vaddr.c (17472B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * DAMON Primitives for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sjpark@amazon.de> 6 */ 7 8#define pr_fmt(fmt) "damon-va: " fmt 9 10#include <asm-generic/mman-common.h> 11#include <linux/highmem.h> 12#include <linux/hugetlb.h> 13#include <linux/mmu_notifier.h> 14#include <linux/page_idle.h> 15#include <linux/pagewalk.h> 16#include <linux/sched/mm.h> 17 18#include "ops-common.h" 19 20#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 21#undef DAMON_MIN_REGION 22#define DAMON_MIN_REGION 1 23#endif 24 25/* 26 * 't->pid' should be the pointer to the relevant 'struct pid' having reference 27 * count. Caller must put the returned task, unless it is NULL. 28 */ 29static inline struct task_struct *damon_get_task_struct(struct damon_target *t) 30{ 31 return get_pid_task(t->pid, PIDTYPE_PID); 32} 33 34/* 35 * Get the mm_struct of the given target 36 * 37 * Caller _must_ put the mm_struct after use, unless it is NULL. 38 * 39 * Returns the mm_struct of the target on success, NULL on failure 40 */ 41static struct mm_struct *damon_get_mm(struct damon_target *t) 42{ 43 struct task_struct *task; 44 struct mm_struct *mm; 45 46 task = damon_get_task_struct(t); 47 if (!task) 48 return NULL; 49 50 mm = get_task_mm(task); 51 put_task_struct(task); 52 return mm; 53} 54 55/* 56 * Functions for the initial monitoring target regions construction 57 */ 58 59/* 60 * Size-evenly split a region into 'nr_pieces' small regions 61 * 62 * Returns 0 on success, or negative error code otherwise. 63 */ 64static int damon_va_evenly_split_region(struct damon_target *t, 65 struct damon_region *r, unsigned int nr_pieces) 66{ 67 unsigned long sz_orig, sz_piece, orig_end; 68 struct damon_region *n = NULL, *next; 69 unsigned long start; 70 71 if (!r || !nr_pieces) 72 return -EINVAL; 73 74 orig_end = r->ar.end; 75 sz_orig = r->ar.end - r->ar.start; 76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 77 78 if (!sz_piece) 79 return -EINVAL; 80 81 r->ar.end = r->ar.start + sz_piece; 82 next = damon_next_region(r); 83 for (start = r->ar.end; start + sz_piece <= orig_end; 84 start += sz_piece) { 85 n = damon_new_region(start, start + sz_piece); 86 if (!n) 87 return -ENOMEM; 88 damon_insert_region(n, r, next, t); 89 r = n; 90 } 91 /* complement last region for possible rounding error */ 92 if (n) 93 n->ar.end = orig_end; 94 95 return 0; 96} 97 98static unsigned long sz_range(struct damon_addr_range *r) 99{ 100 return r->end - r->start; 101} 102 103/* 104 * Find three regions separated by two biggest unmapped regions 105 * 106 * vma the head vma of the target address space 107 * regions an array of three address ranges that results will be saved 108 * 109 * This function receives an address space and finds three regions in it which 110 * separated by the two biggest unmapped regions in the space. Please refer to 111 * below comments of '__damon_va_init_regions()' function to know why this is 112 * necessary. 113 * 114 * Returns 0 if success, or negative error code otherwise. 115 */ 116static int __damon_va_three_regions(struct vm_area_struct *vma, 117 struct damon_addr_range regions[3]) 118{ 119 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0}; 120 struct vm_area_struct *last_vma = NULL; 121 unsigned long start = 0; 122 struct rb_root rbroot; 123 124 /* Find two biggest gaps so that first_gap > second_gap > others */ 125 for (; vma; vma = vma->vm_next) { 126 if (!last_vma) { 127 start = vma->vm_start; 128 goto next; 129 } 130 131 if (vma->rb_subtree_gap <= sz_range(&second_gap)) { 132 rbroot.rb_node = &vma->vm_rb; 133 vma = rb_entry(rb_last(&rbroot), 134 struct vm_area_struct, vm_rb); 135 goto next; 136 } 137 138 gap.start = last_vma->vm_end; 139 gap.end = vma->vm_start; 140 if (sz_range(&gap) > sz_range(&second_gap)) { 141 swap(gap, second_gap); 142 if (sz_range(&second_gap) > sz_range(&first_gap)) 143 swap(second_gap, first_gap); 144 } 145next: 146 last_vma = vma; 147 } 148 149 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 150 return -EINVAL; 151 152 /* Sort the two biggest gaps by address */ 153 if (first_gap.start > second_gap.start) 154 swap(first_gap, second_gap); 155 156 /* Store the result */ 157 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 158 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 159 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 160 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 161 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 162 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION); 163 164 return 0; 165} 166 167/* 168 * Get the three regions in the given target (task) 169 * 170 * Returns 0 on success, negative error code otherwise. 171 */ 172static int damon_va_three_regions(struct damon_target *t, 173 struct damon_addr_range regions[3]) 174{ 175 struct mm_struct *mm; 176 int rc; 177 178 mm = damon_get_mm(t); 179 if (!mm) 180 return -EINVAL; 181 182 mmap_read_lock(mm); 183 rc = __damon_va_three_regions(mm->mmap, regions); 184 mmap_read_unlock(mm); 185 186 mmput(mm); 187 return rc; 188} 189 190/* 191 * Initialize the monitoring target regions for the given target (task) 192 * 193 * t the given target 194 * 195 * Because only a number of small portions of the entire address space 196 * is actually mapped to the memory and accessed, monitoring the unmapped 197 * regions is wasteful. That said, because we can deal with small noises, 198 * tracking every mapping is not strictly required but could even incur a high 199 * overhead if the mapping frequently changes or the number of mappings is 200 * high. The adaptive regions adjustment mechanism will further help to deal 201 * with the noise by simply identifying the unmapped areas as a region that 202 * has no access. Moreover, applying the real mappings that would have many 203 * unmapped areas inside will make the adaptive mechanism quite complex. That 204 * said, too huge unmapped areas inside the monitoring target should be removed 205 * to not take the time for the adaptive mechanism. 206 * 207 * For the reason, we convert the complex mappings to three distinct regions 208 * that cover every mapped area of the address space. Also the two gaps 209 * between the three regions are the two biggest unmapped areas in the given 210 * address space. In detail, this function first identifies the start and the 211 * end of the mappings and the two biggest unmapped areas of the address space. 212 * Then, it constructs the three regions as below: 213 * 214 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 215 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 216 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 217 * 218 * As usual memory map of processes is as below, the gap between the heap and 219 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 220 * region and the stack will be two biggest unmapped regions. Because these 221 * gaps are exceptionally huge areas in usual address space, excluding these 222 * two biggest unmapped regions will be sufficient to make a trade-off. 223 * 224 * <heap> 225 * <BIG UNMAPPED REGION 1> 226 * <uppermost mmap()-ed region> 227 * (other mmap()-ed regions and small unmapped regions) 228 * <lowermost mmap()-ed region> 229 * <BIG UNMAPPED REGION 2> 230 * <stack> 231 */ 232static void __damon_va_init_regions(struct damon_ctx *ctx, 233 struct damon_target *t) 234{ 235 struct damon_target *ti; 236 struct damon_region *r; 237 struct damon_addr_range regions[3]; 238 unsigned long sz = 0, nr_pieces; 239 int i, tidx = 0; 240 241 if (damon_va_three_regions(t, regions)) { 242 damon_for_each_target(ti, ctx) { 243 if (ti == t) 244 break; 245 tidx++; 246 } 247 pr_debug("Failed to get three regions of %dth target\n", tidx); 248 return; 249 } 250 251 for (i = 0; i < 3; i++) 252 sz += regions[i].end - regions[i].start; 253 if (ctx->min_nr_regions) 254 sz /= ctx->min_nr_regions; 255 if (sz < DAMON_MIN_REGION) 256 sz = DAMON_MIN_REGION; 257 258 /* Set the initial three regions of the target */ 259 for (i = 0; i < 3; i++) { 260 r = damon_new_region(regions[i].start, regions[i].end); 261 if (!r) { 262 pr_err("%d'th init region creation failed\n", i); 263 return; 264 } 265 damon_add_region(r, t); 266 267 nr_pieces = (regions[i].end - regions[i].start) / sz; 268 damon_va_evenly_split_region(t, r, nr_pieces); 269 } 270} 271 272/* Initialize '->regions_list' of every target (task) */ 273static void damon_va_init(struct damon_ctx *ctx) 274{ 275 struct damon_target *t; 276 277 damon_for_each_target(t, ctx) { 278 /* the user may set the target regions as they want */ 279 if (!damon_nr_regions(t)) 280 __damon_va_init_regions(ctx, t); 281 } 282} 283 284/* 285 * Update regions for current memory mappings 286 */ 287static void damon_va_update(struct damon_ctx *ctx) 288{ 289 struct damon_addr_range three_regions[3]; 290 struct damon_target *t; 291 292 damon_for_each_target(t, ctx) { 293 if (damon_va_three_regions(t, three_regions)) 294 continue; 295 damon_set_regions(t, three_regions, 3); 296 } 297} 298 299static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 300 unsigned long next, struct mm_walk *walk) 301{ 302 pte_t *pte; 303 spinlock_t *ptl; 304 305 if (pmd_huge(*pmd)) { 306 ptl = pmd_lock(walk->mm, pmd); 307 if (pmd_huge(*pmd)) { 308 damon_pmdp_mkold(pmd, walk->mm, addr); 309 spin_unlock(ptl); 310 return 0; 311 } 312 spin_unlock(ptl); 313 } 314 315 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 316 return 0; 317 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 318 if (!pte_present(*pte)) 319 goto out; 320 damon_ptep_mkold(pte, walk->mm, addr); 321out: 322 pte_unmap_unlock(pte, ptl); 323 return 0; 324} 325 326#ifdef CONFIG_HUGETLB_PAGE 327static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm, 328 struct vm_area_struct *vma, unsigned long addr) 329{ 330 bool referenced = false; 331 pte_t entry = huge_ptep_get(pte); 332 struct page *page = pte_page(entry); 333 334 get_page(page); 335 336 if (pte_young(entry)) { 337 referenced = true; 338 entry = pte_mkold(entry); 339 huge_ptep_set_access_flags(vma, addr, pte, entry, 340 vma->vm_flags & VM_WRITE); 341 } 342 343#ifdef CONFIG_MMU_NOTIFIER 344 if (mmu_notifier_clear_young(mm, addr, 345 addr + huge_page_size(hstate_vma(vma)))) 346 referenced = true; 347#endif /* CONFIG_MMU_NOTIFIER */ 348 349 if (referenced) 350 set_page_young(page); 351 352 set_page_idle(page); 353 put_page(page); 354} 355 356static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask, 357 unsigned long addr, unsigned long end, 358 struct mm_walk *walk) 359{ 360 struct hstate *h = hstate_vma(walk->vma); 361 spinlock_t *ptl; 362 pte_t entry; 363 364 ptl = huge_pte_lock(h, walk->mm, pte); 365 entry = huge_ptep_get(pte); 366 if (!pte_present(entry)) 367 goto out; 368 369 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr); 370 371out: 372 spin_unlock(ptl); 373 return 0; 374} 375#else 376#define damon_mkold_hugetlb_entry NULL 377#endif /* CONFIG_HUGETLB_PAGE */ 378 379static const struct mm_walk_ops damon_mkold_ops = { 380 .pmd_entry = damon_mkold_pmd_entry, 381 .hugetlb_entry = damon_mkold_hugetlb_entry, 382}; 383 384static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 385{ 386 mmap_read_lock(mm); 387 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 388 mmap_read_unlock(mm); 389} 390 391/* 392 * Functions for the access checking of the regions 393 */ 394 395static void __damon_va_prepare_access_check(struct damon_ctx *ctx, 396 struct mm_struct *mm, struct damon_region *r) 397{ 398 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 399 400 damon_va_mkold(mm, r->sampling_addr); 401} 402 403static void damon_va_prepare_access_checks(struct damon_ctx *ctx) 404{ 405 struct damon_target *t; 406 struct mm_struct *mm; 407 struct damon_region *r; 408 409 damon_for_each_target(t, ctx) { 410 mm = damon_get_mm(t); 411 if (!mm) 412 continue; 413 damon_for_each_region(r, t) 414 __damon_va_prepare_access_check(ctx, mm, r); 415 mmput(mm); 416 } 417} 418 419struct damon_young_walk_private { 420 unsigned long *page_sz; 421 bool young; 422}; 423 424static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 425 unsigned long next, struct mm_walk *walk) 426{ 427 pte_t *pte; 428 spinlock_t *ptl; 429 struct page *page; 430 struct damon_young_walk_private *priv = walk->private; 431 432#ifdef CONFIG_TRANSPARENT_HUGEPAGE 433 if (pmd_huge(*pmd)) { 434 ptl = pmd_lock(walk->mm, pmd); 435 if (!pmd_huge(*pmd)) { 436 spin_unlock(ptl); 437 goto regular_page; 438 } 439 page = damon_get_page(pmd_pfn(*pmd)); 440 if (!page) 441 goto huge_out; 442 if (pmd_young(*pmd) || !page_is_idle(page) || 443 mmu_notifier_test_young(walk->mm, 444 addr)) { 445 *priv->page_sz = HPAGE_PMD_SIZE; 446 priv->young = true; 447 } 448 put_page(page); 449huge_out: 450 spin_unlock(ptl); 451 return 0; 452 } 453 454regular_page: 455#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 456 457 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 458 return -EINVAL; 459 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 460 if (!pte_present(*pte)) 461 goto out; 462 page = damon_get_page(pte_pfn(*pte)); 463 if (!page) 464 goto out; 465 if (pte_young(*pte) || !page_is_idle(page) || 466 mmu_notifier_test_young(walk->mm, addr)) { 467 *priv->page_sz = PAGE_SIZE; 468 priv->young = true; 469 } 470 put_page(page); 471out: 472 pte_unmap_unlock(pte, ptl); 473 return 0; 474} 475 476#ifdef CONFIG_HUGETLB_PAGE 477static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask, 478 unsigned long addr, unsigned long end, 479 struct mm_walk *walk) 480{ 481 struct damon_young_walk_private *priv = walk->private; 482 struct hstate *h = hstate_vma(walk->vma); 483 struct page *page; 484 spinlock_t *ptl; 485 pte_t entry; 486 487 ptl = huge_pte_lock(h, walk->mm, pte); 488 entry = huge_ptep_get(pte); 489 if (!pte_present(entry)) 490 goto out; 491 492 page = pte_page(entry); 493 get_page(page); 494 495 if (pte_young(entry) || !page_is_idle(page) || 496 mmu_notifier_test_young(walk->mm, addr)) { 497 *priv->page_sz = huge_page_size(h); 498 priv->young = true; 499 } 500 501 put_page(page); 502 503out: 504 spin_unlock(ptl); 505 return 0; 506} 507#else 508#define damon_young_hugetlb_entry NULL 509#endif /* CONFIG_HUGETLB_PAGE */ 510 511static const struct mm_walk_ops damon_young_ops = { 512 .pmd_entry = damon_young_pmd_entry, 513 .hugetlb_entry = damon_young_hugetlb_entry, 514}; 515 516static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 517 unsigned long *page_sz) 518{ 519 struct damon_young_walk_private arg = { 520 .page_sz = page_sz, 521 .young = false, 522 }; 523 524 mmap_read_lock(mm); 525 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 526 mmap_read_unlock(mm); 527 return arg.young; 528} 529 530/* 531 * Check whether the region was accessed after the last preparation 532 * 533 * mm 'mm_struct' for the given virtual address space 534 * r the region to be checked 535 */ 536static void __damon_va_check_access(struct damon_ctx *ctx, 537 struct mm_struct *mm, struct damon_region *r) 538{ 539 static struct mm_struct *last_mm; 540 static unsigned long last_addr; 541 static unsigned long last_page_sz = PAGE_SIZE; 542 static bool last_accessed; 543 544 /* If the region is in the last checked page, reuse the result */ 545 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == 546 ALIGN_DOWN(r->sampling_addr, last_page_sz))) { 547 if (last_accessed) 548 r->nr_accesses++; 549 return; 550 } 551 552 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz); 553 if (last_accessed) 554 r->nr_accesses++; 555 556 last_mm = mm; 557 last_addr = r->sampling_addr; 558} 559 560static unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 561{ 562 struct damon_target *t; 563 struct mm_struct *mm; 564 struct damon_region *r; 565 unsigned int max_nr_accesses = 0; 566 567 damon_for_each_target(t, ctx) { 568 mm = damon_get_mm(t); 569 if (!mm) 570 continue; 571 damon_for_each_region(r, t) { 572 __damon_va_check_access(ctx, mm, r); 573 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 574 } 575 mmput(mm); 576 } 577 578 return max_nr_accesses; 579} 580 581/* 582 * Functions for the target validity check and cleanup 583 */ 584 585static bool damon_va_target_valid(void *target) 586{ 587 struct damon_target *t = target; 588 struct task_struct *task; 589 590 task = damon_get_task_struct(t); 591 if (task) { 592 put_task_struct(task); 593 return true; 594 } 595 596 return false; 597} 598 599#ifndef CONFIG_ADVISE_SYSCALLS 600static unsigned long damos_madvise(struct damon_target *target, 601 struct damon_region *r, int behavior) 602{ 603 return 0; 604} 605#else 606static unsigned long damos_madvise(struct damon_target *target, 607 struct damon_region *r, int behavior) 608{ 609 struct mm_struct *mm; 610 unsigned long start = PAGE_ALIGN(r->ar.start); 611 unsigned long len = PAGE_ALIGN(r->ar.end - r->ar.start); 612 unsigned long applied; 613 614 mm = damon_get_mm(target); 615 if (!mm) 616 return 0; 617 618 applied = do_madvise(mm, start, len, behavior) ? 0 : len; 619 mmput(mm); 620 621 return applied; 622} 623#endif /* CONFIG_ADVISE_SYSCALLS */ 624 625static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx, 626 struct damon_target *t, struct damon_region *r, 627 struct damos *scheme) 628{ 629 int madv_action; 630 631 switch (scheme->action) { 632 case DAMOS_WILLNEED: 633 madv_action = MADV_WILLNEED; 634 break; 635 case DAMOS_COLD: 636 madv_action = MADV_COLD; 637 break; 638 case DAMOS_PAGEOUT: 639 madv_action = MADV_PAGEOUT; 640 break; 641 case DAMOS_HUGEPAGE: 642 madv_action = MADV_HUGEPAGE; 643 break; 644 case DAMOS_NOHUGEPAGE: 645 madv_action = MADV_NOHUGEPAGE; 646 break; 647 case DAMOS_STAT: 648 return 0; 649 default: 650 return 0; 651 } 652 653 return damos_madvise(t, r, madv_action); 654} 655 656static int damon_va_scheme_score(struct damon_ctx *context, 657 struct damon_target *t, struct damon_region *r, 658 struct damos *scheme) 659{ 660 661 switch (scheme->action) { 662 case DAMOS_PAGEOUT: 663 return damon_pageout_score(context, r, scheme); 664 default: 665 break; 666 } 667 668 return DAMOS_MAX_SCORE; 669} 670 671static int __init damon_va_initcall(void) 672{ 673 struct damon_operations ops = { 674 .id = DAMON_OPS_VADDR, 675 .init = damon_va_init, 676 .update = damon_va_update, 677 .prepare_access_checks = damon_va_prepare_access_checks, 678 .check_accesses = damon_va_check_accesses, 679 .reset_aggregated = NULL, 680 .target_valid = damon_va_target_valid, 681 .cleanup = NULL, 682 .apply_scheme = damon_va_apply_scheme, 683 .get_scheme_score = damon_va_scheme_score, 684 }; 685 /* ops for fixed virtual address ranges */ 686 struct damon_operations ops_fvaddr = ops; 687 int err; 688 689 /* Don't set the monitoring target regions for the entire mapping */ 690 ops_fvaddr.id = DAMON_OPS_FVADDR; 691 ops_fvaddr.init = NULL; 692 ops_fvaddr.update = NULL; 693 694 err = damon_register_ops(&ops); 695 if (err) 696 return err; 697 return damon_register_ops(&ops_fvaddr); 698}; 699 700subsys_initcall(damon_va_initcall); 701 702#include "vaddr-test.h"