cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

scatterlist.c (28731B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
      4 *
      5 * Scatterlist handling helpers.
      6 */
      7#include <linux/export.h>
      8#include <linux/slab.h>
      9#include <linux/scatterlist.h>
     10#include <linux/highmem.h>
     11#include <linux/kmemleak.h>
     12
     13/**
     14 * sg_next - return the next scatterlist entry in a list
     15 * @sg:		The current sg entry
     16 *
     17 * Description:
     18 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
     19 *   of a chained scatterlist, it could jump to the start of a new
     20 *   scatterlist array.
     21 *
     22 **/
     23struct scatterlist *sg_next(struct scatterlist *sg)
     24{
     25	if (sg_is_last(sg))
     26		return NULL;
     27
     28	sg++;
     29	if (unlikely(sg_is_chain(sg)))
     30		sg = sg_chain_ptr(sg);
     31
     32	return sg;
     33}
     34EXPORT_SYMBOL(sg_next);
     35
     36/**
     37 * sg_nents - return total count of entries in scatterlist
     38 * @sg:		The scatterlist
     39 *
     40 * Description:
     41 * Allows to know how many entries are in sg, taking into account
     42 * chaining as well
     43 *
     44 **/
     45int sg_nents(struct scatterlist *sg)
     46{
     47	int nents;
     48	for (nents = 0; sg; sg = sg_next(sg))
     49		nents++;
     50	return nents;
     51}
     52EXPORT_SYMBOL(sg_nents);
     53
     54/**
     55 * sg_nents_for_len - return total count of entries in scatterlist
     56 *                    needed to satisfy the supplied length
     57 * @sg:		The scatterlist
     58 * @len:	The total required length
     59 *
     60 * Description:
     61 * Determines the number of entries in sg that are required to meet
     62 * the supplied length, taking into account chaining as well
     63 *
     64 * Returns:
     65 *   the number of sg entries needed, negative error on failure
     66 *
     67 **/
     68int sg_nents_for_len(struct scatterlist *sg, u64 len)
     69{
     70	int nents;
     71	u64 total;
     72
     73	if (!len)
     74		return 0;
     75
     76	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
     77		nents++;
     78		total += sg->length;
     79		if (total >= len)
     80			return nents;
     81	}
     82
     83	return -EINVAL;
     84}
     85EXPORT_SYMBOL(sg_nents_for_len);
     86
     87/**
     88 * sg_last - return the last scatterlist entry in a list
     89 * @sgl:	First entry in the scatterlist
     90 * @nents:	Number of entries in the scatterlist
     91 *
     92 * Description:
     93 *   Should only be used casually, it (currently) scans the entire list
     94 *   to get the last entry.
     95 *
     96 *   Note that the @sgl@ pointer passed in need not be the first one,
     97 *   the important bit is that @nents@ denotes the number of entries that
     98 *   exist from @sgl@.
     99 *
    100 **/
    101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
    102{
    103	struct scatterlist *sg, *ret = NULL;
    104	unsigned int i;
    105
    106	for_each_sg(sgl, sg, nents, i)
    107		ret = sg;
    108
    109	BUG_ON(!sg_is_last(ret));
    110	return ret;
    111}
    112EXPORT_SYMBOL(sg_last);
    113
    114/**
    115 * sg_init_table - Initialize SG table
    116 * @sgl:	   The SG table
    117 * @nents:	   Number of entries in table
    118 *
    119 * Notes:
    120 *   If this is part of a chained sg table, sg_mark_end() should be
    121 *   used only on the last table part.
    122 *
    123 **/
    124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
    125{
    126	memset(sgl, 0, sizeof(*sgl) * nents);
    127	sg_init_marker(sgl, nents);
    128}
    129EXPORT_SYMBOL(sg_init_table);
    130
    131/**
    132 * sg_init_one - Initialize a single entry sg list
    133 * @sg:		 SG entry
    134 * @buf:	 Virtual address for IO
    135 * @buflen:	 IO length
    136 *
    137 **/
    138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
    139{
    140	sg_init_table(sg, 1);
    141	sg_set_buf(sg, buf, buflen);
    142}
    143EXPORT_SYMBOL(sg_init_one);
    144
    145/*
    146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
    147 * helpers.
    148 */
    149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
    150{
    151	if (nents == SG_MAX_SINGLE_ALLOC) {
    152		/*
    153		 * Kmemleak doesn't track page allocations as they are not
    154		 * commonly used (in a raw form) for kernel data structures.
    155		 * As we chain together a list of pages and then a normal
    156		 * kmalloc (tracked by kmemleak), in order to for that last
    157		 * allocation not to become decoupled (and thus a
    158		 * false-positive) we need to inform kmemleak of all the
    159		 * intermediate allocations.
    160		 */
    161		void *ptr = (void *) __get_free_page(gfp_mask);
    162		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
    163		return ptr;
    164	} else
    165		return kmalloc_array(nents, sizeof(struct scatterlist),
    166				     gfp_mask);
    167}
    168
    169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
    170{
    171	if (nents == SG_MAX_SINGLE_ALLOC) {
    172		kmemleak_free(sg);
    173		free_page((unsigned long) sg);
    174	} else
    175		kfree(sg);
    176}
    177
    178/**
    179 * __sg_free_table - Free a previously mapped sg table
    180 * @table:	The sg table header to use
    181 * @max_ents:	The maximum number of entries per single scatterlist
    182 * @nents_first_chunk: Number of entries int the (preallocated) first
    183 * 	scatterlist chunk, 0 means no such preallocated first chunk
    184 * @free_fn:	Free function
    185 * @num_ents:	Number of entries in the table
    186 *
    187 *  Description:
    188 *    Free an sg table previously allocated and setup with
    189 *    __sg_alloc_table().  The @max_ents value must be identical to
    190 *    that previously used with __sg_alloc_table().
    191 *
    192 **/
    193void __sg_free_table(struct sg_table *table, unsigned int max_ents,
    194		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
    195		     unsigned int num_ents)
    196{
    197	struct scatterlist *sgl, *next;
    198	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
    199
    200	if (unlikely(!table->sgl))
    201		return;
    202
    203	sgl = table->sgl;
    204	while (num_ents) {
    205		unsigned int alloc_size = num_ents;
    206		unsigned int sg_size;
    207
    208		/*
    209		 * If we have more than max_ents segments left,
    210		 * then assign 'next' to the sg table after the current one.
    211		 * sg_size is then one less than alloc size, since the last
    212		 * element is the chain pointer.
    213		 */
    214		if (alloc_size > curr_max_ents) {
    215			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
    216			alloc_size = curr_max_ents;
    217			sg_size = alloc_size - 1;
    218		} else {
    219			sg_size = alloc_size;
    220			next = NULL;
    221		}
    222
    223		num_ents -= sg_size;
    224		if (nents_first_chunk)
    225			nents_first_chunk = 0;
    226		else
    227			free_fn(sgl, alloc_size);
    228		sgl = next;
    229		curr_max_ents = max_ents;
    230	}
    231
    232	table->sgl = NULL;
    233}
    234EXPORT_SYMBOL(__sg_free_table);
    235
    236/**
    237 * sg_free_append_table - Free a previously allocated append sg table.
    238 * @table:	 The mapped sg append table header
    239 *
    240 **/
    241void sg_free_append_table(struct sg_append_table *table)
    242{
    243	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, false, sg_kfree,
    244			table->total_nents);
    245}
    246EXPORT_SYMBOL(sg_free_append_table);
    247
    248
    249/**
    250 * sg_free_table - Free a previously allocated sg table
    251 * @table:	The mapped sg table header
    252 *
    253 **/
    254void sg_free_table(struct sg_table *table)
    255{
    256	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree,
    257			table->orig_nents);
    258}
    259EXPORT_SYMBOL(sg_free_table);
    260
    261/**
    262 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
    263 * @table:	The sg table header to use
    264 * @nents:	Number of entries in sg list
    265 * @max_ents:	The maximum number of entries the allocator returns per call
    266 * @nents_first_chunk: Number of entries int the (preallocated) first
    267 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
    268 * @gfp_mask:	GFP allocation mask
    269 * @alloc_fn:	Allocator to use
    270 *
    271 * Description:
    272 *   This function returns a @table @nents long. The allocator is
    273 *   defined to return scatterlist chunks of maximum size @max_ents.
    274 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
    275 *   chained in units of @max_ents.
    276 *
    277 * Notes:
    278 *   If this function returns non-0 (eg failure), the caller must call
    279 *   __sg_free_table() to cleanup any leftover allocations.
    280 *
    281 **/
    282int __sg_alloc_table(struct sg_table *table, unsigned int nents,
    283		     unsigned int max_ents, struct scatterlist *first_chunk,
    284		     unsigned int nents_first_chunk, gfp_t gfp_mask,
    285		     sg_alloc_fn *alloc_fn)
    286{
    287	struct scatterlist *sg, *prv;
    288	unsigned int left;
    289	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
    290	unsigned prv_max_ents;
    291
    292	memset(table, 0, sizeof(*table));
    293
    294	if (nents == 0)
    295		return -EINVAL;
    296#ifdef CONFIG_ARCH_NO_SG_CHAIN
    297	if (WARN_ON_ONCE(nents > max_ents))
    298		return -EINVAL;
    299#endif
    300
    301	left = nents;
    302	prv = NULL;
    303	do {
    304		unsigned int sg_size, alloc_size = left;
    305
    306		if (alloc_size > curr_max_ents) {
    307			alloc_size = curr_max_ents;
    308			sg_size = alloc_size - 1;
    309		} else
    310			sg_size = alloc_size;
    311
    312		left -= sg_size;
    313
    314		if (first_chunk) {
    315			sg = first_chunk;
    316			first_chunk = NULL;
    317		} else {
    318			sg = alloc_fn(alloc_size, gfp_mask);
    319		}
    320		if (unlikely(!sg)) {
    321			/*
    322			 * Adjust entry count to reflect that the last
    323			 * entry of the previous table won't be used for
    324			 * linkage.  Without this, sg_kfree() may get
    325			 * confused.
    326			 */
    327			if (prv)
    328				table->nents = ++table->orig_nents;
    329
    330			return -ENOMEM;
    331		}
    332
    333		sg_init_table(sg, alloc_size);
    334		table->nents = table->orig_nents += sg_size;
    335
    336		/*
    337		 * If this is the first mapping, assign the sg table header.
    338		 * If this is not the first mapping, chain previous part.
    339		 */
    340		if (prv)
    341			sg_chain(prv, prv_max_ents, sg);
    342		else
    343			table->sgl = sg;
    344
    345		/*
    346		 * If no more entries after this one, mark the end
    347		 */
    348		if (!left)
    349			sg_mark_end(&sg[sg_size - 1]);
    350
    351		prv = sg;
    352		prv_max_ents = curr_max_ents;
    353		curr_max_ents = max_ents;
    354	} while (left);
    355
    356	return 0;
    357}
    358EXPORT_SYMBOL(__sg_alloc_table);
    359
    360/**
    361 * sg_alloc_table - Allocate and initialize an sg table
    362 * @table:	The sg table header to use
    363 * @nents:	Number of entries in sg list
    364 * @gfp_mask:	GFP allocation mask
    365 *
    366 *  Description:
    367 *    Allocate and initialize an sg table. If @nents@ is larger than
    368 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
    369 *
    370 **/
    371int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
    372{
    373	int ret;
    374
    375	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
    376			       NULL, 0, gfp_mask, sg_kmalloc);
    377	if (unlikely(ret))
    378		sg_free_table(table);
    379	return ret;
    380}
    381EXPORT_SYMBOL(sg_alloc_table);
    382
    383static struct scatterlist *get_next_sg(struct sg_append_table *table,
    384				       struct scatterlist *cur,
    385				       unsigned long needed_sges,
    386				       gfp_t gfp_mask)
    387{
    388	struct scatterlist *new_sg, *next_sg;
    389	unsigned int alloc_size;
    390
    391	if (cur) {
    392		next_sg = sg_next(cur);
    393		/* Check if last entry should be keeped for chainning */
    394		if (!sg_is_last(next_sg) || needed_sges == 1)
    395			return next_sg;
    396	}
    397
    398	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
    399	new_sg = sg_kmalloc(alloc_size, gfp_mask);
    400	if (!new_sg)
    401		return ERR_PTR(-ENOMEM);
    402	sg_init_table(new_sg, alloc_size);
    403	if (cur) {
    404		table->total_nents += alloc_size - 1;
    405		__sg_chain(next_sg, new_sg);
    406	} else {
    407		table->sgt.sgl = new_sg;
    408		table->total_nents = alloc_size;
    409	}
    410	return new_sg;
    411}
    412
    413/**
    414 * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
    415 *                                    table from an array of pages
    416 * @sgt_append:  The sg append table to use
    417 * @pages:       Pointer to an array of page pointers
    418 * @n_pages:     Number of pages in the pages array
    419 * @offset:      Offset from start of the first page to the start of a buffer
    420 * @size:        Number of valid bytes in the buffer (after offset)
    421 * @max_segment: Maximum size of a scatterlist element in bytes
    422 * @left_pages:  Left pages caller have to set after this call
    423 * @gfp_mask:	 GFP allocation mask
    424 *
    425 * Description:
    426 *    In the first call it allocate and initialize an sg table from a list of
    427 *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
    428 *    the pages are squashed into a single scatterlist entry up to the maximum
    429 *    size specified in @max_segment.  A user may provide an offset at a start
    430 *    and a size of valid data in a buffer specified by the page array. The
    431 *    returned sg table is released by sg_free_append_table
    432 *
    433 * Returns:
    434 *   0 on success, negative error on failure
    435 *
    436 * Notes:
    437 *   If this function returns non-0 (eg failure), the caller must call
    438 *   sg_free_append_table() to cleanup any leftover allocations.
    439 *
    440 *   In the fist call, sgt_append must by initialized.
    441 */
    442int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
    443		struct page **pages, unsigned int n_pages, unsigned int offset,
    444		unsigned long size, unsigned int max_segment,
    445		unsigned int left_pages, gfp_t gfp_mask)
    446{
    447	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
    448	unsigned int added_nents = 0;
    449	struct scatterlist *s = sgt_append->prv;
    450
    451	/*
    452	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
    453	 * otherwise it can overshoot.
    454	 */
    455	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
    456	if (WARN_ON(max_segment < PAGE_SIZE))
    457		return -EINVAL;
    458
    459	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
    460		return -EOPNOTSUPP;
    461
    462	if (sgt_append->prv) {
    463		unsigned long paddr =
    464			(page_to_pfn(sg_page(sgt_append->prv)) * PAGE_SIZE +
    465			 sgt_append->prv->offset + sgt_append->prv->length) /
    466			PAGE_SIZE;
    467
    468		if (WARN_ON(offset))
    469			return -EINVAL;
    470
    471		/* Merge contiguous pages into the last SG */
    472		prv_len = sgt_append->prv->length;
    473		while (n_pages && page_to_pfn(pages[0]) == paddr) {
    474			if (sgt_append->prv->length + PAGE_SIZE > max_segment)
    475				break;
    476			sgt_append->prv->length += PAGE_SIZE;
    477			paddr++;
    478			pages++;
    479			n_pages--;
    480		}
    481		if (!n_pages)
    482			goto out;
    483	}
    484
    485	/* compute number of contiguous chunks */
    486	chunks = 1;
    487	seg_len = 0;
    488	for (i = 1; i < n_pages; i++) {
    489		seg_len += PAGE_SIZE;
    490		if (seg_len >= max_segment ||
    491		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
    492			chunks++;
    493			seg_len = 0;
    494		}
    495	}
    496
    497	/* merging chunks and putting them into the scatterlist */
    498	cur_page = 0;
    499	for (i = 0; i < chunks; i++) {
    500		unsigned int j, chunk_size;
    501
    502		/* look for the end of the current chunk */
    503		seg_len = 0;
    504		for (j = cur_page + 1; j < n_pages; j++) {
    505			seg_len += PAGE_SIZE;
    506			if (seg_len >= max_segment ||
    507			    page_to_pfn(pages[j]) !=
    508			    page_to_pfn(pages[j - 1]) + 1)
    509				break;
    510		}
    511
    512		/* Pass how many chunks might be left */
    513		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
    514				gfp_mask);
    515		if (IS_ERR(s)) {
    516			/*
    517			 * Adjust entry length to be as before function was
    518			 * called.
    519			 */
    520			if (sgt_append->prv)
    521				sgt_append->prv->length = prv_len;
    522			return PTR_ERR(s);
    523		}
    524		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
    525		sg_set_page(s, pages[cur_page],
    526			    min_t(unsigned long, size, chunk_size), offset);
    527		added_nents++;
    528		size -= chunk_size;
    529		offset = 0;
    530		cur_page = j;
    531	}
    532	sgt_append->sgt.nents += added_nents;
    533	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
    534	sgt_append->prv = s;
    535out:
    536	if (!left_pages)
    537		sg_mark_end(s);
    538	return 0;
    539}
    540EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
    541
    542/**
    543 * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
    544 *                                     an array of pages and given maximum
    545 *                                     segment.
    546 * @sgt:	 The sg table header to use
    547 * @pages:	 Pointer to an array of page pointers
    548 * @n_pages:	 Number of pages in the pages array
    549 * @offset:      Offset from start of the first page to the start of a buffer
    550 * @size:        Number of valid bytes in the buffer (after offset)
    551 * @max_segment: Maximum size of a scatterlist element in bytes
    552 * @gfp_mask:	 GFP allocation mask
    553 *
    554 *  Description:
    555 *    Allocate and initialize an sg table from a list of pages. Contiguous
    556 *    ranges of the pages are squashed into a single scatterlist node up to the
    557 *    maximum size specified in @max_segment. A user may provide an offset at a
    558 *    start and a size of valid data in a buffer specified by the page array.
    559 *
    560 *    The returned sg table is released by sg_free_table.
    561 *
    562 *  Returns:
    563 *   0 on success, negative error on failure
    564 */
    565int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
    566				unsigned int n_pages, unsigned int offset,
    567				unsigned long size, unsigned int max_segment,
    568				gfp_t gfp_mask)
    569{
    570	struct sg_append_table append = {};
    571	int err;
    572
    573	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
    574					       size, max_segment, 0, gfp_mask);
    575	if (err) {
    576		sg_free_append_table(&append);
    577		return err;
    578	}
    579	memcpy(sgt, &append.sgt, sizeof(*sgt));
    580	WARN_ON(append.total_nents != sgt->orig_nents);
    581	return 0;
    582}
    583EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
    584
    585#ifdef CONFIG_SGL_ALLOC
    586
    587/**
    588 * sgl_alloc_order - allocate a scatterlist and its pages
    589 * @length: Length in bytes of the scatterlist. Must be at least one
    590 * @order: Second argument for alloc_pages()
    591 * @chainable: Whether or not to allocate an extra element in the scatterlist
    592 *	for scatterlist chaining purposes
    593 * @gfp: Memory allocation flags
    594 * @nent_p: [out] Number of entries in the scatterlist that have pages
    595 *
    596 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
    597 */
    598struct scatterlist *sgl_alloc_order(unsigned long long length,
    599				    unsigned int order, bool chainable,
    600				    gfp_t gfp, unsigned int *nent_p)
    601{
    602	struct scatterlist *sgl, *sg;
    603	struct page *page;
    604	unsigned int nent, nalloc;
    605	u32 elem_len;
    606
    607	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
    608	/* Check for integer overflow */
    609	if (length > (nent << (PAGE_SHIFT + order)))
    610		return NULL;
    611	nalloc = nent;
    612	if (chainable) {
    613		/* Check for integer overflow */
    614		if (nalloc + 1 < nalloc)
    615			return NULL;
    616		nalloc++;
    617	}
    618	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
    619			    gfp & ~GFP_DMA);
    620	if (!sgl)
    621		return NULL;
    622
    623	sg_init_table(sgl, nalloc);
    624	sg = sgl;
    625	while (length) {
    626		elem_len = min_t(u64, length, PAGE_SIZE << order);
    627		page = alloc_pages(gfp, order);
    628		if (!page) {
    629			sgl_free_order(sgl, order);
    630			return NULL;
    631		}
    632
    633		sg_set_page(sg, page, elem_len, 0);
    634		length -= elem_len;
    635		sg = sg_next(sg);
    636	}
    637	WARN_ONCE(length, "length = %lld\n", length);
    638	if (nent_p)
    639		*nent_p = nent;
    640	return sgl;
    641}
    642EXPORT_SYMBOL(sgl_alloc_order);
    643
    644/**
    645 * sgl_alloc - allocate a scatterlist and its pages
    646 * @length: Length in bytes of the scatterlist
    647 * @gfp: Memory allocation flags
    648 * @nent_p: [out] Number of entries in the scatterlist
    649 *
    650 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
    651 */
    652struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
    653			      unsigned int *nent_p)
    654{
    655	return sgl_alloc_order(length, 0, false, gfp, nent_p);
    656}
    657EXPORT_SYMBOL(sgl_alloc);
    658
    659/**
    660 * sgl_free_n_order - free a scatterlist and its pages
    661 * @sgl: Scatterlist with one or more elements
    662 * @nents: Maximum number of elements to free
    663 * @order: Second argument for __free_pages()
    664 *
    665 * Notes:
    666 * - If several scatterlists have been chained and each chain element is
    667 *   freed separately then it's essential to set nents correctly to avoid that a
    668 *   page would get freed twice.
    669 * - All pages in a chained scatterlist can be freed at once by setting @nents
    670 *   to a high number.
    671 */
    672void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
    673{
    674	struct scatterlist *sg;
    675	struct page *page;
    676	int i;
    677
    678	for_each_sg(sgl, sg, nents, i) {
    679		if (!sg)
    680			break;
    681		page = sg_page(sg);
    682		if (page)
    683			__free_pages(page, order);
    684	}
    685	kfree(sgl);
    686}
    687EXPORT_SYMBOL(sgl_free_n_order);
    688
    689/**
    690 * sgl_free_order - free a scatterlist and its pages
    691 * @sgl: Scatterlist with one or more elements
    692 * @order: Second argument for __free_pages()
    693 */
    694void sgl_free_order(struct scatterlist *sgl, int order)
    695{
    696	sgl_free_n_order(sgl, INT_MAX, order);
    697}
    698EXPORT_SYMBOL(sgl_free_order);
    699
    700/**
    701 * sgl_free - free a scatterlist and its pages
    702 * @sgl: Scatterlist with one or more elements
    703 */
    704void sgl_free(struct scatterlist *sgl)
    705{
    706	sgl_free_order(sgl, 0);
    707}
    708EXPORT_SYMBOL(sgl_free);
    709
    710#endif /* CONFIG_SGL_ALLOC */
    711
    712void __sg_page_iter_start(struct sg_page_iter *piter,
    713			  struct scatterlist *sglist, unsigned int nents,
    714			  unsigned long pgoffset)
    715{
    716	piter->__pg_advance = 0;
    717	piter->__nents = nents;
    718
    719	piter->sg = sglist;
    720	piter->sg_pgoffset = pgoffset;
    721}
    722EXPORT_SYMBOL(__sg_page_iter_start);
    723
    724static int sg_page_count(struct scatterlist *sg)
    725{
    726	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
    727}
    728
    729bool __sg_page_iter_next(struct sg_page_iter *piter)
    730{
    731	if (!piter->__nents || !piter->sg)
    732		return false;
    733
    734	piter->sg_pgoffset += piter->__pg_advance;
    735	piter->__pg_advance = 1;
    736
    737	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
    738		piter->sg_pgoffset -= sg_page_count(piter->sg);
    739		piter->sg = sg_next(piter->sg);
    740		if (!--piter->__nents || !piter->sg)
    741			return false;
    742	}
    743
    744	return true;
    745}
    746EXPORT_SYMBOL(__sg_page_iter_next);
    747
    748static int sg_dma_page_count(struct scatterlist *sg)
    749{
    750	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
    751}
    752
    753bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
    754{
    755	struct sg_page_iter *piter = &dma_iter->base;
    756
    757	if (!piter->__nents || !piter->sg)
    758		return false;
    759
    760	piter->sg_pgoffset += piter->__pg_advance;
    761	piter->__pg_advance = 1;
    762
    763	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
    764		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
    765		piter->sg = sg_next(piter->sg);
    766		if (!--piter->__nents || !piter->sg)
    767			return false;
    768	}
    769
    770	return true;
    771}
    772EXPORT_SYMBOL(__sg_page_iter_dma_next);
    773
    774/**
    775 * sg_miter_start - start mapping iteration over a sg list
    776 * @miter: sg mapping iter to be started
    777 * @sgl: sg list to iterate over
    778 * @nents: number of sg entries
    779 *
    780 * Description:
    781 *   Starts mapping iterator @miter.
    782 *
    783 * Context:
    784 *   Don't care.
    785 */
    786void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
    787		    unsigned int nents, unsigned int flags)
    788{
    789	memset(miter, 0, sizeof(struct sg_mapping_iter));
    790
    791	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
    792	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
    793	miter->__flags = flags;
    794}
    795EXPORT_SYMBOL(sg_miter_start);
    796
    797static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
    798{
    799	if (!miter->__remaining) {
    800		struct scatterlist *sg;
    801
    802		if (!__sg_page_iter_next(&miter->piter))
    803			return false;
    804
    805		sg = miter->piter.sg;
    806
    807		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
    808		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
    809		miter->__offset &= PAGE_SIZE - 1;
    810		miter->__remaining = sg->offset + sg->length -
    811				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
    812				     miter->__offset;
    813		miter->__remaining = min_t(unsigned long, miter->__remaining,
    814					   PAGE_SIZE - miter->__offset);
    815	}
    816
    817	return true;
    818}
    819
    820/**
    821 * sg_miter_skip - reposition mapping iterator
    822 * @miter: sg mapping iter to be skipped
    823 * @offset: number of bytes to plus the current location
    824 *
    825 * Description:
    826 *   Sets the offset of @miter to its current location plus @offset bytes.
    827 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
    828 *   stops @miter.
    829 *
    830 * Context:
    831 *   Don't care.
    832 *
    833 * Returns:
    834 *   true if @miter contains the valid mapping.  false if end of sg
    835 *   list is reached.
    836 */
    837bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
    838{
    839	sg_miter_stop(miter);
    840
    841	while (offset) {
    842		off_t consumed;
    843
    844		if (!sg_miter_get_next_page(miter))
    845			return false;
    846
    847		consumed = min_t(off_t, offset, miter->__remaining);
    848		miter->__offset += consumed;
    849		miter->__remaining -= consumed;
    850		offset -= consumed;
    851	}
    852
    853	return true;
    854}
    855EXPORT_SYMBOL(sg_miter_skip);
    856
    857/**
    858 * sg_miter_next - proceed mapping iterator to the next mapping
    859 * @miter: sg mapping iter to proceed
    860 *
    861 * Description:
    862 *   Proceeds @miter to the next mapping.  @miter should have been started
    863 *   using sg_miter_start().  On successful return, @miter->page,
    864 *   @miter->addr and @miter->length point to the current mapping.
    865 *
    866 * Context:
    867 *   May sleep if !SG_MITER_ATOMIC.
    868 *
    869 * Returns:
    870 *   true if @miter contains the next mapping.  false if end of sg
    871 *   list is reached.
    872 */
    873bool sg_miter_next(struct sg_mapping_iter *miter)
    874{
    875	sg_miter_stop(miter);
    876
    877	/*
    878	 * Get to the next page if necessary.
    879	 * __remaining, __offset is adjusted by sg_miter_stop
    880	 */
    881	if (!sg_miter_get_next_page(miter))
    882		return false;
    883
    884	miter->page = sg_page_iter_page(&miter->piter);
    885	miter->consumed = miter->length = miter->__remaining;
    886
    887	if (miter->__flags & SG_MITER_ATOMIC)
    888		miter->addr = kmap_atomic(miter->page) + miter->__offset;
    889	else
    890		miter->addr = kmap(miter->page) + miter->__offset;
    891
    892	return true;
    893}
    894EXPORT_SYMBOL(sg_miter_next);
    895
    896/**
    897 * sg_miter_stop - stop mapping iteration
    898 * @miter: sg mapping iter to be stopped
    899 *
    900 * Description:
    901 *   Stops mapping iterator @miter.  @miter should have been started
    902 *   using sg_miter_start().  A stopped iteration can be resumed by
    903 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
    904 *   need to be released during iteration.
    905 *
    906 * Context:
    907 *   Don't care otherwise.
    908 */
    909void sg_miter_stop(struct sg_mapping_iter *miter)
    910{
    911	WARN_ON(miter->consumed > miter->length);
    912
    913	/* drop resources from the last iteration */
    914	if (miter->addr) {
    915		miter->__offset += miter->consumed;
    916		miter->__remaining -= miter->consumed;
    917
    918		if (miter->__flags & SG_MITER_TO_SG)
    919			flush_dcache_page(miter->page);
    920
    921		if (miter->__flags & SG_MITER_ATOMIC) {
    922			WARN_ON_ONCE(!pagefault_disabled());
    923			kunmap_atomic(miter->addr);
    924		} else
    925			kunmap(miter->page);
    926
    927		miter->page = NULL;
    928		miter->addr = NULL;
    929		miter->length = 0;
    930		miter->consumed = 0;
    931	}
    932}
    933EXPORT_SYMBOL(sg_miter_stop);
    934
    935/**
    936 * sg_copy_buffer - Copy data between a linear buffer and an SG list
    937 * @sgl:		 The SG list
    938 * @nents:		 Number of SG entries
    939 * @buf:		 Where to copy from
    940 * @buflen:		 The number of bytes to copy
    941 * @skip:		 Number of bytes to skip before copying
    942 * @to_buffer:		 transfer direction (true == from an sg list to a
    943 *			 buffer, false == from a buffer to an sg list)
    944 *
    945 * Returns the number of copied bytes.
    946 *
    947 **/
    948size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
    949		      size_t buflen, off_t skip, bool to_buffer)
    950{
    951	unsigned int offset = 0;
    952	struct sg_mapping_iter miter;
    953	unsigned int sg_flags = SG_MITER_ATOMIC;
    954
    955	if (to_buffer)
    956		sg_flags |= SG_MITER_FROM_SG;
    957	else
    958		sg_flags |= SG_MITER_TO_SG;
    959
    960	sg_miter_start(&miter, sgl, nents, sg_flags);
    961
    962	if (!sg_miter_skip(&miter, skip))
    963		return 0;
    964
    965	while ((offset < buflen) && sg_miter_next(&miter)) {
    966		unsigned int len;
    967
    968		len = min(miter.length, buflen - offset);
    969
    970		if (to_buffer)
    971			memcpy(buf + offset, miter.addr, len);
    972		else
    973			memcpy(miter.addr, buf + offset, len);
    974
    975		offset += len;
    976	}
    977
    978	sg_miter_stop(&miter);
    979
    980	return offset;
    981}
    982EXPORT_SYMBOL(sg_copy_buffer);
    983
    984/**
    985 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
    986 * @sgl:		 The SG list
    987 * @nents:		 Number of SG entries
    988 * @buf:		 Where to copy from
    989 * @buflen:		 The number of bytes to copy
    990 *
    991 * Returns the number of copied bytes.
    992 *
    993 **/
    994size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
    995			   const void *buf, size_t buflen)
    996{
    997	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
    998}
    999EXPORT_SYMBOL(sg_copy_from_buffer);
   1000
   1001/**
   1002 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
   1003 * @sgl:		 The SG list
   1004 * @nents:		 Number of SG entries
   1005 * @buf:		 Where to copy to
   1006 * @buflen:		 The number of bytes to copy
   1007 *
   1008 * Returns the number of copied bytes.
   1009 *
   1010 **/
   1011size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
   1012			 void *buf, size_t buflen)
   1013{
   1014	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
   1015}
   1016EXPORT_SYMBOL(sg_copy_to_buffer);
   1017
   1018/**
   1019 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
   1020 * @sgl:		 The SG list
   1021 * @nents:		 Number of SG entries
   1022 * @buf:		 Where to copy from
   1023 * @buflen:		 The number of bytes to copy
   1024 * @skip:		 Number of bytes to skip before copying
   1025 *
   1026 * Returns the number of copied bytes.
   1027 *
   1028 **/
   1029size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
   1030			    const void *buf, size_t buflen, off_t skip)
   1031{
   1032	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
   1033}
   1034EXPORT_SYMBOL(sg_pcopy_from_buffer);
   1035
   1036/**
   1037 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
   1038 * @sgl:		 The SG list
   1039 * @nents:		 Number of SG entries
   1040 * @buf:		 Where to copy to
   1041 * @buflen:		 The number of bytes to copy
   1042 * @skip:		 Number of bytes to skip before copying
   1043 *
   1044 * Returns the number of copied bytes.
   1045 *
   1046 **/
   1047size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
   1048			  void *buf, size_t buflen, off_t skip)
   1049{
   1050	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
   1051}
   1052EXPORT_SYMBOL(sg_pcopy_to_buffer);
   1053
   1054/**
   1055 * sg_zero_buffer - Zero-out a part of a SG list
   1056 * @sgl:		 The SG list
   1057 * @nents:		 Number of SG entries
   1058 * @buflen:		 The number of bytes to zero out
   1059 * @skip:		 Number of bytes to skip before zeroing
   1060 *
   1061 * Returns the number of bytes zeroed.
   1062 **/
   1063size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
   1064		       size_t buflen, off_t skip)
   1065{
   1066	unsigned int offset = 0;
   1067	struct sg_mapping_iter miter;
   1068	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
   1069
   1070	sg_miter_start(&miter, sgl, nents, sg_flags);
   1071
   1072	if (!sg_miter_skip(&miter, skip))
   1073		return false;
   1074
   1075	while (offset < buflen && sg_miter_next(&miter)) {
   1076		unsigned int len;
   1077
   1078		len = min(miter.length, buflen - offset);
   1079		memset(miter.addr, 0, len);
   1080
   1081		offset += len;
   1082	}
   1083
   1084	sg_miter_stop(&miter);
   1085	return offset;
   1086}
   1087EXPORT_SYMBOL(sg_zero_buffer);