cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rbtree.c (17485B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3  Red Black Trees
      4  (C) 1999  Andrea Arcangeli <andrea@suse.de>
      5  (C) 2002  David Woodhouse <dwmw2@infradead.org>
      6  (C) 2012  Michel Lespinasse <walken@google.com>
      7
      8
      9  linux/lib/rbtree.c
     10*/
     11
     12#include <linux/rbtree_augmented.h>
     13#include <linux/export.h>
     14
     15/*
     16 * red-black trees properties:  https://en.wikipedia.org/wiki/Rbtree
     17 *
     18 *  1) A node is either red or black
     19 *  2) The root is black
     20 *  3) All leaves (NULL) are black
     21 *  4) Both children of every red node are black
     22 *  5) Every simple path from root to leaves contains the same number
     23 *     of black nodes.
     24 *
     25 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
     26 *  consecutive red nodes in a path and every red node is therefore followed by
     27 *  a black. So if B is the number of black nodes on every simple path (as per
     28 *  5), then the longest possible path due to 4 is 2B.
     29 *
     30 *  We shall indicate color with case, where black nodes are uppercase and red
     31 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
     32 *  parentheses and have some accompanying text comment.
     33 */
     34
     35/*
     36 * Notes on lockless lookups:
     37 *
     38 * All stores to the tree structure (rb_left and rb_right) must be done using
     39 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
     40 * tree structure as seen in program order.
     41 *
     42 * These two requirements will allow lockless iteration of the tree -- not
     43 * correct iteration mind you, tree rotations are not atomic so a lookup might
     44 * miss entire subtrees.
     45 *
     46 * But they do guarantee that any such traversal will only see valid elements
     47 * and that it will indeed complete -- does not get stuck in a loop.
     48 *
     49 * It also guarantees that if the lookup returns an element it is the 'correct'
     50 * one. But not returning an element does _NOT_ mean it's not present.
     51 *
     52 * NOTE:
     53 *
     54 * Stores to __rb_parent_color are not important for simple lookups so those
     55 * are left undone as of now. Nor did I check for loops involving parent
     56 * pointers.
     57 */
     58
     59static inline void rb_set_black(struct rb_node *rb)
     60{
     61	rb->__rb_parent_color |= RB_BLACK;
     62}
     63
     64static inline struct rb_node *rb_red_parent(struct rb_node *red)
     65{
     66	return (struct rb_node *)red->__rb_parent_color;
     67}
     68
     69/*
     70 * Helper function for rotations:
     71 * - old's parent and color get assigned to new
     72 * - old gets assigned new as a parent and 'color' as a color.
     73 */
     74static inline void
     75__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
     76			struct rb_root *root, int color)
     77{
     78	struct rb_node *parent = rb_parent(old);
     79	new->__rb_parent_color = old->__rb_parent_color;
     80	rb_set_parent_color(old, new, color);
     81	__rb_change_child(old, new, parent, root);
     82}
     83
     84static __always_inline void
     85__rb_insert(struct rb_node *node, struct rb_root *root,
     86	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
     87{
     88	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
     89
     90	while (true) {
     91		/*
     92		 * Loop invariant: node is red.
     93		 */
     94		if (unlikely(!parent)) {
     95			/*
     96			 * The inserted node is root. Either this is the
     97			 * first node, or we recursed at Case 1 below and
     98			 * are no longer violating 4).
     99			 */
    100			rb_set_parent_color(node, NULL, RB_BLACK);
    101			break;
    102		}
    103
    104		/*
    105		 * If there is a black parent, we are done.
    106		 * Otherwise, take some corrective action as,
    107		 * per 4), we don't want a red root or two
    108		 * consecutive red nodes.
    109		 */
    110		if(rb_is_black(parent))
    111			break;
    112
    113		gparent = rb_red_parent(parent);
    114
    115		tmp = gparent->rb_right;
    116		if (parent != tmp) {	/* parent == gparent->rb_left */
    117			if (tmp && rb_is_red(tmp)) {
    118				/*
    119				 * Case 1 - node's uncle is red (color flips).
    120				 *
    121				 *       G            g
    122				 *      / \          / \
    123				 *     p   u  -->   P   U
    124				 *    /            /
    125				 *   n            n
    126				 *
    127				 * However, since g's parent might be red, and
    128				 * 4) does not allow this, we need to recurse
    129				 * at g.
    130				 */
    131				rb_set_parent_color(tmp, gparent, RB_BLACK);
    132				rb_set_parent_color(parent, gparent, RB_BLACK);
    133				node = gparent;
    134				parent = rb_parent(node);
    135				rb_set_parent_color(node, parent, RB_RED);
    136				continue;
    137			}
    138
    139			tmp = parent->rb_right;
    140			if (node == tmp) {
    141				/*
    142				 * Case 2 - node's uncle is black and node is
    143				 * the parent's right child (left rotate at parent).
    144				 *
    145				 *      G             G
    146				 *     / \           / \
    147				 *    p   U  -->    n   U
    148				 *     \           /
    149				 *      n         p
    150				 *
    151				 * This still leaves us in violation of 4), the
    152				 * continuation into Case 3 will fix that.
    153				 */
    154				tmp = node->rb_left;
    155				WRITE_ONCE(parent->rb_right, tmp);
    156				WRITE_ONCE(node->rb_left, parent);
    157				if (tmp)
    158					rb_set_parent_color(tmp, parent,
    159							    RB_BLACK);
    160				rb_set_parent_color(parent, node, RB_RED);
    161				augment_rotate(parent, node);
    162				parent = node;
    163				tmp = node->rb_right;
    164			}
    165
    166			/*
    167			 * Case 3 - node's uncle is black and node is
    168			 * the parent's left child (right rotate at gparent).
    169			 *
    170			 *        G           P
    171			 *       / \         / \
    172			 *      p   U  -->  n   g
    173			 *     /                 \
    174			 *    n                   U
    175			 */
    176			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
    177			WRITE_ONCE(parent->rb_right, gparent);
    178			if (tmp)
    179				rb_set_parent_color(tmp, gparent, RB_BLACK);
    180			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
    181			augment_rotate(gparent, parent);
    182			break;
    183		} else {
    184			tmp = gparent->rb_left;
    185			if (tmp && rb_is_red(tmp)) {
    186				/* Case 1 - color flips */
    187				rb_set_parent_color(tmp, gparent, RB_BLACK);
    188				rb_set_parent_color(parent, gparent, RB_BLACK);
    189				node = gparent;
    190				parent = rb_parent(node);
    191				rb_set_parent_color(node, parent, RB_RED);
    192				continue;
    193			}
    194
    195			tmp = parent->rb_left;
    196			if (node == tmp) {
    197				/* Case 2 - right rotate at parent */
    198				tmp = node->rb_right;
    199				WRITE_ONCE(parent->rb_left, tmp);
    200				WRITE_ONCE(node->rb_right, parent);
    201				if (tmp)
    202					rb_set_parent_color(tmp, parent,
    203							    RB_BLACK);
    204				rb_set_parent_color(parent, node, RB_RED);
    205				augment_rotate(parent, node);
    206				parent = node;
    207				tmp = node->rb_left;
    208			}
    209
    210			/* Case 3 - left rotate at gparent */
    211			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
    212			WRITE_ONCE(parent->rb_left, gparent);
    213			if (tmp)
    214				rb_set_parent_color(tmp, gparent, RB_BLACK);
    215			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
    216			augment_rotate(gparent, parent);
    217			break;
    218		}
    219	}
    220}
    221
    222/*
    223 * Inline version for rb_erase() use - we want to be able to inline
    224 * and eliminate the dummy_rotate callback there
    225 */
    226static __always_inline void
    227____rb_erase_color(struct rb_node *parent, struct rb_root *root,
    228	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
    229{
    230	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
    231
    232	while (true) {
    233		/*
    234		 * Loop invariants:
    235		 * - node is black (or NULL on first iteration)
    236		 * - node is not the root (parent is not NULL)
    237		 * - All leaf paths going through parent and node have a
    238		 *   black node count that is 1 lower than other leaf paths.
    239		 */
    240		sibling = parent->rb_right;
    241		if (node != sibling) {	/* node == parent->rb_left */
    242			if (rb_is_red(sibling)) {
    243				/*
    244				 * Case 1 - left rotate at parent
    245				 *
    246				 *     P               S
    247				 *    / \             / \
    248				 *   N   s    -->    p   Sr
    249				 *      / \         / \
    250				 *     Sl  Sr      N   Sl
    251				 */
    252				tmp1 = sibling->rb_left;
    253				WRITE_ONCE(parent->rb_right, tmp1);
    254				WRITE_ONCE(sibling->rb_left, parent);
    255				rb_set_parent_color(tmp1, parent, RB_BLACK);
    256				__rb_rotate_set_parents(parent, sibling, root,
    257							RB_RED);
    258				augment_rotate(parent, sibling);
    259				sibling = tmp1;
    260			}
    261			tmp1 = sibling->rb_right;
    262			if (!tmp1 || rb_is_black(tmp1)) {
    263				tmp2 = sibling->rb_left;
    264				if (!tmp2 || rb_is_black(tmp2)) {
    265					/*
    266					 * Case 2 - sibling color flip
    267					 * (p could be either color here)
    268					 *
    269					 *    (p)           (p)
    270					 *    / \           / \
    271					 *   N   S    -->  N   s
    272					 *      / \           / \
    273					 *     Sl  Sr        Sl  Sr
    274					 *
    275					 * This leaves us violating 5) which
    276					 * can be fixed by flipping p to black
    277					 * if it was red, or by recursing at p.
    278					 * p is red when coming from Case 1.
    279					 */
    280					rb_set_parent_color(sibling, parent,
    281							    RB_RED);
    282					if (rb_is_red(parent))
    283						rb_set_black(parent);
    284					else {
    285						node = parent;
    286						parent = rb_parent(node);
    287						if (parent)
    288							continue;
    289					}
    290					break;
    291				}
    292				/*
    293				 * Case 3 - right rotate at sibling
    294				 * (p could be either color here)
    295				 *
    296				 *   (p)           (p)
    297				 *   / \           / \
    298				 *  N   S    -->  N   sl
    299				 *     / \             \
    300				 *    sl  Sr            S
    301				 *                       \
    302				 *                        Sr
    303				 *
    304				 * Note: p might be red, and then both
    305				 * p and sl are red after rotation(which
    306				 * breaks property 4). This is fixed in
    307				 * Case 4 (in __rb_rotate_set_parents()
    308				 *         which set sl the color of p
    309				 *         and set p RB_BLACK)
    310				 *
    311				 *   (p)            (sl)
    312				 *   / \            /  \
    313				 *  N   sl   -->   P    S
    314				 *       \        /      \
    315				 *        S      N        Sr
    316				 *         \
    317				 *          Sr
    318				 */
    319				tmp1 = tmp2->rb_right;
    320				WRITE_ONCE(sibling->rb_left, tmp1);
    321				WRITE_ONCE(tmp2->rb_right, sibling);
    322				WRITE_ONCE(parent->rb_right, tmp2);
    323				if (tmp1)
    324					rb_set_parent_color(tmp1, sibling,
    325							    RB_BLACK);
    326				augment_rotate(sibling, tmp2);
    327				tmp1 = sibling;
    328				sibling = tmp2;
    329			}
    330			/*
    331			 * Case 4 - left rotate at parent + color flips
    332			 * (p and sl could be either color here.
    333			 *  After rotation, p becomes black, s acquires
    334			 *  p's color, and sl keeps its color)
    335			 *
    336			 *      (p)             (s)
    337			 *      / \             / \
    338			 *     N   S     -->   P   Sr
    339			 *        / \         / \
    340			 *      (sl) sr      N  (sl)
    341			 */
    342			tmp2 = sibling->rb_left;
    343			WRITE_ONCE(parent->rb_right, tmp2);
    344			WRITE_ONCE(sibling->rb_left, parent);
    345			rb_set_parent_color(tmp1, sibling, RB_BLACK);
    346			if (tmp2)
    347				rb_set_parent(tmp2, parent);
    348			__rb_rotate_set_parents(parent, sibling, root,
    349						RB_BLACK);
    350			augment_rotate(parent, sibling);
    351			break;
    352		} else {
    353			sibling = parent->rb_left;
    354			if (rb_is_red(sibling)) {
    355				/* Case 1 - right rotate at parent */
    356				tmp1 = sibling->rb_right;
    357				WRITE_ONCE(parent->rb_left, tmp1);
    358				WRITE_ONCE(sibling->rb_right, parent);
    359				rb_set_parent_color(tmp1, parent, RB_BLACK);
    360				__rb_rotate_set_parents(parent, sibling, root,
    361							RB_RED);
    362				augment_rotate(parent, sibling);
    363				sibling = tmp1;
    364			}
    365			tmp1 = sibling->rb_left;
    366			if (!tmp1 || rb_is_black(tmp1)) {
    367				tmp2 = sibling->rb_right;
    368				if (!tmp2 || rb_is_black(tmp2)) {
    369					/* Case 2 - sibling color flip */
    370					rb_set_parent_color(sibling, parent,
    371							    RB_RED);
    372					if (rb_is_red(parent))
    373						rb_set_black(parent);
    374					else {
    375						node = parent;
    376						parent = rb_parent(node);
    377						if (parent)
    378							continue;
    379					}
    380					break;
    381				}
    382				/* Case 3 - left rotate at sibling */
    383				tmp1 = tmp2->rb_left;
    384				WRITE_ONCE(sibling->rb_right, tmp1);
    385				WRITE_ONCE(tmp2->rb_left, sibling);
    386				WRITE_ONCE(parent->rb_left, tmp2);
    387				if (tmp1)
    388					rb_set_parent_color(tmp1, sibling,
    389							    RB_BLACK);
    390				augment_rotate(sibling, tmp2);
    391				tmp1 = sibling;
    392				sibling = tmp2;
    393			}
    394			/* Case 4 - right rotate at parent + color flips */
    395			tmp2 = sibling->rb_right;
    396			WRITE_ONCE(parent->rb_left, tmp2);
    397			WRITE_ONCE(sibling->rb_right, parent);
    398			rb_set_parent_color(tmp1, sibling, RB_BLACK);
    399			if (tmp2)
    400				rb_set_parent(tmp2, parent);
    401			__rb_rotate_set_parents(parent, sibling, root,
    402						RB_BLACK);
    403			augment_rotate(parent, sibling);
    404			break;
    405		}
    406	}
    407}
    408
    409/* Non-inline version for rb_erase_augmented() use */
    410void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
    411	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
    412{
    413	____rb_erase_color(parent, root, augment_rotate);
    414}
    415EXPORT_SYMBOL(__rb_erase_color);
    416
    417/*
    418 * Non-augmented rbtree manipulation functions.
    419 *
    420 * We use dummy augmented callbacks here, and have the compiler optimize them
    421 * out of the rb_insert_color() and rb_erase() function definitions.
    422 */
    423
    424static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
    425static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
    426static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
    427
    428static const struct rb_augment_callbacks dummy_callbacks = {
    429	.propagate = dummy_propagate,
    430	.copy = dummy_copy,
    431	.rotate = dummy_rotate
    432};
    433
    434void rb_insert_color(struct rb_node *node, struct rb_root *root)
    435{
    436	__rb_insert(node, root, dummy_rotate);
    437}
    438EXPORT_SYMBOL(rb_insert_color);
    439
    440void rb_erase(struct rb_node *node, struct rb_root *root)
    441{
    442	struct rb_node *rebalance;
    443	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
    444	if (rebalance)
    445		____rb_erase_color(rebalance, root, dummy_rotate);
    446}
    447EXPORT_SYMBOL(rb_erase);
    448
    449/*
    450 * Augmented rbtree manipulation functions.
    451 *
    452 * This instantiates the same __always_inline functions as in the non-augmented
    453 * case, but this time with user-defined callbacks.
    454 */
    455
    456void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
    457	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
    458{
    459	__rb_insert(node, root, augment_rotate);
    460}
    461EXPORT_SYMBOL(__rb_insert_augmented);
    462
    463/*
    464 * This function returns the first node (in sort order) of the tree.
    465 */
    466struct rb_node *rb_first(const struct rb_root *root)
    467{
    468	struct rb_node	*n;
    469
    470	n = root->rb_node;
    471	if (!n)
    472		return NULL;
    473	while (n->rb_left)
    474		n = n->rb_left;
    475	return n;
    476}
    477EXPORT_SYMBOL(rb_first);
    478
    479struct rb_node *rb_last(const struct rb_root *root)
    480{
    481	struct rb_node	*n;
    482
    483	n = root->rb_node;
    484	if (!n)
    485		return NULL;
    486	while (n->rb_right)
    487		n = n->rb_right;
    488	return n;
    489}
    490EXPORT_SYMBOL(rb_last);
    491
    492struct rb_node *rb_next(const struct rb_node *node)
    493{
    494	struct rb_node *parent;
    495
    496	if (RB_EMPTY_NODE(node))
    497		return NULL;
    498
    499	/*
    500	 * If we have a right-hand child, go down and then left as far
    501	 * as we can.
    502	 */
    503	if (node->rb_right) {
    504		node = node->rb_right;
    505		while (node->rb_left)
    506			node = node->rb_left;
    507		return (struct rb_node *)node;
    508	}
    509
    510	/*
    511	 * No right-hand children. Everything down and left is smaller than us,
    512	 * so any 'next' node must be in the general direction of our parent.
    513	 * Go up the tree; any time the ancestor is a right-hand child of its
    514	 * parent, keep going up. First time it's a left-hand child of its
    515	 * parent, said parent is our 'next' node.
    516	 */
    517	while ((parent = rb_parent(node)) && node == parent->rb_right)
    518		node = parent;
    519
    520	return parent;
    521}
    522EXPORT_SYMBOL(rb_next);
    523
    524struct rb_node *rb_prev(const struct rb_node *node)
    525{
    526	struct rb_node *parent;
    527
    528	if (RB_EMPTY_NODE(node))
    529		return NULL;
    530
    531	/*
    532	 * If we have a left-hand child, go down and then right as far
    533	 * as we can.
    534	 */
    535	if (node->rb_left) {
    536		node = node->rb_left;
    537		while (node->rb_right)
    538			node = node->rb_right;
    539		return (struct rb_node *)node;
    540	}
    541
    542	/*
    543	 * No left-hand children. Go up till we find an ancestor which
    544	 * is a right-hand child of its parent.
    545	 */
    546	while ((parent = rb_parent(node)) && node == parent->rb_left)
    547		node = parent;
    548
    549	return parent;
    550}
    551EXPORT_SYMBOL(rb_prev);
    552
    553void rb_replace_node(struct rb_node *victim, struct rb_node *new,
    554		     struct rb_root *root)
    555{
    556	struct rb_node *parent = rb_parent(victim);
    557
    558	/* Copy the pointers/colour from the victim to the replacement */
    559	*new = *victim;
    560
    561	/* Set the surrounding nodes to point to the replacement */
    562	if (victim->rb_left)
    563		rb_set_parent(victim->rb_left, new);
    564	if (victim->rb_right)
    565		rb_set_parent(victim->rb_right, new);
    566	__rb_change_child(victim, new, parent, root);
    567}
    568EXPORT_SYMBOL(rb_replace_node);
    569
    570void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
    571			 struct rb_root *root)
    572{
    573	struct rb_node *parent = rb_parent(victim);
    574
    575	/* Copy the pointers/colour from the victim to the replacement */
    576	*new = *victim;
    577
    578	/* Set the surrounding nodes to point to the replacement */
    579	if (victim->rb_left)
    580		rb_set_parent(victim->rb_left, new);
    581	if (victim->rb_right)
    582		rb_set_parent(victim->rb_right, new);
    583
    584	/* Set the parent's pointer to the new node last after an RCU barrier
    585	 * so that the pointers onwards are seen to be set correctly when doing
    586	 * an RCU walk over the tree.
    587	 */
    588	__rb_change_child_rcu(victim, new, parent, root);
    589}
    590EXPORT_SYMBOL(rb_replace_node_rcu);
    591
    592static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
    593{
    594	for (;;) {
    595		if (node->rb_left)
    596			node = node->rb_left;
    597		else if (node->rb_right)
    598			node = node->rb_right;
    599		else
    600			return (struct rb_node *)node;
    601	}
    602}
    603
    604struct rb_node *rb_next_postorder(const struct rb_node *node)
    605{
    606	const struct rb_node *parent;
    607	if (!node)
    608		return NULL;
    609	parent = rb_parent(node);
    610
    611	/* If we're sitting on node, we've already seen our children */
    612	if (parent && node == parent->rb_left && parent->rb_right) {
    613		/* If we are the parent's left node, go to the parent's right
    614		 * node then all the way down to the left */
    615		return rb_left_deepest_node(parent->rb_right);
    616	} else
    617		/* Otherwise we are the parent's right node, and the parent
    618		 * should be next */
    619		return (struct rb_node *)parent;
    620}
    621EXPORT_SYMBOL(rb_next_postorder);
    622
    623struct rb_node *rb_first_postorder(const struct rb_root *root)
    624{
    625	if (!root->rb_node)
    626		return NULL;
    627
    628	return rb_left_deepest_node(root->rb_node);
    629}
    630EXPORT_SYMBOL(rb_first_postorder);