cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sort.c (9133B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * A fast, small, non-recursive O(n log n) sort for the Linux kernel
      4 *
      5 * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
      6 * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
      7 *
      8 * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n
      9 * better) at the expense of stack usage and much larger code to avoid
     10 * quicksort's O(n^2) worst case.
     11 */
     12
     13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     14
     15#include <linux/types.h>
     16#include <linux/export.h>
     17#include <linux/sort.h>
     18
     19/**
     20 * is_aligned - is this pointer & size okay for word-wide copying?
     21 * @base: pointer to data
     22 * @size: size of each element
     23 * @align: required alignment (typically 4 or 8)
     24 *
     25 * Returns true if elements can be copied using word loads and stores.
     26 * The size must be a multiple of the alignment, and the base address must
     27 * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
     28 *
     29 * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
     30 * to "if ((a | b) & mask)", so we do that by hand.
     31 */
     32__attribute_const__ __always_inline
     33static bool is_aligned(const void *base, size_t size, unsigned char align)
     34{
     35	unsigned char lsbits = (unsigned char)size;
     36
     37	(void)base;
     38#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
     39	lsbits |= (unsigned char)(uintptr_t)base;
     40#endif
     41	return (lsbits & (align - 1)) == 0;
     42}
     43
     44/**
     45 * swap_words_32 - swap two elements in 32-bit chunks
     46 * @a: pointer to the first element to swap
     47 * @b: pointer to the second element to swap
     48 * @n: element size (must be a multiple of 4)
     49 *
     50 * Exchange the two objects in memory.  This exploits base+index addressing,
     51 * which basically all CPUs have, to minimize loop overhead computations.
     52 *
     53 * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
     54 * bottom of the loop, even though the zero flag is still valid from the
     55 * subtract (since the intervening mov instructions don't alter the flags).
     56 * Gcc 8.1.0 doesn't have that problem.
     57 */
     58static void swap_words_32(void *a, void *b, size_t n)
     59{
     60	do {
     61		u32 t = *(u32 *)(a + (n -= 4));
     62		*(u32 *)(a + n) = *(u32 *)(b + n);
     63		*(u32 *)(b + n) = t;
     64	} while (n);
     65}
     66
     67/**
     68 * swap_words_64 - swap two elements in 64-bit chunks
     69 * @a: pointer to the first element to swap
     70 * @b: pointer to the second element to swap
     71 * @n: element size (must be a multiple of 8)
     72 *
     73 * Exchange the two objects in memory.  This exploits base+index
     74 * addressing, which basically all CPUs have, to minimize loop overhead
     75 * computations.
     76 *
     77 * We'd like to use 64-bit loads if possible.  If they're not, emulating
     78 * one requires base+index+4 addressing which x86 has but most other
     79 * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
     80 * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
     81 * x32 ABI).  Are there any cases the kernel needs to worry about?
     82 */
     83static void swap_words_64(void *a, void *b, size_t n)
     84{
     85	do {
     86#ifdef CONFIG_64BIT
     87		u64 t = *(u64 *)(a + (n -= 8));
     88		*(u64 *)(a + n) = *(u64 *)(b + n);
     89		*(u64 *)(b + n) = t;
     90#else
     91		/* Use two 32-bit transfers to avoid base+index+4 addressing */
     92		u32 t = *(u32 *)(a + (n -= 4));
     93		*(u32 *)(a + n) = *(u32 *)(b + n);
     94		*(u32 *)(b + n) = t;
     95
     96		t = *(u32 *)(a + (n -= 4));
     97		*(u32 *)(a + n) = *(u32 *)(b + n);
     98		*(u32 *)(b + n) = t;
     99#endif
    100	} while (n);
    101}
    102
    103/**
    104 * swap_bytes - swap two elements a byte at a time
    105 * @a: pointer to the first element to swap
    106 * @b: pointer to the second element to swap
    107 * @n: element size
    108 *
    109 * This is the fallback if alignment doesn't allow using larger chunks.
    110 */
    111static void swap_bytes(void *a, void *b, size_t n)
    112{
    113	do {
    114		char t = ((char *)a)[--n];
    115		((char *)a)[n] = ((char *)b)[n];
    116		((char *)b)[n] = t;
    117	} while (n);
    118}
    119
    120/*
    121 * The values are arbitrary as long as they can't be confused with
    122 * a pointer, but small integers make for the smallest compare
    123 * instructions.
    124 */
    125#define SWAP_WORDS_64 (swap_r_func_t)0
    126#define SWAP_WORDS_32 (swap_r_func_t)1
    127#define SWAP_BYTES    (swap_r_func_t)2
    128#define SWAP_WRAPPER  (swap_r_func_t)3
    129
    130struct wrapper {
    131	cmp_func_t cmp;
    132	swap_func_t swap;
    133};
    134
    135/*
    136 * The function pointer is last to make tail calls most efficient if the
    137 * compiler decides not to inline this function.
    138 */
    139static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
    140{
    141	if (swap_func == SWAP_WRAPPER) {
    142		((const struct wrapper *)priv)->swap(a, b, (int)size);
    143		return;
    144	}
    145
    146	if (swap_func == SWAP_WORDS_64)
    147		swap_words_64(a, b, size);
    148	else if (swap_func == SWAP_WORDS_32)
    149		swap_words_32(a, b, size);
    150	else if (swap_func == SWAP_BYTES)
    151		swap_bytes(a, b, size);
    152	else
    153		swap_func(a, b, (int)size, priv);
    154}
    155
    156#define _CMP_WRAPPER ((cmp_r_func_t)0L)
    157
    158static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
    159{
    160	if (cmp == _CMP_WRAPPER)
    161		return ((const struct wrapper *)priv)->cmp(a, b);
    162	return cmp(a, b, priv);
    163}
    164
    165/**
    166 * parent - given the offset of the child, find the offset of the parent.
    167 * @i: the offset of the heap element whose parent is sought.  Non-zero.
    168 * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
    169 * @size: size of each element
    170 *
    171 * In terms of array indexes, the parent of element j = @i/@size is simply
    172 * (j-1)/2.  But when working in byte offsets, we can't use implicit
    173 * truncation of integer divides.
    174 *
    175 * Fortunately, we only need one bit of the quotient, not the full divide.
    176 * @size has a least significant bit.  That bit will be clear if @i is
    177 * an even multiple of @size, and set if it's an odd multiple.
    178 *
    179 * Logically, we're doing "if (i & lsbit) i -= size;", but since the
    180 * branch is unpredictable, it's done with a bit of clever branch-free
    181 * code instead.
    182 */
    183__attribute_const__ __always_inline
    184static size_t parent(size_t i, unsigned int lsbit, size_t size)
    185{
    186	i -= size;
    187	i -= size & -(i & lsbit);
    188	return i / 2;
    189}
    190
    191/**
    192 * sort_r - sort an array of elements
    193 * @base: pointer to data to sort
    194 * @num: number of elements
    195 * @size: size of each element
    196 * @cmp_func: pointer to comparison function
    197 * @swap_func: pointer to swap function or NULL
    198 * @priv: third argument passed to comparison function
    199 *
    200 * This function does a heapsort on the given array.  You may provide
    201 * a swap_func function if you need to do something more than a memory
    202 * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
    203 * avoids a slow retpoline and so is significantly faster.
    204 *
    205 * Sorting time is O(n log n) both on average and worst-case. While
    206 * quicksort is slightly faster on average, it suffers from exploitable
    207 * O(n*n) worst-case behavior and extra memory requirements that make
    208 * it less suitable for kernel use.
    209 */
    210void sort_r(void *base, size_t num, size_t size,
    211	    cmp_r_func_t cmp_func,
    212	    swap_r_func_t swap_func,
    213	    const void *priv)
    214{
    215	/* pre-scale counters for performance */
    216	size_t n = num * size, a = (num/2) * size;
    217	const unsigned int lsbit = size & -size;  /* Used to find parent */
    218
    219	if (!a)		/* num < 2 || size == 0 */
    220		return;
    221
    222	/* called from 'sort' without swap function, let's pick the default */
    223	if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap)
    224		swap_func = NULL;
    225
    226	if (!swap_func) {
    227		if (is_aligned(base, size, 8))
    228			swap_func = SWAP_WORDS_64;
    229		else if (is_aligned(base, size, 4))
    230			swap_func = SWAP_WORDS_32;
    231		else
    232			swap_func = SWAP_BYTES;
    233	}
    234
    235	/*
    236	 * Loop invariants:
    237	 * 1. elements [a,n) satisfy the heap property (compare greater than
    238	 *    all of their children),
    239	 * 2. elements [n,num*size) are sorted, and
    240	 * 3. a <= b <= c <= d <= n (whenever they are valid).
    241	 */
    242	for (;;) {
    243		size_t b, c, d;
    244
    245		if (a)			/* Building heap: sift down --a */
    246			a -= size;
    247		else if (n -= size)	/* Sorting: Extract root to --n */
    248			do_swap(base, base + n, size, swap_func, priv);
    249		else			/* Sort complete */
    250			break;
    251
    252		/*
    253		 * Sift element at "a" down into heap.  This is the
    254		 * "bottom-up" variant, which significantly reduces
    255		 * calls to cmp_func(): we find the sift-down path all
    256		 * the way to the leaves (one compare per level), then
    257		 * backtrack to find where to insert the target element.
    258		 *
    259		 * Because elements tend to sift down close to the leaves,
    260		 * this uses fewer compares than doing two per level
    261		 * on the way down.  (A bit more than half as many on
    262		 * average, 3/4 worst-case.)
    263		 */
    264		for (b = a; c = 2*b + size, (d = c + size) < n;)
    265			b = do_cmp(base + c, base + d, cmp_func, priv) >= 0 ? c : d;
    266		if (d == n)	/* Special case last leaf with no sibling */
    267			b = c;
    268
    269		/* Now backtrack from "b" to the correct location for "a" */
    270		while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
    271			b = parent(b, lsbit, size);
    272		c = b;			/* Where "a" belongs */
    273		while (b != a) {	/* Shift it into place */
    274			b = parent(b, lsbit, size);
    275			do_swap(base + b, base + c, size, swap_func, priv);
    276		}
    277	}
    278}
    279EXPORT_SYMBOL(sort_r);
    280
    281void sort(void *base, size_t num, size_t size,
    282	  cmp_func_t cmp_func,
    283	  swap_func_t swap_func)
    284{
    285	struct wrapper w = {
    286		.cmp  = cmp_func,
    287		.swap = swap_func,
    288	};
    289
    290	return sort_r(base, num, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
    291}
    292EXPORT_SYMBOL(sort);