cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dmapool.c (13939B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * DMA Pool allocator
      4 *
      5 * Copyright 2001 David Brownell
      6 * Copyright 2007 Intel Corporation
      7 *   Author: Matthew Wilcox <willy@linux.intel.com>
      8 *
      9 * This allocator returns small blocks of a given size which are DMA-able by
     10 * the given device.  It uses the dma_alloc_coherent page allocator to get
     11 * new pages, then splits them up into blocks of the required size.
     12 * Many older drivers still have their own code to do this.
     13 *
     14 * The current design of this allocator is fairly simple.  The pool is
     15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
     16 * allocated pages.  Each page in the page_list is split into blocks of at
     17 * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
     18 * list of free blocks within the page.  Used blocks aren't tracked, but we
     19 * keep a count of how many are currently allocated from each page.
     20 */
     21
     22#include <linux/device.h>
     23#include <linux/dma-mapping.h>
     24#include <linux/dmapool.h>
     25#include <linux/kernel.h>
     26#include <linux/list.h>
     27#include <linux/export.h>
     28#include <linux/mutex.h>
     29#include <linux/poison.h>
     30#include <linux/sched.h>
     31#include <linux/sched/mm.h>
     32#include <linux/slab.h>
     33#include <linux/stat.h>
     34#include <linux/spinlock.h>
     35#include <linux/string.h>
     36#include <linux/types.h>
     37#include <linux/wait.h>
     38
     39#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
     40#define DMAPOOL_DEBUG 1
     41#endif
     42
     43struct dma_pool {		/* the pool */
     44	struct list_head page_list;
     45	spinlock_t lock;
     46	size_t size;
     47	struct device *dev;
     48	size_t allocation;
     49	size_t boundary;
     50	char name[32];
     51	struct list_head pools;
     52};
     53
     54struct dma_page {		/* cacheable header for 'allocation' bytes */
     55	struct list_head page_list;
     56	void *vaddr;
     57	dma_addr_t dma;
     58	unsigned int in_use;
     59	unsigned int offset;
     60};
     61
     62static DEFINE_MUTEX(pools_lock);
     63static DEFINE_MUTEX(pools_reg_lock);
     64
     65static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
     66{
     67	unsigned temp;
     68	unsigned size;
     69	char *next;
     70	struct dma_page *page;
     71	struct dma_pool *pool;
     72
     73	next = buf;
     74	size = PAGE_SIZE;
     75
     76	temp = scnprintf(next, size, "poolinfo - 0.1\n");
     77	size -= temp;
     78	next += temp;
     79
     80	mutex_lock(&pools_lock);
     81	list_for_each_entry(pool, &dev->dma_pools, pools) {
     82		unsigned pages = 0;
     83		unsigned blocks = 0;
     84
     85		spin_lock_irq(&pool->lock);
     86		list_for_each_entry(page, &pool->page_list, page_list) {
     87			pages++;
     88			blocks += page->in_use;
     89		}
     90		spin_unlock_irq(&pool->lock);
     91
     92		/* per-pool info, no real statistics yet */
     93		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
     94				 pool->name, blocks,
     95				 pages * (pool->allocation / pool->size),
     96				 pool->size, pages);
     97		size -= temp;
     98		next += temp;
     99	}
    100	mutex_unlock(&pools_lock);
    101
    102	return PAGE_SIZE - size;
    103}
    104
    105static DEVICE_ATTR_RO(pools);
    106
    107/**
    108 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
    109 * @name: name of pool, for diagnostics
    110 * @dev: device that will be doing the DMA
    111 * @size: size of the blocks in this pool.
    112 * @align: alignment requirement for blocks; must be a power of two
    113 * @boundary: returned blocks won't cross this power of two boundary
    114 * Context: not in_interrupt()
    115 *
    116 * Given one of these pools, dma_pool_alloc()
    117 * may be used to allocate memory.  Such memory will all have "consistent"
    118 * DMA mappings, accessible by the device and its driver without using
    119 * cache flushing primitives.  The actual size of blocks allocated may be
    120 * larger than requested because of alignment.
    121 *
    122 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
    123 * cross that size boundary.  This is useful for devices which have
    124 * addressing restrictions on individual DMA transfers, such as not crossing
    125 * boundaries of 4KBytes.
    126 *
    127 * Return: a dma allocation pool with the requested characteristics, or
    128 * %NULL if one can't be created.
    129 */
    130struct dma_pool *dma_pool_create(const char *name, struct device *dev,
    131				 size_t size, size_t align, size_t boundary)
    132{
    133	struct dma_pool *retval;
    134	size_t allocation;
    135	bool empty = false;
    136
    137	if (align == 0)
    138		align = 1;
    139	else if (align & (align - 1))
    140		return NULL;
    141
    142	if (size == 0)
    143		return NULL;
    144	else if (size < 4)
    145		size = 4;
    146
    147	size = ALIGN(size, align);
    148	allocation = max_t(size_t, size, PAGE_SIZE);
    149
    150	if (!boundary)
    151		boundary = allocation;
    152	else if ((boundary < size) || (boundary & (boundary - 1)))
    153		return NULL;
    154
    155	retval = kmalloc(sizeof(*retval), GFP_KERNEL);
    156	if (!retval)
    157		return retval;
    158
    159	strscpy(retval->name, name, sizeof(retval->name));
    160
    161	retval->dev = dev;
    162
    163	INIT_LIST_HEAD(&retval->page_list);
    164	spin_lock_init(&retval->lock);
    165	retval->size = size;
    166	retval->boundary = boundary;
    167	retval->allocation = allocation;
    168
    169	INIT_LIST_HEAD(&retval->pools);
    170
    171	/*
    172	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
    173	 * pools_reg_lock ensures that there is not a race between
    174	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
    175	 * when the first invocation of dma_pool_create() failed on
    176	 * device_create_file() and the second assumes that it has been done (I
    177	 * know it is a short window).
    178	 */
    179	mutex_lock(&pools_reg_lock);
    180	mutex_lock(&pools_lock);
    181	if (list_empty(&dev->dma_pools))
    182		empty = true;
    183	list_add(&retval->pools, &dev->dma_pools);
    184	mutex_unlock(&pools_lock);
    185	if (empty) {
    186		int err;
    187
    188		err = device_create_file(dev, &dev_attr_pools);
    189		if (err) {
    190			mutex_lock(&pools_lock);
    191			list_del(&retval->pools);
    192			mutex_unlock(&pools_lock);
    193			mutex_unlock(&pools_reg_lock);
    194			kfree(retval);
    195			return NULL;
    196		}
    197	}
    198	mutex_unlock(&pools_reg_lock);
    199	return retval;
    200}
    201EXPORT_SYMBOL(dma_pool_create);
    202
    203static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
    204{
    205	unsigned int offset = 0;
    206	unsigned int next_boundary = pool->boundary;
    207
    208	do {
    209		unsigned int next = offset + pool->size;
    210		if (unlikely((next + pool->size) >= next_boundary)) {
    211			next = next_boundary;
    212			next_boundary += pool->boundary;
    213		}
    214		*(int *)(page->vaddr + offset) = next;
    215		offset = next;
    216	} while (offset < pool->allocation);
    217}
    218
    219static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
    220{
    221	struct dma_page *page;
    222
    223	page = kmalloc(sizeof(*page), mem_flags);
    224	if (!page)
    225		return NULL;
    226	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
    227					 &page->dma, mem_flags);
    228	if (page->vaddr) {
    229#ifdef	DMAPOOL_DEBUG
    230		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
    231#endif
    232		pool_initialise_page(pool, page);
    233		page->in_use = 0;
    234		page->offset = 0;
    235	} else {
    236		kfree(page);
    237		page = NULL;
    238	}
    239	return page;
    240}
    241
    242static inline bool is_page_busy(struct dma_page *page)
    243{
    244	return page->in_use != 0;
    245}
    246
    247static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
    248{
    249	dma_addr_t dma = page->dma;
    250
    251#ifdef	DMAPOOL_DEBUG
    252	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
    253#endif
    254	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
    255	list_del(&page->page_list);
    256	kfree(page);
    257}
    258
    259/**
    260 * dma_pool_destroy - destroys a pool of dma memory blocks.
    261 * @pool: dma pool that will be destroyed
    262 * Context: !in_interrupt()
    263 *
    264 * Caller guarantees that no more memory from the pool is in use,
    265 * and that nothing will try to use the pool after this call.
    266 */
    267void dma_pool_destroy(struct dma_pool *pool)
    268{
    269	struct dma_page *page, *tmp;
    270	bool empty = false;
    271
    272	if (unlikely(!pool))
    273		return;
    274
    275	mutex_lock(&pools_reg_lock);
    276	mutex_lock(&pools_lock);
    277	list_del(&pool->pools);
    278	if (pool->dev && list_empty(&pool->dev->dma_pools))
    279		empty = true;
    280	mutex_unlock(&pools_lock);
    281	if (empty)
    282		device_remove_file(pool->dev, &dev_attr_pools);
    283	mutex_unlock(&pools_reg_lock);
    284
    285	list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
    286		if (is_page_busy(page)) {
    287			if (pool->dev)
    288				dev_err(pool->dev, "%s %s, %p busy\n", __func__,
    289					pool->name, page->vaddr);
    290			else
    291				pr_err("%s %s, %p busy\n", __func__,
    292				       pool->name, page->vaddr);
    293			/* leak the still-in-use consistent memory */
    294			list_del(&page->page_list);
    295			kfree(page);
    296		} else
    297			pool_free_page(pool, page);
    298	}
    299
    300	kfree(pool);
    301}
    302EXPORT_SYMBOL(dma_pool_destroy);
    303
    304/**
    305 * dma_pool_alloc - get a block of consistent memory
    306 * @pool: dma pool that will produce the block
    307 * @mem_flags: GFP_* bitmask
    308 * @handle: pointer to dma address of block
    309 *
    310 * Return: the kernel virtual address of a currently unused block,
    311 * and reports its dma address through the handle.
    312 * If such a memory block can't be allocated, %NULL is returned.
    313 */
    314void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
    315		     dma_addr_t *handle)
    316{
    317	unsigned long flags;
    318	struct dma_page *page;
    319	size_t offset;
    320	void *retval;
    321
    322	might_alloc(mem_flags);
    323
    324	spin_lock_irqsave(&pool->lock, flags);
    325	list_for_each_entry(page, &pool->page_list, page_list) {
    326		if (page->offset < pool->allocation)
    327			goto ready;
    328	}
    329
    330	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
    331	spin_unlock_irqrestore(&pool->lock, flags);
    332
    333	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
    334	if (!page)
    335		return NULL;
    336
    337	spin_lock_irqsave(&pool->lock, flags);
    338
    339	list_add(&page->page_list, &pool->page_list);
    340 ready:
    341	page->in_use++;
    342	offset = page->offset;
    343	page->offset = *(int *)(page->vaddr + offset);
    344	retval = offset + page->vaddr;
    345	*handle = offset + page->dma;
    346#ifdef	DMAPOOL_DEBUG
    347	{
    348		int i;
    349		u8 *data = retval;
    350		/* page->offset is stored in first 4 bytes */
    351		for (i = sizeof(page->offset); i < pool->size; i++) {
    352			if (data[i] == POOL_POISON_FREED)
    353				continue;
    354			if (pool->dev)
    355				dev_err(pool->dev, "%s %s, %p (corrupted)\n",
    356					__func__, pool->name, retval);
    357			else
    358				pr_err("%s %s, %p (corrupted)\n",
    359					__func__, pool->name, retval);
    360
    361			/*
    362			 * Dump the first 4 bytes even if they are not
    363			 * POOL_POISON_FREED
    364			 */
    365			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
    366					data, pool->size, 1);
    367			break;
    368		}
    369	}
    370	if (!(mem_flags & __GFP_ZERO))
    371		memset(retval, POOL_POISON_ALLOCATED, pool->size);
    372#endif
    373	spin_unlock_irqrestore(&pool->lock, flags);
    374
    375	if (want_init_on_alloc(mem_flags))
    376		memset(retval, 0, pool->size);
    377
    378	return retval;
    379}
    380EXPORT_SYMBOL(dma_pool_alloc);
    381
    382static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
    383{
    384	struct dma_page *page;
    385
    386	list_for_each_entry(page, &pool->page_list, page_list) {
    387		if (dma < page->dma)
    388			continue;
    389		if ((dma - page->dma) < pool->allocation)
    390			return page;
    391	}
    392	return NULL;
    393}
    394
    395/**
    396 * dma_pool_free - put block back into dma pool
    397 * @pool: the dma pool holding the block
    398 * @vaddr: virtual address of block
    399 * @dma: dma address of block
    400 *
    401 * Caller promises neither device nor driver will again touch this block
    402 * unless it is first re-allocated.
    403 */
    404void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
    405{
    406	struct dma_page *page;
    407	unsigned long flags;
    408	unsigned int offset;
    409
    410	spin_lock_irqsave(&pool->lock, flags);
    411	page = pool_find_page(pool, dma);
    412	if (!page) {
    413		spin_unlock_irqrestore(&pool->lock, flags);
    414		if (pool->dev)
    415			dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
    416				__func__, pool->name, vaddr, &dma);
    417		else
    418			pr_err("%s %s, %p/%pad (bad dma)\n",
    419			       __func__, pool->name, vaddr, &dma);
    420		return;
    421	}
    422
    423	offset = vaddr - page->vaddr;
    424	if (want_init_on_free())
    425		memset(vaddr, 0, pool->size);
    426#ifdef	DMAPOOL_DEBUG
    427	if ((dma - page->dma) != offset) {
    428		spin_unlock_irqrestore(&pool->lock, flags);
    429		if (pool->dev)
    430			dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
    431				__func__, pool->name, vaddr, &dma);
    432		else
    433			pr_err("%s %s, %p (bad vaddr)/%pad\n",
    434			       __func__, pool->name, vaddr, &dma);
    435		return;
    436	}
    437	{
    438		unsigned int chain = page->offset;
    439		while (chain < pool->allocation) {
    440			if (chain != offset) {
    441				chain = *(int *)(page->vaddr + chain);
    442				continue;
    443			}
    444			spin_unlock_irqrestore(&pool->lock, flags);
    445			if (pool->dev)
    446				dev_err(pool->dev, "%s %s, dma %pad already free\n",
    447					__func__, pool->name, &dma);
    448			else
    449				pr_err("%s %s, dma %pad already free\n",
    450				       __func__, pool->name, &dma);
    451			return;
    452		}
    453	}
    454	memset(vaddr, POOL_POISON_FREED, pool->size);
    455#endif
    456
    457	page->in_use--;
    458	*(int *)vaddr = page->offset;
    459	page->offset = offset;
    460	/*
    461	 * Resist a temptation to do
    462	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
    463	 * Better have a few empty pages hang around.
    464	 */
    465	spin_unlock_irqrestore(&pool->lock, flags);
    466}
    467EXPORT_SYMBOL(dma_pool_free);
    468
    469/*
    470 * Managed DMA pool
    471 */
    472static void dmam_pool_release(struct device *dev, void *res)
    473{
    474	struct dma_pool *pool = *(struct dma_pool **)res;
    475
    476	dma_pool_destroy(pool);
    477}
    478
    479static int dmam_pool_match(struct device *dev, void *res, void *match_data)
    480{
    481	return *(struct dma_pool **)res == match_data;
    482}
    483
    484/**
    485 * dmam_pool_create - Managed dma_pool_create()
    486 * @name: name of pool, for diagnostics
    487 * @dev: device that will be doing the DMA
    488 * @size: size of the blocks in this pool.
    489 * @align: alignment requirement for blocks; must be a power of two
    490 * @allocation: returned blocks won't cross this boundary (or zero)
    491 *
    492 * Managed dma_pool_create().  DMA pool created with this function is
    493 * automatically destroyed on driver detach.
    494 *
    495 * Return: a managed dma allocation pool with the requested
    496 * characteristics, or %NULL if one can't be created.
    497 */
    498struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
    499				  size_t size, size_t align, size_t allocation)
    500{
    501	struct dma_pool **ptr, *pool;
    502
    503	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
    504	if (!ptr)
    505		return NULL;
    506
    507	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
    508	if (pool)
    509		devres_add(dev, ptr);
    510	else
    511		devres_free(ptr);
    512
    513	return pool;
    514}
    515EXPORT_SYMBOL(dmam_pool_create);
    516
    517/**
    518 * dmam_pool_destroy - Managed dma_pool_destroy()
    519 * @pool: dma pool that will be destroyed
    520 *
    521 * Managed dma_pool_destroy().
    522 */
    523void dmam_pool_destroy(struct dma_pool *pool)
    524{
    525	struct device *dev = pool->dev;
    526
    527	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
    528}
    529EXPORT_SYMBOL(dmam_pool_destroy);