reed_solomon.c (12841B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Generic Reed Solomon encoder / decoder library 4 * 5 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) 6 * 7 * Reed Solomon code lifted from reed solomon library written by Phil Karn 8 * Copyright 2002 Phil Karn, KA9Q 9 * 10 * Description: 11 * 12 * The generic Reed Solomon library provides runtime configurable 13 * encoding / decoding of RS codes. 14 * 15 * Each user must call init_rs to get a pointer to a rs_control structure 16 * for the given rs parameters. The control struct is unique per instance. 17 * It points to a codec which can be shared by multiple control structures. 18 * If a codec is newly allocated then the polynomial arrays for fast 19 * encoding / decoding are built. This can take some time so make sure not 20 * to call this function from a time critical path. Usually a module / 21 * driver should initialize the necessary rs_control structure on module / 22 * driver init and release it on exit. 23 * 24 * The encoding puts the calculated syndrome into a given syndrome buffer. 25 * 26 * The decoding is a two step process. The first step calculates the 27 * syndrome over the received (data + syndrome) and calls the second stage, 28 * which does the decoding / error correction itself. Many hw encoders 29 * provide a syndrome calculation over the received data + syndrome and can 30 * call the second stage directly. 31 */ 32#include <linux/errno.h> 33#include <linux/kernel.h> 34#include <linux/init.h> 35#include <linux/module.h> 36#include <linux/rslib.h> 37#include <linux/slab.h> 38#include <linux/mutex.h> 39 40enum { 41 RS_DECODE_LAMBDA, 42 RS_DECODE_SYN, 43 RS_DECODE_B, 44 RS_DECODE_T, 45 RS_DECODE_OMEGA, 46 RS_DECODE_ROOT, 47 RS_DECODE_REG, 48 RS_DECODE_LOC, 49 RS_DECODE_NUM_BUFFERS 50}; 51 52/* This list holds all currently allocated rs codec structures */ 53static LIST_HEAD(codec_list); 54/* Protection for the list */ 55static DEFINE_MUTEX(rslistlock); 56 57/** 58 * codec_init - Initialize a Reed-Solomon codec 59 * @symsize: symbol size, bits (1-8) 60 * @gfpoly: Field generator polynomial coefficients 61 * @gffunc: Field generator function 62 * @fcr: first root of RS code generator polynomial, index form 63 * @prim: primitive element to generate polynomial roots 64 * @nroots: RS code generator polynomial degree (number of roots) 65 * @gfp: GFP_ flags for allocations 66 * 67 * Allocate a codec structure and the polynom arrays for faster 68 * en/decoding. Fill the arrays according to the given parameters. 69 */ 70static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int), 71 int fcr, int prim, int nroots, gfp_t gfp) 72{ 73 int i, j, sr, root, iprim; 74 struct rs_codec *rs; 75 76 rs = kzalloc(sizeof(*rs), gfp); 77 if (!rs) 78 return NULL; 79 80 INIT_LIST_HEAD(&rs->list); 81 82 rs->mm = symsize; 83 rs->nn = (1 << symsize) - 1; 84 rs->fcr = fcr; 85 rs->prim = prim; 86 rs->nroots = nroots; 87 rs->gfpoly = gfpoly; 88 rs->gffunc = gffunc; 89 90 /* Allocate the arrays */ 91 rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); 92 if (rs->alpha_to == NULL) 93 goto err; 94 95 rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); 96 if (rs->index_of == NULL) 97 goto err; 98 99 rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp); 100 if(rs->genpoly == NULL) 101 goto err; 102 103 /* Generate Galois field lookup tables */ 104 rs->index_of[0] = rs->nn; /* log(zero) = -inf */ 105 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ 106 if (gfpoly) { 107 sr = 1; 108 for (i = 0; i < rs->nn; i++) { 109 rs->index_of[sr] = i; 110 rs->alpha_to[i] = sr; 111 sr <<= 1; 112 if (sr & (1 << symsize)) 113 sr ^= gfpoly; 114 sr &= rs->nn; 115 } 116 } else { 117 sr = gffunc(0); 118 for (i = 0; i < rs->nn; i++) { 119 rs->index_of[sr] = i; 120 rs->alpha_to[i] = sr; 121 sr = gffunc(sr); 122 } 123 } 124 /* If it's not primitive, exit */ 125 if(sr != rs->alpha_to[0]) 126 goto err; 127 128 /* Find prim-th root of 1, used in decoding */ 129 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); 130 /* prim-th root of 1, index form */ 131 rs->iprim = iprim / prim; 132 133 /* Form RS code generator polynomial from its roots */ 134 rs->genpoly[0] = 1; 135 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { 136 rs->genpoly[i + 1] = 1; 137 /* Multiply rs->genpoly[] by @**(root + x) */ 138 for (j = i; j > 0; j--) { 139 if (rs->genpoly[j] != 0) { 140 rs->genpoly[j] = rs->genpoly[j -1] ^ 141 rs->alpha_to[rs_modnn(rs, 142 rs->index_of[rs->genpoly[j]] + root)]; 143 } else 144 rs->genpoly[j] = rs->genpoly[j - 1]; 145 } 146 /* rs->genpoly[0] can never be zero */ 147 rs->genpoly[0] = 148 rs->alpha_to[rs_modnn(rs, 149 rs->index_of[rs->genpoly[0]] + root)]; 150 } 151 /* convert rs->genpoly[] to index form for quicker encoding */ 152 for (i = 0; i <= nroots; i++) 153 rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; 154 155 rs->users = 1; 156 list_add(&rs->list, &codec_list); 157 return rs; 158 159err: 160 kfree(rs->genpoly); 161 kfree(rs->index_of); 162 kfree(rs->alpha_to); 163 kfree(rs); 164 return NULL; 165} 166 167 168/** 169 * free_rs - Free the rs control structure 170 * @rs: The control structure which is not longer used by the 171 * caller 172 * 173 * Free the control structure. If @rs is the last user of the associated 174 * codec, free the codec as well. 175 */ 176void free_rs(struct rs_control *rs) 177{ 178 struct rs_codec *cd; 179 180 if (!rs) 181 return; 182 183 cd = rs->codec; 184 mutex_lock(&rslistlock); 185 cd->users--; 186 if(!cd->users) { 187 list_del(&cd->list); 188 kfree(cd->alpha_to); 189 kfree(cd->index_of); 190 kfree(cd->genpoly); 191 kfree(cd); 192 } 193 mutex_unlock(&rslistlock); 194 kfree(rs); 195} 196EXPORT_SYMBOL_GPL(free_rs); 197 198/** 199 * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one 200 * @symsize: the symbol size (number of bits) 201 * @gfpoly: the extended Galois field generator polynomial coefficients, 202 * with the 0th coefficient in the low order bit. The polynomial 203 * must be primitive; 204 * @gffunc: pointer to function to generate the next field element, 205 * or the multiplicative identity element if given 0. Used 206 * instead of gfpoly if gfpoly is 0 207 * @fcr: the first consecutive root of the rs code generator polynomial 208 * in index form 209 * @prim: primitive element to generate polynomial roots 210 * @nroots: RS code generator polynomial degree (number of roots) 211 * @gfp: GFP_ flags for allocations 212 */ 213static struct rs_control *init_rs_internal(int symsize, int gfpoly, 214 int (*gffunc)(int), int fcr, 215 int prim, int nroots, gfp_t gfp) 216{ 217 struct list_head *tmp; 218 struct rs_control *rs; 219 unsigned int bsize; 220 221 /* Sanity checks */ 222 if (symsize < 1) 223 return NULL; 224 if (fcr < 0 || fcr >= (1<<symsize)) 225 return NULL; 226 if (prim <= 0 || prim >= (1<<symsize)) 227 return NULL; 228 if (nroots < 0 || nroots >= (1<<symsize)) 229 return NULL; 230 231 /* 232 * The decoder needs buffers in each control struct instance to 233 * avoid variable size or large fixed size allocations on 234 * stack. Size the buffers to arrays of [nroots + 1]. 235 */ 236 bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1); 237 rs = kzalloc(sizeof(*rs) + bsize, gfp); 238 if (!rs) 239 return NULL; 240 241 mutex_lock(&rslistlock); 242 243 /* Walk through the list and look for a matching entry */ 244 list_for_each(tmp, &codec_list) { 245 struct rs_codec *cd = list_entry(tmp, struct rs_codec, list); 246 247 if (symsize != cd->mm) 248 continue; 249 if (gfpoly != cd->gfpoly) 250 continue; 251 if (gffunc != cd->gffunc) 252 continue; 253 if (fcr != cd->fcr) 254 continue; 255 if (prim != cd->prim) 256 continue; 257 if (nroots != cd->nroots) 258 continue; 259 /* We have a matching one already */ 260 cd->users++; 261 rs->codec = cd; 262 goto out; 263 } 264 265 /* Create a new one */ 266 rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); 267 if (!rs->codec) { 268 kfree(rs); 269 rs = NULL; 270 } 271out: 272 mutex_unlock(&rslistlock); 273 return rs; 274} 275 276/** 277 * init_rs_gfp - Create a RS control struct and initialize it 278 * @symsize: the symbol size (number of bits) 279 * @gfpoly: the extended Galois field generator polynomial coefficients, 280 * with the 0th coefficient in the low order bit. The polynomial 281 * must be primitive; 282 * @fcr: the first consecutive root of the rs code generator polynomial 283 * in index form 284 * @prim: primitive element to generate polynomial roots 285 * @nroots: RS code generator polynomial degree (number of roots) 286 * @gfp: Memory allocation flags. 287 */ 288struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, 289 int nroots, gfp_t gfp) 290{ 291 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); 292} 293EXPORT_SYMBOL_GPL(init_rs_gfp); 294 295/** 296 * init_rs_non_canonical - Allocate rs control struct for fields with 297 * non-canonical representation 298 * @symsize: the symbol size (number of bits) 299 * @gffunc: pointer to function to generate the next field element, 300 * or the multiplicative identity element if given 0. Used 301 * instead of gfpoly if gfpoly is 0 302 * @fcr: the first consecutive root of the rs code generator polynomial 303 * in index form 304 * @prim: primitive element to generate polynomial roots 305 * @nroots: RS code generator polynomial degree (number of roots) 306 */ 307struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), 308 int fcr, int prim, int nroots) 309{ 310 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, 311 GFP_KERNEL); 312} 313EXPORT_SYMBOL_GPL(init_rs_non_canonical); 314 315#ifdef CONFIG_REED_SOLOMON_ENC8 316/** 317 * encode_rs8 - Calculate the parity for data values (8bit data width) 318 * @rsc: the rs control structure 319 * @data: data field of a given type 320 * @len: data length 321 * @par: parity data, must be initialized by caller (usually all 0) 322 * @invmsk: invert data mask (will be xored on data) 323 * 324 * The parity uses a uint16_t data type to enable 325 * symbol size > 8. The calling code must take care of encoding of the 326 * syndrome result for storage itself. 327 */ 328int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par, 329 uint16_t invmsk) 330{ 331#include "encode_rs.c" 332} 333EXPORT_SYMBOL_GPL(encode_rs8); 334#endif 335 336#ifdef CONFIG_REED_SOLOMON_DEC8 337/** 338 * decode_rs8 - Decode codeword (8bit data width) 339 * @rsc: the rs control structure 340 * @data: data field of a given type 341 * @par: received parity data field 342 * @len: data length 343 * @s: syndrome data field, must be in index form 344 * (if NULL, syndrome is calculated) 345 * @no_eras: number of erasures 346 * @eras_pos: position of erasures, can be NULL 347 * @invmsk: invert data mask (will be xored on data, not on parity!) 348 * @corr: buffer to store correction bitmask on eras_pos 349 * 350 * The syndrome and parity uses a uint16_t data type to enable 351 * symbol size > 8. The calling code must take care of decoding of the 352 * syndrome result and the received parity before calling this code. 353 * 354 * Note: The rs_control struct @rsc contains buffers which are used for 355 * decoding, so the caller has to ensure that decoder invocations are 356 * serialized. 357 * 358 * Returns the number of corrected symbols or -EBADMSG for uncorrectable 359 * errors. The count includes errors in the parity. 360 */ 361int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len, 362 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 363 uint16_t *corr) 364{ 365#include "decode_rs.c" 366} 367EXPORT_SYMBOL_GPL(decode_rs8); 368#endif 369 370#ifdef CONFIG_REED_SOLOMON_ENC16 371/** 372 * encode_rs16 - Calculate the parity for data values (16bit data width) 373 * @rsc: the rs control structure 374 * @data: data field of a given type 375 * @len: data length 376 * @par: parity data, must be initialized by caller (usually all 0) 377 * @invmsk: invert data mask (will be xored on data, not on parity!) 378 * 379 * Each field in the data array contains up to symbol size bits of valid data. 380 */ 381int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par, 382 uint16_t invmsk) 383{ 384#include "encode_rs.c" 385} 386EXPORT_SYMBOL_GPL(encode_rs16); 387#endif 388 389#ifdef CONFIG_REED_SOLOMON_DEC16 390/** 391 * decode_rs16 - Decode codeword (16bit data width) 392 * @rsc: the rs control structure 393 * @data: data field of a given type 394 * @par: received parity data field 395 * @len: data length 396 * @s: syndrome data field, must be in index form 397 * (if NULL, syndrome is calculated) 398 * @no_eras: number of erasures 399 * @eras_pos: position of erasures, can be NULL 400 * @invmsk: invert data mask (will be xored on data, not on parity!) 401 * @corr: buffer to store correction bitmask on eras_pos 402 * 403 * Each field in the data array contains up to symbol size bits of valid data. 404 * 405 * Note: The rc_control struct @rsc contains buffers which are used for 406 * decoding, so the caller has to ensure that decoder invocations are 407 * serialized. 408 * 409 * Returns the number of corrected symbols or -EBADMSG for uncorrectable 410 * errors. The count includes errors in the parity. 411 */ 412int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len, 413 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 414 uint16_t *corr) 415{ 416#include "decode_rs.c" 417} 418EXPORT_SYMBOL_GPL(decode_rs16); 419#endif 420 421MODULE_LICENSE("GPL"); 422MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); 423MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); 424