cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

zstd_opt.c (63132B)


      1/*
      2 * Copyright (c) Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
      3 * All rights reserved.
      4 *
      5 * This source code is licensed under both the BSD-style license (found in the
      6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
      7 * in the COPYING file in the root directory of this source tree).
      8 * You may select, at your option, one of the above-listed licenses.
      9 */
     10
     11/*
     12 * Disable inlining for the optimal parser for the kernel build.
     13 * It is unlikely to be used in the kernel, and where it is used
     14 * latency shouldn't matter because it is very slow to begin with.
     15 * We prefer a ~180KB binary size win over faster optimal parsing.
     16 *
     17 * TODO(https://github.com/facebook/zstd/issues/2862):
     18 * Improve the code size of the optimal parser in general, so we
     19 * don't need this hack for the kernel build.
     20 */
     21#define ZSTD_NO_INLINE 1
     22
     23#include "zstd_compress_internal.h"
     24#include "hist.h"
     25#include "zstd_opt.h"
     26
     27
     28#define ZSTD_LITFREQ_ADD    2   /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
     29#define ZSTD_FREQ_DIV       4   /* log factor when using previous stats to init next stats */
     30#define ZSTD_MAX_PRICE     (1<<30)
     31
     32#define ZSTD_PREDEF_THRESHOLD 1024   /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */
     33
     34
     35/*-*************************************
     36*  Price functions for optimal parser
     37***************************************/
     38
     39#if 0    /* approximation at bit level */
     40#  define BITCOST_ACCURACY 0
     41#  define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
     42#  define WEIGHT(stat)  ((void)opt, ZSTD_bitWeight(stat))
     43#elif 0  /* fractional bit accuracy */
     44#  define BITCOST_ACCURACY 8
     45#  define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
     46#  define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat))
     47#else    /* opt==approx, ultra==accurate */
     48#  define BITCOST_ACCURACY 8
     49#  define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
     50#  define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat))
     51#endif
     52
     53MEM_STATIC U32 ZSTD_bitWeight(U32 stat)
     54{
     55    return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER);
     56}
     57
     58MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat)
     59{
     60    U32 const stat = rawStat + 1;
     61    U32 const hb = ZSTD_highbit32(stat);
     62    U32 const BWeight = hb * BITCOST_MULTIPLIER;
     63    U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb;
     64    U32 const weight = BWeight + FWeight;
     65    assert(hb + BITCOST_ACCURACY < 31);
     66    return weight;
     67}
     68
     69#if (DEBUGLEVEL>=2)
     70/* debugging function,
     71 * @return price in bytes as fractional value
     72 * for debug messages only */
     73MEM_STATIC double ZSTD_fCost(U32 price)
     74{
     75    return (double)price / (BITCOST_MULTIPLIER*8);
     76}
     77#endif
     78
     79static int ZSTD_compressedLiterals(optState_t const* const optPtr)
     80{
     81    return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed;
     82}
     83
     84static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel)
     85{
     86    if (ZSTD_compressedLiterals(optPtr))
     87        optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel);
     88    optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel);
     89    optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel);
     90    optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel);
     91}
     92
     93
     94/* ZSTD_downscaleStat() :
     95 * reduce all elements in table by a factor 2^(ZSTD_FREQ_DIV+malus)
     96 * return the resulting sum of elements */
     97static U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex, int malus)
     98{
     99    U32 s, sum=0;
    100    DEBUGLOG(5, "ZSTD_downscaleStat (nbElts=%u)", (unsigned)lastEltIndex+1);
    101    assert(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31);
    102    for (s=0; s<lastEltIndex+1; s++) {
    103        table[s] = 1 + (table[s] >> (ZSTD_FREQ_DIV+malus));
    104        sum += table[s];
    105    }
    106    return sum;
    107}
    108
    109/* ZSTD_rescaleFreqs() :
    110 * if first block (detected by optPtr->litLengthSum == 0) : init statistics
    111 *    take hints from dictionary if there is one
    112 *    or init from zero, using src for literals stats, or flat 1 for match symbols
    113 * otherwise downscale existing stats, to be used as seed for next block.
    114 */
    115static void
    116ZSTD_rescaleFreqs(optState_t* const optPtr,
    117            const BYTE* const src, size_t const srcSize,
    118                  int const optLevel)
    119{
    120    int const compressedLiterals = ZSTD_compressedLiterals(optPtr);
    121    DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize);
    122    optPtr->priceType = zop_dynamic;
    123
    124    if (optPtr->litLengthSum == 0) {  /* first block : init */
    125        if (srcSize <= ZSTD_PREDEF_THRESHOLD) {  /* heuristic */
    126            DEBUGLOG(5, "(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef");
    127            optPtr->priceType = zop_predef;
    128        }
    129
    130        assert(optPtr->symbolCosts != NULL);
    131        if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) {
    132            /* huffman table presumed generated by dictionary */
    133            optPtr->priceType = zop_dynamic;
    134
    135            if (compressedLiterals) {
    136                unsigned lit;
    137                assert(optPtr->litFreq != NULL);
    138                optPtr->litSum = 0;
    139                for (lit=0; lit<=MaxLit; lit++) {
    140                    U32 const scaleLog = 11;   /* scale to 2K */
    141                    U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit);
    142                    assert(bitCost <= scaleLog);
    143                    optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
    144                    optPtr->litSum += optPtr->litFreq[lit];
    145            }   }
    146
    147            {   unsigned ll;
    148                FSE_CState_t llstate;
    149                FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable);
    150                optPtr->litLengthSum = 0;
    151                for (ll=0; ll<=MaxLL; ll++) {
    152                    U32 const scaleLog = 10;   /* scale to 1K */
    153                    U32 const bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll);
    154                    assert(bitCost < scaleLog);
    155                    optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
    156                    optPtr->litLengthSum += optPtr->litLengthFreq[ll];
    157            }   }
    158
    159            {   unsigned ml;
    160                FSE_CState_t mlstate;
    161                FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable);
    162                optPtr->matchLengthSum = 0;
    163                for (ml=0; ml<=MaxML; ml++) {
    164                    U32 const scaleLog = 10;
    165                    U32 const bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml);
    166                    assert(bitCost < scaleLog);
    167                    optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
    168                    optPtr->matchLengthSum += optPtr->matchLengthFreq[ml];
    169            }   }
    170
    171            {   unsigned of;
    172                FSE_CState_t ofstate;
    173                FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable);
    174                optPtr->offCodeSum = 0;
    175                for (of=0; of<=MaxOff; of++) {
    176                    U32 const scaleLog = 10;
    177                    U32 const bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of);
    178                    assert(bitCost < scaleLog);
    179                    optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
    180                    optPtr->offCodeSum += optPtr->offCodeFreq[of];
    181            }   }
    182
    183        } else {  /* not a dictionary */
    184
    185            assert(optPtr->litFreq != NULL);
    186            if (compressedLiterals) {
    187                unsigned lit = MaxLit;
    188                HIST_count_simple(optPtr->litFreq, &lit, src, srcSize);   /* use raw first block to init statistics */
    189                optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
    190            }
    191
    192            {   unsigned ll;
    193                for (ll=0; ll<=MaxLL; ll++)
    194                    optPtr->litLengthFreq[ll] = 1;
    195            }
    196            optPtr->litLengthSum = MaxLL+1;
    197
    198            {   unsigned ml;
    199                for (ml=0; ml<=MaxML; ml++)
    200                    optPtr->matchLengthFreq[ml] = 1;
    201            }
    202            optPtr->matchLengthSum = MaxML+1;
    203
    204            {   unsigned of;
    205                for (of=0; of<=MaxOff; of++)
    206                    optPtr->offCodeFreq[of] = 1;
    207            }
    208            optPtr->offCodeSum = MaxOff+1;
    209
    210        }
    211
    212    } else {   /* new block : re-use previous statistics, scaled down */
    213
    214        if (compressedLiterals)
    215            optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
    216        optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0);
    217        optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0);
    218        optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0);
    219    }
    220
    221    ZSTD_setBasePrices(optPtr, optLevel);
    222}
    223
    224/* ZSTD_rawLiteralsCost() :
    225 * price of literals (only) in specified segment (which length can be 0).
    226 * does not include price of literalLength symbol */
    227static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
    228                                const optState_t* const optPtr,
    229                                int optLevel)
    230{
    231    if (litLength == 0) return 0;
    232
    233    if (!ZSTD_compressedLiterals(optPtr))
    234        return (litLength << 3) * BITCOST_MULTIPLIER;  /* Uncompressed - 8 bytes per literal. */
    235
    236    if (optPtr->priceType == zop_predef)
    237        return (litLength*6) * BITCOST_MULTIPLIER;  /* 6 bit per literal - no statistic used */
    238
    239    /* dynamic statistics */
    240    {   U32 price = litLength * optPtr->litSumBasePrice;
    241        U32 u;
    242        for (u=0; u < litLength; u++) {
    243            assert(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice);   /* literal cost should never be negative */
    244            price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel);
    245        }
    246        return price;
    247    }
    248}
    249
    250/* ZSTD_litLengthPrice() :
    251 * cost of literalLength symbol */
    252static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel)
    253{
    254    if (optPtr->priceType == zop_predef) return WEIGHT(litLength, optLevel);
    255
    256    /* dynamic statistics */
    257    {   U32 const llCode = ZSTD_LLcode(litLength);
    258        return (LL_bits[llCode] * BITCOST_MULTIPLIER)
    259             + optPtr->litLengthSumBasePrice
    260             - WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
    261    }
    262}
    263
    264/* ZSTD_getMatchPrice() :
    265 * Provides the cost of the match part (offset + matchLength) of a sequence
    266 * Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence.
    267 * optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) */
    268FORCE_INLINE_TEMPLATE U32
    269ZSTD_getMatchPrice(U32 const offset,
    270                   U32 const matchLength,
    271             const optState_t* const optPtr,
    272                   int const optLevel)
    273{
    274    U32 price;
    275    U32 const offCode = ZSTD_highbit32(offset+1);
    276    U32 const mlBase = matchLength - MINMATCH;
    277    assert(matchLength >= MINMATCH);
    278
    279    if (optPtr->priceType == zop_predef)  /* fixed scheme, do not use statistics */
    280        return WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER);
    281
    282    /* dynamic statistics */
    283    price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel));
    284    if ((optLevel<2) /*static*/ && offCode >= 20)
    285        price += (offCode-19)*2 * BITCOST_MULTIPLIER; /* handicap for long distance offsets, favor decompression speed */
    286
    287    /* match Length */
    288    {   U32 const mlCode = ZSTD_MLcode(mlBase);
    289        price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel));
    290    }
    291
    292    price += BITCOST_MULTIPLIER / 5;   /* heuristic : make matches a bit more costly to favor less sequences -> faster decompression speed */
    293
    294    DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price);
    295    return price;
    296}
    297
    298/* ZSTD_updateStats() :
    299 * assumption : literals + litLengtn <= iend */
    300static void ZSTD_updateStats(optState_t* const optPtr,
    301                             U32 litLength, const BYTE* literals,
    302                             U32 offsetCode, U32 matchLength)
    303{
    304    /* literals */
    305    if (ZSTD_compressedLiterals(optPtr)) {
    306        U32 u;
    307        for (u=0; u < litLength; u++)
    308            optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
    309        optPtr->litSum += litLength*ZSTD_LITFREQ_ADD;
    310    }
    311
    312    /* literal Length */
    313    {   U32 const llCode = ZSTD_LLcode(litLength);
    314        optPtr->litLengthFreq[llCode]++;
    315        optPtr->litLengthSum++;
    316    }
    317
    318    /* match offset code (0-2=>repCode; 3+=>offset+2) */
    319    {   U32 const offCode = ZSTD_highbit32(offsetCode+1);
    320        assert(offCode <= MaxOff);
    321        optPtr->offCodeFreq[offCode]++;
    322        optPtr->offCodeSum++;
    323    }
    324
    325    /* match Length */
    326    {   U32 const mlBase = matchLength - MINMATCH;
    327        U32 const mlCode = ZSTD_MLcode(mlBase);
    328        optPtr->matchLengthFreq[mlCode]++;
    329        optPtr->matchLengthSum++;
    330    }
    331}
    332
    333
    334/* ZSTD_readMINMATCH() :
    335 * function safe only for comparisons
    336 * assumption : memPtr must be at least 4 bytes before end of buffer */
    337MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
    338{
    339    switch (length)
    340    {
    341    default :
    342    case 4 : return MEM_read32(memPtr);
    343    case 3 : if (MEM_isLittleEndian())
    344                return MEM_read32(memPtr)<<8;
    345             else
    346                return MEM_read32(memPtr)>>8;
    347    }
    348}
    349
    350
    351/* Update hashTable3 up to ip (excluded)
    352   Assumption : always within prefix (i.e. not within extDict) */
    353static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms,
    354                                              U32* nextToUpdate3,
    355                                              const BYTE* const ip)
    356{
    357    U32* const hashTable3 = ms->hashTable3;
    358    U32 const hashLog3 = ms->hashLog3;
    359    const BYTE* const base = ms->window.base;
    360    U32 idx = *nextToUpdate3;
    361    U32 const target = (U32)(ip - base);
    362    size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3);
    363    assert(hashLog3 > 0);
    364
    365    while(idx < target) {
    366        hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
    367        idx++;
    368    }
    369
    370    *nextToUpdate3 = target;
    371    return hashTable3[hash3];
    372}
    373
    374
    375/*-*************************************
    376*  Binary Tree search
    377***************************************/
    378/* ZSTD_insertBt1() : add one or multiple positions to tree.
    379 *  ip : assumed <= iend-8 .
    380 * @return : nb of positions added */
    381static U32 ZSTD_insertBt1(
    382                ZSTD_matchState_t* ms,
    383                const BYTE* const ip, const BYTE* const iend,
    384                U32 const mls, const int extDict)
    385{
    386    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    387    U32*   const hashTable = ms->hashTable;
    388    U32    const hashLog = cParams->hashLog;
    389    size_t const h  = ZSTD_hashPtr(ip, hashLog, mls);
    390    U32*   const bt = ms->chainTable;
    391    U32    const btLog  = cParams->chainLog - 1;
    392    U32    const btMask = (1 << btLog) - 1;
    393    U32 matchIndex = hashTable[h];
    394    size_t commonLengthSmaller=0, commonLengthLarger=0;
    395    const BYTE* const base = ms->window.base;
    396    const BYTE* const dictBase = ms->window.dictBase;
    397    const U32 dictLimit = ms->window.dictLimit;
    398    const BYTE* const dictEnd = dictBase + dictLimit;
    399    const BYTE* const prefixStart = base + dictLimit;
    400    const BYTE* match;
    401    const U32 curr = (U32)(ip-base);
    402    const U32 btLow = btMask >= curr ? 0 : curr - btMask;
    403    U32* smallerPtr = bt + 2*(curr&btMask);
    404    U32* largerPtr  = smallerPtr + 1;
    405    U32 dummy32;   /* to be nullified at the end */
    406    U32 const windowLow = ms->window.lowLimit;
    407    U32 matchEndIdx = curr+8+1;
    408    size_t bestLength = 8;
    409    U32 nbCompares = 1U << cParams->searchLog;
    410#ifdef ZSTD_C_PREDICT
    411    U32 predictedSmall = *(bt + 2*((curr-1)&btMask) + 0);
    412    U32 predictedLarge = *(bt + 2*((curr-1)&btMask) + 1);
    413    predictedSmall += (predictedSmall>0);
    414    predictedLarge += (predictedLarge>0);
    415#endif /* ZSTD_C_PREDICT */
    416
    417    DEBUGLOG(8, "ZSTD_insertBt1 (%u)", curr);
    418
    419    assert(ip <= iend-8);   /* required for h calculation */
    420    hashTable[h] = curr;   /* Update Hash Table */
    421
    422    assert(windowLow > 0);
    423    for (; nbCompares && (matchIndex >= windowLow); --nbCompares) {
    424        U32* const nextPtr = bt + 2*(matchIndex & btMask);
    425        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
    426        assert(matchIndex < curr);
    427
    428#ifdef ZSTD_C_PREDICT   /* note : can create issues when hlog small <= 11 */
    429        const U32* predictPtr = bt + 2*((matchIndex-1) & btMask);   /* written this way, as bt is a roll buffer */
    430        if (matchIndex == predictedSmall) {
    431            /* no need to check length, result known */
    432            *smallerPtr = matchIndex;
    433            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
    434            smallerPtr = nextPtr+1;               /* new "smaller" => larger of match */
    435            matchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
    436            predictedSmall = predictPtr[1] + (predictPtr[1]>0);
    437            continue;
    438        }
    439        if (matchIndex == predictedLarge) {
    440            *largerPtr = matchIndex;
    441            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
    442            largerPtr = nextPtr;
    443            matchIndex = nextPtr[0];
    444            predictedLarge = predictPtr[0] + (predictPtr[0]>0);
    445            continue;
    446        }
    447#endif
    448
    449        if (!extDict || (matchIndex+matchLength >= dictLimit)) {
    450            assert(matchIndex+matchLength >= dictLimit);   /* might be wrong if actually extDict */
    451            match = base + matchIndex;
    452            matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
    453        } else {
    454            match = dictBase + matchIndex;
    455            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
    456            if (matchIndex+matchLength >= dictLimit)
    457                match = base + matchIndex;   /* to prepare for next usage of match[matchLength] */
    458        }
    459
    460        if (matchLength > bestLength) {
    461            bestLength = matchLength;
    462            if (matchLength > matchEndIdx - matchIndex)
    463                matchEndIdx = matchIndex + (U32)matchLength;
    464        }
    465
    466        if (ip+matchLength == iend) {   /* equal : no way to know if inf or sup */
    467            break;   /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
    468        }
    469
    470        if (match[matchLength] < ip[matchLength]) {  /* necessarily within buffer */
    471            /* match is smaller than current */
    472            *smallerPtr = matchIndex;             /* update smaller idx */
    473            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
    474            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop searching */
    475            smallerPtr = nextPtr+1;               /* new "candidate" => larger than match, which was smaller than target */
    476            matchIndex = nextPtr[1];              /* new matchIndex, larger than previous and closer to current */
    477        } else {
    478            /* match is larger than current */
    479            *largerPtr = matchIndex;
    480            commonLengthLarger = matchLength;
    481            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop searching */
    482            largerPtr = nextPtr;
    483            matchIndex = nextPtr[0];
    484    }   }
    485
    486    *smallerPtr = *largerPtr = 0;
    487    {   U32 positions = 0;
    488        if (bestLength > 384) positions = MIN(192, (U32)(bestLength - 384));   /* speed optimization */
    489        assert(matchEndIdx > curr + 8);
    490        return MAX(positions, matchEndIdx - (curr + 8));
    491    }
    492}
    493
    494FORCE_INLINE_TEMPLATE
    495void ZSTD_updateTree_internal(
    496                ZSTD_matchState_t* ms,
    497                const BYTE* const ip, const BYTE* const iend,
    498                const U32 mls, const ZSTD_dictMode_e dictMode)
    499{
    500    const BYTE* const base = ms->window.base;
    501    U32 const target = (U32)(ip - base);
    502    U32 idx = ms->nextToUpdate;
    503    DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u  (dictMode:%u)",
    504                idx, target, dictMode);
    505
    506    while(idx < target) {
    507        U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict);
    508        assert(idx < (U32)(idx + forward));
    509        idx += forward;
    510    }
    511    assert((size_t)(ip - base) <= (size_t)(U32)(-1));
    512    assert((size_t)(iend - base) <= (size_t)(U32)(-1));
    513    ms->nextToUpdate = target;
    514}
    515
    516void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) {
    517    ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict);
    518}
    519
    520FORCE_INLINE_TEMPLATE
    521U32 ZSTD_insertBtAndGetAllMatches (
    522                    ZSTD_match_t* matches,   /* store result (found matches) in this table (presumed large enough) */
    523                    ZSTD_matchState_t* ms,
    524                    U32* nextToUpdate3,
    525                    const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode,
    526                    const U32 rep[ZSTD_REP_NUM],
    527                    U32 const ll0,   /* tells if associated literal length is 0 or not. This value must be 0 or 1 */
    528                    const U32 lengthToBeat,
    529                    U32 const mls /* template */)
    530{
    531    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    532    U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
    533    const BYTE* const base = ms->window.base;
    534    U32 const curr = (U32)(ip-base);
    535    U32 const hashLog = cParams->hashLog;
    536    U32 const minMatch = (mls==3) ? 3 : 4;
    537    U32* const hashTable = ms->hashTable;
    538    size_t const h  = ZSTD_hashPtr(ip, hashLog, mls);
    539    U32 matchIndex  = hashTable[h];
    540    U32* const bt   = ms->chainTable;
    541    U32 const btLog = cParams->chainLog - 1;
    542    U32 const btMask= (1U << btLog) - 1;
    543    size_t commonLengthSmaller=0, commonLengthLarger=0;
    544    const BYTE* const dictBase = ms->window.dictBase;
    545    U32 const dictLimit = ms->window.dictLimit;
    546    const BYTE* const dictEnd = dictBase + dictLimit;
    547    const BYTE* const prefixStart = base + dictLimit;
    548    U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
    549    U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
    550    U32 const matchLow = windowLow ? windowLow : 1;
    551    U32* smallerPtr = bt + 2*(curr&btMask);
    552    U32* largerPtr  = bt + 2*(curr&btMask) + 1;
    553    U32 matchEndIdx = curr+8+1;   /* farthest referenced position of any match => detects repetitive patterns */
    554    U32 dummy32;   /* to be nullified at the end */
    555    U32 mnum = 0;
    556    U32 nbCompares = 1U << cParams->searchLog;
    557
    558    const ZSTD_matchState_t* dms    = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL;
    559    const ZSTD_compressionParameters* const dmsCParams =
    560                                      dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL;
    561    const BYTE* const dmsBase       = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL;
    562    const BYTE* const dmsEnd        = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL;
    563    U32         const dmsHighLimit  = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0;
    564    U32         const dmsLowLimit   = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0;
    565    U32         const dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0;
    566    U32         const dmsHashLog    = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog;
    567    U32         const dmsBtLog      = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog;
    568    U32         const dmsBtMask     = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0;
    569    U32         const dmsBtLow      = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit;
    570
    571    size_t bestLength = lengthToBeat-1;
    572    DEBUGLOG(8, "ZSTD_insertBtAndGetAllMatches: current=%u", curr);
    573
    574    /* check repCode */
    575    assert(ll0 <= 1);   /* necessarily 1 or 0 */
    576    {   U32 const lastR = ZSTD_REP_NUM + ll0;
    577        U32 repCode;
    578        for (repCode = ll0; repCode < lastR; repCode++) {
    579            U32 const repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
    580            U32 const repIndex = curr - repOffset;
    581            U32 repLen = 0;
    582            assert(curr >= dictLimit);
    583            if (repOffset-1 /* intentional overflow, discards 0 and -1 */ < curr-dictLimit) {  /* equivalent to `curr > repIndex >= dictLimit` */
    584                /* We must validate the repcode offset because when we're using a dictionary the
    585                 * valid offset range shrinks when the dictionary goes out of bounds.
    586                 */
    587                if ((repIndex >= windowLow) & (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch))) {
    588                    repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch;
    589                }
    590            } else {  /* repIndex < dictLimit || repIndex >= curr */
    591                const BYTE* const repMatch = dictMode == ZSTD_dictMatchState ?
    592                                             dmsBase + repIndex - dmsIndexDelta :
    593                                             dictBase + repIndex;
    594                assert(curr >= windowLow);
    595                if ( dictMode == ZSTD_extDict
    596                  && ( ((repOffset-1) /*intentional overflow*/ < curr - windowLow)  /* equivalent to `curr > repIndex >= windowLow` */
    597                     & (((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */)
    598                  && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
    599                    repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch;
    600                }
    601                if (dictMode == ZSTD_dictMatchState
    602                  && ( ((repOffset-1) /*intentional overflow*/ < curr - (dmsLowLimit + dmsIndexDelta))  /* equivalent to `curr > repIndex >= dmsLowLimit` */
    603                     & ((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */
    604                  && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
    605                    repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch;
    606            }   }
    607            /* save longer solution */
    608            if (repLen > bestLength) {
    609                DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u",
    610                            repCode, ll0, repOffset, repLen);
    611                bestLength = repLen;
    612                matches[mnum].off = repCode - ll0;
    613                matches[mnum].len = (U32)repLen;
    614                mnum++;
    615                if ( (repLen > sufficient_len)
    616                   | (ip+repLen == iLimit) ) {  /* best possible */
    617                    return mnum;
    618    }   }   }   }
    619
    620    /* HC3 match finder */
    621    if ((mls == 3) /*static*/ && (bestLength < mls)) {
    622        U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip);
    623        if ((matchIndex3 >= matchLow)
    624          & (curr - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) {
    625            size_t mlen;
    626            if ((dictMode == ZSTD_noDict) /*static*/ || (dictMode == ZSTD_dictMatchState) /*static*/ || (matchIndex3 >= dictLimit)) {
    627                const BYTE* const match = base + matchIndex3;
    628                mlen = ZSTD_count(ip, match, iLimit);
    629            } else {
    630                const BYTE* const match = dictBase + matchIndex3;
    631                mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart);
    632            }
    633
    634            /* save best solution */
    635            if (mlen >= mls /* == 3 > bestLength */) {
    636                DEBUGLOG(8, "found small match with hlog3, of length %u",
    637                            (U32)mlen);
    638                bestLength = mlen;
    639                assert(curr > matchIndex3);
    640                assert(mnum==0);  /* no prior solution */
    641                matches[0].off = (curr - matchIndex3) + ZSTD_REP_MOVE;
    642                matches[0].len = (U32)mlen;
    643                mnum = 1;
    644                if ( (mlen > sufficient_len) |
    645                     (ip+mlen == iLimit) ) {  /* best possible length */
    646                    ms->nextToUpdate = curr+1;  /* skip insertion */
    647                    return 1;
    648        }   }   }
    649        /* no dictMatchState lookup: dicts don't have a populated HC3 table */
    650    }
    651
    652    hashTable[h] = curr;   /* Update Hash Table */
    653
    654    for (; nbCompares && (matchIndex >= matchLow); --nbCompares) {
    655        U32* const nextPtr = bt + 2*(matchIndex & btMask);
    656        const BYTE* match;
    657        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
    658        assert(curr > matchIndex);
    659
    660        if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) {
    661            assert(matchIndex+matchLength >= dictLimit);  /* ensure the condition is correct when !extDict */
    662            match = base + matchIndex;
    663            if (matchIndex >= dictLimit) assert(memcmp(match, ip, matchLength) == 0);  /* ensure early section of match is equal as expected */
    664            matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit);
    665        } else {
    666            match = dictBase + matchIndex;
    667            assert(memcmp(match, ip, matchLength) == 0);  /* ensure early section of match is equal as expected */
    668            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
    669            if (matchIndex+matchLength >= dictLimit)
    670                match = base + matchIndex;   /* prepare for match[matchLength] read */
    671        }
    672
    673        if (matchLength > bestLength) {
    674            DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)",
    675                    (U32)matchLength, curr - matchIndex, curr - matchIndex + ZSTD_REP_MOVE);
    676            assert(matchEndIdx > matchIndex);
    677            if (matchLength > matchEndIdx - matchIndex)
    678                matchEndIdx = matchIndex + (U32)matchLength;
    679            bestLength = matchLength;
    680            matches[mnum].off = (curr - matchIndex) + ZSTD_REP_MOVE;
    681            matches[mnum].len = (U32)matchLength;
    682            mnum++;
    683            if ( (matchLength > ZSTD_OPT_NUM)
    684               | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
    685                if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */
    686                break; /* drop, to preserve bt consistency (miss a little bit of compression) */
    687            }
    688        }
    689
    690        if (match[matchLength] < ip[matchLength]) {
    691            /* match smaller than current */
    692            *smallerPtr = matchIndex;             /* update smaller idx */
    693            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
    694            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
    695            smallerPtr = nextPtr+1;               /* new candidate => larger than match, which was smaller than current */
    696            matchIndex = nextPtr[1];              /* new matchIndex, larger than previous, closer to current */
    697        } else {
    698            *largerPtr = matchIndex;
    699            commonLengthLarger = matchLength;
    700            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
    701            largerPtr = nextPtr;
    702            matchIndex = nextPtr[0];
    703    }   }
    704
    705    *smallerPtr = *largerPtr = 0;
    706
    707    assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
    708    if (dictMode == ZSTD_dictMatchState && nbCompares) {
    709        size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls);
    710        U32 dictMatchIndex = dms->hashTable[dmsH];
    711        const U32* const dmsBt = dms->chainTable;
    712        commonLengthSmaller = commonLengthLarger = 0;
    713        for (; nbCompares && (dictMatchIndex > dmsLowLimit); --nbCompares) {
    714            const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask);
    715            size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
    716            const BYTE* match = dmsBase + dictMatchIndex;
    717            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart);
    718            if (dictMatchIndex+matchLength >= dmsHighLimit)
    719                match = base + dictMatchIndex + dmsIndexDelta;   /* to prepare for next usage of match[matchLength] */
    720
    721            if (matchLength > bestLength) {
    722                matchIndex = dictMatchIndex + dmsIndexDelta;
    723                DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)",
    724                        (U32)matchLength, curr - matchIndex, curr - matchIndex + ZSTD_REP_MOVE);
    725                if (matchLength > matchEndIdx - matchIndex)
    726                    matchEndIdx = matchIndex + (U32)matchLength;
    727                bestLength = matchLength;
    728                matches[mnum].off = (curr - matchIndex) + ZSTD_REP_MOVE;
    729                matches[mnum].len = (U32)matchLength;
    730                mnum++;
    731                if ( (matchLength > ZSTD_OPT_NUM)
    732                   | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
    733                    break;   /* drop, to guarantee consistency (miss a little bit of compression) */
    734                }
    735            }
    736
    737            if (dictMatchIndex <= dmsBtLow) { break; }   /* beyond tree size, stop the search */
    738            if (match[matchLength] < ip[matchLength]) {
    739                commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
    740                dictMatchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
    741            } else {
    742                /* match is larger than current */
    743                commonLengthLarger = matchLength;
    744                dictMatchIndex = nextPtr[0];
    745            }
    746        }
    747    }
    748
    749    assert(matchEndIdx > curr+8);
    750    ms->nextToUpdate = matchEndIdx - 8;  /* skip repetitive patterns */
    751    return mnum;
    752}
    753
    754
    755FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
    756                        ZSTD_match_t* matches,   /* store result (match found, increasing size) in this table */
    757                        ZSTD_matchState_t* ms,
    758                        U32* nextToUpdate3,
    759                        const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode,
    760                        const U32 rep[ZSTD_REP_NUM],
    761                        U32 const ll0,
    762                        U32 const lengthToBeat)
    763{
    764    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    765    U32 const matchLengthSearch = cParams->minMatch;
    766    DEBUGLOG(8, "ZSTD_BtGetAllMatches");
    767    if (ip < ms->window.base + ms->nextToUpdate) return 0;   /* skipped area */
    768    ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode);
    769    switch(matchLengthSearch)
    770    {
    771    case 3 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3);
    772    default :
    773    case 4 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4);
    774    case 5 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5);
    775    case 7 :
    776    case 6 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6);
    777    }
    778}
    779
    780/* ***********************
    781*  LDM helper functions  *
    782*************************/
    783
    784/* Struct containing info needed to make decision about ldm inclusion */
    785typedef struct {
    786    rawSeqStore_t seqStore;         /* External match candidates store for this block */
    787    U32 startPosInBlock;            /* Start position of the current match candidate */
    788    U32 endPosInBlock;              /* End position of the current match candidate */
    789    U32 offset;                     /* Offset of the match candidate */
    790} ZSTD_optLdm_t;
    791
    792/* ZSTD_optLdm_skipRawSeqStoreBytes():
    793 * Moves forward in rawSeqStore by nbBytes, which will update the fields 'pos' and 'posInSequence'.
    794 */
    795static void ZSTD_optLdm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
    796    U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
    797    while (currPos && rawSeqStore->pos < rawSeqStore->size) {
    798        rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
    799        if (currPos >= currSeq.litLength + currSeq.matchLength) {
    800            currPos -= currSeq.litLength + currSeq.matchLength;
    801            rawSeqStore->pos++;
    802        } else {
    803            rawSeqStore->posInSequence = currPos;
    804            break;
    805        }
    806    }
    807    if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
    808        rawSeqStore->posInSequence = 0;
    809    }
    810}
    811
    812/* ZSTD_opt_getNextMatchAndUpdateSeqStore():
    813 * Calculates the beginning and end of the next match in the current block.
    814 * Updates 'pos' and 'posInSequence' of the ldmSeqStore.
    815 */
    816static void ZSTD_opt_getNextMatchAndUpdateSeqStore(ZSTD_optLdm_t* optLdm, U32 currPosInBlock,
    817                                                   U32 blockBytesRemaining) {
    818    rawSeq currSeq;
    819    U32 currBlockEndPos;
    820    U32 literalsBytesRemaining;
    821    U32 matchBytesRemaining;
    822
    823    /* Setting match end position to MAX to ensure we never use an LDM during this block */
    824    if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) {
    825        optLdm->startPosInBlock = UINT_MAX;
    826        optLdm->endPosInBlock = UINT_MAX;
    827        return;
    828    }
    829    /* Calculate appropriate bytes left in matchLength and litLength after adjusting
    830       based on ldmSeqStore->posInSequence */
    831    currSeq = optLdm->seqStore.seq[optLdm->seqStore.pos];
    832    assert(optLdm->seqStore.posInSequence <= currSeq.litLength + currSeq.matchLength);
    833    currBlockEndPos = currPosInBlock + blockBytesRemaining;
    834    literalsBytesRemaining = (optLdm->seqStore.posInSequence < currSeq.litLength) ?
    835            currSeq.litLength - (U32)optLdm->seqStore.posInSequence :
    836            0;
    837    matchBytesRemaining = (literalsBytesRemaining == 0) ?
    838            currSeq.matchLength - ((U32)optLdm->seqStore.posInSequence - currSeq.litLength) :
    839            currSeq.matchLength;
    840
    841    /* If there are more literal bytes than bytes remaining in block, no ldm is possible */
    842    if (literalsBytesRemaining >= blockBytesRemaining) {
    843        optLdm->startPosInBlock = UINT_MAX;
    844        optLdm->endPosInBlock = UINT_MAX;
    845        ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, blockBytesRemaining);
    846        return;
    847    }
    848
    849    /* Matches may be < MINMATCH by this process. In that case, we will reject them
    850       when we are deciding whether or not to add the ldm */
    851    optLdm->startPosInBlock = currPosInBlock + literalsBytesRemaining;
    852    optLdm->endPosInBlock = optLdm->startPosInBlock + matchBytesRemaining;
    853    optLdm->offset = currSeq.offset;
    854
    855    if (optLdm->endPosInBlock > currBlockEndPos) {
    856        /* Match ends after the block ends, we can't use the whole match */
    857        optLdm->endPosInBlock = currBlockEndPos;
    858        ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, currBlockEndPos - currPosInBlock);
    859    } else {
    860        /* Consume nb of bytes equal to size of sequence left */
    861        ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, literalsBytesRemaining + matchBytesRemaining);
    862    }
    863}
    864
    865/* ZSTD_optLdm_maybeAddMatch():
    866 * Adds a match if it's long enough, based on it's 'matchStartPosInBlock'
    867 * and 'matchEndPosInBlock', into 'matches'. Maintains the correct ordering of 'matches'
    868 */
    869static void ZSTD_optLdm_maybeAddMatch(ZSTD_match_t* matches, U32* nbMatches,
    870                                      ZSTD_optLdm_t* optLdm, U32 currPosInBlock) {
    871    U32 posDiff = currPosInBlock - optLdm->startPosInBlock;
    872    /* Note: ZSTD_match_t actually contains offCode and matchLength (before subtracting MINMATCH) */
    873    U32 candidateMatchLength = optLdm->endPosInBlock - optLdm->startPosInBlock - posDiff;
    874    U32 candidateOffCode = optLdm->offset + ZSTD_REP_MOVE;
    875
    876    /* Ensure that current block position is not outside of the match */
    877    if (currPosInBlock < optLdm->startPosInBlock
    878      || currPosInBlock >= optLdm->endPosInBlock
    879      || candidateMatchLength < MINMATCH) {
    880        return;
    881    }
    882
    883    if (*nbMatches == 0 || ((candidateMatchLength > matches[*nbMatches-1].len) && *nbMatches < ZSTD_OPT_NUM)) {
    884        DEBUGLOG(6, "ZSTD_optLdm_maybeAddMatch(): Adding ldm candidate match (offCode: %u matchLength %u) at block position=%u",
    885                 candidateOffCode, candidateMatchLength, currPosInBlock);
    886        matches[*nbMatches].len = candidateMatchLength;
    887        matches[*nbMatches].off = candidateOffCode;
    888        (*nbMatches)++;
    889    }
    890}
    891
    892/* ZSTD_optLdm_processMatchCandidate():
    893 * Wrapper function to update ldm seq store and call ldm functions as necessary.
    894 */
    895static void ZSTD_optLdm_processMatchCandidate(ZSTD_optLdm_t* optLdm, ZSTD_match_t* matches, U32* nbMatches,
    896                                              U32 currPosInBlock, U32 remainingBytes) {
    897    if (optLdm->seqStore.size == 0 || optLdm->seqStore.pos >= optLdm->seqStore.size) {
    898        return;
    899    }
    900
    901    if (currPosInBlock >= optLdm->endPosInBlock) {
    902        if (currPosInBlock > optLdm->endPosInBlock) {
    903            /* The position at which ZSTD_optLdm_processMatchCandidate() is called is not necessarily
    904             * at the end of a match from the ldm seq store, and will often be some bytes
    905             * over beyond matchEndPosInBlock. As such, we need to correct for these "overshoots"
    906             */
    907            U32 posOvershoot = currPosInBlock - optLdm->endPosInBlock;
    908            ZSTD_optLdm_skipRawSeqStoreBytes(&optLdm->seqStore, posOvershoot);
    909        } 
    910        ZSTD_opt_getNextMatchAndUpdateSeqStore(optLdm, currPosInBlock, remainingBytes);
    911    }
    912    ZSTD_optLdm_maybeAddMatch(matches, nbMatches, optLdm, currPosInBlock);
    913}
    914
    915/*-*******************************
    916*  Optimal parser
    917*********************************/
    918
    919
    920static U32 ZSTD_totalLen(ZSTD_optimal_t sol)
    921{
    922    return sol.litlen + sol.mlen;
    923}
    924
    925#if 0 /* debug */
    926
    927static void
    928listStats(const U32* table, int lastEltID)
    929{
    930    int const nbElts = lastEltID + 1;
    931    int enb;
    932    for (enb=0; enb < nbElts; enb++) {
    933        (void)table;
    934        /* RAWLOG(2, "%3i:%3i,  ", enb, table[enb]); */
    935        RAWLOG(2, "%4i,", table[enb]);
    936    }
    937    RAWLOG(2, " \n");
    938}
    939
    940#endif
    941
    942FORCE_INLINE_TEMPLATE size_t
    943ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
    944                               seqStore_t* seqStore,
    945                               U32 rep[ZSTD_REP_NUM],
    946                         const void* src, size_t srcSize,
    947                         const int optLevel,
    948                         const ZSTD_dictMode_e dictMode)
    949{
    950    optState_t* const optStatePtr = &ms->opt;
    951    const BYTE* const istart = (const BYTE*)src;
    952    const BYTE* ip = istart;
    953    const BYTE* anchor = istart;
    954    const BYTE* const iend = istart + srcSize;
    955    const BYTE* const ilimit = iend - 8;
    956    const BYTE* const base = ms->window.base;
    957    const BYTE* const prefixStart = base + ms->window.dictLimit;
    958    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    959
    960    U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
    961    U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4;
    962    U32 nextToUpdate3 = ms->nextToUpdate;
    963
    964    ZSTD_optimal_t* const opt = optStatePtr->priceTable;
    965    ZSTD_match_t* const matches = optStatePtr->matchTable;
    966    ZSTD_optimal_t lastSequence;
    967    ZSTD_optLdm_t optLdm;
    968
    969    optLdm.seqStore = ms->ldmSeqStore ? *ms->ldmSeqStore : kNullRawSeqStore;
    970    optLdm.endPosInBlock = optLdm.startPosInBlock = optLdm.offset = 0;
    971    ZSTD_opt_getNextMatchAndUpdateSeqStore(&optLdm, (U32)(ip-istart), (U32)(iend-ip));
    972
    973    /* init */
    974    DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u",
    975                (U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate);
    976    assert(optLevel <= 2);
    977    ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel);
    978    ip += (ip==prefixStart);
    979
    980    /* Match Loop */
    981    while (ip < ilimit) {
    982        U32 cur, last_pos = 0;
    983
    984        /* find first match */
    985        {   U32 const litlen = (U32)(ip - anchor);
    986            U32 const ll0 = !litlen;
    987            U32 nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch);
    988            ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
    989                                              (U32)(ip-istart), (U32)(iend - ip));
    990            if (!nbMatches) { ip++; continue; }
    991
    992            /* initialize opt[0] */
    993            { U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
    994            opt[0].mlen = 0;  /* means is_a_literal */
    995            opt[0].litlen = litlen;
    996            /* We don't need to include the actual price of the literals because
    997             * it is static for the duration of the forward pass, and is included
    998             * in every price. We include the literal length to avoid negative
    999             * prices when we subtract the previous literal length.
   1000             */
   1001            opt[0].price = ZSTD_litLengthPrice(litlen, optStatePtr, optLevel);
   1002
   1003            /* large match -> immediate encoding */
   1004            {   U32 const maxML = matches[nbMatches-1].len;
   1005                U32 const maxOffset = matches[nbMatches-1].off;
   1006                DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series",
   1007                            nbMatches, maxML, maxOffset, (U32)(ip-prefixStart));
   1008
   1009                if (maxML > sufficient_len) {
   1010                    lastSequence.litlen = litlen;
   1011                    lastSequence.mlen = maxML;
   1012                    lastSequence.off = maxOffset;
   1013                    DEBUGLOG(6, "large match (%u>%u), immediate encoding",
   1014                                maxML, sufficient_len);
   1015                    cur = 0;
   1016                    last_pos = ZSTD_totalLen(lastSequence);
   1017                    goto _shortestPath;
   1018            }   }
   1019
   1020            /* set prices for first matches starting position == 0 */
   1021            {   U32 const literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
   1022                U32 pos;
   1023                U32 matchNb;
   1024                for (pos = 1; pos < minMatch; pos++) {
   1025                    opt[pos].price = ZSTD_MAX_PRICE;   /* mlen, litlen and price will be fixed during forward scanning */
   1026                }
   1027                for (matchNb = 0; matchNb < nbMatches; matchNb++) {
   1028                    U32 const offset = matches[matchNb].off;
   1029                    U32 const end = matches[matchNb].len;
   1030                    for ( ; pos <= end ; pos++ ) {
   1031                        U32 const matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel);
   1032                        U32 const sequencePrice = literalsPrice + matchPrice;
   1033                        DEBUGLOG(7, "rPos:%u => set initial price : %.2f",
   1034                                    pos, ZSTD_fCost(sequencePrice));
   1035                        opt[pos].mlen = pos;
   1036                        opt[pos].off = offset;
   1037                        opt[pos].litlen = litlen;
   1038                        opt[pos].price = sequencePrice;
   1039                }   }
   1040                last_pos = pos-1;
   1041            }
   1042        }
   1043
   1044        /* check further positions */
   1045        for (cur = 1; cur <= last_pos; cur++) {
   1046            const BYTE* const inr = ip + cur;
   1047            assert(cur < ZSTD_OPT_NUM);
   1048            DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur)
   1049
   1050            /* Fix current position with one literal if cheaper */
   1051            {   U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1;
   1052                int const price = opt[cur-1].price
   1053                                + ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
   1054                                + ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
   1055                                - ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
   1056                assert(price < 1000000000); /* overflow check */
   1057                if (price <= opt[cur].price) {
   1058                    DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)",
   1059                                inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen,
   1060                                opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]);
   1061                    opt[cur].mlen = 0;
   1062                    opt[cur].off = 0;
   1063                    opt[cur].litlen = litlen;
   1064                    opt[cur].price = price;
   1065                } else {
   1066                    DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)",
   1067                                inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price),
   1068                                opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]);
   1069                }
   1070            }
   1071
   1072            /* Set the repcodes of the current position. We must do it here
   1073             * because we rely on the repcodes of the 2nd to last sequence being
   1074             * correct to set the next chunks repcodes during the backward
   1075             * traversal.
   1076             */
   1077            ZSTD_STATIC_ASSERT(sizeof(opt[cur].rep) == sizeof(repcodes_t));
   1078            assert(cur >= opt[cur].mlen);
   1079            if (opt[cur].mlen != 0) {
   1080                U32 const prev = cur - opt[cur].mlen;
   1081                repcodes_t newReps = ZSTD_updateRep(opt[prev].rep, opt[cur].off, opt[cur].litlen==0);
   1082                ZSTD_memcpy(opt[cur].rep, &newReps, sizeof(repcodes_t));
   1083            } else {
   1084                ZSTD_memcpy(opt[cur].rep, opt[cur - 1].rep, sizeof(repcodes_t));
   1085            }
   1086
   1087            /* last match must start at a minimum distance of 8 from oend */
   1088            if (inr > ilimit) continue;
   1089
   1090            if (cur == last_pos) break;
   1091
   1092            if ( (optLevel==0) /*static_test*/
   1093              && (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) {
   1094                DEBUGLOG(7, "move to next rPos:%u : price is <=", cur+1);
   1095                continue;  /* skip unpromising positions; about ~+6% speed, -0.01 ratio */
   1096            }
   1097
   1098            {   U32 const ll0 = (opt[cur].mlen != 0);
   1099                U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
   1100                U32 const previousPrice = opt[cur].price;
   1101                U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
   1102                U32 nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch);
   1103                U32 matchNb;
   1104
   1105                ZSTD_optLdm_processMatchCandidate(&optLdm, matches, &nbMatches,
   1106                                                  (U32)(inr-istart), (U32)(iend-inr));
   1107
   1108                if (!nbMatches) {
   1109                    DEBUGLOG(7, "rPos:%u : no match found", cur);
   1110                    continue;
   1111                }
   1112
   1113                {   U32 const maxML = matches[nbMatches-1].len;
   1114                    DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of maxLength=%u",
   1115                                inr-istart, cur, nbMatches, maxML);
   1116
   1117                    if ( (maxML > sufficient_len)
   1118                      || (cur + maxML >= ZSTD_OPT_NUM) ) {
   1119                        lastSequence.mlen = maxML;
   1120                        lastSequence.off = matches[nbMatches-1].off;
   1121                        lastSequence.litlen = litlen;
   1122                        cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0;  /* last sequence is actually only literals, fix cur to last match - note : may underflow, in which case, it's first sequence, and it's okay */
   1123                        last_pos = cur + ZSTD_totalLen(lastSequence);
   1124                        if (cur > ZSTD_OPT_NUM) cur = 0;   /* underflow => first match */
   1125                        goto _shortestPath;
   1126                }   }
   1127
   1128                /* set prices using matches found at position == cur */
   1129                for (matchNb = 0; matchNb < nbMatches; matchNb++) {
   1130                    U32 const offset = matches[matchNb].off;
   1131                    U32 const lastML = matches[matchNb].len;
   1132                    U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch;
   1133                    U32 mlen;
   1134
   1135                    DEBUGLOG(7, "testing match %u => offCode=%4u, mlen=%2u, llen=%2u",
   1136                                matchNb, matches[matchNb].off, lastML, litlen);
   1137
   1138                    for (mlen = lastML; mlen >= startML; mlen--) {  /* scan downward */
   1139                        U32 const pos = cur + mlen;
   1140                        int const price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);
   1141
   1142                        if ((pos > last_pos) || (price < opt[pos].price)) {
   1143                            DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)",
   1144                                        pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
   1145                            while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; }   /* fill empty positions */
   1146                            opt[pos].mlen = mlen;
   1147                            opt[pos].off = offset;
   1148                            opt[pos].litlen = litlen;
   1149                            opt[pos].price = price;
   1150                        } else {
   1151                            DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)",
   1152                                        pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
   1153                            if (optLevel==0) break;  /* early update abort; gets ~+10% speed for about -0.01 ratio loss */
   1154                        }
   1155            }   }   }
   1156        }  /* for (cur = 1; cur <= last_pos; cur++) */
   1157
   1158        lastSequence = opt[last_pos];
   1159        cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0;  /* single sequence, and it starts before `ip` */
   1160        assert(cur < ZSTD_OPT_NUM);  /* control overflow*/
   1161
   1162_shortestPath:   /* cur, last_pos, best_mlen, best_off have to be set */
   1163        assert(opt[0].mlen == 0);
   1164
   1165        /* Set the next chunk's repcodes based on the repcodes of the beginning
   1166         * of the last match, and the last sequence. This avoids us having to
   1167         * update them while traversing the sequences.
   1168         */
   1169        if (lastSequence.mlen != 0) {
   1170            repcodes_t reps = ZSTD_updateRep(opt[cur].rep, lastSequence.off, lastSequence.litlen==0);
   1171            ZSTD_memcpy(rep, &reps, sizeof(reps));
   1172        } else {
   1173            ZSTD_memcpy(rep, opt[cur].rep, sizeof(repcodes_t));
   1174        }
   1175
   1176        {   U32 const storeEnd = cur + 1;
   1177            U32 storeStart = storeEnd;
   1178            U32 seqPos = cur;
   1179
   1180            DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)",
   1181                        last_pos, cur); (void)last_pos;
   1182            assert(storeEnd < ZSTD_OPT_NUM);
   1183            DEBUGLOG(6, "last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
   1184                        storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off);
   1185            opt[storeEnd] = lastSequence;
   1186            while (seqPos > 0) {
   1187                U32 const backDist = ZSTD_totalLen(opt[seqPos]);
   1188                storeStart--;
   1189                DEBUGLOG(6, "sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
   1190                            seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off);
   1191                opt[storeStart] = opt[seqPos];
   1192                seqPos = (seqPos > backDist) ? seqPos - backDist : 0;
   1193            }
   1194
   1195            /* save sequences */
   1196            DEBUGLOG(6, "sending selected sequences into seqStore")
   1197            {   U32 storePos;
   1198                for (storePos=storeStart; storePos <= storeEnd; storePos++) {
   1199                    U32 const llen = opt[storePos].litlen;
   1200                    U32 const mlen = opt[storePos].mlen;
   1201                    U32 const offCode = opt[storePos].off;
   1202                    U32 const advance = llen + mlen;
   1203                    DEBUGLOG(6, "considering seq starting at %zi, llen=%u, mlen=%u",
   1204                                anchor - istart, (unsigned)llen, (unsigned)mlen);
   1205
   1206                    if (mlen==0) {  /* only literals => must be last "sequence", actually starting a new stream of sequences */
   1207                        assert(storePos == storeEnd);   /* must be last sequence */
   1208                        ip = anchor + llen;     /* last "sequence" is a bunch of literals => don't progress anchor */
   1209                        continue;   /* will finish */
   1210                    }
   1211
   1212                    assert(anchor + llen <= iend);
   1213                    ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
   1214                    ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen-MINMATCH);
   1215                    anchor += advance;
   1216                    ip = anchor;
   1217            }   }
   1218            ZSTD_setBasePrices(optStatePtr, optLevel);
   1219        }
   1220    }   /* while (ip < ilimit) */
   1221
   1222    /* Return the last literals size */
   1223    return (size_t)(iend - anchor);
   1224}
   1225
   1226
   1227size_t ZSTD_compressBlock_btopt(
   1228        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
   1229        const void* src, size_t srcSize)
   1230{
   1231    DEBUGLOG(5, "ZSTD_compressBlock_btopt");
   1232    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_noDict);
   1233}
   1234
   1235
   1236/* used in 2-pass strategy */
   1237static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus)
   1238{
   1239    U32 s, sum=0;
   1240    assert(ZSTD_FREQ_DIV+bonus >= 0);
   1241    for (s=0; s<lastEltIndex+1; s++) {
   1242        table[s] <<= ZSTD_FREQ_DIV+bonus;
   1243        table[s]--;
   1244        sum += table[s];
   1245    }
   1246    return sum;
   1247}
   1248
   1249/* used in 2-pass strategy */
   1250MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr)
   1251{
   1252    if (ZSTD_compressedLiterals(optPtr))
   1253        optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
   1254    optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0);
   1255    optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0);
   1256    optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0);
   1257}
   1258
   1259/* ZSTD_initStats_ultra():
   1260 * make a first compression pass, just to seed stats with more accurate starting values.
   1261 * only works on first block, with no dictionary and no ldm.
   1262 * this function cannot error, hence its contract must be respected.
   1263 */
   1264static void
   1265ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
   1266                     seqStore_t* seqStore,
   1267                     U32 rep[ZSTD_REP_NUM],
   1268               const void* src, size_t srcSize)
   1269{
   1270    U32 tmpRep[ZSTD_REP_NUM];  /* updated rep codes will sink here */
   1271    ZSTD_memcpy(tmpRep, rep, sizeof(tmpRep));
   1272
   1273    DEBUGLOG(4, "ZSTD_initStats_ultra (srcSize=%zu)", srcSize);
   1274    assert(ms->opt.litLengthSum == 0);    /* first block */
   1275    assert(seqStore->sequences == seqStore->sequencesStart);   /* no ldm */
   1276    assert(ms->window.dictLimit == ms->window.lowLimit);   /* no dictionary */
   1277    assert(ms->window.dictLimit - ms->nextToUpdate <= 1);  /* no prefix (note: intentional overflow, defined as 2-complement) */
   1278
   1279    ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);   /* generate stats into ms->opt*/
   1280
   1281    /* invalidate first scan from history */
   1282    ZSTD_resetSeqStore(seqStore);
   1283    ms->window.base -= srcSize;
   1284    ms->window.dictLimit += (U32)srcSize;
   1285    ms->window.lowLimit = ms->window.dictLimit;
   1286    ms->nextToUpdate = ms->window.dictLimit;
   1287
   1288    /* re-inforce weight of collected statistics */
   1289    ZSTD_upscaleStats(&ms->opt);
   1290}
   1291
   1292size_t ZSTD_compressBlock_btultra(
   1293        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
   1294        const void* src, size_t srcSize)
   1295{
   1296    DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize);
   1297    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
   1298}
   1299
   1300size_t ZSTD_compressBlock_btultra2(
   1301        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
   1302        const void* src, size_t srcSize)
   1303{
   1304    U32 const curr = (U32)((const BYTE*)src - ms->window.base);
   1305    DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize);
   1306
   1307    /* 2-pass strategy:
   1308     * this strategy makes a first pass over first block to collect statistics
   1309     * and seed next round's statistics with it.
   1310     * After 1st pass, function forgets everything, and starts a new block.
   1311     * Consequently, this can only work if no data has been previously loaded in tables,
   1312     * aka, no dictionary, no prefix, no ldm preprocessing.
   1313     * The compression ratio gain is generally small (~0.5% on first block),
   1314     * the cost is 2x cpu time on first block. */
   1315    assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
   1316    if ( (ms->opt.litLengthSum==0)   /* first block */
   1317      && (seqStore->sequences == seqStore->sequencesStart)  /* no ldm */
   1318      && (ms->window.dictLimit == ms->window.lowLimit)   /* no dictionary */
   1319      && (curr == ms->window.dictLimit)   /* start of frame, nothing already loaded nor skipped */
   1320      && (srcSize > ZSTD_PREDEF_THRESHOLD)
   1321      ) {
   1322        ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize);
   1323    }
   1324
   1325    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
   1326}
   1327
   1328size_t ZSTD_compressBlock_btopt_dictMatchState(
   1329        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
   1330        const void* src, size_t srcSize)
   1331{
   1332    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_dictMatchState);
   1333}
   1334
   1335size_t ZSTD_compressBlock_btultra_dictMatchState(
   1336        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
   1337        const void* src, size_t srcSize)
   1338{
   1339    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_dictMatchState);
   1340}
   1341
   1342size_t ZSTD_compressBlock_btopt_extDict(
   1343        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
   1344        const void* src, size_t srcSize)
   1345{
   1346    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_extDict);
   1347}
   1348
   1349size_t ZSTD_compressBlock_btultra_extDict(
   1350        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
   1351        const void* src, size_t srcSize)
   1352{
   1353    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_extDict);
   1354}
   1355
   1356/* note : no btultra2 variant for extDict nor dictMatchState,
   1357 * because btultra2 is not meant to work with dictionaries
   1358 * and is only specific for the first block (no prefix) */