 != 0 ? 1 : 0);
    270					n0 = -d0;
    271				} else {
    272					udiv_qrnnd(q, r, n1, n0, d1);
    273					umul_ppmm(n1, n0, d0, q);
    274				}
    275
    276				n2 = np[0];
    277q_test:
    278				if (n1 > r || (n1 == r && n0 > n2)) {
    279					/* The estimated Q was too large.  */
    280					q--;
    281					sub_ddmmss(n1, n0, n1, n0, 0, d0);
    282					r += d1;
    283					if (r >= d1)	/* If not carry, test Q again.  */
    284						goto q_test;
    285				}
    286
    287				qp[i] = q;
    288				sub_ddmmss(n1, n0, r, n2, n1, n0);
    289			}
    290			np[1] = n1;
    291			np[0] = n0;
    292		}
    293		break;
    294
    295	default:
    296		{
    297			mpi_size_t i;
    298			mpi_limb_t dX, d1, n0;
    299
    300			np += nsize - dsize;
    301			dX = dp[dsize - 1];
    302			d1 = dp[dsize - 2];
    303			n0 = np[dsize - 1];
    304
    305			if (n0 >= dX) {
    306				if (n0 > dX
    307				    || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
    308					mpihelp_sub_n(np, np, dp, dsize);
    309					n0 = np[dsize - 1];
    310					most_significant_q_limb = 1;
    311				}
    312			}
    313
    314			for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
    315				mpi_limb_t q;
    316				mpi_limb_t n1, n2;
    317				mpi_limb_t cy_limb;
    318
    319				if (i >= qextra_limbs) {
    320					np--;
    321					n2 = np[dsize];
    322				} else {
    323					n2 = np[dsize - 1];
    324					MPN_COPY_DECR(np + 1, np, dsize - 1);
    325					np[0] = 0;
    326				}
    327
    328				if (n0 == dX) {
    329					/* This might over-estimate q, but it's probably not worth
    330					 * the extra code here to find out.  */
    331					q = ~(mpi_limb_t) 0;
    332				} else {
    333					mpi_limb_t r;
    334
    335					udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
    336					umul_ppmm(n1, n0, d1, q);
    337
    338					while (n1 > r
    339					       || (n1 == r
    340						   && n0 > np[dsize - 2])) {
    341						q--;
    342						r += dX;
    343						if (r < dX)	/* I.e. "carry in previous addition?" */
    344							break;
    345						n1 -= n0 < d1;
    346						n0 -= d1;
    347					}
    348				}
    349
    350				/* Possible optimization: We already have (q * n0) and (1 * n1)
    351				 * after the calculation of q.  Taking advantage of that, we
    352				 * could make this loop make two iterations less.  */
    353				cy_limb = mpihelp_submul_1(np, dp, dsize, q);
    354
    355				if (n2 != cy_limb) {
    356					mpihelp_add_n(np, np, dp, dsize);
    357					q--;
    358				}
    359
    360				qp[i] = q;
    361				n0 = np[dsize - 1];
    362			}
    363		}
    364	}
    365
    366	return most_significant_q_limb;
    367}
    368
    369/****************
    370 * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
    371 * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
    372 * Return the single-limb remainder.
    373 * There are no constraints on the value of the divisor.
    374 *
    375 * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
    376 */
    377
    378mpi_limb_t
    379mpihelp_divmod_1(mpi_ptr_t quot_ptr,
    380		mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
    381		mpi_limb_t divisor_limb)
    382{
    383	mpi_size_t i;
    384	mpi_limb_t n1, n0, r;
    385	mpi_limb_t dummy __maybe_unused;
    386
    387	if (!dividend_size)
    388		return 0;
    389
    390	/* If multiplication is much faster than division, and the
    391	 * dividend is large, pre-invert the divisor, and use
    392	 * only multiplications in the inner loop.
    393	 *
    394	 * This test should be read:
    395	 * Does it ever help to use udiv_qrnnd_preinv?
    396	 * && Does what we save compensate for the inversion overhead?
    397	 */
    398	if (UDIV_TIME > (2 * UMUL_TIME + 6)
    399			&& (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
    400		int normalization_steps;
    401
    402		normalization_steps = count_leading_zeros(divisor_limb);
    403		if (normalization_steps) {
    404			mpi_limb_t divisor_limb_inverted;
    405
    406			divisor_limb <<= normalization_steps;
    407
    408			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
    409			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
    410			 * most significant bit (with weight 2**N) implicit.
    411			 */
    412			/* Special case for DIVISOR_LIMB == 100...000.  */
    413			if (!(divisor_limb << 1))
    414				divisor_limb_inverted = ~(mpi_limb_t)0;
    415			else
    416				udiv_qrnnd(divisor_limb_inverted, dummy,
    417						-divisor_limb, 0, divisor_limb);
    418
    419			n1 = dividend_ptr[dividend_size - 1];
    420			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
    421
    422			/* Possible optimization:
    423			 * if (r == 0
    424			 * && divisor_limb > ((n1 << normalization_steps)
    425			 *		       | (dividend_ptr[dividend_size - 2] >> ...)))
    426			 * ...one division less...
    427			 */
    428			for (i = dividend_size - 2; i >= 0; i--) {
    429				n0 = dividend_ptr[i];
    430				UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
    431						((n1 << normalization_steps)
    432						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
    433						divisor_limb, divisor_limb_inverted);
    434				n1 = n0;
    435			}
    436			UDIV_QRNND_PREINV(quot_ptr[0], r, r,
    437					n1 << normalization_steps,
    438					divisor_limb, divisor_limb_inverted);
    439			return r >> normalization_steps;
    440		} else {
    441			mpi_limb_t divisor_limb_inverted;
    442
    443			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
    444			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
    445			 * most significant bit (with weight 2**N) implicit.
    446			 */
    447			/* Special case for DIVISOR_LIMB == 100...000.  */
    448			if (!(divisor_limb << 1))
    449				divisor_limb_inverted = ~(mpi_limb_t) 0;
    450			else
    451				udiv_qrnnd(divisor_limb_inverted, dummy,
    452						-divisor_limb, 0, divisor_limb);
    453
    454			i = dividend_size - 1;
    455			r = dividend_ptr[i];
    456
    457			if (r >= divisor_limb)
    458				r = 0;
    459			else
    460				quot_ptr[i--] = 0;
    461
    462			for ( ; i >= 0; i--) {
    463				n0 = dividend_ptr[i];
    464				UDIV_QRNND_PREINV(quot_ptr[i], r, r,
    465						n0, divisor_limb, divisor_limb_inverted);
    466			}
    467			return r;
    468		}
    469	} else {
    470		if (UDIV_NEEDS_NORMALIZATION) {
    471			int normalization_steps;
    472
    473			normalization_steps = count_leading_zeros(divisor_limb);
    474			if (normalization_steps) {
    475				divisor_limb <<= normalization_steps;
    476
    477				n1 = dividend_ptr[dividend_size - 1];
    478				r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
    479
    480				/* Possible optimization:
    481				 * if (r == 0
    482				 * && divisor_limb > ((n1 << normalization_steps)
    483				 *		   | (dividend_ptr[dividend_size - 2] >> ...)))
    484				 * ...one division less...
    485				 */
    486				for (i = dividend_size - 2; i >= 0; i--) {
    487					n0 = dividend_ptr[i];
    488					udiv_qrnnd(quot_ptr[i + 1], r, r,
    489						((n1 << normalization_steps)
    490						 | (n0 >> (BITS_PER_MPI_LIMB - normalization_steps))),
    491						divisor_limb);
    492					n1 = n0;
    493				}
    494				udiv_qrnnd(quot_ptr[0], r, r,
    495						n1 << normalization_steps,
    496						divisor_limb);
    497				return r >> normalization_steps;
    498			}
    499		}
    500		/* No normalization needed, either because udiv_qrnnd doesn't require
    501		 * it, or because DIVISOR_LIMB is already normalized.
    502		 */
    503		i = dividend_size - 1;
    504		r = dividend_ptr[i];
    505
    506		if (r >= divisor_limb)
    507			r = 0;
    508		else
    509			quot_ptr[i--] = 0;
    510
    511		for (; i >= 0; i--) {
    512			n0 = dividend_ptr[i];
    513			udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
    514		}
    515		return r;
    516	}
    517}