cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

huf_compress.c (38118B)


      1/* ******************************************************************
      2 * Huffman encoder, part of New Generation Entropy library
      3 * Copyright (c) Yann Collet, Facebook, Inc.
      4 *
      5 *  You can contact the author at :
      6 *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
      7 *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
      8 *
      9 * This source code is licensed under both the BSD-style license (found in the
     10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
     11 * in the COPYING file in the root directory of this source tree).
     12 * You may select, at your option, one of the above-listed licenses.
     13****************************************************************** */
     14
     15/* **************************************************************
     16*  Compiler specifics
     17****************************************************************/
     18
     19
     20/* **************************************************************
     21*  Includes
     22****************************************************************/
     23#include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
     24#include "../common/compiler.h"
     25#include "../common/bitstream.h"
     26#include "hist.h"
     27#define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
     28#include "../common/fse.h"        /* header compression */
     29#define HUF_STATIC_LINKING_ONLY
     30#include "../common/huf.h"
     31#include "../common/error_private.h"
     32
     33
     34/* **************************************************************
     35*  Error Management
     36****************************************************************/
     37#define HUF_isError ERR_isError
     38#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
     39
     40
     41/* **************************************************************
     42*  Utils
     43****************************************************************/
     44unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
     45{
     46    return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
     47}
     48
     49
     50/* *******************************************************
     51*  HUF : Huffman block compression
     52*********************************************************/
     53/* HUF_compressWeights() :
     54 * Same as FSE_compress(), but dedicated to huff0's weights compression.
     55 * The use case needs much less stack memory.
     56 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
     57 */
     58#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
     59
     60typedef struct {
     61    FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
     62    U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
     63    unsigned count[HUF_TABLELOG_MAX+1];
     64    S16 norm[HUF_TABLELOG_MAX+1];
     65} HUF_CompressWeightsWksp;
     66
     67static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
     68{
     69    BYTE* const ostart = (BYTE*) dst;
     70    BYTE* op = ostart;
     71    BYTE* const oend = ostart + dstSize;
     72
     73    unsigned maxSymbolValue = HUF_TABLELOG_MAX;
     74    U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
     75    HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)workspace;
     76
     77    if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
     78
     79    /* init conditions */
     80    if (wtSize <= 1) return 0;  /* Not compressible */
     81
     82    /* Scan input and build symbol stats */
     83    {   unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
     84        if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
     85        if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
     86    }
     87
     88    tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
     89    CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
     90
     91    /* Write table description header */
     92    {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
     93        op += hSize;
     94    }
     95
     96    /* Compress */
     97    CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
     98    {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
     99        if (cSize == 0) return 0;   /* not enough space for compressed data */
    100        op += cSize;
    101    }
    102
    103    return (size_t)(op-ostart);
    104}
    105
    106
    107typedef struct {
    108    HUF_CompressWeightsWksp wksp;
    109    BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
    110    BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
    111} HUF_WriteCTableWksp;
    112
    113size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
    114                            const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
    115                            void* workspace, size_t workspaceSize)
    116{
    117    BYTE* op = (BYTE*)dst;
    118    U32 n;
    119    HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)workspace;
    120
    121    /* check conditions */
    122    if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
    123    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
    124
    125    /* convert to weight */
    126    wksp->bitsToWeight[0] = 0;
    127    for (n=1; n<huffLog+1; n++)
    128        wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
    129    for (n=0; n<maxSymbolValue; n++)
    130        wksp->huffWeight[n] = wksp->bitsToWeight[CTable[n].nbBits];
    131
    132    /* attempt weights compression by FSE */
    133    {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
    134        if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
    135            op[0] = (BYTE)hSize;
    136            return hSize+1;
    137    }   }
    138
    139    /* write raw values as 4-bits (max : 15) */
    140    if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
    141    if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
    142    op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
    143    wksp->huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
    144    for (n=0; n<maxSymbolValue; n+=2)
    145        op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
    146    return ((maxSymbolValue+1)/2) + 1;
    147}
    148
    149/*! HUF_writeCTable() :
    150    `CTable` : Huffman tree to save, using huf representation.
    151    @return : size of saved CTable */
    152size_t HUF_writeCTable (void* dst, size_t maxDstSize,
    153                        const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
    154{
    155    HUF_WriteCTableWksp wksp;
    156    return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
    157}
    158
    159
    160size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
    161{
    162    BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
    163    U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
    164    U32 tableLog = 0;
    165    U32 nbSymbols = 0;
    166
    167    /* get symbol weights */
    168    CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
    169    *hasZeroWeights = (rankVal[0] > 0);
    170
    171    /* check result */
    172    if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    173    if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
    174
    175    /* Prepare base value per rank */
    176    {   U32 n, nextRankStart = 0;
    177        for (n=1; n<=tableLog; n++) {
    178            U32 curr = nextRankStart;
    179            nextRankStart += (rankVal[n] << (n-1));
    180            rankVal[n] = curr;
    181    }   }
    182
    183    /* fill nbBits */
    184    {   U32 n; for (n=0; n<nbSymbols; n++) {
    185            const U32 w = huffWeight[n];
    186            CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
    187    }   }
    188
    189    /* fill val */
    190    {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
    191        U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
    192        { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
    193        /* determine stating value per rank */
    194        valPerRank[tableLog+1] = 0;   /* for w==0 */
    195        {   U16 min = 0;
    196            U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
    197                valPerRank[n] = min;     /* get starting value within each rank */
    198                min += nbPerRank[n];
    199                min >>= 1;
    200        }   }
    201        /* assign value within rank, symbol order */
    202        { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
    203    }
    204
    205    *maxSymbolValuePtr = nbSymbols - 1;
    206    return readSize;
    207}
    208
    209U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
    210{
    211    const HUF_CElt* table = (const HUF_CElt*)symbolTable;
    212    assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
    213    return table[symbolValue].nbBits;
    214}
    215
    216
    217typedef struct nodeElt_s {
    218    U32 count;
    219    U16 parent;
    220    BYTE byte;
    221    BYTE nbBits;
    222} nodeElt;
    223
    224/*
    225 * HUF_setMaxHeight():
    226 * Enforces maxNbBits on the Huffman tree described in huffNode.
    227 *
    228 * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
    229 * the tree to so that it is a valid canonical Huffman tree.
    230 *
    231 * @pre               The sum of the ranks of each symbol == 2^largestBits,
    232 *                    where largestBits == huffNode[lastNonNull].nbBits.
    233 * @post              The sum of the ranks of each symbol == 2^largestBits,
    234 *                    where largestBits is the return value <= maxNbBits.
    235 *
    236 * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
    237 * @param lastNonNull The symbol with the lowest count in the Huffman tree.
    238 * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
    239 *                    may not respect. After this function the Huffman tree will
    240 *                    respect maxNbBits.
    241 * @return            The maximum number of bits of the Huffman tree after adjustment,
    242 *                    necessarily no more than maxNbBits.
    243 */
    244static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
    245{
    246    const U32 largestBits = huffNode[lastNonNull].nbBits;
    247    /* early exit : no elt > maxNbBits, so the tree is already valid. */
    248    if (largestBits <= maxNbBits) return largestBits;
    249
    250    /* there are several too large elements (at least >= 2) */
    251    {   int totalCost = 0;
    252        const U32 baseCost = 1 << (largestBits - maxNbBits);
    253        int n = (int)lastNonNull;
    254
    255        /* Adjust any ranks > maxNbBits to maxNbBits.
    256         * Compute totalCost, which is how far the sum of the ranks is
    257         * we are over 2^largestBits after adjust the offending ranks.
    258         */
    259        while (huffNode[n].nbBits > maxNbBits) {
    260            totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
    261            huffNode[n].nbBits = (BYTE)maxNbBits;
    262            n--;
    263        }
    264        /* n stops at huffNode[n].nbBits <= maxNbBits */
    265        assert(huffNode[n].nbBits <= maxNbBits);
    266        /* n end at index of smallest symbol using < maxNbBits */
    267        while (huffNode[n].nbBits == maxNbBits) --n;
    268
    269        /* renorm totalCost from 2^largestBits to 2^maxNbBits
    270         * note : totalCost is necessarily a multiple of baseCost */
    271        assert((totalCost & (baseCost - 1)) == 0);
    272        totalCost >>= (largestBits - maxNbBits);
    273        assert(totalCost > 0);
    274
    275        /* repay normalized cost */
    276        {   U32 const noSymbol = 0xF0F0F0F0;
    277            U32 rankLast[HUF_TABLELOG_MAX+2];
    278
    279            /* Get pos of last (smallest = lowest cum. count) symbol per rank */
    280            ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
    281            {   U32 currentNbBits = maxNbBits;
    282                int pos;
    283                for (pos=n ; pos >= 0; pos--) {
    284                    if (huffNode[pos].nbBits >= currentNbBits) continue;
    285                    currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
    286                    rankLast[maxNbBits-currentNbBits] = (U32)pos;
    287            }   }
    288
    289            while (totalCost > 0) {
    290                /* Try to reduce the next power of 2 above totalCost because we
    291                 * gain back half the rank.
    292                 */
    293                U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
    294                for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
    295                    U32 const highPos = rankLast[nBitsToDecrease];
    296                    U32 const lowPos = rankLast[nBitsToDecrease-1];
    297                    if (highPos == noSymbol) continue;
    298                    /* Decrease highPos if no symbols of lowPos or if it is
    299                     * not cheaper to remove 2 lowPos than highPos.
    300                     */
    301                    if (lowPos == noSymbol) break;
    302                    {   U32 const highTotal = huffNode[highPos].count;
    303                        U32 const lowTotal = 2 * huffNode[lowPos].count;
    304                        if (highTotal <= lowTotal) break;
    305                }   }
    306                /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
    307                assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
    308                /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
    309                while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
    310                    nBitsToDecrease++;
    311                assert(rankLast[nBitsToDecrease] != noSymbol);
    312                /* Increase the number of bits to gain back half the rank cost. */
    313                totalCost -= 1 << (nBitsToDecrease-1);
    314                huffNode[rankLast[nBitsToDecrease]].nbBits++;
    315
    316                /* Fix up the new rank.
    317                 * If the new rank was empty, this symbol is now its smallest.
    318                 * Otherwise, this symbol will be the largest in the new rank so no adjustment.
    319                 */
    320                if (rankLast[nBitsToDecrease-1] == noSymbol)
    321                    rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
    322                /* Fix up the old rank.
    323                 * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
    324                 * it must be the only symbol in its rank, so the old rank now has no symbols.
    325                 * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
    326                 * the smallest node in the rank. If the previous position belongs to a different rank,
    327                 * then the rank is now empty.
    328                 */
    329                if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
    330                    rankLast[nBitsToDecrease] = noSymbol;
    331                else {
    332                    rankLast[nBitsToDecrease]--;
    333                    if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
    334                        rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
    335                }
    336            }   /* while (totalCost > 0) */
    337
    338            /* If we've removed too much weight, then we have to add it back.
    339             * To avoid overshooting again, we only adjust the smallest rank.
    340             * We take the largest nodes from the lowest rank 0 and move them
    341             * to rank 1. There's guaranteed to be enough rank 0 symbols because
    342             * TODO.
    343             */
    344            while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
    345                /* special case : no rank 1 symbol (using maxNbBits-1);
    346                 * let's create one from largest rank 0 (using maxNbBits).
    347                 */
    348                if (rankLast[1] == noSymbol) {
    349                    while (huffNode[n].nbBits == maxNbBits) n--;
    350                    huffNode[n+1].nbBits--;
    351                    assert(n >= 0);
    352                    rankLast[1] = (U32)(n+1);
    353                    totalCost++;
    354                    continue;
    355                }
    356                huffNode[ rankLast[1] + 1 ].nbBits--;
    357                rankLast[1]++;
    358                totalCost ++;
    359            }
    360        }   /* repay normalized cost */
    361    }   /* there are several too large elements (at least >= 2) */
    362
    363    return maxNbBits;
    364}
    365
    366typedef struct {
    367    U32 base;
    368    U32 curr;
    369} rankPos;
    370
    371typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
    372
    373#define RANK_POSITION_TABLE_SIZE 32
    374
    375typedef struct {
    376  huffNodeTable huffNodeTbl;
    377  rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
    378} HUF_buildCTable_wksp_tables;
    379
    380/*
    381 * HUF_sort():
    382 * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
    383 *
    384 * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
    385 *                            Must have (maxSymbolValue + 1) entries.
    386 * @param[in]  count          Histogram of the symbols.
    387 * @param[in]  maxSymbolValue Maximum symbol value.
    388 * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
    389 */
    390static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
    391{
    392    int n;
    393    int const maxSymbolValue1 = (int)maxSymbolValue + 1;
    394
    395    /* Compute base and set curr to base.
    396     * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1.
    397     * Then 2^lowerRank <= count[n]+1 <= 2^rank.
    398     * We attribute each symbol to lowerRank's base value, because we want to know where
    399     * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
    400     */
    401    ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
    402    for (n = 0; n < maxSymbolValue1; ++n) {
    403        U32 lowerRank = BIT_highbit32(count[n] + 1);
    404        rankPosition[lowerRank].base++;
    405    }
    406    assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
    407    for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
    408        rankPosition[n-1].base += rankPosition[n].base;
    409        rankPosition[n-1].curr = rankPosition[n-1].base;
    410    }
    411    /* Sort */
    412    for (n = 0; n < maxSymbolValue1; ++n) {
    413        U32 const c = count[n];
    414        U32 const r = BIT_highbit32(c+1) + 1;
    415        U32 pos = rankPosition[r].curr++;
    416        /* Insert into the correct position in the rank.
    417         * We have at most 256 symbols, so this insertion should be fine.
    418         */
    419        while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
    420            huffNode[pos] = huffNode[pos-1];
    421            pos--;
    422        }
    423        huffNode[pos].count = c;
    424        huffNode[pos].byte  = (BYTE)n;
    425    }
    426}
    427
    428
    429/* HUF_buildCTable_wksp() :
    430 *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
    431 *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
    432 */
    433#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
    434
    435/* HUF_buildTree():
    436 * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
    437 *
    438 * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
    439 * @param maxSymbolValue  The maximum symbol value.
    440 * @return                The smallest node in the Huffman tree (by count).
    441 */
    442static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
    443{
    444    nodeElt* const huffNode0 = huffNode - 1;
    445    int nonNullRank;
    446    int lowS, lowN;
    447    int nodeNb = STARTNODE;
    448    int n, nodeRoot;
    449    /* init for parents */
    450    nonNullRank = (int)maxSymbolValue;
    451    while(huffNode[nonNullRank].count == 0) nonNullRank--;
    452    lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
    453    huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
    454    huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
    455    nodeNb++; lowS-=2;
    456    for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
    457    huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */
    458
    459    /* create parents */
    460    while (nodeNb <= nodeRoot) {
    461        int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
    462        int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
    463        huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
    464        huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
    465        nodeNb++;
    466    }
    467
    468    /* distribute weights (unlimited tree height) */
    469    huffNode[nodeRoot].nbBits = 0;
    470    for (n=nodeRoot-1; n>=STARTNODE; n--)
    471        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
    472    for (n=0; n<=nonNullRank; n++)
    473        huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
    474
    475    return nonNullRank;
    476}
    477
    478/*
    479 * HUF_buildCTableFromTree():
    480 * Build the CTable given the Huffman tree in huffNode.
    481 *
    482 * @param[out] CTable         The output Huffman CTable.
    483 * @param      huffNode       The Huffman tree.
    484 * @param      nonNullRank    The last and smallest node in the Huffman tree.
    485 * @param      maxSymbolValue The maximum symbol value.
    486 * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
    487 */
    488static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
    489{
    490    /* fill result into ctable (val, nbBits) */
    491    int n;
    492    U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
    493    U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
    494    int const alphabetSize = (int)(maxSymbolValue + 1);
    495    for (n=0; n<=nonNullRank; n++)
    496        nbPerRank[huffNode[n].nbBits]++;
    497    /* determine starting value per rank */
    498    {   U16 min = 0;
    499        for (n=(int)maxNbBits; n>0; n--) {
    500            valPerRank[n] = min;      /* get starting value within each rank */
    501            min += nbPerRank[n];
    502            min >>= 1;
    503    }   }
    504    for (n=0; n<alphabetSize; n++)
    505        CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits;   /* push nbBits per symbol, symbol order */
    506    for (n=0; n<alphabetSize; n++)
    507        CTable[n].val = valPerRank[CTable[n].nbBits]++;   /* assign value within rank, symbol order */
    508}
    509
    510size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
    511{
    512    HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
    513    nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
    514    nodeElt* const huffNode = huffNode0+1;
    515    int nonNullRank;
    516
    517    /* safety checks */
    518    if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC);  /* must be aligned on 4-bytes boundaries */
    519    if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
    520      return ERROR(workSpace_tooSmall);
    521    if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
    522    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
    523      return ERROR(maxSymbolValue_tooLarge);
    524    ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
    525
    526    /* sort, decreasing order */
    527    HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
    528
    529    /* build tree */
    530    nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
    531
    532    /* enforce maxTableLog */
    533    maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
    534    if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
    535
    536    HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
    537
    538    return maxNbBits;
    539}
    540
    541size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
    542{
    543    size_t nbBits = 0;
    544    int s;
    545    for (s = 0; s <= (int)maxSymbolValue; ++s) {
    546        nbBits += CTable[s].nbBits * count[s];
    547    }
    548    return nbBits >> 3;
    549}
    550
    551int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
    552  int bad = 0;
    553  int s;
    554  for (s = 0; s <= (int)maxSymbolValue; ++s) {
    555    bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
    556  }
    557  return !bad;
    558}
    559
    560size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
    561
    562FORCE_INLINE_TEMPLATE void
    563HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
    564{
    565    BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
    566}
    567
    568#define HUF_FLUSHBITS(s)  BIT_flushBits(s)
    569
    570#define HUF_FLUSHBITS_1(stream) \
    571    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
    572
    573#define HUF_FLUSHBITS_2(stream) \
    574    if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
    575
    576FORCE_INLINE_TEMPLATE size_t
    577HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
    578                                   const void* src, size_t srcSize,
    579                                   const HUF_CElt* CTable)
    580{
    581    const BYTE* ip = (const BYTE*) src;
    582    BYTE* const ostart = (BYTE*)dst;
    583    BYTE* const oend = ostart + dstSize;
    584    BYTE* op = ostart;
    585    size_t n;
    586    BIT_CStream_t bitC;
    587
    588    /* init */
    589    if (dstSize < 8) return 0;   /* not enough space to compress */
    590    { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
    591      if (HUF_isError(initErr)) return 0; }
    592
    593    n = srcSize & ~3;  /* join to mod 4 */
    594    switch (srcSize & 3)
    595    {
    596        case 3:
    597            HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
    598            HUF_FLUSHBITS_2(&bitC);
    599            ZSTD_FALLTHROUGH;
    600        case 2:
    601            HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
    602            HUF_FLUSHBITS_1(&bitC);
    603            ZSTD_FALLTHROUGH;
    604        case 1:
    605            HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
    606            HUF_FLUSHBITS(&bitC);
    607            ZSTD_FALLTHROUGH;
    608        case 0: ZSTD_FALLTHROUGH;
    609        default: break;
    610    }
    611
    612    for (; n>0; n-=4) {  /* note : n&3==0 at this stage */
    613        HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
    614        HUF_FLUSHBITS_1(&bitC);
    615        HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
    616        HUF_FLUSHBITS_2(&bitC);
    617        HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
    618        HUF_FLUSHBITS_1(&bitC);
    619        HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
    620        HUF_FLUSHBITS(&bitC);
    621    }
    622
    623    return BIT_closeCStream(&bitC);
    624}
    625
    626#if DYNAMIC_BMI2
    627
    628static TARGET_ATTRIBUTE("bmi2") size_t
    629HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
    630                                   const void* src, size_t srcSize,
    631                                   const HUF_CElt* CTable)
    632{
    633    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
    634}
    635
    636static size_t
    637HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
    638                                      const void* src, size_t srcSize,
    639                                      const HUF_CElt* CTable)
    640{
    641    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
    642}
    643
    644static size_t
    645HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
    646                              const void* src, size_t srcSize,
    647                              const HUF_CElt* CTable, const int bmi2)
    648{
    649    if (bmi2) {
    650        return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
    651    }
    652    return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
    653}
    654
    655#else
    656
    657static size_t
    658HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
    659                              const void* src, size_t srcSize,
    660                              const HUF_CElt* CTable, const int bmi2)
    661{
    662    (void)bmi2;
    663    return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
    664}
    665
    666#endif
    667
    668size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
    669{
    670    return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
    671}
    672
    673
    674static size_t
    675HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
    676                              const void* src, size_t srcSize,
    677                              const HUF_CElt* CTable, int bmi2)
    678{
    679    size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
    680    const BYTE* ip = (const BYTE*) src;
    681    const BYTE* const iend = ip + srcSize;
    682    BYTE* const ostart = (BYTE*) dst;
    683    BYTE* const oend = ostart + dstSize;
    684    BYTE* op = ostart;
    685
    686    if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
    687    if (srcSize < 12) return 0;   /* no saving possible : too small input */
    688    op += 6;   /* jumpTable */
    689
    690    assert(op <= oend);
    691    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
    692        if (cSize==0) return 0;
    693        assert(cSize <= 65535);
    694        MEM_writeLE16(ostart, (U16)cSize);
    695        op += cSize;
    696    }
    697
    698    ip += segmentSize;
    699    assert(op <= oend);
    700    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
    701        if (cSize==0) return 0;
    702        assert(cSize <= 65535);
    703        MEM_writeLE16(ostart+2, (U16)cSize);
    704        op += cSize;
    705    }
    706
    707    ip += segmentSize;
    708    assert(op <= oend);
    709    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
    710        if (cSize==0) return 0;
    711        assert(cSize <= 65535);
    712        MEM_writeLE16(ostart+4, (U16)cSize);
    713        op += cSize;
    714    }
    715
    716    ip += segmentSize;
    717    assert(op <= oend);
    718    assert(ip <= iend);
    719    {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
    720        if (cSize==0) return 0;
    721        op += cSize;
    722    }
    723
    724    return (size_t)(op-ostart);
    725}
    726
    727size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
    728{
    729    return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
    730}
    731
    732typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
    733
    734static size_t HUF_compressCTable_internal(
    735                BYTE* const ostart, BYTE* op, BYTE* const oend,
    736                const void* src, size_t srcSize,
    737                HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
    738{
    739    size_t const cSize = (nbStreams==HUF_singleStream) ?
    740                         HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
    741                         HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
    742    if (HUF_isError(cSize)) { return cSize; }
    743    if (cSize==0) { return 0; }   /* uncompressible */
    744    op += cSize;
    745    /* check compressibility */
    746    assert(op >= ostart);
    747    if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
    748    return (size_t)(op-ostart);
    749}
    750
    751typedef struct {
    752    unsigned count[HUF_SYMBOLVALUE_MAX + 1];
    753    HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
    754    union {
    755        HUF_buildCTable_wksp_tables buildCTable_wksp;
    756        HUF_WriteCTableWksp writeCTable_wksp;
    757    } wksps;
    758} HUF_compress_tables_t;
    759
    760/* HUF_compress_internal() :
    761 * `workSpace_align4` must be aligned on 4-bytes boundaries,
    762 * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */
    763static size_t
    764HUF_compress_internal (void* dst, size_t dstSize,
    765                 const void* src, size_t srcSize,
    766                       unsigned maxSymbolValue, unsigned huffLog,
    767                       HUF_nbStreams_e nbStreams,
    768                       void* workSpace_align4, size_t wkspSize,
    769                       HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
    770                 const int bmi2)
    771{
    772    HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4;
    773    BYTE* const ostart = (BYTE*)dst;
    774    BYTE* const oend = ostart + dstSize;
    775    BYTE* op = ostart;
    776
    777    HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
    778    assert(((size_t)workSpace_align4 & 3) == 0);   /* must be aligned on 4-bytes boundaries */
    779
    780    /* checks & inits */
    781    if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
    782    if (!srcSize) return 0;  /* Uncompressed */
    783    if (!dstSize) return 0;  /* cannot fit anything within dst budget */
    784    if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
    785    if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
    786    if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
    787    if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
    788    if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
    789
    790    /* Heuristic : If old table is valid, use it for small inputs */
    791    if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
    792        return HUF_compressCTable_internal(ostart, op, oend,
    793                                           src, srcSize,
    794                                           nbStreams, oldHufTable, bmi2);
    795    }
    796
    797    /* Scan input and build symbol stats */
    798    {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) );
    799        if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
    800        if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
    801    }
    802
    803    /* Check validity of previous table */
    804    if ( repeat
    805      && *repeat == HUF_repeat_check
    806      && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
    807        *repeat = HUF_repeat_none;
    808    }
    809    /* Heuristic : use existing table for small inputs */
    810    if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
    811        return HUF_compressCTable_internal(ostart, op, oend,
    812                                           src, srcSize,
    813                                           nbStreams, oldHufTable, bmi2);
    814    }
    815
    816    /* Build Huffman Tree */
    817    huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
    818    {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
    819                                            maxSymbolValue, huffLog,
    820                                            &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
    821        CHECK_F(maxBits);
    822        huffLog = (U32)maxBits;
    823        /* Zero unused symbols in CTable, so we can check it for validity */
    824        ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0,
    825               sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
    826    }
    827
    828    /* Write table description header */
    829    {   CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
    830                                              &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
    831        /* Check if using previous huffman table is beneficial */
    832        if (repeat && *repeat != HUF_repeat_none) {
    833            size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
    834            size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
    835            if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
    836                return HUF_compressCTable_internal(ostart, op, oend,
    837                                                   src, srcSize,
    838                                                   nbStreams, oldHufTable, bmi2);
    839        }   }
    840
    841        /* Use the new huffman table */
    842        if (hSize + 12ul >= srcSize) { return 0; }
    843        op += hSize;
    844        if (repeat) { *repeat = HUF_repeat_none; }
    845        if (oldHufTable)
    846            ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
    847    }
    848    return HUF_compressCTable_internal(ostart, op, oend,
    849                                       src, srcSize,
    850                                       nbStreams, table->CTable, bmi2);
    851}
    852
    853
    854size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
    855                      const void* src, size_t srcSize,
    856                      unsigned maxSymbolValue, unsigned huffLog,
    857                      void* workSpace, size_t wkspSize)
    858{
    859    return HUF_compress_internal(dst, dstSize, src, srcSize,
    860                                 maxSymbolValue, huffLog, HUF_singleStream,
    861                                 workSpace, wkspSize,
    862                                 NULL, NULL, 0, 0 /*bmi2*/);
    863}
    864
    865size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
    866                      const void* src, size_t srcSize,
    867                      unsigned maxSymbolValue, unsigned huffLog,
    868                      void* workSpace, size_t wkspSize,
    869                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
    870{
    871    return HUF_compress_internal(dst, dstSize, src, srcSize,
    872                                 maxSymbolValue, huffLog, HUF_singleStream,
    873                                 workSpace, wkspSize, hufTable,
    874                                 repeat, preferRepeat, bmi2);
    875}
    876
    877/* HUF_compress4X_repeat():
    878 * compress input using 4 streams.
    879 * provide workspace to generate compression tables */
    880size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
    881                      const void* src, size_t srcSize,
    882                      unsigned maxSymbolValue, unsigned huffLog,
    883                      void* workSpace, size_t wkspSize)
    884{
    885    return HUF_compress_internal(dst, dstSize, src, srcSize,
    886                                 maxSymbolValue, huffLog, HUF_fourStreams,
    887                                 workSpace, wkspSize,
    888                                 NULL, NULL, 0, 0 /*bmi2*/);
    889}
    890
    891/* HUF_compress4X_repeat():
    892 * compress input using 4 streams.
    893 * re-use an existing huffman compression table */
    894size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
    895                      const void* src, size_t srcSize,
    896                      unsigned maxSymbolValue, unsigned huffLog,
    897                      void* workSpace, size_t wkspSize,
    898                      HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
    899{
    900    return HUF_compress_internal(dst, dstSize, src, srcSize,
    901                                 maxSymbolValue, huffLog, HUF_fourStreams,
    902                                 workSpace, wkspSize,
    903                                 hufTable, repeat, preferRepeat, bmi2);
    904}
    905