cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fse.h (34473B)


      1/* ******************************************************************
      2 * FSE : Finite State Entropy codec
      3 * Public Prototypes declaration
      4 * Copyright (c) Yann Collet, Facebook, Inc.
      5 *
      6 * You can contact the author at :
      7 * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
      8 *
      9 * This source code is licensed under both the BSD-style license (found in the
     10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
     11 * in the COPYING file in the root directory of this source tree).
     12 * You may select, at your option, one of the above-listed licenses.
     13****************************************************************** */
     14
     15
     16#ifndef FSE_H
     17#define FSE_H
     18
     19
     20/*-*****************************************
     21*  Dependencies
     22******************************************/
     23#include "zstd_deps.h"    /* size_t, ptrdiff_t */
     24
     25
     26/*-*****************************************
     27*  FSE_PUBLIC_API : control library symbols visibility
     28******************************************/
     29#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
     30#  define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
     31#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1)   /* Visual expected */
     32#  define FSE_PUBLIC_API __declspec(dllexport)
     33#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
     34#  define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
     35#else
     36#  define FSE_PUBLIC_API
     37#endif
     38
     39/*------   Version   ------*/
     40#define FSE_VERSION_MAJOR    0
     41#define FSE_VERSION_MINOR    9
     42#define FSE_VERSION_RELEASE  0
     43
     44#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
     45#define FSE_QUOTE(str) #str
     46#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
     47#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
     48
     49#define FSE_VERSION_NUMBER  (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
     50FSE_PUBLIC_API unsigned FSE_versionNumber(void);   /*< library version number; to be used when checking dll version */
     51
     52
     53/*-****************************************
     54*  FSE simple functions
     55******************************************/
     56/*! FSE_compress() :
     57    Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'.
     58    'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize).
     59    @return : size of compressed data (<= dstCapacity).
     60    Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!!
     61                     if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead.
     62                     if FSE_isError(return), compression failed (more details using FSE_getErrorName())
     63*/
     64FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity,
     65                             const void* src, size_t srcSize);
     66
     67/*! FSE_decompress():
     68    Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
     69    into already allocated destination buffer 'dst', of size 'dstCapacity'.
     70    @return : size of regenerated data (<= maxDstSize),
     71              or an error code, which can be tested using FSE_isError() .
     72
     73    ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!!
     74    Why ? : making this distinction requires a header.
     75    Header management is intentionally delegated to the user layer, which can better manage special cases.
     76*/
     77FSE_PUBLIC_API size_t FSE_decompress(void* dst,  size_t dstCapacity,
     78                               const void* cSrc, size_t cSrcSize);
     79
     80
     81/*-*****************************************
     82*  Tool functions
     83******************************************/
     84FSE_PUBLIC_API size_t FSE_compressBound(size_t size);       /* maximum compressed size */
     85
     86/* Error Management */
     87FSE_PUBLIC_API unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
     88FSE_PUBLIC_API const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
     89
     90
     91/*-*****************************************
     92*  FSE advanced functions
     93******************************************/
     94/*! FSE_compress2() :
     95    Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog'
     96    Both parameters can be defined as '0' to mean : use default value
     97    @return : size of compressed data
     98    Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!!
     99                     if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression.
    100                     if FSE_isError(return), it's an error code.
    101*/
    102FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog);
    103
    104
    105/*-*****************************************
    106*  FSE detailed API
    107******************************************/
    108/*!
    109FSE_compress() does the following:
    1101. count symbol occurrence from source[] into table count[] (see hist.h)
    1112. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
    1123. save normalized counters to memory buffer using writeNCount()
    1134. build encoding table 'CTable' from normalized counters
    1145. encode the data stream using encoding table 'CTable'
    115
    116FSE_decompress() does the following:
    1171. read normalized counters with readNCount()
    1182. build decoding table 'DTable' from normalized counters
    1193. decode the data stream using decoding table 'DTable'
    120
    121The following API allows targeting specific sub-functions for advanced tasks.
    122For example, it's possible to compress several blocks using the same 'CTable',
    123or to save and provide normalized distribution using external method.
    124*/
    125
    126/* *** COMPRESSION *** */
    127
    128/*! FSE_optimalTableLog():
    129    dynamically downsize 'tableLog' when conditions are met.
    130    It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
    131    @return : recommended tableLog (necessarily <= 'maxTableLog') */
    132FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
    133
    134/*! FSE_normalizeCount():
    135    normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
    136    'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
    137    useLowProbCount is a boolean parameter which trades off compressed size for
    138    faster header decoding. When it is set to 1, the compressed data will be slightly
    139    smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
    140    faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
    141    is a good default, since header deserialization makes a big speed difference.
    142    Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
    143    @return : tableLog,
    144              or an errorCode, which can be tested using FSE_isError() */
    145FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
    146                    const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
    147
    148/*! FSE_NCountWriteBound():
    149    Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
    150    Typically useful for allocation purpose. */
    151FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
    152
    153/*! FSE_writeNCount():
    154    Compactly save 'normalizedCounter' into 'buffer'.
    155    @return : size of the compressed table,
    156              or an errorCode, which can be tested using FSE_isError(). */
    157FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
    158                                 const short* normalizedCounter,
    159                                 unsigned maxSymbolValue, unsigned tableLog);
    160
    161/*! Constructor and Destructor of FSE_CTable.
    162    Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
    163typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
    164FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog);
    165FSE_PUBLIC_API void        FSE_freeCTable (FSE_CTable* ct);
    166
    167/*! FSE_buildCTable():
    168    Builds `ct`, which must be already allocated, using FSE_createCTable().
    169    @return : 0, or an errorCode, which can be tested using FSE_isError() */
    170FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
    171
    172/*! FSE_compress_usingCTable():
    173    Compress `src` using `ct` into `dst` which must be already allocated.
    174    @return : size of compressed data (<= `dstCapacity`),
    175              or 0 if compressed data could not fit into `dst`,
    176              or an errorCode, which can be tested using FSE_isError() */
    177FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
    178
    179/*!
    180Tutorial :
    181----------
    182The first step is to count all symbols. FSE_count() does this job very fast.
    183Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
    184'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
    185maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
    186FSE_count() will return the number of occurrence of the most frequent symbol.
    187This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
    188If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
    189
    190The next step is to normalize the frequencies.
    191FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
    192It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
    193You can use 'tableLog'==0 to mean "use default tableLog value".
    194If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
    195which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
    196
    197The result of FSE_normalizeCount() will be saved into a table,
    198called 'normalizedCounter', which is a table of signed short.
    199'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
    200The return value is tableLog if everything proceeded as expected.
    201It is 0 if there is a single symbol within distribution.
    202If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
    203
    204'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
    205'buffer' must be already allocated.
    206For guaranteed success, buffer size must be at least FSE_headerBound().
    207The result of the function is the number of bytes written into 'buffer'.
    208If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
    209
    210'normalizedCounter' can then be used to create the compression table 'CTable'.
    211The space required by 'CTable' must be already allocated, using FSE_createCTable().
    212You can then use FSE_buildCTable() to fill 'CTable'.
    213If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
    214
    215'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
    216Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
    217The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
    218If it returns '0', compressed data could not fit into 'dst'.
    219If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
    220*/
    221
    222
    223/* *** DECOMPRESSION *** */
    224
    225/*! FSE_readNCount():
    226    Read compactly saved 'normalizedCounter' from 'rBuffer'.
    227    @return : size read from 'rBuffer',
    228              or an errorCode, which can be tested using FSE_isError().
    229              maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
    230FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
    231                           unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
    232                           const void* rBuffer, size_t rBuffSize);
    233
    234/*! FSE_readNCount_bmi2():
    235 * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
    236 */
    237FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
    238                           unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
    239                           const void* rBuffer, size_t rBuffSize, int bmi2);
    240
    241/*! Constructor and Destructor of FSE_DTable.
    242    Note that its size depends on 'tableLog' */
    243typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
    244FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog);
    245FSE_PUBLIC_API void        FSE_freeDTable(FSE_DTable* dt);
    246
    247/*! FSE_buildDTable():
    248    Builds 'dt', which must be already allocated, using FSE_createDTable().
    249    return : 0, or an errorCode, which can be tested using FSE_isError() */
    250FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
    251
    252/*! FSE_decompress_usingDTable():
    253    Decompress compressed source `cSrc` of size `cSrcSize` using `dt`
    254    into `dst` which must be already allocated.
    255    @return : size of regenerated data (necessarily <= `dstCapacity`),
    256              or an errorCode, which can be tested using FSE_isError() */
    257FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
    258
    259/*!
    260Tutorial :
    261----------
    262(Note : these functions only decompress FSE-compressed blocks.
    263 If block is uncompressed, use memcpy() instead
    264 If block is a single repeated byte, use memset() instead )
    265
    266The first step is to obtain the normalized frequencies of symbols.
    267This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
    268'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
    269In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
    270or size the table to handle worst case situations (typically 256).
    271FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
    272The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
    273Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
    274If there is an error, the function will return an error code, which can be tested using FSE_isError().
    275
    276The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
    277This is performed by the function FSE_buildDTable().
    278The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
    279If there is an error, the function will return an error code, which can be tested using FSE_isError().
    280
    281`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
    282`cSrcSize` must be strictly correct, otherwise decompression will fail.
    283FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
    284If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
    285*/
    286
    287#endif  /* FSE_H */
    288
    289#if !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
    290#define FSE_H_FSE_STATIC_LINKING_ONLY
    291
    292/* *** Dependency *** */
    293#include "bitstream.h"
    294
    295
    296/* *****************************************
    297*  Static allocation
    298*******************************************/
    299/* FSE buffer bounds */
    300#define FSE_NCOUNTBOUND 512
    301#define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
    302#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
    303
    304/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
    305#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
    306#define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<(maxTableLog)))
    307
    308/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
    309#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue)   (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
    310#define FSE_DTABLE_SIZE(maxTableLog)                   (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
    311
    312
    313/* *****************************************
    314 *  FSE advanced API
    315 ***************************************** */
    316
    317unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
    318/*< same as FSE_optimalTableLog(), which used `minus==2` */
    319
    320/* FSE_compress_wksp() :
    321 * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`).
    322 * FSE_COMPRESS_WKSP_SIZE_U32() provides the minimum size required for `workSpace` as a table of FSE_CTable.
    323 */
    324#define FSE_COMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue)   ( FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) + ((maxTableLog > 12) ? (1 << (maxTableLog - 2)) : 1024) )
    325size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
    326
    327size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits);
    328/*< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */
    329
    330size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
    331/*< build a fake FSE_CTable, designed to compress always the same symbolValue */
    332
    333/* FSE_buildCTable_wksp() :
    334 * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
    335 * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
    336 */
    337#define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (maxSymbolValue + 2 + (1ull << (tableLog - 2)))
    338#define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
    339size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
    340
    341#define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
    342#define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
    343FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
    344/*< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
    345
    346size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
    347/*< build a fake FSE_DTable, designed to read a flat distribution where each symbol uses nbBits */
    348
    349size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
    350/*< build a fake FSE_DTable, designed to always generate the same symbolValue */
    351
    352#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
    353#define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
    354size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize);
    355/*< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)` */
    356
    357size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
    358/*< Same as FSE_decompress_wksp() but with dynamic BMI2 support. Pass 1 if your CPU supports BMI2 or 0 if it doesn't. */
    359
    360typedef enum {
    361   FSE_repeat_none,  /*< Cannot use the previous table */
    362   FSE_repeat_check, /*< Can use the previous table but it must be checked */
    363   FSE_repeat_valid  /*< Can use the previous table and it is assumed to be valid */
    364 } FSE_repeat;
    365
    366/* *****************************************
    367*  FSE symbol compression API
    368*******************************************/
    369/*!
    370   This API consists of small unitary functions, which highly benefit from being inlined.
    371   Hence their body are included in next section.
    372*/
    373typedef struct {
    374    ptrdiff_t   value;
    375    const void* stateTable;
    376    const void* symbolTT;
    377    unsigned    stateLog;
    378} FSE_CState_t;
    379
    380static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
    381
    382static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
    383
    384static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
    385
    386/*<
    387These functions are inner components of FSE_compress_usingCTable().
    388They allow the creation of custom streams, mixing multiple tables and bit sources.
    389
    390A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
    391So the first symbol you will encode is the last you will decode, like a LIFO stack.
    392
    393You will need a few variables to track your CStream. They are :
    394
    395FSE_CTable    ct;         // Provided by FSE_buildCTable()
    396BIT_CStream_t bitStream;  // bitStream tracking structure
    397FSE_CState_t  state;      // State tracking structure (can have several)
    398
    399
    400The first thing to do is to init bitStream and state.
    401    size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
    402    FSE_initCState(&state, ct);
    403
    404Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
    405You can then encode your input data, byte after byte.
    406FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
    407Remember decoding will be done in reverse direction.
    408    FSE_encodeByte(&bitStream, &state, symbol);
    409
    410At any time, you can also add any bit sequence.
    411Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
    412    BIT_addBits(&bitStream, bitField, nbBits);
    413
    414The above methods don't commit data to memory, they just store it into local register, for speed.
    415Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
    416Writing data to memory is a manual operation, performed by the flushBits function.
    417    BIT_flushBits(&bitStream);
    418
    419Your last FSE encoding operation shall be to flush your last state value(s).
    420    FSE_flushState(&bitStream, &state);
    421
    422Finally, you must close the bitStream.
    423The function returns the size of CStream in bytes.
    424If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
    425If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
    426    size_t size = BIT_closeCStream(&bitStream);
    427*/
    428
    429
    430/* *****************************************
    431*  FSE symbol decompression API
    432*******************************************/
    433typedef struct {
    434    size_t      state;
    435    const void* table;   /* precise table may vary, depending on U16 */
    436} FSE_DState_t;
    437
    438
    439static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
    440
    441static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
    442
    443static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
    444
    445/*<
    446Let's now decompose FSE_decompress_usingDTable() into its unitary components.
    447You will decode FSE-encoded symbols from the bitStream,
    448and also any other bitFields you put in, **in reverse order**.
    449
    450You will need a few variables to track your bitStream. They are :
    451
    452BIT_DStream_t DStream;    // Stream context
    453FSE_DState_t  DState;     // State context. Multiple ones are possible
    454FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
    455
    456The first thing to do is to init the bitStream.
    457    errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
    458
    459You should then retrieve your initial state(s)
    460(in reverse flushing order if you have several ones) :
    461    errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
    462
    463You can then decode your data, symbol after symbol.
    464For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
    465Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
    466    unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
    467
    468You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
    469Note : maximum allowed nbBits is 25, for 32-bits compatibility
    470    size_t bitField = BIT_readBits(&DStream, nbBits);
    471
    472All above operations only read from local register (which size depends on size_t).
    473Refueling the register from memory is manually performed by the reload method.
    474    endSignal = FSE_reloadDStream(&DStream);
    475
    476BIT_reloadDStream() result tells if there is still some more data to read from DStream.
    477BIT_DStream_unfinished : there is still some data left into the DStream.
    478BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
    479BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
    480BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
    481
    482When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
    483to properly detect the exact end of stream.
    484After each decoded symbol, check if DStream is fully consumed using this simple test :
    485    BIT_reloadDStream(&DStream) >= BIT_DStream_completed
    486
    487When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
    488Checking if DStream has reached its end is performed by :
    489    BIT_endOfDStream(&DStream);
    490Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
    491    FSE_endOfDState(&DState);
    492*/
    493
    494
    495/* *****************************************
    496*  FSE unsafe API
    497*******************************************/
    498static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
    499/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
    500
    501
    502/* *****************************************
    503*  Implementation of inlined functions
    504*******************************************/
    505typedef struct {
    506    int deltaFindState;
    507    U32 deltaNbBits;
    508} FSE_symbolCompressionTransform; /* total 8 bytes */
    509
    510MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
    511{
    512    const void* ptr = ct;
    513    const U16* u16ptr = (const U16*) ptr;
    514    const U32 tableLog = MEM_read16(ptr);
    515    statePtr->value = (ptrdiff_t)1<<tableLog;
    516    statePtr->stateTable = u16ptr+2;
    517    statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
    518    statePtr->stateLog = tableLog;
    519}
    520
    521
    522/*! FSE_initCState2() :
    523*   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
    524*   uses the smallest state value possible, saving the cost of this symbol */
    525MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
    526{
    527    FSE_initCState(statePtr, ct);
    528    {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
    529        const U16* stateTable = (const U16*)(statePtr->stateTable);
    530        U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
    531        statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
    532        statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
    533    }
    534}
    535
    536MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
    537{
    538    FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
    539    const U16* const stateTable = (const U16*)(statePtr->stateTable);
    540    U32 const nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
    541    BIT_addBits(bitC, statePtr->value, nbBitsOut);
    542    statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
    543}
    544
    545MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
    546{
    547    BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
    548    BIT_flushBits(bitC);
    549}
    550
    551
    552/* FSE_getMaxNbBits() :
    553 * Approximate maximum cost of a symbol, in bits.
    554 * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
    555 * note 1 : assume symbolValue is valid (<= maxSymbolValue)
    556 * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
    557MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
    558{
    559    const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
    560    return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
    561}
    562
    563/* FSE_bitCost() :
    564 * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
    565 * note 1 : assume symbolValue is valid (<= maxSymbolValue)
    566 * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
    567MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
    568{
    569    const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
    570    U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
    571    U32 const threshold = (minNbBits+1) << 16;
    572    assert(tableLog < 16);
    573    assert(accuracyLog < 31-tableLog);  /* ensure enough room for renormalization double shift */
    574    {   U32 const tableSize = 1 << tableLog;
    575        U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
    576        U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog;   /* linear interpolation (very approximate) */
    577        U32 const bitMultiplier = 1 << accuracyLog;
    578        assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
    579        assert(normalizedDeltaFromThreshold <= bitMultiplier);
    580        return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
    581    }
    582}
    583
    584
    585/* ======    Decompression    ====== */
    586
    587typedef struct {
    588    U16 tableLog;
    589    U16 fastMode;
    590} FSE_DTableHeader;   /* sizeof U32 */
    591
    592typedef struct
    593{
    594    unsigned short newState;
    595    unsigned char  symbol;
    596    unsigned char  nbBits;
    597} FSE_decode_t;   /* size == U32 */
    598
    599MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
    600{
    601    const void* ptr = dt;
    602    const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
    603    DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
    604    BIT_reloadDStream(bitD);
    605    DStatePtr->table = dt + 1;
    606}
    607
    608MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
    609{
    610    FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
    611    return DInfo.symbol;
    612}
    613
    614MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
    615{
    616    FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
    617    U32 const nbBits = DInfo.nbBits;
    618    size_t const lowBits = BIT_readBits(bitD, nbBits);
    619    DStatePtr->state = DInfo.newState + lowBits;
    620}
    621
    622MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
    623{
    624    FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
    625    U32 const nbBits = DInfo.nbBits;
    626    BYTE const symbol = DInfo.symbol;
    627    size_t const lowBits = BIT_readBits(bitD, nbBits);
    628
    629    DStatePtr->state = DInfo.newState + lowBits;
    630    return symbol;
    631}
    632
    633/*! FSE_decodeSymbolFast() :
    634    unsafe, only works if no symbol has a probability > 50% */
    635MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
    636{
    637    FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
    638    U32 const nbBits = DInfo.nbBits;
    639    BYTE const symbol = DInfo.symbol;
    640    size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
    641
    642    DStatePtr->state = DInfo.newState + lowBits;
    643    return symbol;
    644}
    645
    646MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
    647{
    648    return DStatePtr->state == 0;
    649}
    650
    651
    652
    653#ifndef FSE_COMMONDEFS_ONLY
    654
    655/* **************************************************************
    656*  Tuning parameters
    657****************************************************************/
    658/*!MEMORY_USAGE :
    659*  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
    660*  Increasing memory usage improves compression ratio
    661*  Reduced memory usage can improve speed, due to cache effect
    662*  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
    663#ifndef FSE_MAX_MEMORY_USAGE
    664#  define FSE_MAX_MEMORY_USAGE 14
    665#endif
    666#ifndef FSE_DEFAULT_MEMORY_USAGE
    667#  define FSE_DEFAULT_MEMORY_USAGE 13
    668#endif
    669#if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
    670#  error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
    671#endif
    672
    673/*!FSE_MAX_SYMBOL_VALUE :
    674*  Maximum symbol value authorized.
    675*  Required for proper stack allocation */
    676#ifndef FSE_MAX_SYMBOL_VALUE
    677#  define FSE_MAX_SYMBOL_VALUE 255
    678#endif
    679
    680/* **************************************************************
    681*  template functions type & suffix
    682****************************************************************/
    683#define FSE_FUNCTION_TYPE BYTE
    684#define FSE_FUNCTION_EXTENSION
    685#define FSE_DECODE_TYPE FSE_decode_t
    686
    687
    688#endif   /* !FSE_COMMONDEFS_ONLY */
    689
    690
    691/* ***************************************************************
    692*  Constants
    693*****************************************************************/
    694#define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
    695#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
    696#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
    697#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
    698#define FSE_MIN_TABLELOG 5
    699
    700#define FSE_TABLELOG_ABSOLUTE_MAX 15
    701#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
    702#  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
    703#endif
    704
    705#define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
    706
    707
    708#endif /* FSE_STATIC_LINKING_ONLY */
    709
    710