cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hmm.c (17145B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Copyright 2013 Red Hat Inc.
      4 *
      5 * Authors: Jérôme Glisse <jglisse@redhat.com>
      6 */
      7/*
      8 * Refer to include/linux/hmm.h for information about heterogeneous memory
      9 * management or HMM for short.
     10 */
     11#include <linux/pagewalk.h>
     12#include <linux/hmm.h>
     13#include <linux/init.h>
     14#include <linux/rmap.h>
     15#include <linux/swap.h>
     16#include <linux/slab.h>
     17#include <linux/sched.h>
     18#include <linux/mmzone.h>
     19#include <linux/pagemap.h>
     20#include <linux/swapops.h>
     21#include <linux/hugetlb.h>
     22#include <linux/memremap.h>
     23#include <linux/sched/mm.h>
     24#include <linux/jump_label.h>
     25#include <linux/dma-mapping.h>
     26#include <linux/mmu_notifier.h>
     27#include <linux/memory_hotplug.h>
     28
     29#include "internal.h"
     30
     31struct hmm_vma_walk {
     32	struct hmm_range	*range;
     33	unsigned long		last;
     34};
     35
     36enum {
     37	HMM_NEED_FAULT = 1 << 0,
     38	HMM_NEED_WRITE_FAULT = 1 << 1,
     39	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
     40};
     41
     42static int hmm_pfns_fill(unsigned long addr, unsigned long end,
     43			 struct hmm_range *range, unsigned long cpu_flags)
     44{
     45	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
     46
     47	for (; addr < end; addr += PAGE_SIZE, i++)
     48		range->hmm_pfns[i] = cpu_flags;
     49	return 0;
     50}
     51
     52/*
     53 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
     54 * @addr: range virtual start address (inclusive)
     55 * @end: range virtual end address (exclusive)
     56 * @required_fault: HMM_NEED_* flags
     57 * @walk: mm_walk structure
     58 * Return: -EBUSY after page fault, or page fault error
     59 *
     60 * This function will be called whenever pmd_none() or pte_none() returns true,
     61 * or whenever there is no page directory covering the virtual address range.
     62 */
     63static int hmm_vma_fault(unsigned long addr, unsigned long end,
     64			 unsigned int required_fault, struct mm_walk *walk)
     65{
     66	struct hmm_vma_walk *hmm_vma_walk = walk->private;
     67	struct vm_area_struct *vma = walk->vma;
     68	unsigned int fault_flags = FAULT_FLAG_REMOTE;
     69
     70	WARN_ON_ONCE(!required_fault);
     71	hmm_vma_walk->last = addr;
     72
     73	if (required_fault & HMM_NEED_WRITE_FAULT) {
     74		if (!(vma->vm_flags & VM_WRITE))
     75			return -EPERM;
     76		fault_flags |= FAULT_FLAG_WRITE;
     77	}
     78
     79	for (; addr < end; addr += PAGE_SIZE)
     80		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
     81		    VM_FAULT_ERROR)
     82			return -EFAULT;
     83	return -EBUSY;
     84}
     85
     86static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
     87				       unsigned long pfn_req_flags,
     88				       unsigned long cpu_flags)
     89{
     90	struct hmm_range *range = hmm_vma_walk->range;
     91
     92	/*
     93	 * So we not only consider the individual per page request we also
     94	 * consider the default flags requested for the range. The API can
     95	 * be used 2 ways. The first one where the HMM user coalesces
     96	 * multiple page faults into one request and sets flags per pfn for
     97	 * those faults. The second one where the HMM user wants to pre-
     98	 * fault a range with specific flags. For the latter one it is a
     99	 * waste to have the user pre-fill the pfn arrays with a default
    100	 * flags value.
    101	 */
    102	pfn_req_flags &= range->pfn_flags_mask;
    103	pfn_req_flags |= range->default_flags;
    104
    105	/* We aren't ask to do anything ... */
    106	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
    107		return 0;
    108
    109	/* Need to write fault ? */
    110	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
    111	    !(cpu_flags & HMM_PFN_WRITE))
    112		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
    113
    114	/* If CPU page table is not valid then we need to fault */
    115	if (!(cpu_flags & HMM_PFN_VALID))
    116		return HMM_NEED_FAULT;
    117	return 0;
    118}
    119
    120static unsigned int
    121hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
    122		     const unsigned long hmm_pfns[], unsigned long npages,
    123		     unsigned long cpu_flags)
    124{
    125	struct hmm_range *range = hmm_vma_walk->range;
    126	unsigned int required_fault = 0;
    127	unsigned long i;
    128
    129	/*
    130	 * If the default flags do not request to fault pages, and the mask does
    131	 * not allow for individual pages to be faulted, then
    132	 * hmm_pte_need_fault() will always return 0.
    133	 */
    134	if (!((range->default_flags | range->pfn_flags_mask) &
    135	      HMM_PFN_REQ_FAULT))
    136		return 0;
    137
    138	for (i = 0; i < npages; ++i) {
    139		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
    140						     cpu_flags);
    141		if (required_fault == HMM_NEED_ALL_BITS)
    142			return required_fault;
    143	}
    144	return required_fault;
    145}
    146
    147static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
    148			     __always_unused int depth, struct mm_walk *walk)
    149{
    150	struct hmm_vma_walk *hmm_vma_walk = walk->private;
    151	struct hmm_range *range = hmm_vma_walk->range;
    152	unsigned int required_fault;
    153	unsigned long i, npages;
    154	unsigned long *hmm_pfns;
    155
    156	i = (addr - range->start) >> PAGE_SHIFT;
    157	npages = (end - addr) >> PAGE_SHIFT;
    158	hmm_pfns = &range->hmm_pfns[i];
    159	required_fault =
    160		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
    161	if (!walk->vma) {
    162		if (required_fault)
    163			return -EFAULT;
    164		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
    165	}
    166	if (required_fault)
    167		return hmm_vma_fault(addr, end, required_fault, walk);
    168	return hmm_pfns_fill(addr, end, range, 0);
    169}
    170
    171static inline unsigned long hmm_pfn_flags_order(unsigned long order)
    172{
    173	return order << HMM_PFN_ORDER_SHIFT;
    174}
    175
    176static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
    177						 pmd_t pmd)
    178{
    179	if (pmd_protnone(pmd))
    180		return 0;
    181	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
    182				 HMM_PFN_VALID) |
    183	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
    184}
    185
    186#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    187static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
    188			      unsigned long end, unsigned long hmm_pfns[],
    189			      pmd_t pmd)
    190{
    191	struct hmm_vma_walk *hmm_vma_walk = walk->private;
    192	struct hmm_range *range = hmm_vma_walk->range;
    193	unsigned long pfn, npages, i;
    194	unsigned int required_fault;
    195	unsigned long cpu_flags;
    196
    197	npages = (end - addr) >> PAGE_SHIFT;
    198	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
    199	required_fault =
    200		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
    201	if (required_fault)
    202		return hmm_vma_fault(addr, end, required_fault, walk);
    203
    204	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
    205	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
    206		hmm_pfns[i] = pfn | cpu_flags;
    207	return 0;
    208}
    209#else /* CONFIG_TRANSPARENT_HUGEPAGE */
    210/* stub to allow the code below to compile */
    211int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
    212		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
    213#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    214
    215static inline bool hmm_is_device_private_entry(struct hmm_range *range,
    216		swp_entry_t entry)
    217{
    218	return is_device_private_entry(entry) &&
    219		pfn_swap_entry_to_page(entry)->pgmap->owner ==
    220		range->dev_private_owner;
    221}
    222
    223static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
    224						 pte_t pte)
    225{
    226	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
    227		return 0;
    228	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
    229}
    230
    231static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
    232			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
    233			      unsigned long *hmm_pfn)
    234{
    235	struct hmm_vma_walk *hmm_vma_walk = walk->private;
    236	struct hmm_range *range = hmm_vma_walk->range;
    237	unsigned int required_fault;
    238	unsigned long cpu_flags;
    239	pte_t pte = *ptep;
    240	uint64_t pfn_req_flags = *hmm_pfn;
    241
    242	if (pte_none_mostly(pte)) {
    243		required_fault =
    244			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
    245		if (required_fault)
    246			goto fault;
    247		*hmm_pfn = 0;
    248		return 0;
    249	}
    250
    251	if (!pte_present(pte)) {
    252		swp_entry_t entry = pte_to_swp_entry(pte);
    253
    254		/*
    255		 * Never fault in device private pages, but just report
    256		 * the PFN even if not present.
    257		 */
    258		if (hmm_is_device_private_entry(range, entry)) {
    259			cpu_flags = HMM_PFN_VALID;
    260			if (is_writable_device_private_entry(entry))
    261				cpu_flags |= HMM_PFN_WRITE;
    262			*hmm_pfn = swp_offset(entry) | cpu_flags;
    263			return 0;
    264		}
    265
    266		required_fault =
    267			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
    268		if (!required_fault) {
    269			*hmm_pfn = 0;
    270			return 0;
    271		}
    272
    273		if (!non_swap_entry(entry))
    274			goto fault;
    275
    276		if (is_device_exclusive_entry(entry))
    277			goto fault;
    278
    279		if (is_migration_entry(entry)) {
    280			pte_unmap(ptep);
    281			hmm_vma_walk->last = addr;
    282			migration_entry_wait(walk->mm, pmdp, addr);
    283			return -EBUSY;
    284		}
    285
    286		/* Report error for everything else */
    287		pte_unmap(ptep);
    288		return -EFAULT;
    289	}
    290
    291	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
    292	required_fault =
    293		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
    294	if (required_fault)
    295		goto fault;
    296
    297	/*
    298	 * Bypass devmap pte such as DAX page when all pfn requested
    299	 * flags(pfn_req_flags) are fulfilled.
    300	 * Since each architecture defines a struct page for the zero page, just
    301	 * fall through and treat it like a normal page.
    302	 */
    303	if (!vm_normal_page(walk->vma, addr, pte) &&
    304	    !pte_devmap(pte) &&
    305	    !is_zero_pfn(pte_pfn(pte))) {
    306		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
    307			pte_unmap(ptep);
    308			return -EFAULT;
    309		}
    310		*hmm_pfn = HMM_PFN_ERROR;
    311		return 0;
    312	}
    313
    314	*hmm_pfn = pte_pfn(pte) | cpu_flags;
    315	return 0;
    316
    317fault:
    318	pte_unmap(ptep);
    319	/* Fault any virtual address we were asked to fault */
    320	return hmm_vma_fault(addr, end, required_fault, walk);
    321}
    322
    323static int hmm_vma_walk_pmd(pmd_t *pmdp,
    324			    unsigned long start,
    325			    unsigned long end,
    326			    struct mm_walk *walk)
    327{
    328	struct hmm_vma_walk *hmm_vma_walk = walk->private;
    329	struct hmm_range *range = hmm_vma_walk->range;
    330	unsigned long *hmm_pfns =
    331		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
    332	unsigned long npages = (end - start) >> PAGE_SHIFT;
    333	unsigned long addr = start;
    334	pte_t *ptep;
    335	pmd_t pmd;
    336
    337again:
    338	pmd = READ_ONCE(*pmdp);
    339	if (pmd_none(pmd))
    340		return hmm_vma_walk_hole(start, end, -1, walk);
    341
    342	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
    343		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
    344			hmm_vma_walk->last = addr;
    345			pmd_migration_entry_wait(walk->mm, pmdp);
    346			return -EBUSY;
    347		}
    348		return hmm_pfns_fill(start, end, range, 0);
    349	}
    350
    351	if (!pmd_present(pmd)) {
    352		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
    353			return -EFAULT;
    354		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
    355	}
    356
    357	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
    358		/*
    359		 * No need to take pmd_lock here, even if some other thread
    360		 * is splitting the huge pmd we will get that event through
    361		 * mmu_notifier callback.
    362		 *
    363		 * So just read pmd value and check again it's a transparent
    364		 * huge or device mapping one and compute corresponding pfn
    365		 * values.
    366		 */
    367		pmd = pmd_read_atomic(pmdp);
    368		barrier();
    369		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
    370			goto again;
    371
    372		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
    373	}
    374
    375	/*
    376	 * We have handled all the valid cases above ie either none, migration,
    377	 * huge or transparent huge. At this point either it is a valid pmd
    378	 * entry pointing to pte directory or it is a bad pmd that will not
    379	 * recover.
    380	 */
    381	if (pmd_bad(pmd)) {
    382		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
    383			return -EFAULT;
    384		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
    385	}
    386
    387	ptep = pte_offset_map(pmdp, addr);
    388	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
    389		int r;
    390
    391		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
    392		if (r) {
    393			/* hmm_vma_handle_pte() did pte_unmap() */
    394			return r;
    395		}
    396	}
    397	pte_unmap(ptep - 1);
    398	return 0;
    399}
    400
    401#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
    402    defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    403static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
    404						 pud_t pud)
    405{
    406	if (!pud_present(pud))
    407		return 0;
    408	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
    409				 HMM_PFN_VALID) |
    410	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
    411}
    412
    413static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
    414		struct mm_walk *walk)
    415{
    416	struct hmm_vma_walk *hmm_vma_walk = walk->private;
    417	struct hmm_range *range = hmm_vma_walk->range;
    418	unsigned long addr = start;
    419	pud_t pud;
    420	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
    421
    422	if (!ptl)
    423		return 0;
    424
    425	/* Normally we don't want to split the huge page */
    426	walk->action = ACTION_CONTINUE;
    427
    428	pud = READ_ONCE(*pudp);
    429	if (pud_none(pud)) {
    430		spin_unlock(ptl);
    431		return hmm_vma_walk_hole(start, end, -1, walk);
    432	}
    433
    434	if (pud_huge(pud) && pud_devmap(pud)) {
    435		unsigned long i, npages, pfn;
    436		unsigned int required_fault;
    437		unsigned long *hmm_pfns;
    438		unsigned long cpu_flags;
    439
    440		if (!pud_present(pud)) {
    441			spin_unlock(ptl);
    442			return hmm_vma_walk_hole(start, end, -1, walk);
    443		}
    444
    445		i = (addr - range->start) >> PAGE_SHIFT;
    446		npages = (end - addr) >> PAGE_SHIFT;
    447		hmm_pfns = &range->hmm_pfns[i];
    448
    449		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
    450		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
    451						      npages, cpu_flags);
    452		if (required_fault) {
    453			spin_unlock(ptl);
    454			return hmm_vma_fault(addr, end, required_fault, walk);
    455		}
    456
    457		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
    458		for (i = 0; i < npages; ++i, ++pfn)
    459			hmm_pfns[i] = pfn | cpu_flags;
    460		goto out_unlock;
    461	}
    462
    463	/* Ask for the PUD to be split */
    464	walk->action = ACTION_SUBTREE;
    465
    466out_unlock:
    467	spin_unlock(ptl);
    468	return 0;
    469}
    470#else
    471#define hmm_vma_walk_pud	NULL
    472#endif
    473
    474#ifdef CONFIG_HUGETLB_PAGE
    475static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
    476				      unsigned long start, unsigned long end,
    477				      struct mm_walk *walk)
    478{
    479	unsigned long addr = start, i, pfn;
    480	struct hmm_vma_walk *hmm_vma_walk = walk->private;
    481	struct hmm_range *range = hmm_vma_walk->range;
    482	struct vm_area_struct *vma = walk->vma;
    483	unsigned int required_fault;
    484	unsigned long pfn_req_flags;
    485	unsigned long cpu_flags;
    486	spinlock_t *ptl;
    487	pte_t entry;
    488
    489	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
    490	entry = huge_ptep_get(pte);
    491
    492	i = (start - range->start) >> PAGE_SHIFT;
    493	pfn_req_flags = range->hmm_pfns[i];
    494	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
    495		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
    496	required_fault =
    497		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
    498	if (required_fault) {
    499		spin_unlock(ptl);
    500		return hmm_vma_fault(addr, end, required_fault, walk);
    501	}
    502
    503	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
    504	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
    505		range->hmm_pfns[i] = pfn | cpu_flags;
    506
    507	spin_unlock(ptl);
    508	return 0;
    509}
    510#else
    511#define hmm_vma_walk_hugetlb_entry NULL
    512#endif /* CONFIG_HUGETLB_PAGE */
    513
    514static int hmm_vma_walk_test(unsigned long start, unsigned long end,
    515			     struct mm_walk *walk)
    516{
    517	struct hmm_vma_walk *hmm_vma_walk = walk->private;
    518	struct hmm_range *range = hmm_vma_walk->range;
    519	struct vm_area_struct *vma = walk->vma;
    520
    521	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
    522	    vma->vm_flags & VM_READ)
    523		return 0;
    524
    525	/*
    526	 * vma ranges that don't have struct page backing them or map I/O
    527	 * devices directly cannot be handled by hmm_range_fault().
    528	 *
    529	 * If the vma does not allow read access, then assume that it does not
    530	 * allow write access either. HMM does not support architectures that
    531	 * allow write without read.
    532	 *
    533	 * If a fault is requested for an unsupported range then it is a hard
    534	 * failure.
    535	 */
    536	if (hmm_range_need_fault(hmm_vma_walk,
    537				 range->hmm_pfns +
    538					 ((start - range->start) >> PAGE_SHIFT),
    539				 (end - start) >> PAGE_SHIFT, 0))
    540		return -EFAULT;
    541
    542	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
    543
    544	/* Skip this vma and continue processing the next vma. */
    545	return 1;
    546}
    547
    548static const struct mm_walk_ops hmm_walk_ops = {
    549	.pud_entry	= hmm_vma_walk_pud,
    550	.pmd_entry	= hmm_vma_walk_pmd,
    551	.pte_hole	= hmm_vma_walk_hole,
    552	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
    553	.test_walk	= hmm_vma_walk_test,
    554};
    555
    556/**
    557 * hmm_range_fault - try to fault some address in a virtual address range
    558 * @range:	argument structure
    559 *
    560 * Returns 0 on success or one of the following error codes:
    561 *
    562 * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
    563 *		(e.g., device file vma).
    564 * -ENOMEM:	Out of memory.
    565 * -EPERM:	Invalid permission (e.g., asking for write and range is read
    566 *		only).
    567 * -EBUSY:	The range has been invalidated and the caller needs to wait for
    568 *		the invalidation to finish.
    569 * -EFAULT:     A page was requested to be valid and could not be made valid
    570 *              ie it has no backing VMA or it is illegal to access
    571 *
    572 * This is similar to get_user_pages(), except that it can read the page tables
    573 * without mutating them (ie causing faults).
    574 */
    575int hmm_range_fault(struct hmm_range *range)
    576{
    577	struct hmm_vma_walk hmm_vma_walk = {
    578		.range = range,
    579		.last = range->start,
    580	};
    581	struct mm_struct *mm = range->notifier->mm;
    582	int ret;
    583
    584	mmap_assert_locked(mm);
    585
    586	do {
    587		/* If range is no longer valid force retry. */
    588		if (mmu_interval_check_retry(range->notifier,
    589					     range->notifier_seq))
    590			return -EBUSY;
    591		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
    592				      &hmm_walk_ops, &hmm_vma_walk);
    593		/*
    594		 * When -EBUSY is returned the loop restarts with
    595		 * hmm_vma_walk.last set to an address that has not been stored
    596		 * in pfns. All entries < last in the pfn array are set to their
    597		 * output, and all >= are still at their input values.
    598		 */
    599	} while (ret == -EBUSY);
    600	return ret;
    601}
    602EXPORT_SYMBOL(hmm_range_fault);