debug_vm_pgtable.c (39748B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * This kernel test validates architecture page table helpers and 4 * accessors and helps in verifying their continued compliance with 5 * expected generic MM semantics. 6 * 7 * Copyright (C) 2019 ARM Ltd. 8 * 9 * Author: Anshuman Khandual <anshuman.khandual@arm.com> 10 */ 11#define pr_fmt(fmt) "debug_vm_pgtable: [%-25s]: " fmt, __func__ 12 13#include <linux/gfp.h> 14#include <linux/highmem.h> 15#include <linux/hugetlb.h> 16#include <linux/kernel.h> 17#include <linux/kconfig.h> 18#include <linux/mm.h> 19#include <linux/mman.h> 20#include <linux/mm_types.h> 21#include <linux/module.h> 22#include <linux/pfn_t.h> 23#include <linux/printk.h> 24#include <linux/pgtable.h> 25#include <linux/random.h> 26#include <linux/spinlock.h> 27#include <linux/swap.h> 28#include <linux/swapops.h> 29#include <linux/start_kernel.h> 30#include <linux/sched/mm.h> 31#include <linux/io.h> 32 33#include <asm/cacheflush.h> 34#include <asm/pgalloc.h> 35#include <asm/tlbflush.h> 36 37/* 38 * Please refer Documentation/vm/arch_pgtable_helpers.rst for the semantics 39 * expectations that are being validated here. All future changes in here 40 * or the documentation need to be in sync. 41 */ 42 43#define VMFLAGS (VM_READ|VM_WRITE|VM_EXEC) 44 45/* 46 * On s390 platform, the lower 4 bits are used to identify given page table 47 * entry type. But these bits might affect the ability to clear entries with 48 * pxx_clear() because of how dynamic page table folding works on s390. So 49 * while loading up the entries do not change the lower 4 bits. It does not 50 * have affect any other platform. Also avoid the 62nd bit on ppc64 that is 51 * used to mark a pte entry. 52 */ 53#define S390_SKIP_MASK GENMASK(3, 0) 54#if __BITS_PER_LONG == 64 55#define PPC64_SKIP_MASK GENMASK(62, 62) 56#else 57#define PPC64_SKIP_MASK 0x0 58#endif 59#define ARCH_SKIP_MASK (S390_SKIP_MASK | PPC64_SKIP_MASK) 60#define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK) 61#define RANDOM_NZVALUE GENMASK(7, 0) 62 63struct pgtable_debug_args { 64 struct mm_struct *mm; 65 struct vm_area_struct *vma; 66 67 pgd_t *pgdp; 68 p4d_t *p4dp; 69 pud_t *pudp; 70 pmd_t *pmdp; 71 pte_t *ptep; 72 73 p4d_t *start_p4dp; 74 pud_t *start_pudp; 75 pmd_t *start_pmdp; 76 pgtable_t start_ptep; 77 78 unsigned long vaddr; 79 pgprot_t page_prot; 80 pgprot_t page_prot_none; 81 82 bool is_contiguous_page; 83 unsigned long pud_pfn; 84 unsigned long pmd_pfn; 85 unsigned long pte_pfn; 86 87 unsigned long fixed_pgd_pfn; 88 unsigned long fixed_p4d_pfn; 89 unsigned long fixed_pud_pfn; 90 unsigned long fixed_pmd_pfn; 91 unsigned long fixed_pte_pfn; 92}; 93 94static void __init pte_basic_tests(struct pgtable_debug_args *args, int idx) 95{ 96 pgprot_t prot = vm_get_page_prot(idx); 97 pte_t pte = pfn_pte(args->fixed_pte_pfn, prot); 98 unsigned long val = idx, *ptr = &val; 99 100 pr_debug("Validating PTE basic (%pGv)\n", ptr); 101 102 /* 103 * This test needs to be executed after the given page table entry 104 * is created with pfn_pte() to make sure that vm_get_page_prot(idx) 105 * does not have the dirty bit enabled from the beginning. This is 106 * important for platforms like arm64 where (!PTE_RDONLY) indicate 107 * dirty bit being set. 108 */ 109 WARN_ON(pte_dirty(pte_wrprotect(pte))); 110 111 WARN_ON(!pte_same(pte, pte)); 112 WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte)))); 113 WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte)))); 114 WARN_ON(!pte_write(pte_mkwrite(pte_wrprotect(pte)))); 115 WARN_ON(pte_young(pte_mkold(pte_mkyoung(pte)))); 116 WARN_ON(pte_dirty(pte_mkclean(pte_mkdirty(pte)))); 117 WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte)))); 118 WARN_ON(pte_dirty(pte_wrprotect(pte_mkclean(pte)))); 119 WARN_ON(!pte_dirty(pte_wrprotect(pte_mkdirty(pte)))); 120} 121 122static void __init pte_advanced_tests(struct pgtable_debug_args *args) 123{ 124 struct page *page; 125 pte_t pte; 126 127 /* 128 * Architectures optimize set_pte_at by avoiding TLB flush. 129 * This requires set_pte_at to be not used to update an 130 * existing pte entry. Clear pte before we do set_pte_at 131 * 132 * flush_dcache_page() is called after set_pte_at() to clear 133 * PG_arch_1 for the page on ARM64. The page flag isn't cleared 134 * when it's released and page allocation check will fail when 135 * the page is allocated again. For architectures other than ARM64, 136 * the unexpected overhead of cache flushing is acceptable. 137 */ 138 page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL; 139 if (!page) 140 return; 141 142 pr_debug("Validating PTE advanced\n"); 143 pte = pfn_pte(args->pte_pfn, args->page_prot); 144 set_pte_at(args->mm, args->vaddr, args->ptep, pte); 145 flush_dcache_page(page); 146 ptep_set_wrprotect(args->mm, args->vaddr, args->ptep); 147 pte = ptep_get(args->ptep); 148 WARN_ON(pte_write(pte)); 149 ptep_get_and_clear(args->mm, args->vaddr, args->ptep); 150 pte = ptep_get(args->ptep); 151 WARN_ON(!pte_none(pte)); 152 153 pte = pfn_pte(args->pte_pfn, args->page_prot); 154 pte = pte_wrprotect(pte); 155 pte = pte_mkclean(pte); 156 set_pte_at(args->mm, args->vaddr, args->ptep, pte); 157 flush_dcache_page(page); 158 pte = pte_mkwrite(pte); 159 pte = pte_mkdirty(pte); 160 ptep_set_access_flags(args->vma, args->vaddr, args->ptep, pte, 1); 161 pte = ptep_get(args->ptep); 162 WARN_ON(!(pte_write(pte) && pte_dirty(pte))); 163 ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1); 164 pte = ptep_get(args->ptep); 165 WARN_ON(!pte_none(pte)); 166 167 pte = pfn_pte(args->pte_pfn, args->page_prot); 168 pte = pte_mkyoung(pte); 169 set_pte_at(args->mm, args->vaddr, args->ptep, pte); 170 flush_dcache_page(page); 171 ptep_test_and_clear_young(args->vma, args->vaddr, args->ptep); 172 pte = ptep_get(args->ptep); 173 WARN_ON(pte_young(pte)); 174 175 ptep_get_and_clear_full(args->mm, args->vaddr, args->ptep, 1); 176} 177 178static void __init pte_savedwrite_tests(struct pgtable_debug_args *args) 179{ 180 pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none); 181 182 if (!IS_ENABLED(CONFIG_NUMA_BALANCING)) 183 return; 184 185 pr_debug("Validating PTE saved write\n"); 186 WARN_ON(!pte_savedwrite(pte_mk_savedwrite(pte_clear_savedwrite(pte)))); 187 WARN_ON(pte_savedwrite(pte_clear_savedwrite(pte_mk_savedwrite(pte)))); 188} 189 190#ifdef CONFIG_TRANSPARENT_HUGEPAGE 191static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx) 192{ 193 pgprot_t prot = vm_get_page_prot(idx); 194 unsigned long val = idx, *ptr = &val; 195 pmd_t pmd; 196 197 if (!has_transparent_hugepage()) 198 return; 199 200 pr_debug("Validating PMD basic (%pGv)\n", ptr); 201 pmd = pfn_pmd(args->fixed_pmd_pfn, prot); 202 203 /* 204 * This test needs to be executed after the given page table entry 205 * is created with pfn_pmd() to make sure that vm_get_page_prot(idx) 206 * does not have the dirty bit enabled from the beginning. This is 207 * important for platforms like arm64 where (!PTE_RDONLY) indicate 208 * dirty bit being set. 209 */ 210 WARN_ON(pmd_dirty(pmd_wrprotect(pmd))); 211 212 213 WARN_ON(!pmd_same(pmd, pmd)); 214 WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd)))); 215 WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd)))); 216 WARN_ON(!pmd_write(pmd_mkwrite(pmd_wrprotect(pmd)))); 217 WARN_ON(pmd_young(pmd_mkold(pmd_mkyoung(pmd)))); 218 WARN_ON(pmd_dirty(pmd_mkclean(pmd_mkdirty(pmd)))); 219 WARN_ON(pmd_write(pmd_wrprotect(pmd_mkwrite(pmd)))); 220 WARN_ON(pmd_dirty(pmd_wrprotect(pmd_mkclean(pmd)))); 221 WARN_ON(!pmd_dirty(pmd_wrprotect(pmd_mkdirty(pmd)))); 222 /* 223 * A huge page does not point to next level page table 224 * entry. Hence this must qualify as pmd_bad(). 225 */ 226 WARN_ON(!pmd_bad(pmd_mkhuge(pmd))); 227} 228 229static void __init pmd_advanced_tests(struct pgtable_debug_args *args) 230{ 231 struct page *page; 232 pmd_t pmd; 233 unsigned long vaddr = args->vaddr; 234 235 if (!has_transparent_hugepage()) 236 return; 237 238 page = (args->pmd_pfn != ULONG_MAX) ? pfn_to_page(args->pmd_pfn) : NULL; 239 if (!page) 240 return; 241 242 /* 243 * flush_dcache_page() is called after set_pmd_at() to clear 244 * PG_arch_1 for the page on ARM64. The page flag isn't cleared 245 * when it's released and page allocation check will fail when 246 * the page is allocated again. For architectures other than ARM64, 247 * the unexpected overhead of cache flushing is acceptable. 248 */ 249 pr_debug("Validating PMD advanced\n"); 250 /* Align the address wrt HPAGE_PMD_SIZE */ 251 vaddr &= HPAGE_PMD_MASK; 252 253 pgtable_trans_huge_deposit(args->mm, args->pmdp, args->start_ptep); 254 255 pmd = pfn_pmd(args->pmd_pfn, args->page_prot); 256 set_pmd_at(args->mm, vaddr, args->pmdp, pmd); 257 flush_dcache_page(page); 258 pmdp_set_wrprotect(args->mm, vaddr, args->pmdp); 259 pmd = READ_ONCE(*args->pmdp); 260 WARN_ON(pmd_write(pmd)); 261 pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp); 262 pmd = READ_ONCE(*args->pmdp); 263 WARN_ON(!pmd_none(pmd)); 264 265 pmd = pfn_pmd(args->pmd_pfn, args->page_prot); 266 pmd = pmd_wrprotect(pmd); 267 pmd = pmd_mkclean(pmd); 268 set_pmd_at(args->mm, vaddr, args->pmdp, pmd); 269 flush_dcache_page(page); 270 pmd = pmd_mkwrite(pmd); 271 pmd = pmd_mkdirty(pmd); 272 pmdp_set_access_flags(args->vma, vaddr, args->pmdp, pmd, 1); 273 pmd = READ_ONCE(*args->pmdp); 274 WARN_ON(!(pmd_write(pmd) && pmd_dirty(pmd))); 275 pmdp_huge_get_and_clear_full(args->vma, vaddr, args->pmdp, 1); 276 pmd = READ_ONCE(*args->pmdp); 277 WARN_ON(!pmd_none(pmd)); 278 279 pmd = pmd_mkhuge(pfn_pmd(args->pmd_pfn, args->page_prot)); 280 pmd = pmd_mkyoung(pmd); 281 set_pmd_at(args->mm, vaddr, args->pmdp, pmd); 282 flush_dcache_page(page); 283 pmdp_test_and_clear_young(args->vma, vaddr, args->pmdp); 284 pmd = READ_ONCE(*args->pmdp); 285 WARN_ON(pmd_young(pmd)); 286 287 /* Clear the pte entries */ 288 pmdp_huge_get_and_clear(args->mm, vaddr, args->pmdp); 289 pgtable_trans_huge_withdraw(args->mm, args->pmdp); 290} 291 292static void __init pmd_leaf_tests(struct pgtable_debug_args *args) 293{ 294 pmd_t pmd; 295 296 if (!has_transparent_hugepage()) 297 return; 298 299 pr_debug("Validating PMD leaf\n"); 300 pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot); 301 302 /* 303 * PMD based THP is a leaf entry. 304 */ 305 pmd = pmd_mkhuge(pmd); 306 WARN_ON(!pmd_leaf(pmd)); 307} 308 309static void __init pmd_savedwrite_tests(struct pgtable_debug_args *args) 310{ 311 pmd_t pmd; 312 313 if (!IS_ENABLED(CONFIG_NUMA_BALANCING)) 314 return; 315 316 if (!has_transparent_hugepage()) 317 return; 318 319 pr_debug("Validating PMD saved write\n"); 320 pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none); 321 WARN_ON(!pmd_savedwrite(pmd_mk_savedwrite(pmd_clear_savedwrite(pmd)))); 322 WARN_ON(pmd_savedwrite(pmd_clear_savedwrite(pmd_mk_savedwrite(pmd)))); 323} 324 325#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 326static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) 327{ 328 pgprot_t prot = vm_get_page_prot(idx); 329 unsigned long val = idx, *ptr = &val; 330 pud_t pud; 331 332 if (!has_transparent_hugepage()) 333 return; 334 335 pr_debug("Validating PUD basic (%pGv)\n", ptr); 336 pud = pfn_pud(args->fixed_pud_pfn, prot); 337 338 /* 339 * This test needs to be executed after the given page table entry 340 * is created with pfn_pud() to make sure that vm_get_page_prot(idx) 341 * does not have the dirty bit enabled from the beginning. This is 342 * important for platforms like arm64 where (!PTE_RDONLY) indicate 343 * dirty bit being set. 344 */ 345 WARN_ON(pud_dirty(pud_wrprotect(pud))); 346 347 WARN_ON(!pud_same(pud, pud)); 348 WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud)))); 349 WARN_ON(!pud_dirty(pud_mkdirty(pud_mkclean(pud)))); 350 WARN_ON(pud_dirty(pud_mkclean(pud_mkdirty(pud)))); 351 WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud)))); 352 WARN_ON(pud_write(pud_wrprotect(pud_mkwrite(pud)))); 353 WARN_ON(pud_young(pud_mkold(pud_mkyoung(pud)))); 354 WARN_ON(pud_dirty(pud_wrprotect(pud_mkclean(pud)))); 355 WARN_ON(!pud_dirty(pud_wrprotect(pud_mkdirty(pud)))); 356 357 if (mm_pmd_folded(args->mm)) 358 return; 359 360 /* 361 * A huge page does not point to next level page table 362 * entry. Hence this must qualify as pud_bad(). 363 */ 364 WARN_ON(!pud_bad(pud_mkhuge(pud))); 365} 366 367static void __init pud_advanced_tests(struct pgtable_debug_args *args) 368{ 369 struct page *page; 370 unsigned long vaddr = args->vaddr; 371 pud_t pud; 372 373 if (!has_transparent_hugepage()) 374 return; 375 376 page = (args->pud_pfn != ULONG_MAX) ? pfn_to_page(args->pud_pfn) : NULL; 377 if (!page) 378 return; 379 380 /* 381 * flush_dcache_page() is called after set_pud_at() to clear 382 * PG_arch_1 for the page on ARM64. The page flag isn't cleared 383 * when it's released and page allocation check will fail when 384 * the page is allocated again. For architectures other than ARM64, 385 * the unexpected overhead of cache flushing is acceptable. 386 */ 387 pr_debug("Validating PUD advanced\n"); 388 /* Align the address wrt HPAGE_PUD_SIZE */ 389 vaddr &= HPAGE_PUD_MASK; 390 391 pud = pfn_pud(args->pud_pfn, args->page_prot); 392 set_pud_at(args->mm, vaddr, args->pudp, pud); 393 flush_dcache_page(page); 394 pudp_set_wrprotect(args->mm, vaddr, args->pudp); 395 pud = READ_ONCE(*args->pudp); 396 WARN_ON(pud_write(pud)); 397 398#ifndef __PAGETABLE_PMD_FOLDED 399 pudp_huge_get_and_clear(args->mm, vaddr, args->pudp); 400 pud = READ_ONCE(*args->pudp); 401 WARN_ON(!pud_none(pud)); 402#endif /* __PAGETABLE_PMD_FOLDED */ 403 pud = pfn_pud(args->pud_pfn, args->page_prot); 404 pud = pud_wrprotect(pud); 405 pud = pud_mkclean(pud); 406 set_pud_at(args->mm, vaddr, args->pudp, pud); 407 flush_dcache_page(page); 408 pud = pud_mkwrite(pud); 409 pud = pud_mkdirty(pud); 410 pudp_set_access_flags(args->vma, vaddr, args->pudp, pud, 1); 411 pud = READ_ONCE(*args->pudp); 412 WARN_ON(!(pud_write(pud) && pud_dirty(pud))); 413 414#ifndef __PAGETABLE_PMD_FOLDED 415 pudp_huge_get_and_clear_full(args->mm, vaddr, args->pudp, 1); 416 pud = READ_ONCE(*args->pudp); 417 WARN_ON(!pud_none(pud)); 418#endif /* __PAGETABLE_PMD_FOLDED */ 419 420 pud = pfn_pud(args->pud_pfn, args->page_prot); 421 pud = pud_mkyoung(pud); 422 set_pud_at(args->mm, vaddr, args->pudp, pud); 423 flush_dcache_page(page); 424 pudp_test_and_clear_young(args->vma, vaddr, args->pudp); 425 pud = READ_ONCE(*args->pudp); 426 WARN_ON(pud_young(pud)); 427 428 pudp_huge_get_and_clear(args->mm, vaddr, args->pudp); 429} 430 431static void __init pud_leaf_tests(struct pgtable_debug_args *args) 432{ 433 pud_t pud; 434 435 if (!has_transparent_hugepage()) 436 return; 437 438 pr_debug("Validating PUD leaf\n"); 439 pud = pfn_pud(args->fixed_pud_pfn, args->page_prot); 440 /* 441 * PUD based THP is a leaf entry. 442 */ 443 pud = pud_mkhuge(pud); 444 WARN_ON(!pud_leaf(pud)); 445} 446#else /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 447static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { } 448static void __init pud_advanced_tests(struct pgtable_debug_args *args) { } 449static void __init pud_leaf_tests(struct pgtable_debug_args *args) { } 450#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 451#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 452static void __init pmd_basic_tests(struct pgtable_debug_args *args, int idx) { } 453static void __init pud_basic_tests(struct pgtable_debug_args *args, int idx) { } 454static void __init pmd_advanced_tests(struct pgtable_debug_args *args) { } 455static void __init pud_advanced_tests(struct pgtable_debug_args *args) { } 456static void __init pmd_leaf_tests(struct pgtable_debug_args *args) { } 457static void __init pud_leaf_tests(struct pgtable_debug_args *args) { } 458static void __init pmd_savedwrite_tests(struct pgtable_debug_args *args) { } 459#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 460 461#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 462static void __init pmd_huge_tests(struct pgtable_debug_args *args) 463{ 464 pmd_t pmd; 465 466 if (!arch_vmap_pmd_supported(args->page_prot)) 467 return; 468 469 pr_debug("Validating PMD huge\n"); 470 /* 471 * X86 defined pmd_set_huge() verifies that the given 472 * PMD is not a populated non-leaf entry. 473 */ 474 WRITE_ONCE(*args->pmdp, __pmd(0)); 475 WARN_ON(!pmd_set_huge(args->pmdp, __pfn_to_phys(args->fixed_pmd_pfn), args->page_prot)); 476 WARN_ON(!pmd_clear_huge(args->pmdp)); 477 pmd = READ_ONCE(*args->pmdp); 478 WARN_ON(!pmd_none(pmd)); 479} 480 481static void __init pud_huge_tests(struct pgtable_debug_args *args) 482{ 483 pud_t pud; 484 485 if (!arch_vmap_pud_supported(args->page_prot)) 486 return; 487 488 pr_debug("Validating PUD huge\n"); 489 /* 490 * X86 defined pud_set_huge() verifies that the given 491 * PUD is not a populated non-leaf entry. 492 */ 493 WRITE_ONCE(*args->pudp, __pud(0)); 494 WARN_ON(!pud_set_huge(args->pudp, __pfn_to_phys(args->fixed_pud_pfn), args->page_prot)); 495 WARN_ON(!pud_clear_huge(args->pudp)); 496 pud = READ_ONCE(*args->pudp); 497 WARN_ON(!pud_none(pud)); 498} 499#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 500static void __init pmd_huge_tests(struct pgtable_debug_args *args) { } 501static void __init pud_huge_tests(struct pgtable_debug_args *args) { } 502#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 503 504static void __init p4d_basic_tests(struct pgtable_debug_args *args) 505{ 506 p4d_t p4d; 507 508 pr_debug("Validating P4D basic\n"); 509 memset(&p4d, RANDOM_NZVALUE, sizeof(p4d_t)); 510 WARN_ON(!p4d_same(p4d, p4d)); 511} 512 513static void __init pgd_basic_tests(struct pgtable_debug_args *args) 514{ 515 pgd_t pgd; 516 517 pr_debug("Validating PGD basic\n"); 518 memset(&pgd, RANDOM_NZVALUE, sizeof(pgd_t)); 519 WARN_ON(!pgd_same(pgd, pgd)); 520} 521 522#ifndef __PAGETABLE_PUD_FOLDED 523static void __init pud_clear_tests(struct pgtable_debug_args *args) 524{ 525 pud_t pud = READ_ONCE(*args->pudp); 526 527 if (mm_pmd_folded(args->mm)) 528 return; 529 530 pr_debug("Validating PUD clear\n"); 531 pud = __pud(pud_val(pud) | RANDOM_ORVALUE); 532 WRITE_ONCE(*args->pudp, pud); 533 pud_clear(args->pudp); 534 pud = READ_ONCE(*args->pudp); 535 WARN_ON(!pud_none(pud)); 536} 537 538static void __init pud_populate_tests(struct pgtable_debug_args *args) 539{ 540 pud_t pud; 541 542 if (mm_pmd_folded(args->mm)) 543 return; 544 545 pr_debug("Validating PUD populate\n"); 546 /* 547 * This entry points to next level page table page. 548 * Hence this must not qualify as pud_bad(). 549 */ 550 pud_populate(args->mm, args->pudp, args->start_pmdp); 551 pud = READ_ONCE(*args->pudp); 552 WARN_ON(pud_bad(pud)); 553} 554#else /* !__PAGETABLE_PUD_FOLDED */ 555static void __init pud_clear_tests(struct pgtable_debug_args *args) { } 556static void __init pud_populate_tests(struct pgtable_debug_args *args) { } 557#endif /* PAGETABLE_PUD_FOLDED */ 558 559#ifndef __PAGETABLE_P4D_FOLDED 560static void __init p4d_clear_tests(struct pgtable_debug_args *args) 561{ 562 p4d_t p4d = READ_ONCE(*args->p4dp); 563 564 if (mm_pud_folded(args->mm)) 565 return; 566 567 pr_debug("Validating P4D clear\n"); 568 p4d = __p4d(p4d_val(p4d) | RANDOM_ORVALUE); 569 WRITE_ONCE(*args->p4dp, p4d); 570 p4d_clear(args->p4dp); 571 p4d = READ_ONCE(*args->p4dp); 572 WARN_ON(!p4d_none(p4d)); 573} 574 575static void __init p4d_populate_tests(struct pgtable_debug_args *args) 576{ 577 p4d_t p4d; 578 579 if (mm_pud_folded(args->mm)) 580 return; 581 582 pr_debug("Validating P4D populate\n"); 583 /* 584 * This entry points to next level page table page. 585 * Hence this must not qualify as p4d_bad(). 586 */ 587 pud_clear(args->pudp); 588 p4d_clear(args->p4dp); 589 p4d_populate(args->mm, args->p4dp, args->start_pudp); 590 p4d = READ_ONCE(*args->p4dp); 591 WARN_ON(p4d_bad(p4d)); 592} 593 594static void __init pgd_clear_tests(struct pgtable_debug_args *args) 595{ 596 pgd_t pgd = READ_ONCE(*(args->pgdp)); 597 598 if (mm_p4d_folded(args->mm)) 599 return; 600 601 pr_debug("Validating PGD clear\n"); 602 pgd = __pgd(pgd_val(pgd) | RANDOM_ORVALUE); 603 WRITE_ONCE(*args->pgdp, pgd); 604 pgd_clear(args->pgdp); 605 pgd = READ_ONCE(*args->pgdp); 606 WARN_ON(!pgd_none(pgd)); 607} 608 609static void __init pgd_populate_tests(struct pgtable_debug_args *args) 610{ 611 pgd_t pgd; 612 613 if (mm_p4d_folded(args->mm)) 614 return; 615 616 pr_debug("Validating PGD populate\n"); 617 /* 618 * This entry points to next level page table page. 619 * Hence this must not qualify as pgd_bad(). 620 */ 621 p4d_clear(args->p4dp); 622 pgd_clear(args->pgdp); 623 pgd_populate(args->mm, args->pgdp, args->start_p4dp); 624 pgd = READ_ONCE(*args->pgdp); 625 WARN_ON(pgd_bad(pgd)); 626} 627#else /* !__PAGETABLE_P4D_FOLDED */ 628static void __init p4d_clear_tests(struct pgtable_debug_args *args) { } 629static void __init pgd_clear_tests(struct pgtable_debug_args *args) { } 630static void __init p4d_populate_tests(struct pgtable_debug_args *args) { } 631static void __init pgd_populate_tests(struct pgtable_debug_args *args) { } 632#endif /* PAGETABLE_P4D_FOLDED */ 633 634static void __init pte_clear_tests(struct pgtable_debug_args *args) 635{ 636 struct page *page; 637 pte_t pte = pfn_pte(args->pte_pfn, args->page_prot); 638 639 page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL; 640 if (!page) 641 return; 642 643 /* 644 * flush_dcache_page() is called after set_pte_at() to clear 645 * PG_arch_1 for the page on ARM64. The page flag isn't cleared 646 * when it's released and page allocation check will fail when 647 * the page is allocated again. For architectures other than ARM64, 648 * the unexpected overhead of cache flushing is acceptable. 649 */ 650 pr_debug("Validating PTE clear\n"); 651#ifndef CONFIG_RISCV 652 pte = __pte(pte_val(pte) | RANDOM_ORVALUE); 653#endif 654 set_pte_at(args->mm, args->vaddr, args->ptep, pte); 655 flush_dcache_page(page); 656 barrier(); 657 ptep_clear(args->mm, args->vaddr, args->ptep); 658 pte = ptep_get(args->ptep); 659 WARN_ON(!pte_none(pte)); 660} 661 662static void __init pmd_clear_tests(struct pgtable_debug_args *args) 663{ 664 pmd_t pmd = READ_ONCE(*args->pmdp); 665 666 pr_debug("Validating PMD clear\n"); 667 pmd = __pmd(pmd_val(pmd) | RANDOM_ORVALUE); 668 WRITE_ONCE(*args->pmdp, pmd); 669 pmd_clear(args->pmdp); 670 pmd = READ_ONCE(*args->pmdp); 671 WARN_ON(!pmd_none(pmd)); 672} 673 674static void __init pmd_populate_tests(struct pgtable_debug_args *args) 675{ 676 pmd_t pmd; 677 678 pr_debug("Validating PMD populate\n"); 679 /* 680 * This entry points to next level page table page. 681 * Hence this must not qualify as pmd_bad(). 682 */ 683 pmd_populate(args->mm, args->pmdp, args->start_ptep); 684 pmd = READ_ONCE(*args->pmdp); 685 WARN_ON(pmd_bad(pmd)); 686} 687 688static void __init pte_special_tests(struct pgtable_debug_args *args) 689{ 690 pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot); 691 692 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) 693 return; 694 695 pr_debug("Validating PTE special\n"); 696 WARN_ON(!pte_special(pte_mkspecial(pte))); 697} 698 699static void __init pte_protnone_tests(struct pgtable_debug_args *args) 700{ 701 pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot_none); 702 703 if (!IS_ENABLED(CONFIG_NUMA_BALANCING)) 704 return; 705 706 pr_debug("Validating PTE protnone\n"); 707 WARN_ON(!pte_protnone(pte)); 708 WARN_ON(!pte_present(pte)); 709} 710 711#ifdef CONFIG_TRANSPARENT_HUGEPAGE 712static void __init pmd_protnone_tests(struct pgtable_debug_args *args) 713{ 714 pmd_t pmd; 715 716 if (!IS_ENABLED(CONFIG_NUMA_BALANCING)) 717 return; 718 719 if (!has_transparent_hugepage()) 720 return; 721 722 pr_debug("Validating PMD protnone\n"); 723 pmd = pmd_mkhuge(pfn_pmd(args->fixed_pmd_pfn, args->page_prot_none)); 724 WARN_ON(!pmd_protnone(pmd)); 725 WARN_ON(!pmd_present(pmd)); 726} 727#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 728static void __init pmd_protnone_tests(struct pgtable_debug_args *args) { } 729#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 730 731#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP 732static void __init pte_devmap_tests(struct pgtable_debug_args *args) 733{ 734 pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot); 735 736 pr_debug("Validating PTE devmap\n"); 737 WARN_ON(!pte_devmap(pte_mkdevmap(pte))); 738} 739 740#ifdef CONFIG_TRANSPARENT_HUGEPAGE 741static void __init pmd_devmap_tests(struct pgtable_debug_args *args) 742{ 743 pmd_t pmd; 744 745 if (!has_transparent_hugepage()) 746 return; 747 748 pr_debug("Validating PMD devmap\n"); 749 pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot); 750 WARN_ON(!pmd_devmap(pmd_mkdevmap(pmd))); 751} 752 753#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 754static void __init pud_devmap_tests(struct pgtable_debug_args *args) 755{ 756 pud_t pud; 757 758 if (!has_transparent_hugepage()) 759 return; 760 761 pr_debug("Validating PUD devmap\n"); 762 pud = pfn_pud(args->fixed_pud_pfn, args->page_prot); 763 WARN_ON(!pud_devmap(pud_mkdevmap(pud))); 764} 765#else /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 766static void __init pud_devmap_tests(struct pgtable_debug_args *args) { } 767#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 768#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 769static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { } 770static void __init pud_devmap_tests(struct pgtable_debug_args *args) { } 771#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 772#else 773static void __init pte_devmap_tests(struct pgtable_debug_args *args) { } 774static void __init pmd_devmap_tests(struct pgtable_debug_args *args) { } 775static void __init pud_devmap_tests(struct pgtable_debug_args *args) { } 776#endif /* CONFIG_ARCH_HAS_PTE_DEVMAP */ 777 778static void __init pte_soft_dirty_tests(struct pgtable_debug_args *args) 779{ 780 pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot); 781 782 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 783 return; 784 785 pr_debug("Validating PTE soft dirty\n"); 786 WARN_ON(!pte_soft_dirty(pte_mksoft_dirty(pte))); 787 WARN_ON(pte_soft_dirty(pte_clear_soft_dirty(pte))); 788} 789 790static void __init pte_swap_soft_dirty_tests(struct pgtable_debug_args *args) 791{ 792 pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot); 793 794 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 795 return; 796 797 pr_debug("Validating PTE swap soft dirty\n"); 798 WARN_ON(!pte_swp_soft_dirty(pte_swp_mksoft_dirty(pte))); 799 WARN_ON(pte_swp_soft_dirty(pte_swp_clear_soft_dirty(pte))); 800} 801 802#ifdef CONFIG_TRANSPARENT_HUGEPAGE 803static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args) 804{ 805 pmd_t pmd; 806 807 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 808 return; 809 810 if (!has_transparent_hugepage()) 811 return; 812 813 pr_debug("Validating PMD soft dirty\n"); 814 pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot); 815 WARN_ON(!pmd_soft_dirty(pmd_mksoft_dirty(pmd))); 816 WARN_ON(pmd_soft_dirty(pmd_clear_soft_dirty(pmd))); 817} 818 819static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args) 820{ 821 pmd_t pmd; 822 823 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) || 824 !IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION)) 825 return; 826 827 if (!has_transparent_hugepage()) 828 return; 829 830 pr_debug("Validating PMD swap soft dirty\n"); 831 pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot); 832 WARN_ON(!pmd_swp_soft_dirty(pmd_swp_mksoft_dirty(pmd))); 833 WARN_ON(pmd_swp_soft_dirty(pmd_swp_clear_soft_dirty(pmd))); 834} 835#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 836static void __init pmd_soft_dirty_tests(struct pgtable_debug_args *args) { } 837static void __init pmd_swap_soft_dirty_tests(struct pgtable_debug_args *args) { } 838#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 839 840static void __init pte_swap_exclusive_tests(struct pgtable_debug_args *args) 841{ 842#ifdef __HAVE_ARCH_PTE_SWP_EXCLUSIVE 843 pte_t pte = pfn_pte(args->fixed_pte_pfn, args->page_prot); 844 845 pr_debug("Validating PTE swap exclusive\n"); 846 pte = pte_swp_mkexclusive(pte); 847 WARN_ON(!pte_swp_exclusive(pte)); 848 pte = pte_swp_clear_exclusive(pte); 849 WARN_ON(pte_swp_exclusive(pte)); 850#endif /* __HAVE_ARCH_PTE_SWP_EXCLUSIVE */ 851} 852 853static void __init pte_swap_tests(struct pgtable_debug_args *args) 854{ 855 swp_entry_t swp; 856 pte_t pte; 857 858 pr_debug("Validating PTE swap\n"); 859 pte = pfn_pte(args->fixed_pte_pfn, args->page_prot); 860 swp = __pte_to_swp_entry(pte); 861 pte = __swp_entry_to_pte(swp); 862 WARN_ON(args->fixed_pte_pfn != pte_pfn(pte)); 863} 864 865#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 866static void __init pmd_swap_tests(struct pgtable_debug_args *args) 867{ 868 swp_entry_t swp; 869 pmd_t pmd; 870 871 if (!has_transparent_hugepage()) 872 return; 873 874 pr_debug("Validating PMD swap\n"); 875 pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot); 876 swp = __pmd_to_swp_entry(pmd); 877 pmd = __swp_entry_to_pmd(swp); 878 WARN_ON(args->fixed_pmd_pfn != pmd_pfn(pmd)); 879} 880#else /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */ 881static void __init pmd_swap_tests(struct pgtable_debug_args *args) { } 882#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 883 884static void __init swap_migration_tests(struct pgtable_debug_args *args) 885{ 886 struct page *page; 887 swp_entry_t swp; 888 889 if (!IS_ENABLED(CONFIG_MIGRATION)) 890 return; 891 892 /* 893 * swap_migration_tests() requires a dedicated page as it needs to 894 * be locked before creating a migration entry from it. Locking the 895 * page that actually maps kernel text ('start_kernel') can be real 896 * problematic. Lets use the allocated page explicitly for this 897 * purpose. 898 */ 899 page = (args->pte_pfn != ULONG_MAX) ? pfn_to_page(args->pte_pfn) : NULL; 900 if (!page) 901 return; 902 903 pr_debug("Validating swap migration\n"); 904 905 /* 906 * make_[readable|writable]_migration_entry() expects given page to 907 * be locked, otherwise it stumbles upon a BUG_ON(). 908 */ 909 __SetPageLocked(page); 910 swp = make_writable_migration_entry(page_to_pfn(page)); 911 WARN_ON(!is_migration_entry(swp)); 912 WARN_ON(!is_writable_migration_entry(swp)); 913 914 swp = make_readable_migration_entry(swp_offset(swp)); 915 WARN_ON(!is_migration_entry(swp)); 916 WARN_ON(is_writable_migration_entry(swp)); 917 918 swp = make_readable_migration_entry(page_to_pfn(page)); 919 WARN_ON(!is_migration_entry(swp)); 920 WARN_ON(is_writable_migration_entry(swp)); 921 __ClearPageLocked(page); 922} 923 924#ifdef CONFIG_HUGETLB_PAGE 925static void __init hugetlb_basic_tests(struct pgtable_debug_args *args) 926{ 927 struct page *page; 928 pte_t pte; 929 930 pr_debug("Validating HugeTLB basic\n"); 931 /* 932 * Accessing the page associated with the pfn is safe here, 933 * as it was previously derived from a real kernel symbol. 934 */ 935 page = pfn_to_page(args->fixed_pmd_pfn); 936 pte = mk_huge_pte(page, args->page_prot); 937 938 WARN_ON(!huge_pte_dirty(huge_pte_mkdirty(pte))); 939 WARN_ON(!huge_pte_write(huge_pte_mkwrite(huge_pte_wrprotect(pte)))); 940 WARN_ON(huge_pte_write(huge_pte_wrprotect(huge_pte_mkwrite(pte)))); 941 942#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 943 pte = pfn_pte(args->fixed_pmd_pfn, args->page_prot); 944 945 WARN_ON(!pte_huge(pte_mkhuge(pte))); 946#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 947} 948#else /* !CONFIG_HUGETLB_PAGE */ 949static void __init hugetlb_basic_tests(struct pgtable_debug_args *args) { } 950#endif /* CONFIG_HUGETLB_PAGE */ 951 952#ifdef CONFIG_TRANSPARENT_HUGEPAGE 953static void __init pmd_thp_tests(struct pgtable_debug_args *args) 954{ 955 pmd_t pmd; 956 957 if (!has_transparent_hugepage()) 958 return; 959 960 pr_debug("Validating PMD based THP\n"); 961 /* 962 * pmd_trans_huge() and pmd_present() must return positive after 963 * MMU invalidation with pmd_mkinvalid(). This behavior is an 964 * optimization for transparent huge page. pmd_trans_huge() must 965 * be true if pmd_page() returns a valid THP to avoid taking the 966 * pmd_lock when others walk over non transhuge pmds (i.e. there 967 * are no THP allocated). Especially when splitting a THP and 968 * removing the present bit from the pmd, pmd_trans_huge() still 969 * needs to return true. pmd_present() should be true whenever 970 * pmd_trans_huge() returns true. 971 */ 972 pmd = pfn_pmd(args->fixed_pmd_pfn, args->page_prot); 973 WARN_ON(!pmd_trans_huge(pmd_mkhuge(pmd))); 974 975#ifndef __HAVE_ARCH_PMDP_INVALIDATE 976 WARN_ON(!pmd_trans_huge(pmd_mkinvalid(pmd_mkhuge(pmd)))); 977 WARN_ON(!pmd_present(pmd_mkinvalid(pmd_mkhuge(pmd)))); 978#endif /* __HAVE_ARCH_PMDP_INVALIDATE */ 979} 980 981#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 982static void __init pud_thp_tests(struct pgtable_debug_args *args) 983{ 984 pud_t pud; 985 986 if (!has_transparent_hugepage()) 987 return; 988 989 pr_debug("Validating PUD based THP\n"); 990 pud = pfn_pud(args->fixed_pud_pfn, args->page_prot); 991 WARN_ON(!pud_trans_huge(pud_mkhuge(pud))); 992 993 /* 994 * pud_mkinvalid() has been dropped for now. Enable back 995 * these tests when it comes back with a modified pud_present(). 996 * 997 * WARN_ON(!pud_trans_huge(pud_mkinvalid(pud_mkhuge(pud)))); 998 * WARN_ON(!pud_present(pud_mkinvalid(pud_mkhuge(pud)))); 999 */ 1000} 1001#else /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1002static void __init pud_thp_tests(struct pgtable_debug_args *args) { } 1003#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1004#else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 1005static void __init pmd_thp_tests(struct pgtable_debug_args *args) { } 1006static void __init pud_thp_tests(struct pgtable_debug_args *args) { } 1007#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1008 1009static unsigned long __init get_random_vaddr(void) 1010{ 1011 unsigned long random_vaddr, random_pages, total_user_pages; 1012 1013 total_user_pages = (TASK_SIZE - FIRST_USER_ADDRESS) / PAGE_SIZE; 1014 1015 random_pages = get_random_long() % total_user_pages; 1016 random_vaddr = FIRST_USER_ADDRESS + random_pages * PAGE_SIZE; 1017 1018 return random_vaddr; 1019} 1020 1021static void __init destroy_args(struct pgtable_debug_args *args) 1022{ 1023 struct page *page = NULL; 1024 1025 /* Free (huge) page */ 1026 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 1027 IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 1028 has_transparent_hugepage() && 1029 args->pud_pfn != ULONG_MAX) { 1030 if (args->is_contiguous_page) { 1031 free_contig_range(args->pud_pfn, 1032 (1 << (HPAGE_PUD_SHIFT - PAGE_SHIFT))); 1033 } else { 1034 page = pfn_to_page(args->pud_pfn); 1035 __free_pages(page, HPAGE_PUD_SHIFT - PAGE_SHIFT); 1036 } 1037 1038 args->pud_pfn = ULONG_MAX; 1039 args->pmd_pfn = ULONG_MAX; 1040 args->pte_pfn = ULONG_MAX; 1041 } 1042 1043 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 1044 has_transparent_hugepage() && 1045 args->pmd_pfn != ULONG_MAX) { 1046 if (args->is_contiguous_page) { 1047 free_contig_range(args->pmd_pfn, (1 << HPAGE_PMD_ORDER)); 1048 } else { 1049 page = pfn_to_page(args->pmd_pfn); 1050 __free_pages(page, HPAGE_PMD_ORDER); 1051 } 1052 1053 args->pmd_pfn = ULONG_MAX; 1054 args->pte_pfn = ULONG_MAX; 1055 } 1056 1057 if (args->pte_pfn != ULONG_MAX) { 1058 page = pfn_to_page(args->pte_pfn); 1059 __free_pages(page, 0); 1060 1061 args->pte_pfn = ULONG_MAX; 1062 } 1063 1064 /* Free page table entries */ 1065 if (args->start_ptep) { 1066 pte_free(args->mm, args->start_ptep); 1067 mm_dec_nr_ptes(args->mm); 1068 } 1069 1070 if (args->start_pmdp) { 1071 pmd_free(args->mm, args->start_pmdp); 1072 mm_dec_nr_pmds(args->mm); 1073 } 1074 1075 if (args->start_pudp) { 1076 pud_free(args->mm, args->start_pudp); 1077 mm_dec_nr_puds(args->mm); 1078 } 1079 1080 if (args->start_p4dp) 1081 p4d_free(args->mm, args->start_p4dp); 1082 1083 /* Free vma and mm struct */ 1084 if (args->vma) 1085 vm_area_free(args->vma); 1086 1087 if (args->mm) 1088 mmdrop(args->mm); 1089} 1090 1091static struct page * __init 1092debug_vm_pgtable_alloc_huge_page(struct pgtable_debug_args *args, int order) 1093{ 1094 struct page *page = NULL; 1095 1096#ifdef CONFIG_CONTIG_ALLOC 1097 if (order >= MAX_ORDER) { 1098 page = alloc_contig_pages((1 << order), GFP_KERNEL, 1099 first_online_node, NULL); 1100 if (page) { 1101 args->is_contiguous_page = true; 1102 return page; 1103 } 1104 } 1105#endif 1106 1107 if (order < MAX_ORDER) 1108 page = alloc_pages(GFP_KERNEL, order); 1109 1110 return page; 1111} 1112 1113static int __init init_args(struct pgtable_debug_args *args) 1114{ 1115 struct page *page = NULL; 1116 phys_addr_t phys; 1117 int ret = 0; 1118 1119 /* 1120 * Initialize the debugging data. 1121 * 1122 * vm_get_page_prot(VM_NONE) or vm_get_page_prot(VM_SHARED|VM_NONE) 1123 * will help create page table entries with PROT_NONE permission as 1124 * required for pxx_protnone_tests(). 1125 */ 1126 memset(args, 0, sizeof(*args)); 1127 args->vaddr = get_random_vaddr(); 1128 args->page_prot = vm_get_page_prot(VMFLAGS); 1129 args->page_prot_none = vm_get_page_prot(VM_NONE); 1130 args->is_contiguous_page = false; 1131 args->pud_pfn = ULONG_MAX; 1132 args->pmd_pfn = ULONG_MAX; 1133 args->pte_pfn = ULONG_MAX; 1134 args->fixed_pgd_pfn = ULONG_MAX; 1135 args->fixed_p4d_pfn = ULONG_MAX; 1136 args->fixed_pud_pfn = ULONG_MAX; 1137 args->fixed_pmd_pfn = ULONG_MAX; 1138 args->fixed_pte_pfn = ULONG_MAX; 1139 1140 /* Allocate mm and vma */ 1141 args->mm = mm_alloc(); 1142 if (!args->mm) { 1143 pr_err("Failed to allocate mm struct\n"); 1144 ret = -ENOMEM; 1145 goto error; 1146 } 1147 1148 args->vma = vm_area_alloc(args->mm); 1149 if (!args->vma) { 1150 pr_err("Failed to allocate vma\n"); 1151 ret = -ENOMEM; 1152 goto error; 1153 } 1154 1155 /* 1156 * Allocate page table entries. They will be modified in the tests. 1157 * Lets save the page table entries so that they can be released 1158 * when the tests are completed. 1159 */ 1160 args->pgdp = pgd_offset(args->mm, args->vaddr); 1161 args->p4dp = p4d_alloc(args->mm, args->pgdp, args->vaddr); 1162 if (!args->p4dp) { 1163 pr_err("Failed to allocate p4d entries\n"); 1164 ret = -ENOMEM; 1165 goto error; 1166 } 1167 args->start_p4dp = p4d_offset(args->pgdp, 0UL); 1168 WARN_ON(!args->start_p4dp); 1169 1170 args->pudp = pud_alloc(args->mm, args->p4dp, args->vaddr); 1171 if (!args->pudp) { 1172 pr_err("Failed to allocate pud entries\n"); 1173 ret = -ENOMEM; 1174 goto error; 1175 } 1176 args->start_pudp = pud_offset(args->p4dp, 0UL); 1177 WARN_ON(!args->start_pudp); 1178 1179 args->pmdp = pmd_alloc(args->mm, args->pudp, args->vaddr); 1180 if (!args->pmdp) { 1181 pr_err("Failed to allocate pmd entries\n"); 1182 ret = -ENOMEM; 1183 goto error; 1184 } 1185 args->start_pmdp = pmd_offset(args->pudp, 0UL); 1186 WARN_ON(!args->start_pmdp); 1187 1188 if (pte_alloc(args->mm, args->pmdp)) { 1189 pr_err("Failed to allocate pte entries\n"); 1190 ret = -ENOMEM; 1191 goto error; 1192 } 1193 args->start_ptep = pmd_pgtable(READ_ONCE(*args->pmdp)); 1194 WARN_ON(!args->start_ptep); 1195 1196 /* 1197 * PFN for mapping at PTE level is determined from a standard kernel 1198 * text symbol. But pfns for higher page table levels are derived by 1199 * masking lower bits of this real pfn. These derived pfns might not 1200 * exist on the platform but that does not really matter as pfn_pxx() 1201 * helpers will still create appropriate entries for the test. This 1202 * helps avoid large memory block allocations to be used for mapping 1203 * at higher page table levels in some of the tests. 1204 */ 1205 phys = __pa_symbol(&start_kernel); 1206 args->fixed_pgd_pfn = __phys_to_pfn(phys & PGDIR_MASK); 1207 args->fixed_p4d_pfn = __phys_to_pfn(phys & P4D_MASK); 1208 args->fixed_pud_pfn = __phys_to_pfn(phys & PUD_MASK); 1209 args->fixed_pmd_pfn = __phys_to_pfn(phys & PMD_MASK); 1210 args->fixed_pte_pfn = __phys_to_pfn(phys & PAGE_MASK); 1211 WARN_ON(!pfn_valid(args->fixed_pte_pfn)); 1212 1213 /* 1214 * Allocate (huge) pages because some of the tests need to access 1215 * the data in the pages. The corresponding tests will be skipped 1216 * if we fail to allocate (huge) pages. 1217 */ 1218 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 1219 IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 1220 has_transparent_hugepage()) { 1221 page = debug_vm_pgtable_alloc_huge_page(args, 1222 HPAGE_PUD_SHIFT - PAGE_SHIFT); 1223 if (page) { 1224 args->pud_pfn = page_to_pfn(page); 1225 args->pmd_pfn = args->pud_pfn; 1226 args->pte_pfn = args->pud_pfn; 1227 return 0; 1228 } 1229 } 1230 1231 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 1232 has_transparent_hugepage()) { 1233 page = debug_vm_pgtable_alloc_huge_page(args, HPAGE_PMD_ORDER); 1234 if (page) { 1235 args->pmd_pfn = page_to_pfn(page); 1236 args->pte_pfn = args->pmd_pfn; 1237 return 0; 1238 } 1239 } 1240 1241 page = alloc_pages(GFP_KERNEL, 0); 1242 if (page) 1243 args->pte_pfn = page_to_pfn(page); 1244 1245 return 0; 1246 1247error: 1248 destroy_args(args); 1249 return ret; 1250} 1251 1252static int __init debug_vm_pgtable(void) 1253{ 1254 struct pgtable_debug_args args; 1255 spinlock_t *ptl = NULL; 1256 int idx, ret; 1257 1258 pr_info("Validating architecture page table helpers\n"); 1259 ret = init_args(&args); 1260 if (ret) 1261 return ret; 1262 1263 /* 1264 * Iterate over each possible vm_flags to make sure that all 1265 * the basic page table transformation validations just hold 1266 * true irrespective of the starting protection value for a 1267 * given page table entry. 1268 * 1269 * Protection based vm_flags combinatins are always linear 1270 * and increasing i.e starting from VM_NONE and going upto 1271 * (VM_SHARED | READ | WRITE | EXEC). 1272 */ 1273#define VM_FLAGS_START (VM_NONE) 1274#define VM_FLAGS_END (VM_SHARED | VM_EXEC | VM_WRITE | VM_READ) 1275 1276 for (idx = VM_FLAGS_START; idx <= VM_FLAGS_END; idx++) { 1277 pte_basic_tests(&args, idx); 1278 pmd_basic_tests(&args, idx); 1279 pud_basic_tests(&args, idx); 1280 } 1281 1282 /* 1283 * Both P4D and PGD level tests are very basic which do not 1284 * involve creating page table entries from the protection 1285 * value and the given pfn. Hence just keep them out from 1286 * the above iteration for now to save some test execution 1287 * time. 1288 */ 1289 p4d_basic_tests(&args); 1290 pgd_basic_tests(&args); 1291 1292 pmd_leaf_tests(&args); 1293 pud_leaf_tests(&args); 1294 1295 pte_savedwrite_tests(&args); 1296 pmd_savedwrite_tests(&args); 1297 1298 pte_special_tests(&args); 1299 pte_protnone_tests(&args); 1300 pmd_protnone_tests(&args); 1301 1302 pte_devmap_tests(&args); 1303 pmd_devmap_tests(&args); 1304 pud_devmap_tests(&args); 1305 1306 pte_soft_dirty_tests(&args); 1307 pmd_soft_dirty_tests(&args); 1308 pte_swap_soft_dirty_tests(&args); 1309 pmd_swap_soft_dirty_tests(&args); 1310 1311 pte_swap_exclusive_tests(&args); 1312 1313 pte_swap_tests(&args); 1314 pmd_swap_tests(&args); 1315 1316 swap_migration_tests(&args); 1317 1318 pmd_thp_tests(&args); 1319 pud_thp_tests(&args); 1320 1321 hugetlb_basic_tests(&args); 1322 1323 /* 1324 * Page table modifying tests. They need to hold 1325 * proper page table lock. 1326 */ 1327 1328 args.ptep = pte_offset_map_lock(args.mm, args.pmdp, args.vaddr, &ptl); 1329 pte_clear_tests(&args); 1330 pte_advanced_tests(&args); 1331 pte_unmap_unlock(args.ptep, ptl); 1332 1333 ptl = pmd_lock(args.mm, args.pmdp); 1334 pmd_clear_tests(&args); 1335 pmd_advanced_tests(&args); 1336 pmd_huge_tests(&args); 1337 pmd_populate_tests(&args); 1338 spin_unlock(ptl); 1339 1340 ptl = pud_lock(args.mm, args.pudp); 1341 pud_clear_tests(&args); 1342 pud_advanced_tests(&args); 1343 pud_huge_tests(&args); 1344 pud_populate_tests(&args); 1345 spin_unlock(ptl); 1346 1347 spin_lock(&(args.mm->page_table_lock)); 1348 p4d_clear_tests(&args); 1349 pgd_clear_tests(&args); 1350 p4d_populate_tests(&args); 1351 pgd_populate_tests(&args); 1352 spin_unlock(&(args.mm->page_table_lock)); 1353 1354 destroy_args(&args); 1355 return 0; 1356} 1357late_initcall(debug_vm_pgtable);