cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hugetlb.c (203996B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Generic hugetlb support.
      4 * (C) Nadia Yvette Chambers, April 2004
      5 */
      6#include <linux/list.h>
      7#include <linux/init.h>
      8#include <linux/mm.h>
      9#include <linux/seq_file.h>
     10#include <linux/sysctl.h>
     11#include <linux/highmem.h>
     12#include <linux/mmu_notifier.h>
     13#include <linux/nodemask.h>
     14#include <linux/pagemap.h>
     15#include <linux/mempolicy.h>
     16#include <linux/compiler.h>
     17#include <linux/cpuset.h>
     18#include <linux/mutex.h>
     19#include <linux/memblock.h>
     20#include <linux/sysfs.h>
     21#include <linux/slab.h>
     22#include <linux/sched/mm.h>
     23#include <linux/mmdebug.h>
     24#include <linux/sched/signal.h>
     25#include <linux/rmap.h>
     26#include <linux/string_helpers.h>
     27#include <linux/swap.h>
     28#include <linux/swapops.h>
     29#include <linux/jhash.h>
     30#include <linux/numa.h>
     31#include <linux/llist.h>
     32#include <linux/cma.h>
     33#include <linux/migrate.h>
     34#include <linux/nospec.h>
     35#include <linux/delayacct.h>
     36
     37#include <asm/page.h>
     38#include <asm/pgalloc.h>
     39#include <asm/tlb.h>
     40
     41#include <linux/io.h>
     42#include <linux/hugetlb.h>
     43#include <linux/hugetlb_cgroup.h>
     44#include <linux/node.h>
     45#include <linux/page_owner.h>
     46#include "internal.h"
     47#include "hugetlb_vmemmap.h"
     48
     49int hugetlb_max_hstate __read_mostly;
     50unsigned int default_hstate_idx;
     51struct hstate hstates[HUGE_MAX_HSTATE];
     52
     53#ifdef CONFIG_CMA
     54static struct cma *hugetlb_cma[MAX_NUMNODES];
     55static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
     56static bool hugetlb_cma_page(struct page *page, unsigned int order)
     57{
     58	return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
     59				1 << order);
     60}
     61#else
     62static bool hugetlb_cma_page(struct page *page, unsigned int order)
     63{
     64	return false;
     65}
     66#endif
     67static unsigned long hugetlb_cma_size __initdata;
     68
     69/*
     70 * Minimum page order among possible hugepage sizes, set to a proper value
     71 * at boot time.
     72 */
     73static unsigned int minimum_order __read_mostly = UINT_MAX;
     74
     75__initdata LIST_HEAD(huge_boot_pages);
     76
     77/* for command line parsing */
     78static struct hstate * __initdata parsed_hstate;
     79static unsigned long __initdata default_hstate_max_huge_pages;
     80static bool __initdata parsed_valid_hugepagesz = true;
     81static bool __initdata parsed_default_hugepagesz;
     82static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
     83
     84/*
     85 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
     86 * free_huge_pages, and surplus_huge_pages.
     87 */
     88DEFINE_SPINLOCK(hugetlb_lock);
     89
     90/*
     91 * Serializes faults on the same logical page.  This is used to
     92 * prevent spurious OOMs when the hugepage pool is fully utilized.
     93 */
     94static int num_fault_mutexes;
     95struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
     96
     97/* Forward declaration */
     98static int hugetlb_acct_memory(struct hstate *h, long delta);
     99
    100static inline bool subpool_is_free(struct hugepage_subpool *spool)
    101{
    102	if (spool->count)
    103		return false;
    104	if (spool->max_hpages != -1)
    105		return spool->used_hpages == 0;
    106	if (spool->min_hpages != -1)
    107		return spool->rsv_hpages == spool->min_hpages;
    108
    109	return true;
    110}
    111
    112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
    113						unsigned long irq_flags)
    114{
    115	spin_unlock_irqrestore(&spool->lock, irq_flags);
    116
    117	/* If no pages are used, and no other handles to the subpool
    118	 * remain, give up any reservations based on minimum size and
    119	 * free the subpool */
    120	if (subpool_is_free(spool)) {
    121		if (spool->min_hpages != -1)
    122			hugetlb_acct_memory(spool->hstate,
    123						-spool->min_hpages);
    124		kfree(spool);
    125	}
    126}
    127
    128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
    129						long min_hpages)
    130{
    131	struct hugepage_subpool *spool;
    132
    133	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
    134	if (!spool)
    135		return NULL;
    136
    137	spin_lock_init(&spool->lock);
    138	spool->count = 1;
    139	spool->max_hpages = max_hpages;
    140	spool->hstate = h;
    141	spool->min_hpages = min_hpages;
    142
    143	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
    144		kfree(spool);
    145		return NULL;
    146	}
    147	spool->rsv_hpages = min_hpages;
    148
    149	return spool;
    150}
    151
    152void hugepage_put_subpool(struct hugepage_subpool *spool)
    153{
    154	unsigned long flags;
    155
    156	spin_lock_irqsave(&spool->lock, flags);
    157	BUG_ON(!spool->count);
    158	spool->count--;
    159	unlock_or_release_subpool(spool, flags);
    160}
    161
    162/*
    163 * Subpool accounting for allocating and reserving pages.
    164 * Return -ENOMEM if there are not enough resources to satisfy the
    165 * request.  Otherwise, return the number of pages by which the
    166 * global pools must be adjusted (upward).  The returned value may
    167 * only be different than the passed value (delta) in the case where
    168 * a subpool minimum size must be maintained.
    169 */
    170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
    171				      long delta)
    172{
    173	long ret = delta;
    174
    175	if (!spool)
    176		return ret;
    177
    178	spin_lock_irq(&spool->lock);
    179
    180	if (spool->max_hpages != -1) {		/* maximum size accounting */
    181		if ((spool->used_hpages + delta) <= spool->max_hpages)
    182			spool->used_hpages += delta;
    183		else {
    184			ret = -ENOMEM;
    185			goto unlock_ret;
    186		}
    187	}
    188
    189	/* minimum size accounting */
    190	if (spool->min_hpages != -1 && spool->rsv_hpages) {
    191		if (delta > spool->rsv_hpages) {
    192			/*
    193			 * Asking for more reserves than those already taken on
    194			 * behalf of subpool.  Return difference.
    195			 */
    196			ret = delta - spool->rsv_hpages;
    197			spool->rsv_hpages = 0;
    198		} else {
    199			ret = 0;	/* reserves already accounted for */
    200			spool->rsv_hpages -= delta;
    201		}
    202	}
    203
    204unlock_ret:
    205	spin_unlock_irq(&spool->lock);
    206	return ret;
    207}
    208
    209/*
    210 * Subpool accounting for freeing and unreserving pages.
    211 * Return the number of global page reservations that must be dropped.
    212 * The return value may only be different than the passed value (delta)
    213 * in the case where a subpool minimum size must be maintained.
    214 */
    215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
    216				       long delta)
    217{
    218	long ret = delta;
    219	unsigned long flags;
    220
    221	if (!spool)
    222		return delta;
    223
    224	spin_lock_irqsave(&spool->lock, flags);
    225
    226	if (spool->max_hpages != -1)		/* maximum size accounting */
    227		spool->used_hpages -= delta;
    228
    229	 /* minimum size accounting */
    230	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
    231		if (spool->rsv_hpages + delta <= spool->min_hpages)
    232			ret = 0;
    233		else
    234			ret = spool->rsv_hpages + delta - spool->min_hpages;
    235
    236		spool->rsv_hpages += delta;
    237		if (spool->rsv_hpages > spool->min_hpages)
    238			spool->rsv_hpages = spool->min_hpages;
    239	}
    240
    241	/*
    242	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
    243	 * quota reference, free it now.
    244	 */
    245	unlock_or_release_subpool(spool, flags);
    246
    247	return ret;
    248}
    249
    250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
    251{
    252	return HUGETLBFS_SB(inode->i_sb)->spool;
    253}
    254
    255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
    256{
    257	return subpool_inode(file_inode(vma->vm_file));
    258}
    259
    260/* Helper that removes a struct file_region from the resv_map cache and returns
    261 * it for use.
    262 */
    263static struct file_region *
    264get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
    265{
    266	struct file_region *nrg = NULL;
    267
    268	VM_BUG_ON(resv->region_cache_count <= 0);
    269
    270	resv->region_cache_count--;
    271	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
    272	list_del(&nrg->link);
    273
    274	nrg->from = from;
    275	nrg->to = to;
    276
    277	return nrg;
    278}
    279
    280static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
    281					      struct file_region *rg)
    282{
    283#ifdef CONFIG_CGROUP_HUGETLB
    284	nrg->reservation_counter = rg->reservation_counter;
    285	nrg->css = rg->css;
    286	if (rg->css)
    287		css_get(rg->css);
    288#endif
    289}
    290
    291/* Helper that records hugetlb_cgroup uncharge info. */
    292static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
    293						struct hstate *h,
    294						struct resv_map *resv,
    295						struct file_region *nrg)
    296{
    297#ifdef CONFIG_CGROUP_HUGETLB
    298	if (h_cg) {
    299		nrg->reservation_counter =
    300			&h_cg->rsvd_hugepage[hstate_index(h)];
    301		nrg->css = &h_cg->css;
    302		/*
    303		 * The caller will hold exactly one h_cg->css reference for the
    304		 * whole contiguous reservation region. But this area might be
    305		 * scattered when there are already some file_regions reside in
    306		 * it. As a result, many file_regions may share only one css
    307		 * reference. In order to ensure that one file_region must hold
    308		 * exactly one h_cg->css reference, we should do css_get for
    309		 * each file_region and leave the reference held by caller
    310		 * untouched.
    311		 */
    312		css_get(&h_cg->css);
    313		if (!resv->pages_per_hpage)
    314			resv->pages_per_hpage = pages_per_huge_page(h);
    315		/* pages_per_hpage should be the same for all entries in
    316		 * a resv_map.
    317		 */
    318		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
    319	} else {
    320		nrg->reservation_counter = NULL;
    321		nrg->css = NULL;
    322	}
    323#endif
    324}
    325
    326static void put_uncharge_info(struct file_region *rg)
    327{
    328#ifdef CONFIG_CGROUP_HUGETLB
    329	if (rg->css)
    330		css_put(rg->css);
    331#endif
    332}
    333
    334static bool has_same_uncharge_info(struct file_region *rg,
    335				   struct file_region *org)
    336{
    337#ifdef CONFIG_CGROUP_HUGETLB
    338	return rg->reservation_counter == org->reservation_counter &&
    339	       rg->css == org->css;
    340
    341#else
    342	return true;
    343#endif
    344}
    345
    346static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
    347{
    348	struct file_region *nrg = NULL, *prg = NULL;
    349
    350	prg = list_prev_entry(rg, link);
    351	if (&prg->link != &resv->regions && prg->to == rg->from &&
    352	    has_same_uncharge_info(prg, rg)) {
    353		prg->to = rg->to;
    354
    355		list_del(&rg->link);
    356		put_uncharge_info(rg);
    357		kfree(rg);
    358
    359		rg = prg;
    360	}
    361
    362	nrg = list_next_entry(rg, link);
    363	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
    364	    has_same_uncharge_info(nrg, rg)) {
    365		nrg->from = rg->from;
    366
    367		list_del(&rg->link);
    368		put_uncharge_info(rg);
    369		kfree(rg);
    370	}
    371}
    372
    373static inline long
    374hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
    375		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
    376		     long *regions_needed)
    377{
    378	struct file_region *nrg;
    379
    380	if (!regions_needed) {
    381		nrg = get_file_region_entry_from_cache(map, from, to);
    382		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
    383		list_add(&nrg->link, rg);
    384		coalesce_file_region(map, nrg);
    385	} else
    386		*regions_needed += 1;
    387
    388	return to - from;
    389}
    390
    391/*
    392 * Must be called with resv->lock held.
    393 *
    394 * Calling this with regions_needed != NULL will count the number of pages
    395 * to be added but will not modify the linked list. And regions_needed will
    396 * indicate the number of file_regions needed in the cache to carry out to add
    397 * the regions for this range.
    398 */
    399static long add_reservation_in_range(struct resv_map *resv, long f, long t,
    400				     struct hugetlb_cgroup *h_cg,
    401				     struct hstate *h, long *regions_needed)
    402{
    403	long add = 0;
    404	struct list_head *head = &resv->regions;
    405	long last_accounted_offset = f;
    406	struct file_region *iter, *trg = NULL;
    407	struct list_head *rg = NULL;
    408
    409	if (regions_needed)
    410		*regions_needed = 0;
    411
    412	/* In this loop, we essentially handle an entry for the range
    413	 * [last_accounted_offset, iter->from), at every iteration, with some
    414	 * bounds checking.
    415	 */
    416	list_for_each_entry_safe(iter, trg, head, link) {
    417		/* Skip irrelevant regions that start before our range. */
    418		if (iter->from < f) {
    419			/* If this region ends after the last accounted offset,
    420			 * then we need to update last_accounted_offset.
    421			 */
    422			if (iter->to > last_accounted_offset)
    423				last_accounted_offset = iter->to;
    424			continue;
    425		}
    426
    427		/* When we find a region that starts beyond our range, we've
    428		 * finished.
    429		 */
    430		if (iter->from >= t) {
    431			rg = iter->link.prev;
    432			break;
    433		}
    434
    435		/* Add an entry for last_accounted_offset -> iter->from, and
    436		 * update last_accounted_offset.
    437		 */
    438		if (iter->from > last_accounted_offset)
    439			add += hugetlb_resv_map_add(resv, iter->link.prev,
    440						    last_accounted_offset,
    441						    iter->from, h, h_cg,
    442						    regions_needed);
    443
    444		last_accounted_offset = iter->to;
    445	}
    446
    447	/* Handle the case where our range extends beyond
    448	 * last_accounted_offset.
    449	 */
    450	if (!rg)
    451		rg = head->prev;
    452	if (last_accounted_offset < t)
    453		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
    454					    t, h, h_cg, regions_needed);
    455
    456	return add;
    457}
    458
    459/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
    460 */
    461static int allocate_file_region_entries(struct resv_map *resv,
    462					int regions_needed)
    463	__must_hold(&resv->lock)
    464{
    465	struct list_head allocated_regions;
    466	int to_allocate = 0, i = 0;
    467	struct file_region *trg = NULL, *rg = NULL;
    468
    469	VM_BUG_ON(regions_needed < 0);
    470
    471	INIT_LIST_HEAD(&allocated_regions);
    472
    473	/*
    474	 * Check for sufficient descriptors in the cache to accommodate
    475	 * the number of in progress add operations plus regions_needed.
    476	 *
    477	 * This is a while loop because when we drop the lock, some other call
    478	 * to region_add or region_del may have consumed some region_entries,
    479	 * so we keep looping here until we finally have enough entries for
    480	 * (adds_in_progress + regions_needed).
    481	 */
    482	while (resv->region_cache_count <
    483	       (resv->adds_in_progress + regions_needed)) {
    484		to_allocate = resv->adds_in_progress + regions_needed -
    485			      resv->region_cache_count;
    486
    487		/* At this point, we should have enough entries in the cache
    488		 * for all the existing adds_in_progress. We should only be
    489		 * needing to allocate for regions_needed.
    490		 */
    491		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
    492
    493		spin_unlock(&resv->lock);
    494		for (i = 0; i < to_allocate; i++) {
    495			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
    496			if (!trg)
    497				goto out_of_memory;
    498			list_add(&trg->link, &allocated_regions);
    499		}
    500
    501		spin_lock(&resv->lock);
    502
    503		list_splice(&allocated_regions, &resv->region_cache);
    504		resv->region_cache_count += to_allocate;
    505	}
    506
    507	return 0;
    508
    509out_of_memory:
    510	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
    511		list_del(&rg->link);
    512		kfree(rg);
    513	}
    514	return -ENOMEM;
    515}
    516
    517/*
    518 * Add the huge page range represented by [f, t) to the reserve
    519 * map.  Regions will be taken from the cache to fill in this range.
    520 * Sufficient regions should exist in the cache due to the previous
    521 * call to region_chg with the same range, but in some cases the cache will not
    522 * have sufficient entries due to races with other code doing region_add or
    523 * region_del.  The extra needed entries will be allocated.
    524 *
    525 * regions_needed is the out value provided by a previous call to region_chg.
    526 *
    527 * Return the number of new huge pages added to the map.  This number is greater
    528 * than or equal to zero.  If file_region entries needed to be allocated for
    529 * this operation and we were not able to allocate, it returns -ENOMEM.
    530 * region_add of regions of length 1 never allocate file_regions and cannot
    531 * fail; region_chg will always allocate at least 1 entry and a region_add for
    532 * 1 page will only require at most 1 entry.
    533 */
    534static long region_add(struct resv_map *resv, long f, long t,
    535		       long in_regions_needed, struct hstate *h,
    536		       struct hugetlb_cgroup *h_cg)
    537{
    538	long add = 0, actual_regions_needed = 0;
    539
    540	spin_lock(&resv->lock);
    541retry:
    542
    543	/* Count how many regions are actually needed to execute this add. */
    544	add_reservation_in_range(resv, f, t, NULL, NULL,
    545				 &actual_regions_needed);
    546
    547	/*
    548	 * Check for sufficient descriptors in the cache to accommodate
    549	 * this add operation. Note that actual_regions_needed may be greater
    550	 * than in_regions_needed, as the resv_map may have been modified since
    551	 * the region_chg call. In this case, we need to make sure that we
    552	 * allocate extra entries, such that we have enough for all the
    553	 * existing adds_in_progress, plus the excess needed for this
    554	 * operation.
    555	 */
    556	if (actual_regions_needed > in_regions_needed &&
    557	    resv->region_cache_count <
    558		    resv->adds_in_progress +
    559			    (actual_regions_needed - in_regions_needed)) {
    560		/* region_add operation of range 1 should never need to
    561		 * allocate file_region entries.
    562		 */
    563		VM_BUG_ON(t - f <= 1);
    564
    565		if (allocate_file_region_entries(
    566			    resv, actual_regions_needed - in_regions_needed)) {
    567			return -ENOMEM;
    568		}
    569
    570		goto retry;
    571	}
    572
    573	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
    574
    575	resv->adds_in_progress -= in_regions_needed;
    576
    577	spin_unlock(&resv->lock);
    578	return add;
    579}
    580
    581/*
    582 * Examine the existing reserve map and determine how many
    583 * huge pages in the specified range [f, t) are NOT currently
    584 * represented.  This routine is called before a subsequent
    585 * call to region_add that will actually modify the reserve
    586 * map to add the specified range [f, t).  region_chg does
    587 * not change the number of huge pages represented by the
    588 * map.  A number of new file_region structures is added to the cache as a
    589 * placeholder, for the subsequent region_add call to use. At least 1
    590 * file_region structure is added.
    591 *
    592 * out_regions_needed is the number of regions added to the
    593 * resv->adds_in_progress.  This value needs to be provided to a follow up call
    594 * to region_add or region_abort for proper accounting.
    595 *
    596 * Returns the number of huge pages that need to be added to the existing
    597 * reservation map for the range [f, t).  This number is greater or equal to
    598 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
    599 * is needed and can not be allocated.
    600 */
    601static long region_chg(struct resv_map *resv, long f, long t,
    602		       long *out_regions_needed)
    603{
    604	long chg = 0;
    605
    606	spin_lock(&resv->lock);
    607
    608	/* Count how many hugepages in this range are NOT represented. */
    609	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
    610				       out_regions_needed);
    611
    612	if (*out_regions_needed == 0)
    613		*out_regions_needed = 1;
    614
    615	if (allocate_file_region_entries(resv, *out_regions_needed))
    616		return -ENOMEM;
    617
    618	resv->adds_in_progress += *out_regions_needed;
    619
    620	spin_unlock(&resv->lock);
    621	return chg;
    622}
    623
    624/*
    625 * Abort the in progress add operation.  The adds_in_progress field
    626 * of the resv_map keeps track of the operations in progress between
    627 * calls to region_chg and region_add.  Operations are sometimes
    628 * aborted after the call to region_chg.  In such cases, region_abort
    629 * is called to decrement the adds_in_progress counter. regions_needed
    630 * is the value returned by the region_chg call, it is used to decrement
    631 * the adds_in_progress counter.
    632 *
    633 * NOTE: The range arguments [f, t) are not needed or used in this
    634 * routine.  They are kept to make reading the calling code easier as
    635 * arguments will match the associated region_chg call.
    636 */
    637static void region_abort(struct resv_map *resv, long f, long t,
    638			 long regions_needed)
    639{
    640	spin_lock(&resv->lock);
    641	VM_BUG_ON(!resv->region_cache_count);
    642	resv->adds_in_progress -= regions_needed;
    643	spin_unlock(&resv->lock);
    644}
    645
    646/*
    647 * Delete the specified range [f, t) from the reserve map.  If the
    648 * t parameter is LONG_MAX, this indicates that ALL regions after f
    649 * should be deleted.  Locate the regions which intersect [f, t)
    650 * and either trim, delete or split the existing regions.
    651 *
    652 * Returns the number of huge pages deleted from the reserve map.
    653 * In the normal case, the return value is zero or more.  In the
    654 * case where a region must be split, a new region descriptor must
    655 * be allocated.  If the allocation fails, -ENOMEM will be returned.
    656 * NOTE: If the parameter t == LONG_MAX, then we will never split
    657 * a region and possibly return -ENOMEM.  Callers specifying
    658 * t == LONG_MAX do not need to check for -ENOMEM error.
    659 */
    660static long region_del(struct resv_map *resv, long f, long t)
    661{
    662	struct list_head *head = &resv->regions;
    663	struct file_region *rg, *trg;
    664	struct file_region *nrg = NULL;
    665	long del = 0;
    666
    667retry:
    668	spin_lock(&resv->lock);
    669	list_for_each_entry_safe(rg, trg, head, link) {
    670		/*
    671		 * Skip regions before the range to be deleted.  file_region
    672		 * ranges are normally of the form [from, to).  However, there
    673		 * may be a "placeholder" entry in the map which is of the form
    674		 * (from, to) with from == to.  Check for placeholder entries
    675		 * at the beginning of the range to be deleted.
    676		 */
    677		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
    678			continue;
    679
    680		if (rg->from >= t)
    681			break;
    682
    683		if (f > rg->from && t < rg->to) { /* Must split region */
    684			/*
    685			 * Check for an entry in the cache before dropping
    686			 * lock and attempting allocation.
    687			 */
    688			if (!nrg &&
    689			    resv->region_cache_count > resv->adds_in_progress) {
    690				nrg = list_first_entry(&resv->region_cache,
    691							struct file_region,
    692							link);
    693				list_del(&nrg->link);
    694				resv->region_cache_count--;
    695			}
    696
    697			if (!nrg) {
    698				spin_unlock(&resv->lock);
    699				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
    700				if (!nrg)
    701					return -ENOMEM;
    702				goto retry;
    703			}
    704
    705			del += t - f;
    706			hugetlb_cgroup_uncharge_file_region(
    707				resv, rg, t - f, false);
    708
    709			/* New entry for end of split region */
    710			nrg->from = t;
    711			nrg->to = rg->to;
    712
    713			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
    714
    715			INIT_LIST_HEAD(&nrg->link);
    716
    717			/* Original entry is trimmed */
    718			rg->to = f;
    719
    720			list_add(&nrg->link, &rg->link);
    721			nrg = NULL;
    722			break;
    723		}
    724
    725		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
    726			del += rg->to - rg->from;
    727			hugetlb_cgroup_uncharge_file_region(resv, rg,
    728							    rg->to - rg->from, true);
    729			list_del(&rg->link);
    730			kfree(rg);
    731			continue;
    732		}
    733
    734		if (f <= rg->from) {	/* Trim beginning of region */
    735			hugetlb_cgroup_uncharge_file_region(resv, rg,
    736							    t - rg->from, false);
    737
    738			del += t - rg->from;
    739			rg->from = t;
    740		} else {		/* Trim end of region */
    741			hugetlb_cgroup_uncharge_file_region(resv, rg,
    742							    rg->to - f, false);
    743
    744			del += rg->to - f;
    745			rg->to = f;
    746		}
    747	}
    748
    749	spin_unlock(&resv->lock);
    750	kfree(nrg);
    751	return del;
    752}
    753
    754/*
    755 * A rare out of memory error was encountered which prevented removal of
    756 * the reserve map region for a page.  The huge page itself was free'ed
    757 * and removed from the page cache.  This routine will adjust the subpool
    758 * usage count, and the global reserve count if needed.  By incrementing
    759 * these counts, the reserve map entry which could not be deleted will
    760 * appear as a "reserved" entry instead of simply dangling with incorrect
    761 * counts.
    762 */
    763void hugetlb_fix_reserve_counts(struct inode *inode)
    764{
    765	struct hugepage_subpool *spool = subpool_inode(inode);
    766	long rsv_adjust;
    767	bool reserved = false;
    768
    769	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
    770	if (rsv_adjust > 0) {
    771		struct hstate *h = hstate_inode(inode);
    772
    773		if (!hugetlb_acct_memory(h, 1))
    774			reserved = true;
    775	} else if (!rsv_adjust) {
    776		reserved = true;
    777	}
    778
    779	if (!reserved)
    780		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
    781}
    782
    783/*
    784 * Count and return the number of huge pages in the reserve map
    785 * that intersect with the range [f, t).
    786 */
    787static long region_count(struct resv_map *resv, long f, long t)
    788{
    789	struct list_head *head = &resv->regions;
    790	struct file_region *rg;
    791	long chg = 0;
    792
    793	spin_lock(&resv->lock);
    794	/* Locate each segment we overlap with, and count that overlap. */
    795	list_for_each_entry(rg, head, link) {
    796		long seg_from;
    797		long seg_to;
    798
    799		if (rg->to <= f)
    800			continue;
    801		if (rg->from >= t)
    802			break;
    803
    804		seg_from = max(rg->from, f);
    805		seg_to = min(rg->to, t);
    806
    807		chg += seg_to - seg_from;
    808	}
    809	spin_unlock(&resv->lock);
    810
    811	return chg;
    812}
    813
    814/*
    815 * Convert the address within this vma to the page offset within
    816 * the mapping, in pagecache page units; huge pages here.
    817 */
    818static pgoff_t vma_hugecache_offset(struct hstate *h,
    819			struct vm_area_struct *vma, unsigned long address)
    820{
    821	return ((address - vma->vm_start) >> huge_page_shift(h)) +
    822			(vma->vm_pgoff >> huge_page_order(h));
    823}
    824
    825pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
    826				     unsigned long address)
    827{
    828	return vma_hugecache_offset(hstate_vma(vma), vma, address);
    829}
    830EXPORT_SYMBOL_GPL(linear_hugepage_index);
    831
    832/*
    833 * Return the size of the pages allocated when backing a VMA. In the majority
    834 * cases this will be same size as used by the page table entries.
    835 */
    836unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
    837{
    838	if (vma->vm_ops && vma->vm_ops->pagesize)
    839		return vma->vm_ops->pagesize(vma);
    840	return PAGE_SIZE;
    841}
    842EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
    843
    844/*
    845 * Return the page size being used by the MMU to back a VMA. In the majority
    846 * of cases, the page size used by the kernel matches the MMU size. On
    847 * architectures where it differs, an architecture-specific 'strong'
    848 * version of this symbol is required.
    849 */
    850__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
    851{
    852	return vma_kernel_pagesize(vma);
    853}
    854
    855/*
    856 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
    857 * bits of the reservation map pointer, which are always clear due to
    858 * alignment.
    859 */
    860#define HPAGE_RESV_OWNER    (1UL << 0)
    861#define HPAGE_RESV_UNMAPPED (1UL << 1)
    862#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
    863
    864/*
    865 * These helpers are used to track how many pages are reserved for
    866 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
    867 * is guaranteed to have their future faults succeed.
    868 *
    869 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
    870 * the reserve counters are updated with the hugetlb_lock held. It is safe
    871 * to reset the VMA at fork() time as it is not in use yet and there is no
    872 * chance of the global counters getting corrupted as a result of the values.
    873 *
    874 * The private mapping reservation is represented in a subtly different
    875 * manner to a shared mapping.  A shared mapping has a region map associated
    876 * with the underlying file, this region map represents the backing file
    877 * pages which have ever had a reservation assigned which this persists even
    878 * after the page is instantiated.  A private mapping has a region map
    879 * associated with the original mmap which is attached to all VMAs which
    880 * reference it, this region map represents those offsets which have consumed
    881 * reservation ie. where pages have been instantiated.
    882 */
    883static unsigned long get_vma_private_data(struct vm_area_struct *vma)
    884{
    885	return (unsigned long)vma->vm_private_data;
    886}
    887
    888static void set_vma_private_data(struct vm_area_struct *vma,
    889							unsigned long value)
    890{
    891	vma->vm_private_data = (void *)value;
    892}
    893
    894static void
    895resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
    896					  struct hugetlb_cgroup *h_cg,
    897					  struct hstate *h)
    898{
    899#ifdef CONFIG_CGROUP_HUGETLB
    900	if (!h_cg || !h) {
    901		resv_map->reservation_counter = NULL;
    902		resv_map->pages_per_hpage = 0;
    903		resv_map->css = NULL;
    904	} else {
    905		resv_map->reservation_counter =
    906			&h_cg->rsvd_hugepage[hstate_index(h)];
    907		resv_map->pages_per_hpage = pages_per_huge_page(h);
    908		resv_map->css = &h_cg->css;
    909	}
    910#endif
    911}
    912
    913struct resv_map *resv_map_alloc(void)
    914{
    915	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
    916	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
    917
    918	if (!resv_map || !rg) {
    919		kfree(resv_map);
    920		kfree(rg);
    921		return NULL;
    922	}
    923
    924	kref_init(&resv_map->refs);
    925	spin_lock_init(&resv_map->lock);
    926	INIT_LIST_HEAD(&resv_map->regions);
    927
    928	resv_map->adds_in_progress = 0;
    929	/*
    930	 * Initialize these to 0. On shared mappings, 0's here indicate these
    931	 * fields don't do cgroup accounting. On private mappings, these will be
    932	 * re-initialized to the proper values, to indicate that hugetlb cgroup
    933	 * reservations are to be un-charged from here.
    934	 */
    935	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
    936
    937	INIT_LIST_HEAD(&resv_map->region_cache);
    938	list_add(&rg->link, &resv_map->region_cache);
    939	resv_map->region_cache_count = 1;
    940
    941	return resv_map;
    942}
    943
    944void resv_map_release(struct kref *ref)
    945{
    946	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
    947	struct list_head *head = &resv_map->region_cache;
    948	struct file_region *rg, *trg;
    949
    950	/* Clear out any active regions before we release the map. */
    951	region_del(resv_map, 0, LONG_MAX);
    952
    953	/* ... and any entries left in the cache */
    954	list_for_each_entry_safe(rg, trg, head, link) {
    955		list_del(&rg->link);
    956		kfree(rg);
    957	}
    958
    959	VM_BUG_ON(resv_map->adds_in_progress);
    960
    961	kfree(resv_map);
    962}
    963
    964static inline struct resv_map *inode_resv_map(struct inode *inode)
    965{
    966	/*
    967	 * At inode evict time, i_mapping may not point to the original
    968	 * address space within the inode.  This original address space
    969	 * contains the pointer to the resv_map.  So, always use the
    970	 * address space embedded within the inode.
    971	 * The VERY common case is inode->mapping == &inode->i_data but,
    972	 * this may not be true for device special inodes.
    973	 */
    974	return (struct resv_map *)(&inode->i_data)->private_data;
    975}
    976
    977static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
    978{
    979	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
    980	if (vma->vm_flags & VM_MAYSHARE) {
    981		struct address_space *mapping = vma->vm_file->f_mapping;
    982		struct inode *inode = mapping->host;
    983
    984		return inode_resv_map(inode);
    985
    986	} else {
    987		return (struct resv_map *)(get_vma_private_data(vma) &
    988							~HPAGE_RESV_MASK);
    989	}
    990}
    991
    992static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
    993{
    994	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
    995	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
    996
    997	set_vma_private_data(vma, (get_vma_private_data(vma) &
    998				HPAGE_RESV_MASK) | (unsigned long)map);
    999}
   1000
   1001static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
   1002{
   1003	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
   1004	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
   1005
   1006	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
   1007}
   1008
   1009static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
   1010{
   1011	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
   1012
   1013	return (get_vma_private_data(vma) & flag) != 0;
   1014}
   1015
   1016/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
   1017void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
   1018{
   1019	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
   1020	if (!(vma->vm_flags & VM_MAYSHARE))
   1021		vma->vm_private_data = (void *)0;
   1022}
   1023
   1024/*
   1025 * Reset and decrement one ref on hugepage private reservation.
   1026 * Called with mm->mmap_sem writer semaphore held.
   1027 * This function should be only used by move_vma() and operate on
   1028 * same sized vma. It should never come here with last ref on the
   1029 * reservation.
   1030 */
   1031void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
   1032{
   1033	/*
   1034	 * Clear the old hugetlb private page reservation.
   1035	 * It has already been transferred to new_vma.
   1036	 *
   1037	 * During a mremap() operation of a hugetlb vma we call move_vma()
   1038	 * which copies vma into new_vma and unmaps vma. After the copy
   1039	 * operation both new_vma and vma share a reference to the resv_map
   1040	 * struct, and at that point vma is about to be unmapped. We don't
   1041	 * want to return the reservation to the pool at unmap of vma because
   1042	 * the reservation still lives on in new_vma, so simply decrement the
   1043	 * ref here and remove the resv_map reference from this vma.
   1044	 */
   1045	struct resv_map *reservations = vma_resv_map(vma);
   1046
   1047	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
   1048		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
   1049		kref_put(&reservations->refs, resv_map_release);
   1050	}
   1051
   1052	reset_vma_resv_huge_pages(vma);
   1053}
   1054
   1055/* Returns true if the VMA has associated reserve pages */
   1056static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
   1057{
   1058	if (vma->vm_flags & VM_NORESERVE) {
   1059		/*
   1060		 * This address is already reserved by other process(chg == 0),
   1061		 * so, we should decrement reserved count. Without decrementing,
   1062		 * reserve count remains after releasing inode, because this
   1063		 * allocated page will go into page cache and is regarded as
   1064		 * coming from reserved pool in releasing step.  Currently, we
   1065		 * don't have any other solution to deal with this situation
   1066		 * properly, so add work-around here.
   1067		 */
   1068		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
   1069			return true;
   1070		else
   1071			return false;
   1072	}
   1073
   1074	/* Shared mappings always use reserves */
   1075	if (vma->vm_flags & VM_MAYSHARE) {
   1076		/*
   1077		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
   1078		 * be a region map for all pages.  The only situation where
   1079		 * there is no region map is if a hole was punched via
   1080		 * fallocate.  In this case, there really are no reserves to
   1081		 * use.  This situation is indicated if chg != 0.
   1082		 */
   1083		if (chg)
   1084			return false;
   1085		else
   1086			return true;
   1087	}
   1088
   1089	/*
   1090	 * Only the process that called mmap() has reserves for
   1091	 * private mappings.
   1092	 */
   1093	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
   1094		/*
   1095		 * Like the shared case above, a hole punch or truncate
   1096		 * could have been performed on the private mapping.
   1097		 * Examine the value of chg to determine if reserves
   1098		 * actually exist or were previously consumed.
   1099		 * Very Subtle - The value of chg comes from a previous
   1100		 * call to vma_needs_reserves().  The reserve map for
   1101		 * private mappings has different (opposite) semantics
   1102		 * than that of shared mappings.  vma_needs_reserves()
   1103		 * has already taken this difference in semantics into
   1104		 * account.  Therefore, the meaning of chg is the same
   1105		 * as in the shared case above.  Code could easily be
   1106		 * combined, but keeping it separate draws attention to
   1107		 * subtle differences.
   1108		 */
   1109		if (chg)
   1110			return false;
   1111		else
   1112			return true;
   1113	}
   1114
   1115	return false;
   1116}
   1117
   1118static void enqueue_huge_page(struct hstate *h, struct page *page)
   1119{
   1120	int nid = page_to_nid(page);
   1121
   1122	lockdep_assert_held(&hugetlb_lock);
   1123	VM_BUG_ON_PAGE(page_count(page), page);
   1124
   1125	list_move(&page->lru, &h->hugepage_freelists[nid]);
   1126	h->free_huge_pages++;
   1127	h->free_huge_pages_node[nid]++;
   1128	SetHPageFreed(page);
   1129}
   1130
   1131static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
   1132{
   1133	struct page *page;
   1134	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
   1135
   1136	lockdep_assert_held(&hugetlb_lock);
   1137	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
   1138		if (pin && !is_pinnable_page(page))
   1139			continue;
   1140
   1141		if (PageHWPoison(page))
   1142			continue;
   1143
   1144		list_move(&page->lru, &h->hugepage_activelist);
   1145		set_page_refcounted(page);
   1146		ClearHPageFreed(page);
   1147		h->free_huge_pages--;
   1148		h->free_huge_pages_node[nid]--;
   1149		return page;
   1150	}
   1151
   1152	return NULL;
   1153}
   1154
   1155static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
   1156		nodemask_t *nmask)
   1157{
   1158	unsigned int cpuset_mems_cookie;
   1159	struct zonelist *zonelist;
   1160	struct zone *zone;
   1161	struct zoneref *z;
   1162	int node = NUMA_NO_NODE;
   1163
   1164	zonelist = node_zonelist(nid, gfp_mask);
   1165
   1166retry_cpuset:
   1167	cpuset_mems_cookie = read_mems_allowed_begin();
   1168	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
   1169		struct page *page;
   1170
   1171		if (!cpuset_zone_allowed(zone, gfp_mask))
   1172			continue;
   1173		/*
   1174		 * no need to ask again on the same node. Pool is node rather than
   1175		 * zone aware
   1176		 */
   1177		if (zone_to_nid(zone) == node)
   1178			continue;
   1179		node = zone_to_nid(zone);
   1180
   1181		page = dequeue_huge_page_node_exact(h, node);
   1182		if (page)
   1183			return page;
   1184	}
   1185	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
   1186		goto retry_cpuset;
   1187
   1188	return NULL;
   1189}
   1190
   1191static struct page *dequeue_huge_page_vma(struct hstate *h,
   1192				struct vm_area_struct *vma,
   1193				unsigned long address, int avoid_reserve,
   1194				long chg)
   1195{
   1196	struct page *page = NULL;
   1197	struct mempolicy *mpol;
   1198	gfp_t gfp_mask;
   1199	nodemask_t *nodemask;
   1200	int nid;
   1201
   1202	/*
   1203	 * A child process with MAP_PRIVATE mappings created by their parent
   1204	 * have no page reserves. This check ensures that reservations are
   1205	 * not "stolen". The child may still get SIGKILLed
   1206	 */
   1207	if (!vma_has_reserves(vma, chg) &&
   1208			h->free_huge_pages - h->resv_huge_pages == 0)
   1209		goto err;
   1210
   1211	/* If reserves cannot be used, ensure enough pages are in the pool */
   1212	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
   1213		goto err;
   1214
   1215	gfp_mask = htlb_alloc_mask(h);
   1216	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
   1217
   1218	if (mpol_is_preferred_many(mpol)) {
   1219		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
   1220
   1221		/* Fallback to all nodes if page==NULL */
   1222		nodemask = NULL;
   1223	}
   1224
   1225	if (!page)
   1226		page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
   1227
   1228	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
   1229		SetHPageRestoreReserve(page);
   1230		h->resv_huge_pages--;
   1231	}
   1232
   1233	mpol_cond_put(mpol);
   1234	return page;
   1235
   1236err:
   1237	return NULL;
   1238}
   1239
   1240/*
   1241 * common helper functions for hstate_next_node_to_{alloc|free}.
   1242 * We may have allocated or freed a huge page based on a different
   1243 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
   1244 * be outside of *nodes_allowed.  Ensure that we use an allowed
   1245 * node for alloc or free.
   1246 */
   1247static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
   1248{
   1249	nid = next_node_in(nid, *nodes_allowed);
   1250	VM_BUG_ON(nid >= MAX_NUMNODES);
   1251
   1252	return nid;
   1253}
   1254
   1255static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
   1256{
   1257	if (!node_isset(nid, *nodes_allowed))
   1258		nid = next_node_allowed(nid, nodes_allowed);
   1259	return nid;
   1260}
   1261
   1262/*
   1263 * returns the previously saved node ["this node"] from which to
   1264 * allocate a persistent huge page for the pool and advance the
   1265 * next node from which to allocate, handling wrap at end of node
   1266 * mask.
   1267 */
   1268static int hstate_next_node_to_alloc(struct hstate *h,
   1269					nodemask_t *nodes_allowed)
   1270{
   1271	int nid;
   1272
   1273	VM_BUG_ON(!nodes_allowed);
   1274
   1275	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
   1276	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
   1277
   1278	return nid;
   1279}
   1280
   1281/*
   1282 * helper for remove_pool_huge_page() - return the previously saved
   1283 * node ["this node"] from which to free a huge page.  Advance the
   1284 * next node id whether or not we find a free huge page to free so
   1285 * that the next attempt to free addresses the next node.
   1286 */
   1287static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
   1288{
   1289	int nid;
   1290
   1291	VM_BUG_ON(!nodes_allowed);
   1292
   1293	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
   1294	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
   1295
   1296	return nid;
   1297}
   1298
   1299#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
   1300	for (nr_nodes = nodes_weight(*mask);				\
   1301		nr_nodes > 0 &&						\
   1302		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
   1303		nr_nodes--)
   1304
   1305#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
   1306	for (nr_nodes = nodes_weight(*mask);				\
   1307		nr_nodes > 0 &&						\
   1308		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
   1309		nr_nodes--)
   1310
   1311/* used to demote non-gigantic_huge pages as well */
   1312static void __destroy_compound_gigantic_page(struct page *page,
   1313					unsigned int order, bool demote)
   1314{
   1315	int i;
   1316	int nr_pages = 1 << order;
   1317	struct page *p = page + 1;
   1318
   1319	atomic_set(compound_mapcount_ptr(page), 0);
   1320	atomic_set(compound_pincount_ptr(page), 0);
   1321
   1322	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
   1323		p->mapping = NULL;
   1324		clear_compound_head(p);
   1325		if (!demote)
   1326			set_page_refcounted(p);
   1327	}
   1328
   1329	set_compound_order(page, 0);
   1330#ifdef CONFIG_64BIT
   1331	page[1].compound_nr = 0;
   1332#endif
   1333	__ClearPageHead(page);
   1334}
   1335
   1336static void destroy_compound_hugetlb_page_for_demote(struct page *page,
   1337					unsigned int order)
   1338{
   1339	__destroy_compound_gigantic_page(page, order, true);
   1340}
   1341
   1342#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
   1343static void destroy_compound_gigantic_page(struct page *page,
   1344					unsigned int order)
   1345{
   1346	__destroy_compound_gigantic_page(page, order, false);
   1347}
   1348
   1349static void free_gigantic_page(struct page *page, unsigned int order)
   1350{
   1351	/*
   1352	 * If the page isn't allocated using the cma allocator,
   1353	 * cma_release() returns false.
   1354	 */
   1355#ifdef CONFIG_CMA
   1356	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
   1357		return;
   1358#endif
   1359
   1360	free_contig_range(page_to_pfn(page), 1 << order);
   1361}
   1362
   1363#ifdef CONFIG_CONTIG_ALLOC
   1364static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
   1365		int nid, nodemask_t *nodemask)
   1366{
   1367	unsigned long nr_pages = pages_per_huge_page(h);
   1368	if (nid == NUMA_NO_NODE)
   1369		nid = numa_mem_id();
   1370
   1371#ifdef CONFIG_CMA
   1372	{
   1373		struct page *page;
   1374		int node;
   1375
   1376		if (hugetlb_cma[nid]) {
   1377			page = cma_alloc(hugetlb_cma[nid], nr_pages,
   1378					huge_page_order(h), true);
   1379			if (page)
   1380				return page;
   1381		}
   1382
   1383		if (!(gfp_mask & __GFP_THISNODE)) {
   1384			for_each_node_mask(node, *nodemask) {
   1385				if (node == nid || !hugetlb_cma[node])
   1386					continue;
   1387
   1388				page = cma_alloc(hugetlb_cma[node], nr_pages,
   1389						huge_page_order(h), true);
   1390				if (page)
   1391					return page;
   1392			}
   1393		}
   1394	}
   1395#endif
   1396
   1397	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
   1398}
   1399
   1400#else /* !CONFIG_CONTIG_ALLOC */
   1401static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
   1402					int nid, nodemask_t *nodemask)
   1403{
   1404	return NULL;
   1405}
   1406#endif /* CONFIG_CONTIG_ALLOC */
   1407
   1408#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
   1409static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
   1410					int nid, nodemask_t *nodemask)
   1411{
   1412	return NULL;
   1413}
   1414static inline void free_gigantic_page(struct page *page, unsigned int order) { }
   1415static inline void destroy_compound_gigantic_page(struct page *page,
   1416						unsigned int order) { }
   1417#endif
   1418
   1419/*
   1420 * Remove hugetlb page from lists, and update dtor so that page appears
   1421 * as just a compound page.
   1422 *
   1423 * A reference is held on the page, except in the case of demote.
   1424 *
   1425 * Must be called with hugetlb lock held.
   1426 */
   1427static void __remove_hugetlb_page(struct hstate *h, struct page *page,
   1428							bool adjust_surplus,
   1429							bool demote)
   1430{
   1431	int nid = page_to_nid(page);
   1432
   1433	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
   1434	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
   1435
   1436	lockdep_assert_held(&hugetlb_lock);
   1437	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
   1438		return;
   1439
   1440	list_del(&page->lru);
   1441
   1442	if (HPageFreed(page)) {
   1443		h->free_huge_pages--;
   1444		h->free_huge_pages_node[nid]--;
   1445	}
   1446	if (adjust_surplus) {
   1447		h->surplus_huge_pages--;
   1448		h->surplus_huge_pages_node[nid]--;
   1449	}
   1450
   1451	/*
   1452	 * Very subtle
   1453	 *
   1454	 * For non-gigantic pages set the destructor to the normal compound
   1455	 * page dtor.  This is needed in case someone takes an additional
   1456	 * temporary ref to the page, and freeing is delayed until they drop
   1457	 * their reference.
   1458	 *
   1459	 * For gigantic pages set the destructor to the null dtor.  This
   1460	 * destructor will never be called.  Before freeing the gigantic
   1461	 * page destroy_compound_gigantic_page will turn the compound page
   1462	 * into a simple group of pages.  After this the destructor does not
   1463	 * apply.
   1464	 *
   1465	 * This handles the case where more than one ref is held when and
   1466	 * after update_and_free_page is called.
   1467	 *
   1468	 * In the case of demote we do not ref count the page as it will soon
   1469	 * be turned into a page of smaller size.
   1470	 */
   1471	if (!demote)
   1472		set_page_refcounted(page);
   1473	if (hstate_is_gigantic(h))
   1474		set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
   1475	else
   1476		set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
   1477
   1478	h->nr_huge_pages--;
   1479	h->nr_huge_pages_node[nid]--;
   1480}
   1481
   1482static void remove_hugetlb_page(struct hstate *h, struct page *page,
   1483							bool adjust_surplus)
   1484{
   1485	__remove_hugetlb_page(h, page, adjust_surplus, false);
   1486}
   1487
   1488static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
   1489							bool adjust_surplus)
   1490{
   1491	__remove_hugetlb_page(h, page, adjust_surplus, true);
   1492}
   1493
   1494static void add_hugetlb_page(struct hstate *h, struct page *page,
   1495			     bool adjust_surplus)
   1496{
   1497	int zeroed;
   1498	int nid = page_to_nid(page);
   1499
   1500	VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
   1501
   1502	lockdep_assert_held(&hugetlb_lock);
   1503
   1504	INIT_LIST_HEAD(&page->lru);
   1505	h->nr_huge_pages++;
   1506	h->nr_huge_pages_node[nid]++;
   1507
   1508	if (adjust_surplus) {
   1509		h->surplus_huge_pages++;
   1510		h->surplus_huge_pages_node[nid]++;
   1511	}
   1512
   1513	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
   1514	set_page_private(page, 0);
   1515	SetHPageVmemmapOptimized(page);
   1516
   1517	/*
   1518	 * This page is about to be managed by the hugetlb allocator and
   1519	 * should have no users.  Drop our reference, and check for others
   1520	 * just in case.
   1521	 */
   1522	zeroed = put_page_testzero(page);
   1523	if (!zeroed)
   1524		/*
   1525		 * It is VERY unlikely soneone else has taken a ref on
   1526		 * the page.  In this case, we simply return as the
   1527		 * hugetlb destructor (free_huge_page) will be called
   1528		 * when this other ref is dropped.
   1529		 */
   1530		return;
   1531
   1532	arch_clear_hugepage_flags(page);
   1533	enqueue_huge_page(h, page);
   1534}
   1535
   1536static void __update_and_free_page(struct hstate *h, struct page *page)
   1537{
   1538	int i;
   1539	struct page *subpage = page;
   1540
   1541	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
   1542		return;
   1543
   1544	if (hugetlb_vmemmap_alloc(h, page)) {
   1545		spin_lock_irq(&hugetlb_lock);
   1546		/*
   1547		 * If we cannot allocate vmemmap pages, just refuse to free the
   1548		 * page and put the page back on the hugetlb free list and treat
   1549		 * as a surplus page.
   1550		 */
   1551		add_hugetlb_page(h, page, true);
   1552		spin_unlock_irq(&hugetlb_lock);
   1553		return;
   1554	}
   1555
   1556	for (i = 0; i < pages_per_huge_page(h);
   1557	     i++, subpage = mem_map_next(subpage, page, i)) {
   1558		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
   1559				1 << PG_referenced | 1 << PG_dirty |
   1560				1 << PG_active | 1 << PG_private |
   1561				1 << PG_writeback);
   1562	}
   1563
   1564	/*
   1565	 * Non-gigantic pages demoted from CMA allocated gigantic pages
   1566	 * need to be given back to CMA in free_gigantic_page.
   1567	 */
   1568	if (hstate_is_gigantic(h) ||
   1569	    hugetlb_cma_page(page, huge_page_order(h))) {
   1570		destroy_compound_gigantic_page(page, huge_page_order(h));
   1571		free_gigantic_page(page, huge_page_order(h));
   1572	} else {
   1573		__free_pages(page, huge_page_order(h));
   1574	}
   1575}
   1576
   1577/*
   1578 * As update_and_free_page() can be called under any context, so we cannot
   1579 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
   1580 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
   1581 * the vmemmap pages.
   1582 *
   1583 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
   1584 * freed and frees them one-by-one. As the page->mapping pointer is going
   1585 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
   1586 * structure of a lockless linked list of huge pages to be freed.
   1587 */
   1588static LLIST_HEAD(hpage_freelist);
   1589
   1590static void free_hpage_workfn(struct work_struct *work)
   1591{
   1592	struct llist_node *node;
   1593
   1594	node = llist_del_all(&hpage_freelist);
   1595
   1596	while (node) {
   1597		struct page *page;
   1598		struct hstate *h;
   1599
   1600		page = container_of((struct address_space **)node,
   1601				     struct page, mapping);
   1602		node = node->next;
   1603		page->mapping = NULL;
   1604		/*
   1605		 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
   1606		 * is going to trigger because a previous call to
   1607		 * remove_hugetlb_page() will set_compound_page_dtor(page,
   1608		 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
   1609		 */
   1610		h = size_to_hstate(page_size(page));
   1611
   1612		__update_and_free_page(h, page);
   1613
   1614		cond_resched();
   1615	}
   1616}
   1617static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
   1618
   1619static inline void flush_free_hpage_work(struct hstate *h)
   1620{
   1621	if (hugetlb_optimize_vmemmap_pages(h))
   1622		flush_work(&free_hpage_work);
   1623}
   1624
   1625static void update_and_free_page(struct hstate *h, struct page *page,
   1626				 bool atomic)
   1627{
   1628	if (!HPageVmemmapOptimized(page) || !atomic) {
   1629		__update_and_free_page(h, page);
   1630		return;
   1631	}
   1632
   1633	/*
   1634	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
   1635	 *
   1636	 * Only call schedule_work() if hpage_freelist is previously
   1637	 * empty. Otherwise, schedule_work() had been called but the workfn
   1638	 * hasn't retrieved the list yet.
   1639	 */
   1640	if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
   1641		schedule_work(&free_hpage_work);
   1642}
   1643
   1644static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
   1645{
   1646	struct page *page, *t_page;
   1647
   1648	list_for_each_entry_safe(page, t_page, list, lru) {
   1649		update_and_free_page(h, page, false);
   1650		cond_resched();
   1651	}
   1652}
   1653
   1654struct hstate *size_to_hstate(unsigned long size)
   1655{
   1656	struct hstate *h;
   1657
   1658	for_each_hstate(h) {
   1659		if (huge_page_size(h) == size)
   1660			return h;
   1661	}
   1662	return NULL;
   1663}
   1664
   1665void free_huge_page(struct page *page)
   1666{
   1667	/*
   1668	 * Can't pass hstate in here because it is called from the
   1669	 * compound page destructor.
   1670	 */
   1671	struct hstate *h = page_hstate(page);
   1672	int nid = page_to_nid(page);
   1673	struct hugepage_subpool *spool = hugetlb_page_subpool(page);
   1674	bool restore_reserve;
   1675	unsigned long flags;
   1676
   1677	VM_BUG_ON_PAGE(page_count(page), page);
   1678	VM_BUG_ON_PAGE(page_mapcount(page), page);
   1679
   1680	hugetlb_set_page_subpool(page, NULL);
   1681	if (PageAnon(page))
   1682		__ClearPageAnonExclusive(page);
   1683	page->mapping = NULL;
   1684	restore_reserve = HPageRestoreReserve(page);
   1685	ClearHPageRestoreReserve(page);
   1686
   1687	/*
   1688	 * If HPageRestoreReserve was set on page, page allocation consumed a
   1689	 * reservation.  If the page was associated with a subpool, there
   1690	 * would have been a page reserved in the subpool before allocation
   1691	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
   1692	 * reservation, do not call hugepage_subpool_put_pages() as this will
   1693	 * remove the reserved page from the subpool.
   1694	 */
   1695	if (!restore_reserve) {
   1696		/*
   1697		 * A return code of zero implies that the subpool will be
   1698		 * under its minimum size if the reservation is not restored
   1699		 * after page is free.  Therefore, force restore_reserve
   1700		 * operation.
   1701		 */
   1702		if (hugepage_subpool_put_pages(spool, 1) == 0)
   1703			restore_reserve = true;
   1704	}
   1705
   1706	spin_lock_irqsave(&hugetlb_lock, flags);
   1707	ClearHPageMigratable(page);
   1708	hugetlb_cgroup_uncharge_page(hstate_index(h),
   1709				     pages_per_huge_page(h), page);
   1710	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
   1711					  pages_per_huge_page(h), page);
   1712	if (restore_reserve)
   1713		h->resv_huge_pages++;
   1714
   1715	if (HPageTemporary(page)) {
   1716		remove_hugetlb_page(h, page, false);
   1717		spin_unlock_irqrestore(&hugetlb_lock, flags);
   1718		update_and_free_page(h, page, true);
   1719	} else if (h->surplus_huge_pages_node[nid]) {
   1720		/* remove the page from active list */
   1721		remove_hugetlb_page(h, page, true);
   1722		spin_unlock_irqrestore(&hugetlb_lock, flags);
   1723		update_and_free_page(h, page, true);
   1724	} else {
   1725		arch_clear_hugepage_flags(page);
   1726		enqueue_huge_page(h, page);
   1727		spin_unlock_irqrestore(&hugetlb_lock, flags);
   1728	}
   1729}
   1730
   1731/*
   1732 * Must be called with the hugetlb lock held
   1733 */
   1734static void __prep_account_new_huge_page(struct hstate *h, int nid)
   1735{
   1736	lockdep_assert_held(&hugetlb_lock);
   1737	h->nr_huge_pages++;
   1738	h->nr_huge_pages_node[nid]++;
   1739}
   1740
   1741static void __prep_new_huge_page(struct hstate *h, struct page *page)
   1742{
   1743	hugetlb_vmemmap_free(h, page);
   1744	INIT_LIST_HEAD(&page->lru);
   1745	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
   1746	hugetlb_set_page_subpool(page, NULL);
   1747	set_hugetlb_cgroup(page, NULL);
   1748	set_hugetlb_cgroup_rsvd(page, NULL);
   1749}
   1750
   1751static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
   1752{
   1753	__prep_new_huge_page(h, page);
   1754	spin_lock_irq(&hugetlb_lock);
   1755	__prep_account_new_huge_page(h, nid);
   1756	spin_unlock_irq(&hugetlb_lock);
   1757}
   1758
   1759static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
   1760								bool demote)
   1761{
   1762	int i, j;
   1763	int nr_pages = 1 << order;
   1764	struct page *p = page + 1;
   1765
   1766	/* we rely on prep_new_huge_page to set the destructor */
   1767	set_compound_order(page, order);
   1768	__ClearPageReserved(page);
   1769	__SetPageHead(page);
   1770	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
   1771		/*
   1772		 * For gigantic hugepages allocated through bootmem at
   1773		 * boot, it's safer to be consistent with the not-gigantic
   1774		 * hugepages and clear the PG_reserved bit from all tail pages
   1775		 * too.  Otherwise drivers using get_user_pages() to access tail
   1776		 * pages may get the reference counting wrong if they see
   1777		 * PG_reserved set on a tail page (despite the head page not
   1778		 * having PG_reserved set).  Enforcing this consistency between
   1779		 * head and tail pages allows drivers to optimize away a check
   1780		 * on the head page when they need know if put_page() is needed
   1781		 * after get_user_pages().
   1782		 */
   1783		__ClearPageReserved(p);
   1784		/*
   1785		 * Subtle and very unlikely
   1786		 *
   1787		 * Gigantic 'page allocators' such as memblock or cma will
   1788		 * return a set of pages with each page ref counted.  We need
   1789		 * to turn this set of pages into a compound page with tail
   1790		 * page ref counts set to zero.  Code such as speculative page
   1791		 * cache adding could take a ref on a 'to be' tail page.
   1792		 * We need to respect any increased ref count, and only set
   1793		 * the ref count to zero if count is currently 1.  If count
   1794		 * is not 1, we return an error.  An error return indicates
   1795		 * the set of pages can not be converted to a gigantic page.
   1796		 * The caller who allocated the pages should then discard the
   1797		 * pages using the appropriate free interface.
   1798		 *
   1799		 * In the case of demote, the ref count will be zero.
   1800		 */
   1801		if (!demote) {
   1802			if (!page_ref_freeze(p, 1)) {
   1803				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
   1804				goto out_error;
   1805			}
   1806		} else {
   1807			VM_BUG_ON_PAGE(page_count(p), p);
   1808		}
   1809		set_compound_head(p, page);
   1810	}
   1811	atomic_set(compound_mapcount_ptr(page), -1);
   1812	atomic_set(compound_pincount_ptr(page), 0);
   1813	return true;
   1814
   1815out_error:
   1816	/* undo tail page modifications made above */
   1817	p = page + 1;
   1818	for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
   1819		clear_compound_head(p);
   1820		set_page_refcounted(p);
   1821	}
   1822	/* need to clear PG_reserved on remaining tail pages  */
   1823	for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
   1824		__ClearPageReserved(p);
   1825	set_compound_order(page, 0);
   1826#ifdef CONFIG_64BIT
   1827	page[1].compound_nr = 0;
   1828#endif
   1829	__ClearPageHead(page);
   1830	return false;
   1831}
   1832
   1833static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
   1834{
   1835	return __prep_compound_gigantic_page(page, order, false);
   1836}
   1837
   1838static bool prep_compound_gigantic_page_for_demote(struct page *page,
   1839							unsigned int order)
   1840{
   1841	return __prep_compound_gigantic_page(page, order, true);
   1842}
   1843
   1844/*
   1845 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
   1846 * transparent huge pages.  See the PageTransHuge() documentation for more
   1847 * details.
   1848 */
   1849int PageHuge(struct page *page)
   1850{
   1851	if (!PageCompound(page))
   1852		return 0;
   1853
   1854	page = compound_head(page);
   1855	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
   1856}
   1857EXPORT_SYMBOL_GPL(PageHuge);
   1858
   1859/*
   1860 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
   1861 * normal or transparent huge pages.
   1862 */
   1863int PageHeadHuge(struct page *page_head)
   1864{
   1865	if (!PageHead(page_head))
   1866		return 0;
   1867
   1868	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
   1869}
   1870EXPORT_SYMBOL_GPL(PageHeadHuge);
   1871
   1872/*
   1873 * Find and lock address space (mapping) in write mode.
   1874 *
   1875 * Upon entry, the page is locked which means that page_mapping() is
   1876 * stable.  Due to locking order, we can only trylock_write.  If we can
   1877 * not get the lock, simply return NULL to caller.
   1878 */
   1879struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
   1880{
   1881	struct address_space *mapping = page_mapping(hpage);
   1882
   1883	if (!mapping)
   1884		return mapping;
   1885
   1886	if (i_mmap_trylock_write(mapping))
   1887		return mapping;
   1888
   1889	return NULL;
   1890}
   1891
   1892pgoff_t hugetlb_basepage_index(struct page *page)
   1893{
   1894	struct page *page_head = compound_head(page);
   1895	pgoff_t index = page_index(page_head);
   1896	unsigned long compound_idx;
   1897
   1898	if (compound_order(page_head) >= MAX_ORDER)
   1899		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
   1900	else
   1901		compound_idx = page - page_head;
   1902
   1903	return (index << compound_order(page_head)) + compound_idx;
   1904}
   1905
   1906static struct page *alloc_buddy_huge_page(struct hstate *h,
   1907		gfp_t gfp_mask, int nid, nodemask_t *nmask,
   1908		nodemask_t *node_alloc_noretry)
   1909{
   1910	int order = huge_page_order(h);
   1911	struct page *page;
   1912	bool alloc_try_hard = true;
   1913
   1914	/*
   1915	 * By default we always try hard to allocate the page with
   1916	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
   1917	 * a loop (to adjust global huge page counts) and previous allocation
   1918	 * failed, do not continue to try hard on the same node.  Use the
   1919	 * node_alloc_noretry bitmap to manage this state information.
   1920	 */
   1921	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
   1922		alloc_try_hard = false;
   1923	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
   1924	if (alloc_try_hard)
   1925		gfp_mask |= __GFP_RETRY_MAYFAIL;
   1926	if (nid == NUMA_NO_NODE)
   1927		nid = numa_mem_id();
   1928	page = __alloc_pages(gfp_mask, order, nid, nmask);
   1929	if (page)
   1930		__count_vm_event(HTLB_BUDDY_PGALLOC);
   1931	else
   1932		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
   1933
   1934	/*
   1935	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
   1936	 * indicates an overall state change.  Clear bit so that we resume
   1937	 * normal 'try hard' allocations.
   1938	 */
   1939	if (node_alloc_noretry && page && !alloc_try_hard)
   1940		node_clear(nid, *node_alloc_noretry);
   1941
   1942	/*
   1943	 * If we tried hard to get a page but failed, set bit so that
   1944	 * subsequent attempts will not try as hard until there is an
   1945	 * overall state change.
   1946	 */
   1947	if (node_alloc_noretry && !page && alloc_try_hard)
   1948		node_set(nid, *node_alloc_noretry);
   1949
   1950	return page;
   1951}
   1952
   1953/*
   1954 * Common helper to allocate a fresh hugetlb page. All specific allocators
   1955 * should use this function to get new hugetlb pages
   1956 */
   1957static struct page *alloc_fresh_huge_page(struct hstate *h,
   1958		gfp_t gfp_mask, int nid, nodemask_t *nmask,
   1959		nodemask_t *node_alloc_noretry)
   1960{
   1961	struct page *page;
   1962	bool retry = false;
   1963
   1964retry:
   1965	if (hstate_is_gigantic(h))
   1966		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
   1967	else
   1968		page = alloc_buddy_huge_page(h, gfp_mask,
   1969				nid, nmask, node_alloc_noretry);
   1970	if (!page)
   1971		return NULL;
   1972
   1973	if (hstate_is_gigantic(h)) {
   1974		if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
   1975			/*
   1976			 * Rare failure to convert pages to compound page.
   1977			 * Free pages and try again - ONCE!
   1978			 */
   1979			free_gigantic_page(page, huge_page_order(h));
   1980			if (!retry) {
   1981				retry = true;
   1982				goto retry;
   1983			}
   1984			return NULL;
   1985		}
   1986	}
   1987	prep_new_huge_page(h, page, page_to_nid(page));
   1988
   1989	return page;
   1990}
   1991
   1992/*
   1993 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
   1994 * manner.
   1995 */
   1996static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
   1997				nodemask_t *node_alloc_noretry)
   1998{
   1999	struct page *page;
   2000	int nr_nodes, node;
   2001	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
   2002
   2003	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
   2004		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
   2005						node_alloc_noretry);
   2006		if (page)
   2007			break;
   2008	}
   2009
   2010	if (!page)
   2011		return 0;
   2012
   2013	put_page(page); /* free it into the hugepage allocator */
   2014
   2015	return 1;
   2016}
   2017
   2018/*
   2019 * Remove huge page from pool from next node to free.  Attempt to keep
   2020 * persistent huge pages more or less balanced over allowed nodes.
   2021 * This routine only 'removes' the hugetlb page.  The caller must make
   2022 * an additional call to free the page to low level allocators.
   2023 * Called with hugetlb_lock locked.
   2024 */
   2025static struct page *remove_pool_huge_page(struct hstate *h,
   2026						nodemask_t *nodes_allowed,
   2027						 bool acct_surplus)
   2028{
   2029	int nr_nodes, node;
   2030	struct page *page = NULL;
   2031
   2032	lockdep_assert_held(&hugetlb_lock);
   2033	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
   2034		/*
   2035		 * If we're returning unused surplus pages, only examine
   2036		 * nodes with surplus pages.
   2037		 */
   2038		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
   2039		    !list_empty(&h->hugepage_freelists[node])) {
   2040			page = list_entry(h->hugepage_freelists[node].next,
   2041					  struct page, lru);
   2042			remove_hugetlb_page(h, page, acct_surplus);
   2043			break;
   2044		}
   2045	}
   2046
   2047	return page;
   2048}
   2049
   2050/*
   2051 * Dissolve a given free hugepage into free buddy pages. This function does
   2052 * nothing for in-use hugepages and non-hugepages.
   2053 * This function returns values like below:
   2054 *
   2055 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
   2056 *           when the system is under memory pressure and the feature of
   2057 *           freeing unused vmemmap pages associated with each hugetlb page
   2058 *           is enabled.
   2059 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
   2060 *           (allocated or reserved.)
   2061 *       0:  successfully dissolved free hugepages or the page is not a
   2062 *           hugepage (considered as already dissolved)
   2063 */
   2064int dissolve_free_huge_page(struct page *page)
   2065{
   2066	int rc = -EBUSY;
   2067
   2068retry:
   2069	/* Not to disrupt normal path by vainly holding hugetlb_lock */
   2070	if (!PageHuge(page))
   2071		return 0;
   2072
   2073	spin_lock_irq(&hugetlb_lock);
   2074	if (!PageHuge(page)) {
   2075		rc = 0;
   2076		goto out;
   2077	}
   2078
   2079	if (!page_count(page)) {
   2080		struct page *head = compound_head(page);
   2081		struct hstate *h = page_hstate(head);
   2082		if (h->free_huge_pages - h->resv_huge_pages == 0)
   2083			goto out;
   2084
   2085		/*
   2086		 * We should make sure that the page is already on the free list
   2087		 * when it is dissolved.
   2088		 */
   2089		if (unlikely(!HPageFreed(head))) {
   2090			spin_unlock_irq(&hugetlb_lock);
   2091			cond_resched();
   2092
   2093			/*
   2094			 * Theoretically, we should return -EBUSY when we
   2095			 * encounter this race. In fact, we have a chance
   2096			 * to successfully dissolve the page if we do a
   2097			 * retry. Because the race window is quite small.
   2098			 * If we seize this opportunity, it is an optimization
   2099			 * for increasing the success rate of dissolving page.
   2100			 */
   2101			goto retry;
   2102		}
   2103
   2104		remove_hugetlb_page(h, head, false);
   2105		h->max_huge_pages--;
   2106		spin_unlock_irq(&hugetlb_lock);
   2107
   2108		/*
   2109		 * Normally update_and_free_page will allocate required vmemmmap
   2110		 * before freeing the page.  update_and_free_page will fail to
   2111		 * free the page if it can not allocate required vmemmap.  We
   2112		 * need to adjust max_huge_pages if the page is not freed.
   2113		 * Attempt to allocate vmemmmap here so that we can take
   2114		 * appropriate action on failure.
   2115		 */
   2116		rc = hugetlb_vmemmap_alloc(h, head);
   2117		if (!rc) {
   2118			/*
   2119			 * Move PageHWPoison flag from head page to the raw
   2120			 * error page, which makes any subpages rather than
   2121			 * the error page reusable.
   2122			 */
   2123			if (PageHWPoison(head) && page != head) {
   2124				SetPageHWPoison(page);
   2125				ClearPageHWPoison(head);
   2126			}
   2127			update_and_free_page(h, head, false);
   2128		} else {
   2129			spin_lock_irq(&hugetlb_lock);
   2130			add_hugetlb_page(h, head, false);
   2131			h->max_huge_pages++;
   2132			spin_unlock_irq(&hugetlb_lock);
   2133		}
   2134
   2135		return rc;
   2136	}
   2137out:
   2138	spin_unlock_irq(&hugetlb_lock);
   2139	return rc;
   2140}
   2141
   2142/*
   2143 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
   2144 * make specified memory blocks removable from the system.
   2145 * Note that this will dissolve a free gigantic hugepage completely, if any
   2146 * part of it lies within the given range.
   2147 * Also note that if dissolve_free_huge_page() returns with an error, all
   2148 * free hugepages that were dissolved before that error are lost.
   2149 */
   2150int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
   2151{
   2152	unsigned long pfn;
   2153	struct page *page;
   2154	int rc = 0;
   2155
   2156	if (!hugepages_supported())
   2157		return rc;
   2158
   2159	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
   2160		page = pfn_to_page(pfn);
   2161		rc = dissolve_free_huge_page(page);
   2162		if (rc)
   2163			break;
   2164	}
   2165
   2166	return rc;
   2167}
   2168
   2169/*
   2170 * Allocates a fresh surplus page from the page allocator.
   2171 */
   2172static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
   2173		int nid, nodemask_t *nmask, bool zero_ref)
   2174{
   2175	struct page *page = NULL;
   2176	bool retry = false;
   2177
   2178	if (hstate_is_gigantic(h))
   2179		return NULL;
   2180
   2181	spin_lock_irq(&hugetlb_lock);
   2182	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
   2183		goto out_unlock;
   2184	spin_unlock_irq(&hugetlb_lock);
   2185
   2186retry:
   2187	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
   2188	if (!page)
   2189		return NULL;
   2190
   2191	spin_lock_irq(&hugetlb_lock);
   2192	/*
   2193	 * We could have raced with the pool size change.
   2194	 * Double check that and simply deallocate the new page
   2195	 * if we would end up overcommiting the surpluses. Abuse
   2196	 * temporary page to workaround the nasty free_huge_page
   2197	 * codeflow
   2198	 */
   2199	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
   2200		SetHPageTemporary(page);
   2201		spin_unlock_irq(&hugetlb_lock);
   2202		put_page(page);
   2203		return NULL;
   2204	}
   2205
   2206	if (zero_ref) {
   2207		/*
   2208		 * Caller requires a page with zero ref count.
   2209		 * We will drop ref count here.  If someone else is holding
   2210		 * a ref, the page will be freed when they drop it.  Abuse
   2211		 * temporary page flag to accomplish this.
   2212		 */
   2213		SetHPageTemporary(page);
   2214		if (!put_page_testzero(page)) {
   2215			/*
   2216			 * Unexpected inflated ref count on freshly allocated
   2217			 * huge.  Retry once.
   2218			 */
   2219			pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
   2220			spin_unlock_irq(&hugetlb_lock);
   2221			if (retry)
   2222				return NULL;
   2223
   2224			retry = true;
   2225			goto retry;
   2226		}
   2227		ClearHPageTemporary(page);
   2228	}
   2229
   2230	h->surplus_huge_pages++;
   2231	h->surplus_huge_pages_node[page_to_nid(page)]++;
   2232
   2233out_unlock:
   2234	spin_unlock_irq(&hugetlb_lock);
   2235
   2236	return page;
   2237}
   2238
   2239static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
   2240				     int nid, nodemask_t *nmask)
   2241{
   2242	struct page *page;
   2243
   2244	if (hstate_is_gigantic(h))
   2245		return NULL;
   2246
   2247	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
   2248	if (!page)
   2249		return NULL;
   2250
   2251	/*
   2252	 * We do not account these pages as surplus because they are only
   2253	 * temporary and will be released properly on the last reference
   2254	 */
   2255	SetHPageTemporary(page);
   2256
   2257	return page;
   2258}
   2259
   2260/*
   2261 * Use the VMA's mpolicy to allocate a huge page from the buddy.
   2262 */
   2263static
   2264struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
   2265		struct vm_area_struct *vma, unsigned long addr)
   2266{
   2267	struct page *page = NULL;
   2268	struct mempolicy *mpol;
   2269	gfp_t gfp_mask = htlb_alloc_mask(h);
   2270	int nid;
   2271	nodemask_t *nodemask;
   2272
   2273	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
   2274	if (mpol_is_preferred_many(mpol)) {
   2275		gfp_t gfp = gfp_mask | __GFP_NOWARN;
   2276
   2277		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
   2278		page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
   2279
   2280		/* Fallback to all nodes if page==NULL */
   2281		nodemask = NULL;
   2282	}
   2283
   2284	if (!page)
   2285		page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
   2286	mpol_cond_put(mpol);
   2287	return page;
   2288}
   2289
   2290/* page migration callback function */
   2291struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
   2292		nodemask_t *nmask, gfp_t gfp_mask)
   2293{
   2294	spin_lock_irq(&hugetlb_lock);
   2295	if (h->free_huge_pages - h->resv_huge_pages > 0) {
   2296		struct page *page;
   2297
   2298		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
   2299		if (page) {
   2300			spin_unlock_irq(&hugetlb_lock);
   2301			return page;
   2302		}
   2303	}
   2304	spin_unlock_irq(&hugetlb_lock);
   2305
   2306	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
   2307}
   2308
   2309/* mempolicy aware migration callback */
   2310struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
   2311		unsigned long address)
   2312{
   2313	struct mempolicy *mpol;
   2314	nodemask_t *nodemask;
   2315	struct page *page;
   2316	gfp_t gfp_mask;
   2317	int node;
   2318
   2319	gfp_mask = htlb_alloc_mask(h);
   2320	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
   2321	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
   2322	mpol_cond_put(mpol);
   2323
   2324	return page;
   2325}
   2326
   2327/*
   2328 * Increase the hugetlb pool such that it can accommodate a reservation
   2329 * of size 'delta'.
   2330 */
   2331static int gather_surplus_pages(struct hstate *h, long delta)
   2332	__must_hold(&hugetlb_lock)
   2333{
   2334	struct list_head surplus_list;
   2335	struct page *page, *tmp;
   2336	int ret;
   2337	long i;
   2338	long needed, allocated;
   2339	bool alloc_ok = true;
   2340
   2341	lockdep_assert_held(&hugetlb_lock);
   2342	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
   2343	if (needed <= 0) {
   2344		h->resv_huge_pages += delta;
   2345		return 0;
   2346	}
   2347
   2348	allocated = 0;
   2349	INIT_LIST_HEAD(&surplus_list);
   2350
   2351	ret = -ENOMEM;
   2352retry:
   2353	spin_unlock_irq(&hugetlb_lock);
   2354	for (i = 0; i < needed; i++) {
   2355		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
   2356				NUMA_NO_NODE, NULL, true);
   2357		if (!page) {
   2358			alloc_ok = false;
   2359			break;
   2360		}
   2361		list_add(&page->lru, &surplus_list);
   2362		cond_resched();
   2363	}
   2364	allocated += i;
   2365
   2366	/*
   2367	 * After retaking hugetlb_lock, we need to recalculate 'needed'
   2368	 * because either resv_huge_pages or free_huge_pages may have changed.
   2369	 */
   2370	spin_lock_irq(&hugetlb_lock);
   2371	needed = (h->resv_huge_pages + delta) -
   2372			(h->free_huge_pages + allocated);
   2373	if (needed > 0) {
   2374		if (alloc_ok)
   2375			goto retry;
   2376		/*
   2377		 * We were not able to allocate enough pages to
   2378		 * satisfy the entire reservation so we free what
   2379		 * we've allocated so far.
   2380		 */
   2381		goto free;
   2382	}
   2383	/*
   2384	 * The surplus_list now contains _at_least_ the number of extra pages
   2385	 * needed to accommodate the reservation.  Add the appropriate number
   2386	 * of pages to the hugetlb pool and free the extras back to the buddy
   2387	 * allocator.  Commit the entire reservation here to prevent another
   2388	 * process from stealing the pages as they are added to the pool but
   2389	 * before they are reserved.
   2390	 */
   2391	needed += allocated;
   2392	h->resv_huge_pages += delta;
   2393	ret = 0;
   2394
   2395	/* Free the needed pages to the hugetlb pool */
   2396	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
   2397		if ((--needed) < 0)
   2398			break;
   2399		/* Add the page to the hugetlb allocator */
   2400		enqueue_huge_page(h, page);
   2401	}
   2402free:
   2403	spin_unlock_irq(&hugetlb_lock);
   2404
   2405	/*
   2406	 * Free unnecessary surplus pages to the buddy allocator.
   2407	 * Pages have no ref count, call free_huge_page directly.
   2408	 */
   2409	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
   2410		free_huge_page(page);
   2411	spin_lock_irq(&hugetlb_lock);
   2412
   2413	return ret;
   2414}
   2415
   2416/*
   2417 * This routine has two main purposes:
   2418 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
   2419 *    in unused_resv_pages.  This corresponds to the prior adjustments made
   2420 *    to the associated reservation map.
   2421 * 2) Free any unused surplus pages that may have been allocated to satisfy
   2422 *    the reservation.  As many as unused_resv_pages may be freed.
   2423 */
   2424static void return_unused_surplus_pages(struct hstate *h,
   2425					unsigned long unused_resv_pages)
   2426{
   2427	unsigned long nr_pages;
   2428	struct page *page;
   2429	LIST_HEAD(page_list);
   2430
   2431	lockdep_assert_held(&hugetlb_lock);
   2432	/* Uncommit the reservation */
   2433	h->resv_huge_pages -= unused_resv_pages;
   2434
   2435	/* Cannot return gigantic pages currently */
   2436	if (hstate_is_gigantic(h))
   2437		goto out;
   2438
   2439	/*
   2440	 * Part (or even all) of the reservation could have been backed
   2441	 * by pre-allocated pages. Only free surplus pages.
   2442	 */
   2443	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
   2444
   2445	/*
   2446	 * We want to release as many surplus pages as possible, spread
   2447	 * evenly across all nodes with memory. Iterate across these nodes
   2448	 * until we can no longer free unreserved surplus pages. This occurs
   2449	 * when the nodes with surplus pages have no free pages.
   2450	 * remove_pool_huge_page() will balance the freed pages across the
   2451	 * on-line nodes with memory and will handle the hstate accounting.
   2452	 */
   2453	while (nr_pages--) {
   2454		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
   2455		if (!page)
   2456			goto out;
   2457
   2458		list_add(&page->lru, &page_list);
   2459	}
   2460
   2461out:
   2462	spin_unlock_irq(&hugetlb_lock);
   2463	update_and_free_pages_bulk(h, &page_list);
   2464	spin_lock_irq(&hugetlb_lock);
   2465}
   2466
   2467
   2468/*
   2469 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
   2470 * are used by the huge page allocation routines to manage reservations.
   2471 *
   2472 * vma_needs_reservation is called to determine if the huge page at addr
   2473 * within the vma has an associated reservation.  If a reservation is
   2474 * needed, the value 1 is returned.  The caller is then responsible for
   2475 * managing the global reservation and subpool usage counts.  After
   2476 * the huge page has been allocated, vma_commit_reservation is called
   2477 * to add the page to the reservation map.  If the page allocation fails,
   2478 * the reservation must be ended instead of committed.  vma_end_reservation
   2479 * is called in such cases.
   2480 *
   2481 * In the normal case, vma_commit_reservation returns the same value
   2482 * as the preceding vma_needs_reservation call.  The only time this
   2483 * is not the case is if a reserve map was changed between calls.  It
   2484 * is the responsibility of the caller to notice the difference and
   2485 * take appropriate action.
   2486 *
   2487 * vma_add_reservation is used in error paths where a reservation must
   2488 * be restored when a newly allocated huge page must be freed.  It is
   2489 * to be called after calling vma_needs_reservation to determine if a
   2490 * reservation exists.
   2491 *
   2492 * vma_del_reservation is used in error paths where an entry in the reserve
   2493 * map was created during huge page allocation and must be removed.  It is to
   2494 * be called after calling vma_needs_reservation to determine if a reservation
   2495 * exists.
   2496 */
   2497enum vma_resv_mode {
   2498	VMA_NEEDS_RESV,
   2499	VMA_COMMIT_RESV,
   2500	VMA_END_RESV,
   2501	VMA_ADD_RESV,
   2502	VMA_DEL_RESV,
   2503};
   2504static long __vma_reservation_common(struct hstate *h,
   2505				struct vm_area_struct *vma, unsigned long addr,
   2506				enum vma_resv_mode mode)
   2507{
   2508	struct resv_map *resv;
   2509	pgoff_t idx;
   2510	long ret;
   2511	long dummy_out_regions_needed;
   2512
   2513	resv = vma_resv_map(vma);
   2514	if (!resv)
   2515		return 1;
   2516
   2517	idx = vma_hugecache_offset(h, vma, addr);
   2518	switch (mode) {
   2519	case VMA_NEEDS_RESV:
   2520		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
   2521		/* We assume that vma_reservation_* routines always operate on
   2522		 * 1 page, and that adding to resv map a 1 page entry can only
   2523		 * ever require 1 region.
   2524		 */
   2525		VM_BUG_ON(dummy_out_regions_needed != 1);
   2526		break;
   2527	case VMA_COMMIT_RESV:
   2528		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
   2529		/* region_add calls of range 1 should never fail. */
   2530		VM_BUG_ON(ret < 0);
   2531		break;
   2532	case VMA_END_RESV:
   2533		region_abort(resv, idx, idx + 1, 1);
   2534		ret = 0;
   2535		break;
   2536	case VMA_ADD_RESV:
   2537		if (vma->vm_flags & VM_MAYSHARE) {
   2538			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
   2539			/* region_add calls of range 1 should never fail. */
   2540			VM_BUG_ON(ret < 0);
   2541		} else {
   2542			region_abort(resv, idx, idx + 1, 1);
   2543			ret = region_del(resv, idx, idx + 1);
   2544		}
   2545		break;
   2546	case VMA_DEL_RESV:
   2547		if (vma->vm_flags & VM_MAYSHARE) {
   2548			region_abort(resv, idx, idx + 1, 1);
   2549			ret = region_del(resv, idx, idx + 1);
   2550		} else {
   2551			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
   2552			/* region_add calls of range 1 should never fail. */
   2553			VM_BUG_ON(ret < 0);
   2554		}
   2555		break;
   2556	default:
   2557		BUG();
   2558	}
   2559
   2560	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
   2561		return ret;
   2562	/*
   2563	 * We know private mapping must have HPAGE_RESV_OWNER set.
   2564	 *
   2565	 * In most cases, reserves always exist for private mappings.
   2566	 * However, a file associated with mapping could have been
   2567	 * hole punched or truncated after reserves were consumed.
   2568	 * As subsequent fault on such a range will not use reserves.
   2569	 * Subtle - The reserve map for private mappings has the
   2570	 * opposite meaning than that of shared mappings.  If NO
   2571	 * entry is in the reserve map, it means a reservation exists.
   2572	 * If an entry exists in the reserve map, it means the
   2573	 * reservation has already been consumed.  As a result, the
   2574	 * return value of this routine is the opposite of the
   2575	 * value returned from reserve map manipulation routines above.
   2576	 */
   2577	if (ret > 0)
   2578		return 0;
   2579	if (ret == 0)
   2580		return 1;
   2581	return ret;
   2582}
   2583
   2584static long vma_needs_reservation(struct hstate *h,
   2585			struct vm_area_struct *vma, unsigned long addr)
   2586{
   2587	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
   2588}
   2589
   2590static long vma_commit_reservation(struct hstate *h,
   2591			struct vm_area_struct *vma, unsigned long addr)
   2592{
   2593	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
   2594}
   2595
   2596static void vma_end_reservation(struct hstate *h,
   2597			struct vm_area_struct *vma, unsigned long addr)
   2598{
   2599	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
   2600}
   2601
   2602static long vma_add_reservation(struct hstate *h,
   2603			struct vm_area_struct *vma, unsigned long addr)
   2604{
   2605	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
   2606}
   2607
   2608static long vma_del_reservation(struct hstate *h,
   2609			struct vm_area_struct *vma, unsigned long addr)
   2610{
   2611	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
   2612}
   2613
   2614/*
   2615 * This routine is called to restore reservation information on error paths.
   2616 * It should ONLY be called for pages allocated via alloc_huge_page(), and
   2617 * the hugetlb mutex should remain held when calling this routine.
   2618 *
   2619 * It handles two specific cases:
   2620 * 1) A reservation was in place and the page consumed the reservation.
   2621 *    HPageRestoreReserve is set in the page.
   2622 * 2) No reservation was in place for the page, so HPageRestoreReserve is
   2623 *    not set.  However, alloc_huge_page always updates the reserve map.
   2624 *
   2625 * In case 1, free_huge_page later in the error path will increment the
   2626 * global reserve count.  But, free_huge_page does not have enough context
   2627 * to adjust the reservation map.  This case deals primarily with private
   2628 * mappings.  Adjust the reserve map here to be consistent with global
   2629 * reserve count adjustments to be made by free_huge_page.  Make sure the
   2630 * reserve map indicates there is a reservation present.
   2631 *
   2632 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
   2633 */
   2634void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
   2635			unsigned long address, struct page *page)
   2636{
   2637	long rc = vma_needs_reservation(h, vma, address);
   2638
   2639	if (HPageRestoreReserve(page)) {
   2640		if (unlikely(rc < 0))
   2641			/*
   2642			 * Rare out of memory condition in reserve map
   2643			 * manipulation.  Clear HPageRestoreReserve so that
   2644			 * global reserve count will not be incremented
   2645			 * by free_huge_page.  This will make it appear
   2646			 * as though the reservation for this page was
   2647			 * consumed.  This may prevent the task from
   2648			 * faulting in the page at a later time.  This
   2649			 * is better than inconsistent global huge page
   2650			 * accounting of reserve counts.
   2651			 */
   2652			ClearHPageRestoreReserve(page);
   2653		else if (rc)
   2654			(void)vma_add_reservation(h, vma, address);
   2655		else
   2656			vma_end_reservation(h, vma, address);
   2657	} else {
   2658		if (!rc) {
   2659			/*
   2660			 * This indicates there is an entry in the reserve map
   2661			 * not added by alloc_huge_page.  We know it was added
   2662			 * before the alloc_huge_page call, otherwise
   2663			 * HPageRestoreReserve would be set on the page.
   2664			 * Remove the entry so that a subsequent allocation
   2665			 * does not consume a reservation.
   2666			 */
   2667			rc = vma_del_reservation(h, vma, address);
   2668			if (rc < 0)
   2669				/*
   2670				 * VERY rare out of memory condition.  Since
   2671				 * we can not delete the entry, set
   2672				 * HPageRestoreReserve so that the reserve
   2673				 * count will be incremented when the page
   2674				 * is freed.  This reserve will be consumed
   2675				 * on a subsequent allocation.
   2676				 */
   2677				SetHPageRestoreReserve(page);
   2678		} else if (rc < 0) {
   2679			/*
   2680			 * Rare out of memory condition from
   2681			 * vma_needs_reservation call.  Memory allocation is
   2682			 * only attempted if a new entry is needed.  Therefore,
   2683			 * this implies there is not an entry in the
   2684			 * reserve map.
   2685			 *
   2686			 * For shared mappings, no entry in the map indicates
   2687			 * no reservation.  We are done.
   2688			 */
   2689			if (!(vma->vm_flags & VM_MAYSHARE))
   2690				/*
   2691				 * For private mappings, no entry indicates
   2692				 * a reservation is present.  Since we can
   2693				 * not add an entry, set SetHPageRestoreReserve
   2694				 * on the page so reserve count will be
   2695				 * incremented when freed.  This reserve will
   2696				 * be consumed on a subsequent allocation.
   2697				 */
   2698				SetHPageRestoreReserve(page);
   2699		} else
   2700			/*
   2701			 * No reservation present, do nothing
   2702			 */
   2703			 vma_end_reservation(h, vma, address);
   2704	}
   2705}
   2706
   2707/*
   2708 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
   2709 * @h: struct hstate old page belongs to
   2710 * @old_page: Old page to dissolve
   2711 * @list: List to isolate the page in case we need to
   2712 * Returns 0 on success, otherwise negated error.
   2713 */
   2714static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
   2715					struct list_head *list)
   2716{
   2717	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
   2718	int nid = page_to_nid(old_page);
   2719	bool alloc_retry = false;
   2720	struct page *new_page;
   2721	int ret = 0;
   2722
   2723	/*
   2724	 * Before dissolving the page, we need to allocate a new one for the
   2725	 * pool to remain stable.  Here, we allocate the page and 'prep' it
   2726	 * by doing everything but actually updating counters and adding to
   2727	 * the pool.  This simplifies and let us do most of the processing
   2728	 * under the lock.
   2729	 */
   2730alloc_retry:
   2731	new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
   2732	if (!new_page)
   2733		return -ENOMEM;
   2734	/*
   2735	 * If all goes well, this page will be directly added to the free
   2736	 * list in the pool.  For this the ref count needs to be zero.
   2737	 * Attempt to drop now, and retry once if needed.  It is VERY
   2738	 * unlikely there is another ref on the page.
   2739	 *
   2740	 * If someone else has a reference to the page, it will be freed
   2741	 * when they drop their ref.  Abuse temporary page flag to accomplish
   2742	 * this.  Retry once if there is an inflated ref count.
   2743	 */
   2744	SetHPageTemporary(new_page);
   2745	if (!put_page_testzero(new_page)) {
   2746		if (alloc_retry)
   2747			return -EBUSY;
   2748
   2749		alloc_retry = true;
   2750		goto alloc_retry;
   2751	}
   2752	ClearHPageTemporary(new_page);
   2753
   2754	__prep_new_huge_page(h, new_page);
   2755
   2756retry:
   2757	spin_lock_irq(&hugetlb_lock);
   2758	if (!PageHuge(old_page)) {
   2759		/*
   2760		 * Freed from under us. Drop new_page too.
   2761		 */
   2762		goto free_new;
   2763	} else if (page_count(old_page)) {
   2764		/*
   2765		 * Someone has grabbed the page, try to isolate it here.
   2766		 * Fail with -EBUSY if not possible.
   2767		 */
   2768		spin_unlock_irq(&hugetlb_lock);
   2769		if (!isolate_huge_page(old_page, list))
   2770			ret = -EBUSY;
   2771		spin_lock_irq(&hugetlb_lock);
   2772		goto free_new;
   2773	} else if (!HPageFreed(old_page)) {
   2774		/*
   2775		 * Page's refcount is 0 but it has not been enqueued in the
   2776		 * freelist yet. Race window is small, so we can succeed here if
   2777		 * we retry.
   2778		 */
   2779		spin_unlock_irq(&hugetlb_lock);
   2780		cond_resched();
   2781		goto retry;
   2782	} else {
   2783		/*
   2784		 * Ok, old_page is still a genuine free hugepage. Remove it from
   2785		 * the freelist and decrease the counters. These will be
   2786		 * incremented again when calling __prep_account_new_huge_page()
   2787		 * and enqueue_huge_page() for new_page. The counters will remain
   2788		 * stable since this happens under the lock.
   2789		 */
   2790		remove_hugetlb_page(h, old_page, false);
   2791
   2792		/*
   2793		 * Ref count on new page is already zero as it was dropped
   2794		 * earlier.  It can be directly added to the pool free list.
   2795		 */
   2796		__prep_account_new_huge_page(h, nid);
   2797		enqueue_huge_page(h, new_page);
   2798
   2799		/*
   2800		 * Pages have been replaced, we can safely free the old one.
   2801		 */
   2802		spin_unlock_irq(&hugetlb_lock);
   2803		update_and_free_page(h, old_page, false);
   2804	}
   2805
   2806	return ret;
   2807
   2808free_new:
   2809	spin_unlock_irq(&hugetlb_lock);
   2810	/* Page has a zero ref count, but needs a ref to be freed */
   2811	set_page_refcounted(new_page);
   2812	update_and_free_page(h, new_page, false);
   2813
   2814	return ret;
   2815}
   2816
   2817int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
   2818{
   2819	struct hstate *h;
   2820	struct page *head;
   2821	int ret = -EBUSY;
   2822
   2823	/*
   2824	 * The page might have been dissolved from under our feet, so make sure
   2825	 * to carefully check the state under the lock.
   2826	 * Return success when racing as if we dissolved the page ourselves.
   2827	 */
   2828	spin_lock_irq(&hugetlb_lock);
   2829	if (PageHuge(page)) {
   2830		head = compound_head(page);
   2831		h = page_hstate(head);
   2832	} else {
   2833		spin_unlock_irq(&hugetlb_lock);
   2834		return 0;
   2835	}
   2836	spin_unlock_irq(&hugetlb_lock);
   2837
   2838	/*
   2839	 * Fence off gigantic pages as there is a cyclic dependency between
   2840	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
   2841	 * of bailing out right away without further retrying.
   2842	 */
   2843	if (hstate_is_gigantic(h))
   2844		return -ENOMEM;
   2845
   2846	if (page_count(head) && isolate_huge_page(head, list))
   2847		ret = 0;
   2848	else if (!page_count(head))
   2849		ret = alloc_and_dissolve_huge_page(h, head, list);
   2850
   2851	return ret;
   2852}
   2853
   2854struct page *alloc_huge_page(struct vm_area_struct *vma,
   2855				    unsigned long addr, int avoid_reserve)
   2856{
   2857	struct hugepage_subpool *spool = subpool_vma(vma);
   2858	struct hstate *h = hstate_vma(vma);
   2859	struct page *page;
   2860	long map_chg, map_commit;
   2861	long gbl_chg;
   2862	int ret, idx;
   2863	struct hugetlb_cgroup *h_cg;
   2864	bool deferred_reserve;
   2865
   2866	idx = hstate_index(h);
   2867	/*
   2868	 * Examine the region/reserve map to determine if the process
   2869	 * has a reservation for the page to be allocated.  A return
   2870	 * code of zero indicates a reservation exists (no change).
   2871	 */
   2872	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
   2873	if (map_chg < 0)
   2874		return ERR_PTR(-ENOMEM);
   2875
   2876	/*
   2877	 * Processes that did not create the mapping will have no
   2878	 * reserves as indicated by the region/reserve map. Check
   2879	 * that the allocation will not exceed the subpool limit.
   2880	 * Allocations for MAP_NORESERVE mappings also need to be
   2881	 * checked against any subpool limit.
   2882	 */
   2883	if (map_chg || avoid_reserve) {
   2884		gbl_chg = hugepage_subpool_get_pages(spool, 1);
   2885		if (gbl_chg < 0) {
   2886			vma_end_reservation(h, vma, addr);
   2887			return ERR_PTR(-ENOSPC);
   2888		}
   2889
   2890		/*
   2891		 * Even though there was no reservation in the region/reserve
   2892		 * map, there could be reservations associated with the
   2893		 * subpool that can be used.  This would be indicated if the
   2894		 * return value of hugepage_subpool_get_pages() is zero.
   2895		 * However, if avoid_reserve is specified we still avoid even
   2896		 * the subpool reservations.
   2897		 */
   2898		if (avoid_reserve)
   2899			gbl_chg = 1;
   2900	}
   2901
   2902	/* If this allocation is not consuming a reservation, charge it now.
   2903	 */
   2904	deferred_reserve = map_chg || avoid_reserve;
   2905	if (deferred_reserve) {
   2906		ret = hugetlb_cgroup_charge_cgroup_rsvd(
   2907			idx, pages_per_huge_page(h), &h_cg);
   2908		if (ret)
   2909			goto out_subpool_put;
   2910	}
   2911
   2912	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
   2913	if (ret)
   2914		goto out_uncharge_cgroup_reservation;
   2915
   2916	spin_lock_irq(&hugetlb_lock);
   2917	/*
   2918	 * glb_chg is passed to indicate whether or not a page must be taken
   2919	 * from the global free pool (global change).  gbl_chg == 0 indicates
   2920	 * a reservation exists for the allocation.
   2921	 */
   2922	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
   2923	if (!page) {
   2924		spin_unlock_irq(&hugetlb_lock);
   2925		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
   2926		if (!page)
   2927			goto out_uncharge_cgroup;
   2928		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
   2929			SetHPageRestoreReserve(page);
   2930			h->resv_huge_pages--;
   2931		}
   2932		spin_lock_irq(&hugetlb_lock);
   2933		list_add(&page->lru, &h->hugepage_activelist);
   2934		/* Fall through */
   2935	}
   2936	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
   2937	/* If allocation is not consuming a reservation, also store the
   2938	 * hugetlb_cgroup pointer on the page.
   2939	 */
   2940	if (deferred_reserve) {
   2941		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
   2942						  h_cg, page);
   2943	}
   2944
   2945	spin_unlock_irq(&hugetlb_lock);
   2946
   2947	hugetlb_set_page_subpool(page, spool);
   2948
   2949	map_commit = vma_commit_reservation(h, vma, addr);
   2950	if (unlikely(map_chg > map_commit)) {
   2951		/*
   2952		 * The page was added to the reservation map between
   2953		 * vma_needs_reservation and vma_commit_reservation.
   2954		 * This indicates a race with hugetlb_reserve_pages.
   2955		 * Adjust for the subpool count incremented above AND
   2956		 * in hugetlb_reserve_pages for the same page.  Also,
   2957		 * the reservation count added in hugetlb_reserve_pages
   2958		 * no longer applies.
   2959		 */
   2960		long rsv_adjust;
   2961
   2962		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
   2963		hugetlb_acct_memory(h, -rsv_adjust);
   2964		if (deferred_reserve)
   2965			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
   2966					pages_per_huge_page(h), page);
   2967	}
   2968	return page;
   2969
   2970out_uncharge_cgroup:
   2971	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
   2972out_uncharge_cgroup_reservation:
   2973	if (deferred_reserve)
   2974		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
   2975						    h_cg);
   2976out_subpool_put:
   2977	if (map_chg || avoid_reserve)
   2978		hugepage_subpool_put_pages(spool, 1);
   2979	vma_end_reservation(h, vma, addr);
   2980	return ERR_PTR(-ENOSPC);
   2981}
   2982
   2983int alloc_bootmem_huge_page(struct hstate *h, int nid)
   2984	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
   2985int __alloc_bootmem_huge_page(struct hstate *h, int nid)
   2986{
   2987	struct huge_bootmem_page *m = NULL; /* initialize for clang */
   2988	int nr_nodes, node;
   2989
   2990	/* do node specific alloc */
   2991	if (nid != NUMA_NO_NODE) {
   2992		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
   2993				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
   2994		if (!m)
   2995			return 0;
   2996		goto found;
   2997	}
   2998	/* allocate from next node when distributing huge pages */
   2999	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
   3000		m = memblock_alloc_try_nid_raw(
   3001				huge_page_size(h), huge_page_size(h),
   3002				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
   3003		/*
   3004		 * Use the beginning of the huge page to store the
   3005		 * huge_bootmem_page struct (until gather_bootmem
   3006		 * puts them into the mem_map).
   3007		 */
   3008		if (!m)
   3009			return 0;
   3010		goto found;
   3011	}
   3012
   3013found:
   3014	/* Put them into a private list first because mem_map is not up yet */
   3015	INIT_LIST_HEAD(&m->list);
   3016	list_add(&m->list, &huge_boot_pages);
   3017	m->hstate = h;
   3018	return 1;
   3019}
   3020
   3021/*
   3022 * Put bootmem huge pages into the standard lists after mem_map is up.
   3023 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
   3024 */
   3025static void __init gather_bootmem_prealloc(void)
   3026{
   3027	struct huge_bootmem_page *m;
   3028
   3029	list_for_each_entry(m, &huge_boot_pages, list) {
   3030		struct page *page = virt_to_page(m);
   3031		struct hstate *h = m->hstate;
   3032
   3033		VM_BUG_ON(!hstate_is_gigantic(h));
   3034		WARN_ON(page_count(page) != 1);
   3035		if (prep_compound_gigantic_page(page, huge_page_order(h))) {
   3036			WARN_ON(PageReserved(page));
   3037			prep_new_huge_page(h, page, page_to_nid(page));
   3038			put_page(page); /* add to the hugepage allocator */
   3039		} else {
   3040			/* VERY unlikely inflated ref count on a tail page */
   3041			free_gigantic_page(page, huge_page_order(h));
   3042		}
   3043
   3044		/*
   3045		 * We need to restore the 'stolen' pages to totalram_pages
   3046		 * in order to fix confusing memory reports from free(1) and
   3047		 * other side-effects, like CommitLimit going negative.
   3048		 */
   3049		adjust_managed_page_count(page, pages_per_huge_page(h));
   3050		cond_resched();
   3051	}
   3052}
   3053static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
   3054{
   3055	unsigned long i;
   3056	char buf[32];
   3057
   3058	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
   3059		if (hstate_is_gigantic(h)) {
   3060			if (!alloc_bootmem_huge_page(h, nid))
   3061				break;
   3062		} else {
   3063			struct page *page;
   3064			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
   3065
   3066			page = alloc_fresh_huge_page(h, gfp_mask, nid,
   3067					&node_states[N_MEMORY], NULL);
   3068			if (!page)
   3069				break;
   3070			put_page(page); /* free it into the hugepage allocator */
   3071		}
   3072		cond_resched();
   3073	}
   3074	if (i == h->max_huge_pages_node[nid])
   3075		return;
   3076
   3077	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
   3078	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
   3079		h->max_huge_pages_node[nid], buf, nid, i);
   3080	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
   3081	h->max_huge_pages_node[nid] = i;
   3082}
   3083
   3084static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
   3085{
   3086	unsigned long i;
   3087	nodemask_t *node_alloc_noretry;
   3088	bool node_specific_alloc = false;
   3089
   3090	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
   3091	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
   3092		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
   3093		return;
   3094	}
   3095
   3096	/* do node specific alloc */
   3097	for_each_online_node(i) {
   3098		if (h->max_huge_pages_node[i] > 0) {
   3099			hugetlb_hstate_alloc_pages_onenode(h, i);
   3100			node_specific_alloc = true;
   3101		}
   3102	}
   3103
   3104	if (node_specific_alloc)
   3105		return;
   3106
   3107	/* below will do all node balanced alloc */
   3108	if (!hstate_is_gigantic(h)) {
   3109		/*
   3110		 * Bit mask controlling how hard we retry per-node allocations.
   3111		 * Ignore errors as lower level routines can deal with
   3112		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
   3113		 * time, we are likely in bigger trouble.
   3114		 */
   3115		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
   3116						GFP_KERNEL);
   3117	} else {
   3118		/* allocations done at boot time */
   3119		node_alloc_noretry = NULL;
   3120	}
   3121
   3122	/* bit mask controlling how hard we retry per-node allocations */
   3123	if (node_alloc_noretry)
   3124		nodes_clear(*node_alloc_noretry);
   3125
   3126	for (i = 0; i < h->max_huge_pages; ++i) {
   3127		if (hstate_is_gigantic(h)) {
   3128			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
   3129				break;
   3130		} else if (!alloc_pool_huge_page(h,
   3131					 &node_states[N_MEMORY],
   3132					 node_alloc_noretry))
   3133			break;
   3134		cond_resched();
   3135	}
   3136	if (i < h->max_huge_pages) {
   3137		char buf[32];
   3138
   3139		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
   3140		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
   3141			h->max_huge_pages, buf, i);
   3142		h->max_huge_pages = i;
   3143	}
   3144	kfree(node_alloc_noretry);
   3145}
   3146
   3147static void __init hugetlb_init_hstates(void)
   3148{
   3149	struct hstate *h, *h2;
   3150
   3151	for_each_hstate(h) {
   3152		if (minimum_order > huge_page_order(h))
   3153			minimum_order = huge_page_order(h);
   3154
   3155		/* oversize hugepages were init'ed in early boot */
   3156		if (!hstate_is_gigantic(h))
   3157			hugetlb_hstate_alloc_pages(h);
   3158
   3159		/*
   3160		 * Set demote order for each hstate.  Note that
   3161		 * h->demote_order is initially 0.
   3162		 * - We can not demote gigantic pages if runtime freeing
   3163		 *   is not supported, so skip this.
   3164		 * - If CMA allocation is possible, we can not demote
   3165		 *   HUGETLB_PAGE_ORDER or smaller size pages.
   3166		 */
   3167		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
   3168			continue;
   3169		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
   3170			continue;
   3171		for_each_hstate(h2) {
   3172			if (h2 == h)
   3173				continue;
   3174			if (h2->order < h->order &&
   3175			    h2->order > h->demote_order)
   3176				h->demote_order = h2->order;
   3177		}
   3178	}
   3179	VM_BUG_ON(minimum_order == UINT_MAX);
   3180}
   3181
   3182static void __init report_hugepages(void)
   3183{
   3184	struct hstate *h;
   3185
   3186	for_each_hstate(h) {
   3187		char buf[32];
   3188
   3189		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
   3190		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
   3191			buf, h->free_huge_pages);
   3192	}
   3193}
   3194
   3195#ifdef CONFIG_HIGHMEM
   3196static void try_to_free_low(struct hstate *h, unsigned long count,
   3197						nodemask_t *nodes_allowed)
   3198{
   3199	int i;
   3200	LIST_HEAD(page_list);
   3201
   3202	lockdep_assert_held(&hugetlb_lock);
   3203	if (hstate_is_gigantic(h))
   3204		return;
   3205
   3206	/*
   3207	 * Collect pages to be freed on a list, and free after dropping lock
   3208	 */
   3209	for_each_node_mask(i, *nodes_allowed) {
   3210		struct page *page, *next;
   3211		struct list_head *freel = &h->hugepage_freelists[i];
   3212		list_for_each_entry_safe(page, next, freel, lru) {
   3213			if (count >= h->nr_huge_pages)
   3214				goto out;
   3215			if (PageHighMem(page))
   3216				continue;
   3217			remove_hugetlb_page(h, page, false);
   3218			list_add(&page->lru, &page_list);
   3219		}
   3220	}
   3221
   3222out:
   3223	spin_unlock_irq(&hugetlb_lock);
   3224	update_and_free_pages_bulk(h, &page_list);
   3225	spin_lock_irq(&hugetlb_lock);
   3226}
   3227#else
   3228static inline void try_to_free_low(struct hstate *h, unsigned long count,
   3229						nodemask_t *nodes_allowed)
   3230{
   3231}
   3232#endif
   3233
   3234/*
   3235 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
   3236 * balanced by operating on them in a round-robin fashion.
   3237 * Returns 1 if an adjustment was made.
   3238 */
   3239static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
   3240				int delta)
   3241{
   3242	int nr_nodes, node;
   3243
   3244	lockdep_assert_held(&hugetlb_lock);
   3245	VM_BUG_ON(delta != -1 && delta != 1);
   3246
   3247	if (delta < 0) {
   3248		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
   3249			if (h->surplus_huge_pages_node[node])
   3250				goto found;
   3251		}
   3252	} else {
   3253		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
   3254			if (h->surplus_huge_pages_node[node] <
   3255					h->nr_huge_pages_node[node])
   3256				goto found;
   3257		}
   3258	}
   3259	return 0;
   3260
   3261found:
   3262	h->surplus_huge_pages += delta;
   3263	h->surplus_huge_pages_node[node] += delta;
   3264	return 1;
   3265}
   3266
   3267#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
   3268static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
   3269			      nodemask_t *nodes_allowed)
   3270{
   3271	unsigned long min_count, ret;
   3272	struct page *page;
   3273	LIST_HEAD(page_list);
   3274	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
   3275
   3276	/*
   3277	 * Bit mask controlling how hard we retry per-node allocations.
   3278	 * If we can not allocate the bit mask, do not attempt to allocate
   3279	 * the requested huge pages.
   3280	 */
   3281	if (node_alloc_noretry)
   3282		nodes_clear(*node_alloc_noretry);
   3283	else
   3284		return -ENOMEM;
   3285
   3286	/*
   3287	 * resize_lock mutex prevents concurrent adjustments to number of
   3288	 * pages in hstate via the proc/sysfs interfaces.
   3289	 */
   3290	mutex_lock(&h->resize_lock);
   3291	flush_free_hpage_work(h);
   3292	spin_lock_irq(&hugetlb_lock);
   3293
   3294	/*
   3295	 * Check for a node specific request.
   3296	 * Changing node specific huge page count may require a corresponding
   3297	 * change to the global count.  In any case, the passed node mask
   3298	 * (nodes_allowed) will restrict alloc/free to the specified node.
   3299	 */
   3300	if (nid != NUMA_NO_NODE) {
   3301		unsigned long old_count = count;
   3302
   3303		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
   3304		/*
   3305		 * User may have specified a large count value which caused the
   3306		 * above calculation to overflow.  In this case, they wanted
   3307		 * to allocate as many huge pages as possible.  Set count to
   3308		 * largest possible value to align with their intention.
   3309		 */
   3310		if (count < old_count)
   3311			count = ULONG_MAX;
   3312	}
   3313
   3314	/*
   3315	 * Gigantic pages runtime allocation depend on the capability for large
   3316	 * page range allocation.
   3317	 * If the system does not provide this feature, return an error when
   3318	 * the user tries to allocate gigantic pages but let the user free the
   3319	 * boottime allocated gigantic pages.
   3320	 */
   3321	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
   3322		if (count > persistent_huge_pages(h)) {
   3323			spin_unlock_irq(&hugetlb_lock);
   3324			mutex_unlock(&h->resize_lock);
   3325			NODEMASK_FREE(node_alloc_noretry);
   3326			return -EINVAL;
   3327		}
   3328		/* Fall through to decrease pool */
   3329	}
   3330
   3331	/*
   3332	 * Increase the pool size
   3333	 * First take pages out of surplus state.  Then make up the
   3334	 * remaining difference by allocating fresh huge pages.
   3335	 *
   3336	 * We might race with alloc_surplus_huge_page() here and be unable
   3337	 * to convert a surplus huge page to a normal huge page. That is
   3338	 * not critical, though, it just means the overall size of the
   3339	 * pool might be one hugepage larger than it needs to be, but
   3340	 * within all the constraints specified by the sysctls.
   3341	 */
   3342	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
   3343		if (!adjust_pool_surplus(h, nodes_allowed, -1))
   3344			break;
   3345	}
   3346
   3347	while (count > persistent_huge_pages(h)) {
   3348		/*
   3349		 * If this allocation races such that we no longer need the
   3350		 * page, free_huge_page will handle it by freeing the page
   3351		 * and reducing the surplus.
   3352		 */
   3353		spin_unlock_irq(&hugetlb_lock);
   3354
   3355		/* yield cpu to avoid soft lockup */
   3356		cond_resched();
   3357
   3358		ret = alloc_pool_huge_page(h, nodes_allowed,
   3359						node_alloc_noretry);
   3360		spin_lock_irq(&hugetlb_lock);
   3361		if (!ret)
   3362			goto out;
   3363
   3364		/* Bail for signals. Probably ctrl-c from user */
   3365		if (signal_pending(current))
   3366			goto out;
   3367	}
   3368
   3369	/*
   3370	 * Decrease the pool size
   3371	 * First return free pages to the buddy allocator (being careful
   3372	 * to keep enough around to satisfy reservations).  Then place
   3373	 * pages into surplus state as needed so the pool will shrink
   3374	 * to the desired size as pages become free.
   3375	 *
   3376	 * By placing pages into the surplus state independent of the
   3377	 * overcommit value, we are allowing the surplus pool size to
   3378	 * exceed overcommit. There are few sane options here. Since
   3379	 * alloc_surplus_huge_page() is checking the global counter,
   3380	 * though, we'll note that we're not allowed to exceed surplus
   3381	 * and won't grow the pool anywhere else. Not until one of the
   3382	 * sysctls are changed, or the surplus pages go out of use.
   3383	 */
   3384	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
   3385	min_count = max(count, min_count);
   3386	try_to_free_low(h, min_count, nodes_allowed);
   3387
   3388	/*
   3389	 * Collect pages to be removed on list without dropping lock
   3390	 */
   3391	while (min_count < persistent_huge_pages(h)) {
   3392		page = remove_pool_huge_page(h, nodes_allowed, 0);
   3393		if (!page)
   3394			break;
   3395
   3396		list_add(&page->lru, &page_list);
   3397	}
   3398	/* free the pages after dropping lock */
   3399	spin_unlock_irq(&hugetlb_lock);
   3400	update_and_free_pages_bulk(h, &page_list);
   3401	flush_free_hpage_work(h);
   3402	spin_lock_irq(&hugetlb_lock);
   3403
   3404	while (count < persistent_huge_pages(h)) {
   3405		if (!adjust_pool_surplus(h, nodes_allowed, 1))
   3406			break;
   3407	}
   3408out:
   3409	h->max_huge_pages = persistent_huge_pages(h);
   3410	spin_unlock_irq(&hugetlb_lock);
   3411	mutex_unlock(&h->resize_lock);
   3412
   3413	NODEMASK_FREE(node_alloc_noretry);
   3414
   3415	return 0;
   3416}
   3417
   3418static int demote_free_huge_page(struct hstate *h, struct page *page)
   3419{
   3420	int i, nid = page_to_nid(page);
   3421	struct hstate *target_hstate;
   3422	int rc = 0;
   3423
   3424	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
   3425
   3426	remove_hugetlb_page_for_demote(h, page, false);
   3427	spin_unlock_irq(&hugetlb_lock);
   3428
   3429	rc = hugetlb_vmemmap_alloc(h, page);
   3430	if (rc) {
   3431		/* Allocation of vmemmmap failed, we can not demote page */
   3432		spin_lock_irq(&hugetlb_lock);
   3433		set_page_refcounted(page);
   3434		add_hugetlb_page(h, page, false);
   3435		return rc;
   3436	}
   3437
   3438	/*
   3439	 * Use destroy_compound_hugetlb_page_for_demote for all huge page
   3440	 * sizes as it will not ref count pages.
   3441	 */
   3442	destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
   3443
   3444	/*
   3445	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
   3446	 * Without the mutex, pages added to target hstate could be marked
   3447	 * as surplus.
   3448	 *
   3449	 * Note that we already hold h->resize_lock.  To prevent deadlock,
   3450	 * use the convention of always taking larger size hstate mutex first.
   3451	 */
   3452	mutex_lock(&target_hstate->resize_lock);
   3453	for (i = 0; i < pages_per_huge_page(h);
   3454				i += pages_per_huge_page(target_hstate)) {
   3455		if (hstate_is_gigantic(target_hstate))
   3456			prep_compound_gigantic_page_for_demote(page + i,
   3457							target_hstate->order);
   3458		else
   3459			prep_compound_page(page + i, target_hstate->order);
   3460		set_page_private(page + i, 0);
   3461		set_page_refcounted(page + i);
   3462		prep_new_huge_page(target_hstate, page + i, nid);
   3463		put_page(page + i);
   3464	}
   3465	mutex_unlock(&target_hstate->resize_lock);
   3466
   3467	spin_lock_irq(&hugetlb_lock);
   3468
   3469	/*
   3470	 * Not absolutely necessary, but for consistency update max_huge_pages
   3471	 * based on pool changes for the demoted page.
   3472	 */
   3473	h->max_huge_pages--;
   3474	target_hstate->max_huge_pages += pages_per_huge_page(h);
   3475
   3476	return rc;
   3477}
   3478
   3479static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
   3480	__must_hold(&hugetlb_lock)
   3481{
   3482	int nr_nodes, node;
   3483	struct page *page;
   3484
   3485	lockdep_assert_held(&hugetlb_lock);
   3486
   3487	/* We should never get here if no demote order */
   3488	if (!h->demote_order) {
   3489		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
   3490		return -EINVAL;		/* internal error */
   3491	}
   3492
   3493	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
   3494		list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
   3495			if (PageHWPoison(page))
   3496				continue;
   3497
   3498			return demote_free_huge_page(h, page);
   3499		}
   3500	}
   3501
   3502	/*
   3503	 * Only way to get here is if all pages on free lists are poisoned.
   3504	 * Return -EBUSY so that caller will not retry.
   3505	 */
   3506	return -EBUSY;
   3507}
   3508
   3509#define HSTATE_ATTR_RO(_name) \
   3510	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
   3511
   3512#define HSTATE_ATTR_WO(_name) \
   3513	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
   3514
   3515#define HSTATE_ATTR(_name) \
   3516	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
   3517
   3518static struct kobject *hugepages_kobj;
   3519static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
   3520
   3521static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
   3522
   3523static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
   3524{
   3525	int i;
   3526
   3527	for (i = 0; i < HUGE_MAX_HSTATE; i++)
   3528		if (hstate_kobjs[i] == kobj) {
   3529			if (nidp)
   3530				*nidp = NUMA_NO_NODE;
   3531			return &hstates[i];
   3532		}
   3533
   3534	return kobj_to_node_hstate(kobj, nidp);
   3535}
   3536
   3537static ssize_t nr_hugepages_show_common(struct kobject *kobj,
   3538					struct kobj_attribute *attr, char *buf)
   3539{
   3540	struct hstate *h;
   3541	unsigned long nr_huge_pages;
   3542	int nid;
   3543
   3544	h = kobj_to_hstate(kobj, &nid);
   3545	if (nid == NUMA_NO_NODE)
   3546		nr_huge_pages = h->nr_huge_pages;
   3547	else
   3548		nr_huge_pages = h->nr_huge_pages_node[nid];
   3549
   3550	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
   3551}
   3552
   3553static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
   3554					   struct hstate *h, int nid,
   3555					   unsigned long count, size_t len)
   3556{
   3557	int err;
   3558	nodemask_t nodes_allowed, *n_mask;
   3559
   3560	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
   3561		return -EINVAL;
   3562
   3563	if (nid == NUMA_NO_NODE) {
   3564		/*
   3565		 * global hstate attribute
   3566		 */
   3567		if (!(obey_mempolicy &&
   3568				init_nodemask_of_mempolicy(&nodes_allowed)))
   3569			n_mask = &node_states[N_MEMORY];
   3570		else
   3571			n_mask = &nodes_allowed;
   3572	} else {
   3573		/*
   3574		 * Node specific request.  count adjustment happens in
   3575		 * set_max_huge_pages() after acquiring hugetlb_lock.
   3576		 */
   3577		init_nodemask_of_node(&nodes_allowed, nid);
   3578		n_mask = &nodes_allowed;
   3579	}
   3580
   3581	err = set_max_huge_pages(h, count, nid, n_mask);
   3582
   3583	return err ? err : len;
   3584}
   3585
   3586static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
   3587					 struct kobject *kobj, const char *buf,
   3588					 size_t len)
   3589{
   3590	struct hstate *h;
   3591	unsigned long count;
   3592	int nid;
   3593	int err;
   3594
   3595	err = kstrtoul(buf, 10, &count);
   3596	if (err)
   3597		return err;
   3598
   3599	h = kobj_to_hstate(kobj, &nid);
   3600	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
   3601}
   3602
   3603static ssize_t nr_hugepages_show(struct kobject *kobj,
   3604				       struct kobj_attribute *attr, char *buf)
   3605{
   3606	return nr_hugepages_show_common(kobj, attr, buf);
   3607}
   3608
   3609static ssize_t nr_hugepages_store(struct kobject *kobj,
   3610	       struct kobj_attribute *attr, const char *buf, size_t len)
   3611{
   3612	return nr_hugepages_store_common(false, kobj, buf, len);
   3613}
   3614HSTATE_ATTR(nr_hugepages);
   3615
   3616#ifdef CONFIG_NUMA
   3617
   3618/*
   3619 * hstate attribute for optionally mempolicy-based constraint on persistent
   3620 * huge page alloc/free.
   3621 */
   3622static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
   3623					   struct kobj_attribute *attr,
   3624					   char *buf)
   3625{
   3626	return nr_hugepages_show_common(kobj, attr, buf);
   3627}
   3628
   3629static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
   3630	       struct kobj_attribute *attr, const char *buf, size_t len)
   3631{
   3632	return nr_hugepages_store_common(true, kobj, buf, len);
   3633}
   3634HSTATE_ATTR(nr_hugepages_mempolicy);
   3635#endif
   3636
   3637
   3638static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
   3639					struct kobj_attribute *attr, char *buf)
   3640{
   3641	struct hstate *h = kobj_to_hstate(kobj, NULL);
   3642	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
   3643}
   3644
   3645static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
   3646		struct kobj_attribute *attr, const char *buf, size_t count)
   3647{
   3648	int err;
   3649	unsigned long input;
   3650	struct hstate *h = kobj_to_hstate(kobj, NULL);
   3651
   3652	if (hstate_is_gigantic(h))
   3653		return -EINVAL;
   3654
   3655	err = kstrtoul(buf, 10, &input);
   3656	if (err)
   3657		return err;
   3658
   3659	spin_lock_irq(&hugetlb_lock);
   3660	h->nr_overcommit_huge_pages = input;
   3661	spin_unlock_irq(&hugetlb_lock);
   3662
   3663	return count;
   3664}
   3665HSTATE_ATTR(nr_overcommit_hugepages);
   3666
   3667static ssize_t free_hugepages_show(struct kobject *kobj,
   3668					struct kobj_attribute *attr, char *buf)
   3669{
   3670	struct hstate *h;
   3671	unsigned long free_huge_pages;
   3672	int nid;
   3673
   3674	h = kobj_to_hstate(kobj, &nid);
   3675	if (nid == NUMA_NO_NODE)
   3676		free_huge_pages = h->free_huge_pages;
   3677	else
   3678		free_huge_pages = h->free_huge_pages_node[nid];
   3679
   3680	return sysfs_emit(buf, "%lu\n", free_huge_pages);
   3681}
   3682HSTATE_ATTR_RO(free_hugepages);
   3683
   3684static ssize_t resv_hugepages_show(struct kobject *kobj,
   3685					struct kobj_attribute *attr, char *buf)
   3686{
   3687	struct hstate *h = kobj_to_hstate(kobj, NULL);
   3688	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
   3689}
   3690HSTATE_ATTR_RO(resv_hugepages);
   3691
   3692static ssize_t surplus_hugepages_show(struct kobject *kobj,
   3693					struct kobj_attribute *attr, char *buf)
   3694{
   3695	struct hstate *h;
   3696	unsigned long surplus_huge_pages;
   3697	int nid;
   3698
   3699	h = kobj_to_hstate(kobj, &nid);
   3700	if (nid == NUMA_NO_NODE)
   3701		surplus_huge_pages = h->surplus_huge_pages;
   3702	else
   3703		surplus_huge_pages = h->surplus_huge_pages_node[nid];
   3704
   3705	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
   3706}
   3707HSTATE_ATTR_RO(surplus_hugepages);
   3708
   3709static ssize_t demote_store(struct kobject *kobj,
   3710	       struct kobj_attribute *attr, const char *buf, size_t len)
   3711{
   3712	unsigned long nr_demote;
   3713	unsigned long nr_available;
   3714	nodemask_t nodes_allowed, *n_mask;
   3715	struct hstate *h;
   3716	int err = 0;
   3717	int nid;
   3718
   3719	err = kstrtoul(buf, 10, &nr_demote);
   3720	if (err)
   3721		return err;
   3722	h = kobj_to_hstate(kobj, &nid);
   3723
   3724	if (nid != NUMA_NO_NODE) {
   3725		init_nodemask_of_node(&nodes_allowed, nid);
   3726		n_mask = &nodes_allowed;
   3727	} else {
   3728		n_mask = &node_states[N_MEMORY];
   3729	}
   3730
   3731	/* Synchronize with other sysfs operations modifying huge pages */
   3732	mutex_lock(&h->resize_lock);
   3733	spin_lock_irq(&hugetlb_lock);
   3734
   3735	while (nr_demote) {
   3736		/*
   3737		 * Check for available pages to demote each time thorough the
   3738		 * loop as demote_pool_huge_page will drop hugetlb_lock.
   3739		 */
   3740		if (nid != NUMA_NO_NODE)
   3741			nr_available = h->free_huge_pages_node[nid];
   3742		else
   3743			nr_available = h->free_huge_pages;
   3744		nr_available -= h->resv_huge_pages;
   3745		if (!nr_available)
   3746			break;
   3747
   3748		err = demote_pool_huge_page(h, n_mask);
   3749		if (err)
   3750			break;
   3751
   3752		nr_demote--;
   3753	}
   3754
   3755	spin_unlock_irq(&hugetlb_lock);
   3756	mutex_unlock(&h->resize_lock);
   3757
   3758	if (err)
   3759		return err;
   3760	return len;
   3761}
   3762HSTATE_ATTR_WO(demote);
   3763
   3764static ssize_t demote_size_show(struct kobject *kobj,
   3765					struct kobj_attribute *attr, char *buf)
   3766{
   3767	int nid;
   3768	struct hstate *h = kobj_to_hstate(kobj, &nid);
   3769	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
   3770
   3771	return sysfs_emit(buf, "%lukB\n", demote_size);
   3772}
   3773
   3774static ssize_t demote_size_store(struct kobject *kobj,
   3775					struct kobj_attribute *attr,
   3776					const char *buf, size_t count)
   3777{
   3778	struct hstate *h, *demote_hstate;
   3779	unsigned long demote_size;
   3780	unsigned int demote_order;
   3781	int nid;
   3782
   3783	demote_size = (unsigned long)memparse(buf, NULL);
   3784
   3785	demote_hstate = size_to_hstate(demote_size);
   3786	if (!demote_hstate)
   3787		return -EINVAL;
   3788	demote_order = demote_hstate->order;
   3789	if (demote_order < HUGETLB_PAGE_ORDER)
   3790		return -EINVAL;
   3791
   3792	/* demote order must be smaller than hstate order */
   3793	h = kobj_to_hstate(kobj, &nid);
   3794	if (demote_order >= h->order)
   3795		return -EINVAL;
   3796
   3797	/* resize_lock synchronizes access to demote size and writes */
   3798	mutex_lock(&h->resize_lock);
   3799	h->demote_order = demote_order;
   3800	mutex_unlock(&h->resize_lock);
   3801
   3802	return count;
   3803}
   3804HSTATE_ATTR(demote_size);
   3805
   3806static struct attribute *hstate_attrs[] = {
   3807	&nr_hugepages_attr.attr,
   3808	&nr_overcommit_hugepages_attr.attr,
   3809	&free_hugepages_attr.attr,
   3810	&resv_hugepages_attr.attr,
   3811	&surplus_hugepages_attr.attr,
   3812#ifdef CONFIG_NUMA
   3813	&nr_hugepages_mempolicy_attr.attr,
   3814#endif
   3815	NULL,
   3816};
   3817
   3818static const struct attribute_group hstate_attr_group = {
   3819	.attrs = hstate_attrs,
   3820};
   3821
   3822static struct attribute *hstate_demote_attrs[] = {
   3823	&demote_size_attr.attr,
   3824	&demote_attr.attr,
   3825	NULL,
   3826};
   3827
   3828static const struct attribute_group hstate_demote_attr_group = {
   3829	.attrs = hstate_demote_attrs,
   3830};
   3831
   3832static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
   3833				    struct kobject **hstate_kobjs,
   3834				    const struct attribute_group *hstate_attr_group)
   3835{
   3836	int retval;
   3837	int hi = hstate_index(h);
   3838
   3839	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
   3840	if (!hstate_kobjs[hi])
   3841		return -ENOMEM;
   3842
   3843	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
   3844	if (retval) {
   3845		kobject_put(hstate_kobjs[hi]);
   3846		hstate_kobjs[hi] = NULL;
   3847	}
   3848
   3849	if (h->demote_order) {
   3850		if (sysfs_create_group(hstate_kobjs[hi],
   3851					&hstate_demote_attr_group))
   3852			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
   3853	}
   3854
   3855	return retval;
   3856}
   3857
   3858static void __init hugetlb_sysfs_init(void)
   3859{
   3860	struct hstate *h;
   3861	int err;
   3862
   3863	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
   3864	if (!hugepages_kobj)
   3865		return;
   3866
   3867	for_each_hstate(h) {
   3868		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
   3869					 hstate_kobjs, &hstate_attr_group);
   3870		if (err)
   3871			pr_err("HugeTLB: Unable to add hstate %s", h->name);
   3872	}
   3873}
   3874
   3875#ifdef CONFIG_NUMA
   3876
   3877/*
   3878 * node_hstate/s - associate per node hstate attributes, via their kobjects,
   3879 * with node devices in node_devices[] using a parallel array.  The array
   3880 * index of a node device or _hstate == node id.
   3881 * This is here to avoid any static dependency of the node device driver, in
   3882 * the base kernel, on the hugetlb module.
   3883 */
   3884struct node_hstate {
   3885	struct kobject		*hugepages_kobj;
   3886	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
   3887};
   3888static struct node_hstate node_hstates[MAX_NUMNODES];
   3889
   3890/*
   3891 * A subset of global hstate attributes for node devices
   3892 */
   3893static struct attribute *per_node_hstate_attrs[] = {
   3894	&nr_hugepages_attr.attr,
   3895	&free_hugepages_attr.attr,
   3896	&surplus_hugepages_attr.attr,
   3897	NULL,
   3898};
   3899
   3900static const struct attribute_group per_node_hstate_attr_group = {
   3901	.attrs = per_node_hstate_attrs,
   3902};
   3903
   3904/*
   3905 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
   3906 * Returns node id via non-NULL nidp.
   3907 */
   3908static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
   3909{
   3910	int nid;
   3911
   3912	for (nid = 0; nid < nr_node_ids; nid++) {
   3913		struct node_hstate *nhs = &node_hstates[nid];
   3914		int i;
   3915		for (i = 0; i < HUGE_MAX_HSTATE; i++)
   3916			if (nhs->hstate_kobjs[i] == kobj) {
   3917				if (nidp)
   3918					*nidp = nid;
   3919				return &hstates[i];
   3920			}
   3921	}
   3922
   3923	BUG();
   3924	return NULL;
   3925}
   3926
   3927/*
   3928 * Unregister hstate attributes from a single node device.
   3929 * No-op if no hstate attributes attached.
   3930 */
   3931static void hugetlb_unregister_node(struct node *node)
   3932{
   3933	struct hstate *h;
   3934	struct node_hstate *nhs = &node_hstates[node->dev.id];
   3935
   3936	if (!nhs->hugepages_kobj)
   3937		return;		/* no hstate attributes */
   3938
   3939	for_each_hstate(h) {
   3940		int idx = hstate_index(h);
   3941		if (nhs->hstate_kobjs[idx]) {
   3942			kobject_put(nhs->hstate_kobjs[idx]);
   3943			nhs->hstate_kobjs[idx] = NULL;
   3944		}
   3945	}
   3946
   3947	kobject_put(nhs->hugepages_kobj);
   3948	nhs->hugepages_kobj = NULL;
   3949}
   3950
   3951
   3952/*
   3953 * Register hstate attributes for a single node device.
   3954 * No-op if attributes already registered.
   3955 */
   3956static void hugetlb_register_node(struct node *node)
   3957{
   3958	struct hstate *h;
   3959	struct node_hstate *nhs = &node_hstates[node->dev.id];
   3960	int err;
   3961
   3962	if (nhs->hugepages_kobj)
   3963		return;		/* already allocated */
   3964
   3965	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
   3966							&node->dev.kobj);
   3967	if (!nhs->hugepages_kobj)
   3968		return;
   3969
   3970	for_each_hstate(h) {
   3971		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
   3972						nhs->hstate_kobjs,
   3973						&per_node_hstate_attr_group);
   3974		if (err) {
   3975			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
   3976				h->name, node->dev.id);
   3977			hugetlb_unregister_node(node);
   3978			break;
   3979		}
   3980	}
   3981}
   3982
   3983/*
   3984 * hugetlb init time:  register hstate attributes for all registered node
   3985 * devices of nodes that have memory.  All on-line nodes should have
   3986 * registered their associated device by this time.
   3987 */
   3988static void __init hugetlb_register_all_nodes(void)
   3989{
   3990	int nid;
   3991
   3992	for_each_node_state(nid, N_MEMORY) {
   3993		struct node *node = node_devices[nid];
   3994		if (node->dev.id == nid)
   3995			hugetlb_register_node(node);
   3996	}
   3997
   3998	/*
   3999	 * Let the node device driver know we're here so it can
   4000	 * [un]register hstate attributes on node hotplug.
   4001	 */
   4002	register_hugetlbfs_with_node(hugetlb_register_node,
   4003				     hugetlb_unregister_node);
   4004}
   4005#else	/* !CONFIG_NUMA */
   4006
   4007static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
   4008{
   4009	BUG();
   4010	if (nidp)
   4011		*nidp = -1;
   4012	return NULL;
   4013}
   4014
   4015static void hugetlb_register_all_nodes(void) { }
   4016
   4017#endif
   4018
   4019static int __init hugetlb_init(void)
   4020{
   4021	int i;
   4022
   4023	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
   4024			__NR_HPAGEFLAGS);
   4025
   4026	if (!hugepages_supported()) {
   4027		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
   4028			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
   4029		return 0;
   4030	}
   4031
   4032	/*
   4033	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
   4034	 * architectures depend on setup being done here.
   4035	 */
   4036	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
   4037	if (!parsed_default_hugepagesz) {
   4038		/*
   4039		 * If we did not parse a default huge page size, set
   4040		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
   4041		 * number of huge pages for this default size was implicitly
   4042		 * specified, set that here as well.
   4043		 * Note that the implicit setting will overwrite an explicit
   4044		 * setting.  A warning will be printed in this case.
   4045		 */
   4046		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
   4047		if (default_hstate_max_huge_pages) {
   4048			if (default_hstate.max_huge_pages) {
   4049				char buf[32];
   4050
   4051				string_get_size(huge_page_size(&default_hstate),
   4052					1, STRING_UNITS_2, buf, 32);
   4053				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
   4054					default_hstate.max_huge_pages, buf);
   4055				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
   4056					default_hstate_max_huge_pages);
   4057			}
   4058			default_hstate.max_huge_pages =
   4059				default_hstate_max_huge_pages;
   4060
   4061			for_each_online_node(i)
   4062				default_hstate.max_huge_pages_node[i] =
   4063					default_hugepages_in_node[i];
   4064		}
   4065	}
   4066
   4067	hugetlb_cma_check();
   4068	hugetlb_init_hstates();
   4069	gather_bootmem_prealloc();
   4070	report_hugepages();
   4071
   4072	hugetlb_sysfs_init();
   4073	hugetlb_register_all_nodes();
   4074	hugetlb_cgroup_file_init();
   4075
   4076#ifdef CONFIG_SMP
   4077	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
   4078#else
   4079	num_fault_mutexes = 1;
   4080#endif
   4081	hugetlb_fault_mutex_table =
   4082		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
   4083			      GFP_KERNEL);
   4084	BUG_ON(!hugetlb_fault_mutex_table);
   4085
   4086	for (i = 0; i < num_fault_mutexes; i++)
   4087		mutex_init(&hugetlb_fault_mutex_table[i]);
   4088	return 0;
   4089}
   4090subsys_initcall(hugetlb_init);
   4091
   4092/* Overwritten by architectures with more huge page sizes */
   4093bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
   4094{
   4095	return size == HPAGE_SIZE;
   4096}
   4097
   4098void __init hugetlb_add_hstate(unsigned int order)
   4099{
   4100	struct hstate *h;
   4101	unsigned long i;
   4102
   4103	if (size_to_hstate(PAGE_SIZE << order)) {
   4104		return;
   4105	}
   4106	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
   4107	BUG_ON(order == 0);
   4108	h = &hstates[hugetlb_max_hstate++];
   4109	mutex_init(&h->resize_lock);
   4110	h->order = order;
   4111	h->mask = ~(huge_page_size(h) - 1);
   4112	for (i = 0; i < MAX_NUMNODES; ++i)
   4113		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
   4114	INIT_LIST_HEAD(&h->hugepage_activelist);
   4115	h->next_nid_to_alloc = first_memory_node;
   4116	h->next_nid_to_free = first_memory_node;
   4117	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
   4118					huge_page_size(h)/1024);
   4119	hugetlb_vmemmap_init(h);
   4120
   4121	parsed_hstate = h;
   4122}
   4123
   4124bool __init __weak hugetlb_node_alloc_supported(void)
   4125{
   4126	return true;
   4127}
   4128
   4129static void __init hugepages_clear_pages_in_node(void)
   4130{
   4131	if (!hugetlb_max_hstate) {
   4132		default_hstate_max_huge_pages = 0;
   4133		memset(default_hugepages_in_node, 0,
   4134			MAX_NUMNODES * sizeof(unsigned int));
   4135	} else {
   4136		parsed_hstate->max_huge_pages = 0;
   4137		memset(parsed_hstate->max_huge_pages_node, 0,
   4138			MAX_NUMNODES * sizeof(unsigned int));
   4139	}
   4140}
   4141
   4142/*
   4143 * hugepages command line processing
   4144 * hugepages normally follows a valid hugepagsz or default_hugepagsz
   4145 * specification.  If not, ignore the hugepages value.  hugepages can also
   4146 * be the first huge page command line  option in which case it implicitly
   4147 * specifies the number of huge pages for the default size.
   4148 */
   4149static int __init hugepages_setup(char *s)
   4150{
   4151	unsigned long *mhp;
   4152	static unsigned long *last_mhp;
   4153	int node = NUMA_NO_NODE;
   4154	int count;
   4155	unsigned long tmp;
   4156	char *p = s;
   4157
   4158	if (!parsed_valid_hugepagesz) {
   4159		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
   4160		parsed_valid_hugepagesz = true;
   4161		return 1;
   4162	}
   4163
   4164	/*
   4165	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
   4166	 * yet, so this hugepages= parameter goes to the "default hstate".
   4167	 * Otherwise, it goes with the previously parsed hugepagesz or
   4168	 * default_hugepagesz.
   4169	 */
   4170	else if (!hugetlb_max_hstate)
   4171		mhp = &default_hstate_max_huge_pages;
   4172	else
   4173		mhp = &parsed_hstate->max_huge_pages;
   4174
   4175	if (mhp == last_mhp) {
   4176		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
   4177		return 1;
   4178	}
   4179
   4180	while (*p) {
   4181		count = 0;
   4182		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
   4183			goto invalid;
   4184		/* Parameter is node format */
   4185		if (p[count] == ':') {
   4186			if (!hugetlb_node_alloc_supported()) {
   4187				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
   4188				return 1;
   4189			}
   4190			if (tmp >= MAX_NUMNODES || !node_online(tmp))
   4191				goto invalid;
   4192			node = array_index_nospec(tmp, MAX_NUMNODES);
   4193			p += count + 1;
   4194			/* Parse hugepages */
   4195			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
   4196				goto invalid;
   4197			if (!hugetlb_max_hstate)
   4198				default_hugepages_in_node[node] = tmp;
   4199			else
   4200				parsed_hstate->max_huge_pages_node[node] = tmp;
   4201			*mhp += tmp;
   4202			/* Go to parse next node*/
   4203			if (p[count] == ',')
   4204				p += count + 1;
   4205			else
   4206				break;
   4207		} else {
   4208			if (p != s)
   4209				goto invalid;
   4210			*mhp = tmp;
   4211			break;
   4212		}
   4213	}
   4214
   4215	/*
   4216	 * Global state is always initialized later in hugetlb_init.
   4217	 * But we need to allocate gigantic hstates here early to still
   4218	 * use the bootmem allocator.
   4219	 */
   4220	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
   4221		hugetlb_hstate_alloc_pages(parsed_hstate);
   4222
   4223	last_mhp = mhp;
   4224
   4225	return 1;
   4226
   4227invalid:
   4228	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
   4229	hugepages_clear_pages_in_node();
   4230	return 1;
   4231}
   4232__setup("hugepages=", hugepages_setup);
   4233
   4234/*
   4235 * hugepagesz command line processing
   4236 * A specific huge page size can only be specified once with hugepagesz.
   4237 * hugepagesz is followed by hugepages on the command line.  The global
   4238 * variable 'parsed_valid_hugepagesz' is used to determine if prior
   4239 * hugepagesz argument was valid.
   4240 */
   4241static int __init hugepagesz_setup(char *s)
   4242{
   4243	unsigned long size;
   4244	struct hstate *h;
   4245
   4246	parsed_valid_hugepagesz = false;
   4247	size = (unsigned long)memparse(s, NULL);
   4248
   4249	if (!arch_hugetlb_valid_size(size)) {
   4250		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
   4251		return 1;
   4252	}
   4253
   4254	h = size_to_hstate(size);
   4255	if (h) {
   4256		/*
   4257		 * hstate for this size already exists.  This is normally
   4258		 * an error, but is allowed if the existing hstate is the
   4259		 * default hstate.  More specifically, it is only allowed if
   4260		 * the number of huge pages for the default hstate was not
   4261		 * previously specified.
   4262		 */
   4263		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
   4264		    default_hstate.max_huge_pages) {
   4265			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
   4266			return 1;
   4267		}
   4268
   4269		/*
   4270		 * No need to call hugetlb_add_hstate() as hstate already
   4271		 * exists.  But, do set parsed_hstate so that a following
   4272		 * hugepages= parameter will be applied to this hstate.
   4273		 */
   4274		parsed_hstate = h;
   4275		parsed_valid_hugepagesz = true;
   4276		return 1;
   4277	}
   4278
   4279	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
   4280	parsed_valid_hugepagesz = true;
   4281	return 1;
   4282}
   4283__setup("hugepagesz=", hugepagesz_setup);
   4284
   4285/*
   4286 * default_hugepagesz command line input
   4287 * Only one instance of default_hugepagesz allowed on command line.
   4288 */
   4289static int __init default_hugepagesz_setup(char *s)
   4290{
   4291	unsigned long size;
   4292	int i;
   4293
   4294	parsed_valid_hugepagesz = false;
   4295	if (parsed_default_hugepagesz) {
   4296		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
   4297		return 1;
   4298	}
   4299
   4300	size = (unsigned long)memparse(s, NULL);
   4301
   4302	if (!arch_hugetlb_valid_size(size)) {
   4303		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
   4304		return 1;
   4305	}
   4306
   4307	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
   4308	parsed_valid_hugepagesz = true;
   4309	parsed_default_hugepagesz = true;
   4310	default_hstate_idx = hstate_index(size_to_hstate(size));
   4311
   4312	/*
   4313	 * The number of default huge pages (for this size) could have been
   4314	 * specified as the first hugetlb parameter: hugepages=X.  If so,
   4315	 * then default_hstate_max_huge_pages is set.  If the default huge
   4316	 * page size is gigantic (>= MAX_ORDER), then the pages must be
   4317	 * allocated here from bootmem allocator.
   4318	 */
   4319	if (default_hstate_max_huge_pages) {
   4320		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
   4321		for_each_online_node(i)
   4322			default_hstate.max_huge_pages_node[i] =
   4323				default_hugepages_in_node[i];
   4324		if (hstate_is_gigantic(&default_hstate))
   4325			hugetlb_hstate_alloc_pages(&default_hstate);
   4326		default_hstate_max_huge_pages = 0;
   4327	}
   4328
   4329	return 1;
   4330}
   4331__setup("default_hugepagesz=", default_hugepagesz_setup);
   4332
   4333static unsigned int allowed_mems_nr(struct hstate *h)
   4334{
   4335	int node;
   4336	unsigned int nr = 0;
   4337	nodemask_t *mpol_allowed;
   4338	unsigned int *array = h->free_huge_pages_node;
   4339	gfp_t gfp_mask = htlb_alloc_mask(h);
   4340
   4341	mpol_allowed = policy_nodemask_current(gfp_mask);
   4342
   4343	for_each_node_mask(node, cpuset_current_mems_allowed) {
   4344		if (!mpol_allowed || node_isset(node, *mpol_allowed))
   4345			nr += array[node];
   4346	}
   4347
   4348	return nr;
   4349}
   4350
   4351#ifdef CONFIG_SYSCTL
   4352static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
   4353					  void *buffer, size_t *length,
   4354					  loff_t *ppos, unsigned long *out)
   4355{
   4356	struct ctl_table dup_table;
   4357
   4358	/*
   4359	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
   4360	 * can duplicate the @table and alter the duplicate of it.
   4361	 */
   4362	dup_table = *table;
   4363	dup_table.data = out;
   4364
   4365	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
   4366}
   4367
   4368static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
   4369			 struct ctl_table *table, int write,
   4370			 void *buffer, size_t *length, loff_t *ppos)
   4371{
   4372	struct hstate *h = &default_hstate;
   4373	unsigned long tmp = h->max_huge_pages;
   4374	int ret;
   4375
   4376	if (!hugepages_supported())
   4377		return -EOPNOTSUPP;
   4378
   4379	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
   4380					     &tmp);
   4381	if (ret)
   4382		goto out;
   4383
   4384	if (write)
   4385		ret = __nr_hugepages_store_common(obey_mempolicy, h,
   4386						  NUMA_NO_NODE, tmp, *length);
   4387out:
   4388	return ret;
   4389}
   4390
   4391int hugetlb_sysctl_handler(struct ctl_table *table, int write,
   4392			  void *buffer, size_t *length, loff_t *ppos)
   4393{
   4394
   4395	return hugetlb_sysctl_handler_common(false, table, write,
   4396							buffer, length, ppos);
   4397}
   4398
   4399#ifdef CONFIG_NUMA
   4400int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
   4401			  void *buffer, size_t *length, loff_t *ppos)
   4402{
   4403	return hugetlb_sysctl_handler_common(true, table, write,
   4404							buffer, length, ppos);
   4405}
   4406#endif /* CONFIG_NUMA */
   4407
   4408int hugetlb_overcommit_handler(struct ctl_table *table, int write,
   4409		void *buffer, size_t *length, loff_t *ppos)
   4410{
   4411	struct hstate *h = &default_hstate;
   4412	unsigned long tmp;
   4413	int ret;
   4414
   4415	if (!hugepages_supported())
   4416		return -EOPNOTSUPP;
   4417
   4418	tmp = h->nr_overcommit_huge_pages;
   4419
   4420	if (write && hstate_is_gigantic(h))
   4421		return -EINVAL;
   4422
   4423	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
   4424					     &tmp);
   4425	if (ret)
   4426		goto out;
   4427
   4428	if (write) {
   4429		spin_lock_irq(&hugetlb_lock);
   4430		h->nr_overcommit_huge_pages = tmp;
   4431		spin_unlock_irq(&hugetlb_lock);
   4432	}
   4433out:
   4434	return ret;
   4435}
   4436
   4437#endif /* CONFIG_SYSCTL */
   4438
   4439void hugetlb_report_meminfo(struct seq_file *m)
   4440{
   4441	struct hstate *h;
   4442	unsigned long total = 0;
   4443
   4444	if (!hugepages_supported())
   4445		return;
   4446
   4447	for_each_hstate(h) {
   4448		unsigned long count = h->nr_huge_pages;
   4449
   4450		total += huge_page_size(h) * count;
   4451
   4452		if (h == &default_hstate)
   4453			seq_printf(m,
   4454				   "HugePages_Total:   %5lu\n"
   4455				   "HugePages_Free:    %5lu\n"
   4456				   "HugePages_Rsvd:    %5lu\n"
   4457				   "HugePages_Surp:    %5lu\n"
   4458				   "Hugepagesize:   %8lu kB\n",
   4459				   count,
   4460				   h->free_huge_pages,
   4461				   h->resv_huge_pages,
   4462				   h->surplus_huge_pages,
   4463				   huge_page_size(h) / SZ_1K);
   4464	}
   4465
   4466	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
   4467}
   4468
   4469int hugetlb_report_node_meminfo(char *buf, int len, int nid)
   4470{
   4471	struct hstate *h = &default_hstate;
   4472
   4473	if (!hugepages_supported())
   4474		return 0;
   4475
   4476	return sysfs_emit_at(buf, len,
   4477			     "Node %d HugePages_Total: %5u\n"
   4478			     "Node %d HugePages_Free:  %5u\n"
   4479			     "Node %d HugePages_Surp:  %5u\n",
   4480			     nid, h->nr_huge_pages_node[nid],
   4481			     nid, h->free_huge_pages_node[nid],
   4482			     nid, h->surplus_huge_pages_node[nid]);
   4483}
   4484
   4485void hugetlb_show_meminfo(void)
   4486{
   4487	struct hstate *h;
   4488	int nid;
   4489
   4490	if (!hugepages_supported())
   4491		return;
   4492
   4493	for_each_node_state(nid, N_MEMORY)
   4494		for_each_hstate(h)
   4495			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
   4496				nid,
   4497				h->nr_huge_pages_node[nid],
   4498				h->free_huge_pages_node[nid],
   4499				h->surplus_huge_pages_node[nid],
   4500				huge_page_size(h) / SZ_1K);
   4501}
   4502
   4503void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
   4504{
   4505	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
   4506		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
   4507}
   4508
   4509/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
   4510unsigned long hugetlb_total_pages(void)
   4511{
   4512	struct hstate *h;
   4513	unsigned long nr_total_pages = 0;
   4514
   4515	for_each_hstate(h)
   4516		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
   4517	return nr_total_pages;
   4518}
   4519
   4520static int hugetlb_acct_memory(struct hstate *h, long delta)
   4521{
   4522	int ret = -ENOMEM;
   4523
   4524	if (!delta)
   4525		return 0;
   4526
   4527	spin_lock_irq(&hugetlb_lock);
   4528	/*
   4529	 * When cpuset is configured, it breaks the strict hugetlb page
   4530	 * reservation as the accounting is done on a global variable. Such
   4531	 * reservation is completely rubbish in the presence of cpuset because
   4532	 * the reservation is not checked against page availability for the
   4533	 * current cpuset. Application can still potentially OOM'ed by kernel
   4534	 * with lack of free htlb page in cpuset that the task is in.
   4535	 * Attempt to enforce strict accounting with cpuset is almost
   4536	 * impossible (or too ugly) because cpuset is too fluid that
   4537	 * task or memory node can be dynamically moved between cpusets.
   4538	 *
   4539	 * The change of semantics for shared hugetlb mapping with cpuset is
   4540	 * undesirable. However, in order to preserve some of the semantics,
   4541	 * we fall back to check against current free page availability as
   4542	 * a best attempt and hopefully to minimize the impact of changing
   4543	 * semantics that cpuset has.
   4544	 *
   4545	 * Apart from cpuset, we also have memory policy mechanism that
   4546	 * also determines from which node the kernel will allocate memory
   4547	 * in a NUMA system. So similar to cpuset, we also should consider
   4548	 * the memory policy of the current task. Similar to the description
   4549	 * above.
   4550	 */
   4551	if (delta > 0) {
   4552		if (gather_surplus_pages(h, delta) < 0)
   4553			goto out;
   4554
   4555		if (delta > allowed_mems_nr(h)) {
   4556			return_unused_surplus_pages(h, delta);
   4557			goto out;
   4558		}
   4559	}
   4560
   4561	ret = 0;
   4562	if (delta < 0)
   4563		return_unused_surplus_pages(h, (unsigned long) -delta);
   4564
   4565out:
   4566	spin_unlock_irq(&hugetlb_lock);
   4567	return ret;
   4568}
   4569
   4570static void hugetlb_vm_op_open(struct vm_area_struct *vma)
   4571{
   4572	struct resv_map *resv = vma_resv_map(vma);
   4573
   4574	/*
   4575	 * This new VMA should share its siblings reservation map if present.
   4576	 * The VMA will only ever have a valid reservation map pointer where
   4577	 * it is being copied for another still existing VMA.  As that VMA
   4578	 * has a reference to the reservation map it cannot disappear until
   4579	 * after this open call completes.  It is therefore safe to take a
   4580	 * new reference here without additional locking.
   4581	 */
   4582	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
   4583		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
   4584		kref_get(&resv->refs);
   4585	}
   4586}
   4587
   4588static void hugetlb_vm_op_close(struct vm_area_struct *vma)
   4589{
   4590	struct hstate *h = hstate_vma(vma);
   4591	struct resv_map *resv = vma_resv_map(vma);
   4592	struct hugepage_subpool *spool = subpool_vma(vma);
   4593	unsigned long reserve, start, end;
   4594	long gbl_reserve;
   4595
   4596	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
   4597		return;
   4598
   4599	start = vma_hugecache_offset(h, vma, vma->vm_start);
   4600	end = vma_hugecache_offset(h, vma, vma->vm_end);
   4601
   4602	reserve = (end - start) - region_count(resv, start, end);
   4603	hugetlb_cgroup_uncharge_counter(resv, start, end);
   4604	if (reserve) {
   4605		/*
   4606		 * Decrement reserve counts.  The global reserve count may be
   4607		 * adjusted if the subpool has a minimum size.
   4608		 */
   4609		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
   4610		hugetlb_acct_memory(h, -gbl_reserve);
   4611	}
   4612
   4613	kref_put(&resv->refs, resv_map_release);
   4614}
   4615
   4616static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
   4617{
   4618	if (addr & ~(huge_page_mask(hstate_vma(vma))))
   4619		return -EINVAL;
   4620	return 0;
   4621}
   4622
   4623static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
   4624{
   4625	return huge_page_size(hstate_vma(vma));
   4626}
   4627
   4628/*
   4629 * We cannot handle pagefaults against hugetlb pages at all.  They cause
   4630 * handle_mm_fault() to try to instantiate regular-sized pages in the
   4631 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
   4632 * this far.
   4633 */
   4634static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
   4635{
   4636	BUG();
   4637	return 0;
   4638}
   4639
   4640/*
   4641 * When a new function is introduced to vm_operations_struct and added
   4642 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
   4643 * This is because under System V memory model, mappings created via
   4644 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
   4645 * their original vm_ops are overwritten with shm_vm_ops.
   4646 */
   4647const struct vm_operations_struct hugetlb_vm_ops = {
   4648	.fault = hugetlb_vm_op_fault,
   4649	.open = hugetlb_vm_op_open,
   4650	.close = hugetlb_vm_op_close,
   4651	.may_split = hugetlb_vm_op_split,
   4652	.pagesize = hugetlb_vm_op_pagesize,
   4653};
   4654
   4655static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
   4656				int writable)
   4657{
   4658	pte_t entry;
   4659	unsigned int shift = huge_page_shift(hstate_vma(vma));
   4660
   4661	if (writable) {
   4662		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
   4663					 vma->vm_page_prot)));
   4664	} else {
   4665		entry = huge_pte_wrprotect(mk_huge_pte(page,
   4666					   vma->vm_page_prot));
   4667	}
   4668	entry = pte_mkyoung(entry);
   4669	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
   4670
   4671	return entry;
   4672}
   4673
   4674static void set_huge_ptep_writable(struct vm_area_struct *vma,
   4675				   unsigned long address, pte_t *ptep)
   4676{
   4677	pte_t entry;
   4678
   4679	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
   4680	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
   4681		update_mmu_cache(vma, address, ptep);
   4682}
   4683
   4684bool is_hugetlb_entry_migration(pte_t pte)
   4685{
   4686	swp_entry_t swp;
   4687
   4688	if (huge_pte_none(pte) || pte_present(pte))
   4689		return false;
   4690	swp = pte_to_swp_entry(pte);
   4691	if (is_migration_entry(swp))
   4692		return true;
   4693	else
   4694		return false;
   4695}
   4696
   4697static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
   4698{
   4699	swp_entry_t swp;
   4700
   4701	if (huge_pte_none(pte) || pte_present(pte))
   4702		return false;
   4703	swp = pte_to_swp_entry(pte);
   4704	if (is_hwpoison_entry(swp))
   4705		return true;
   4706	else
   4707		return false;
   4708}
   4709
   4710static void
   4711hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
   4712		     struct page *new_page)
   4713{
   4714	__SetPageUptodate(new_page);
   4715	hugepage_add_new_anon_rmap(new_page, vma, addr);
   4716	set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
   4717	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
   4718	ClearHPageRestoreReserve(new_page);
   4719	SetHPageMigratable(new_page);
   4720}
   4721
   4722int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
   4723			    struct vm_area_struct *dst_vma,
   4724			    struct vm_area_struct *src_vma)
   4725{
   4726	pte_t *src_pte, *dst_pte, entry, dst_entry;
   4727	struct page *ptepage;
   4728	unsigned long addr;
   4729	bool cow = is_cow_mapping(src_vma->vm_flags);
   4730	struct hstate *h = hstate_vma(src_vma);
   4731	unsigned long sz = huge_page_size(h);
   4732	unsigned long npages = pages_per_huge_page(h);
   4733	struct address_space *mapping = src_vma->vm_file->f_mapping;
   4734	struct mmu_notifier_range range;
   4735	int ret = 0;
   4736
   4737	if (cow) {
   4738		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
   4739					src_vma->vm_start,
   4740					src_vma->vm_end);
   4741		mmu_notifier_invalidate_range_start(&range);
   4742		mmap_assert_write_locked(src);
   4743		raw_write_seqcount_begin(&src->write_protect_seq);
   4744	} else {
   4745		/*
   4746		 * For shared mappings i_mmap_rwsem must be held to call
   4747		 * huge_pte_alloc, otherwise the returned ptep could go
   4748		 * away if part of a shared pmd and another thread calls
   4749		 * huge_pmd_unshare.
   4750		 */
   4751		i_mmap_lock_read(mapping);
   4752	}
   4753
   4754	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
   4755		spinlock_t *src_ptl, *dst_ptl;
   4756		src_pte = huge_pte_offset(src, addr, sz);
   4757		if (!src_pte)
   4758			continue;
   4759		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
   4760		if (!dst_pte) {
   4761			ret = -ENOMEM;
   4762			break;
   4763		}
   4764
   4765		/*
   4766		 * If the pagetables are shared don't copy or take references.
   4767		 * dst_pte == src_pte is the common case of src/dest sharing.
   4768		 *
   4769		 * However, src could have 'unshared' and dst shares with
   4770		 * another vma.  If dst_pte !none, this implies sharing.
   4771		 * Check here before taking page table lock, and once again
   4772		 * after taking the lock below.
   4773		 */
   4774		dst_entry = huge_ptep_get(dst_pte);
   4775		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
   4776			continue;
   4777
   4778		dst_ptl = huge_pte_lock(h, dst, dst_pte);
   4779		src_ptl = huge_pte_lockptr(h, src, src_pte);
   4780		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
   4781		entry = huge_ptep_get(src_pte);
   4782		dst_entry = huge_ptep_get(dst_pte);
   4783again:
   4784		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
   4785			/*
   4786			 * Skip if src entry none.  Also, skip in the
   4787			 * unlikely case dst entry !none as this implies
   4788			 * sharing with another vma.
   4789			 */
   4790			;
   4791		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
   4792				    is_hugetlb_entry_hwpoisoned(entry))) {
   4793			swp_entry_t swp_entry = pte_to_swp_entry(entry);
   4794			bool uffd_wp = huge_pte_uffd_wp(entry);
   4795
   4796			if (!is_readable_migration_entry(swp_entry) && cow) {
   4797				/*
   4798				 * COW mappings require pages in both
   4799				 * parent and child to be set to read.
   4800				 */
   4801				swp_entry = make_readable_migration_entry(
   4802							swp_offset(swp_entry));
   4803				entry = swp_entry_to_pte(swp_entry);
   4804				if (userfaultfd_wp(src_vma) && uffd_wp)
   4805					entry = huge_pte_mkuffd_wp(entry);
   4806				set_huge_swap_pte_at(src, addr, src_pte,
   4807						     entry, sz);
   4808			}
   4809			if (!userfaultfd_wp(dst_vma) && uffd_wp)
   4810				entry = huge_pte_clear_uffd_wp(entry);
   4811			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
   4812		} else if (unlikely(is_pte_marker(entry))) {
   4813			/*
   4814			 * We copy the pte marker only if the dst vma has
   4815			 * uffd-wp enabled.
   4816			 */
   4817			if (userfaultfd_wp(dst_vma))
   4818				set_huge_pte_at(dst, addr, dst_pte, entry);
   4819		} else {
   4820			entry = huge_ptep_get(src_pte);
   4821			ptepage = pte_page(entry);
   4822			get_page(ptepage);
   4823
   4824			/*
   4825			 * Failing to duplicate the anon rmap is a rare case
   4826			 * where we see pinned hugetlb pages while they're
   4827			 * prone to COW. We need to do the COW earlier during
   4828			 * fork.
   4829			 *
   4830			 * When pre-allocating the page or copying data, we
   4831			 * need to be without the pgtable locks since we could
   4832			 * sleep during the process.
   4833			 */
   4834			if (!PageAnon(ptepage)) {
   4835				page_dup_file_rmap(ptepage, true);
   4836			} else if (page_try_dup_anon_rmap(ptepage, true,
   4837							  src_vma)) {
   4838				pte_t src_pte_old = entry;
   4839				struct page *new;
   4840
   4841				spin_unlock(src_ptl);
   4842				spin_unlock(dst_ptl);
   4843				/* Do not use reserve as it's private owned */
   4844				new = alloc_huge_page(dst_vma, addr, 1);
   4845				if (IS_ERR(new)) {
   4846					put_page(ptepage);
   4847					ret = PTR_ERR(new);
   4848					break;
   4849				}
   4850				copy_user_huge_page(new, ptepage, addr, dst_vma,
   4851						    npages);
   4852				put_page(ptepage);
   4853
   4854				/* Install the new huge page if src pte stable */
   4855				dst_ptl = huge_pte_lock(h, dst, dst_pte);
   4856				src_ptl = huge_pte_lockptr(h, src, src_pte);
   4857				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
   4858				entry = huge_ptep_get(src_pte);
   4859				if (!pte_same(src_pte_old, entry)) {
   4860					restore_reserve_on_error(h, dst_vma, addr,
   4861								new);
   4862					put_page(new);
   4863					/* dst_entry won't change as in child */
   4864					goto again;
   4865				}
   4866				hugetlb_install_page(dst_vma, dst_pte, addr, new);
   4867				spin_unlock(src_ptl);
   4868				spin_unlock(dst_ptl);
   4869				continue;
   4870			}
   4871
   4872			if (cow) {
   4873				/*
   4874				 * No need to notify as we are downgrading page
   4875				 * table protection not changing it to point
   4876				 * to a new page.
   4877				 *
   4878				 * See Documentation/vm/mmu_notifier.rst
   4879				 */
   4880				huge_ptep_set_wrprotect(src, addr, src_pte);
   4881				entry = huge_pte_wrprotect(entry);
   4882			}
   4883
   4884			set_huge_pte_at(dst, addr, dst_pte, entry);
   4885			hugetlb_count_add(npages, dst);
   4886		}
   4887		spin_unlock(src_ptl);
   4888		spin_unlock(dst_ptl);
   4889	}
   4890
   4891	if (cow) {
   4892		raw_write_seqcount_end(&src->write_protect_seq);
   4893		mmu_notifier_invalidate_range_end(&range);
   4894	} else {
   4895		i_mmap_unlock_read(mapping);
   4896	}
   4897
   4898	return ret;
   4899}
   4900
   4901static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
   4902			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
   4903{
   4904	struct hstate *h = hstate_vma(vma);
   4905	struct mm_struct *mm = vma->vm_mm;
   4906	spinlock_t *src_ptl, *dst_ptl;
   4907	pte_t pte;
   4908
   4909	dst_ptl = huge_pte_lock(h, mm, dst_pte);
   4910	src_ptl = huge_pte_lockptr(h, mm, src_pte);
   4911
   4912	/*
   4913	 * We don't have to worry about the ordering of src and dst ptlocks
   4914	 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
   4915	 */
   4916	if (src_ptl != dst_ptl)
   4917		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
   4918
   4919	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
   4920	set_huge_pte_at(mm, new_addr, dst_pte, pte);
   4921
   4922	if (src_ptl != dst_ptl)
   4923		spin_unlock(src_ptl);
   4924	spin_unlock(dst_ptl);
   4925}
   4926
   4927int move_hugetlb_page_tables(struct vm_area_struct *vma,
   4928			     struct vm_area_struct *new_vma,
   4929			     unsigned long old_addr, unsigned long new_addr,
   4930			     unsigned long len)
   4931{
   4932	struct hstate *h = hstate_vma(vma);
   4933	struct address_space *mapping = vma->vm_file->f_mapping;
   4934	unsigned long sz = huge_page_size(h);
   4935	struct mm_struct *mm = vma->vm_mm;
   4936	unsigned long old_end = old_addr + len;
   4937	unsigned long old_addr_copy;
   4938	pte_t *src_pte, *dst_pte;
   4939	struct mmu_notifier_range range;
   4940	bool shared_pmd = false;
   4941
   4942	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
   4943				old_end);
   4944	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
   4945	/*
   4946	 * In case of shared PMDs, we should cover the maximum possible
   4947	 * range.
   4948	 */
   4949	flush_cache_range(vma, range.start, range.end);
   4950
   4951	mmu_notifier_invalidate_range_start(&range);
   4952	/* Prevent race with file truncation */
   4953	i_mmap_lock_write(mapping);
   4954	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
   4955		src_pte = huge_pte_offset(mm, old_addr, sz);
   4956		if (!src_pte)
   4957			continue;
   4958		if (huge_pte_none(huge_ptep_get(src_pte)))
   4959			continue;
   4960
   4961		/* old_addr arg to huge_pmd_unshare() is a pointer and so the
   4962		 * arg may be modified. Pass a copy instead to preserve the
   4963		 * value in old_addr.
   4964		 */
   4965		old_addr_copy = old_addr;
   4966
   4967		if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
   4968			shared_pmd = true;
   4969			continue;
   4970		}
   4971
   4972		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
   4973		if (!dst_pte)
   4974			break;
   4975
   4976		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
   4977	}
   4978
   4979	if (shared_pmd)
   4980		flush_tlb_range(vma, range.start, range.end);
   4981	else
   4982		flush_tlb_range(vma, old_end - len, old_end);
   4983	mmu_notifier_invalidate_range_end(&range);
   4984	i_mmap_unlock_write(mapping);
   4985
   4986	return len + old_addr - old_end;
   4987}
   4988
   4989static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
   4990				   unsigned long start, unsigned long end,
   4991				   struct page *ref_page, zap_flags_t zap_flags)
   4992{
   4993	struct mm_struct *mm = vma->vm_mm;
   4994	unsigned long address;
   4995	pte_t *ptep;
   4996	pte_t pte;
   4997	spinlock_t *ptl;
   4998	struct page *page;
   4999	struct hstate *h = hstate_vma(vma);
   5000	unsigned long sz = huge_page_size(h);
   5001	struct mmu_notifier_range range;
   5002	bool force_flush = false;
   5003
   5004	WARN_ON(!is_vm_hugetlb_page(vma));
   5005	BUG_ON(start & ~huge_page_mask(h));
   5006	BUG_ON(end & ~huge_page_mask(h));
   5007
   5008	/*
   5009	 * This is a hugetlb vma, all the pte entries should point
   5010	 * to huge page.
   5011	 */
   5012	tlb_change_page_size(tlb, sz);
   5013	tlb_start_vma(tlb, vma);
   5014
   5015	/*
   5016	 * If sharing possible, alert mmu notifiers of worst case.
   5017	 */
   5018	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
   5019				end);
   5020	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
   5021	mmu_notifier_invalidate_range_start(&range);
   5022	address = start;
   5023	for (; address < end; address += sz) {
   5024		ptep = huge_pte_offset(mm, address, sz);
   5025		if (!ptep)
   5026			continue;
   5027
   5028		ptl = huge_pte_lock(h, mm, ptep);
   5029		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
   5030			spin_unlock(ptl);
   5031			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
   5032			force_flush = true;
   5033			continue;
   5034		}
   5035
   5036		pte = huge_ptep_get(ptep);
   5037		if (huge_pte_none(pte)) {
   5038			spin_unlock(ptl);
   5039			continue;
   5040		}
   5041
   5042		/*
   5043		 * Migrating hugepage or HWPoisoned hugepage is already
   5044		 * unmapped and its refcount is dropped, so just clear pte here.
   5045		 */
   5046		if (unlikely(!pte_present(pte))) {
   5047			/*
   5048			 * If the pte was wr-protected by uffd-wp in any of the
   5049			 * swap forms, meanwhile the caller does not want to
   5050			 * drop the uffd-wp bit in this zap, then replace the
   5051			 * pte with a marker.
   5052			 */
   5053			if (pte_swp_uffd_wp_any(pte) &&
   5054			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
   5055				set_huge_pte_at(mm, address, ptep,
   5056						make_pte_marker(PTE_MARKER_UFFD_WP));
   5057			else
   5058				huge_pte_clear(mm, address, ptep, sz);
   5059			spin_unlock(ptl);
   5060			continue;
   5061		}
   5062
   5063		page = pte_page(pte);
   5064		/*
   5065		 * If a reference page is supplied, it is because a specific
   5066		 * page is being unmapped, not a range. Ensure the page we
   5067		 * are about to unmap is the actual page of interest.
   5068		 */
   5069		if (ref_page) {
   5070			if (page != ref_page) {
   5071				spin_unlock(ptl);
   5072				continue;
   5073			}
   5074			/*
   5075			 * Mark the VMA as having unmapped its page so that
   5076			 * future faults in this VMA will fail rather than
   5077			 * looking like data was lost
   5078			 */
   5079			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
   5080		}
   5081
   5082		pte = huge_ptep_get_and_clear(mm, address, ptep);
   5083		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
   5084		if (huge_pte_dirty(pte))
   5085			set_page_dirty(page);
   5086		/* Leave a uffd-wp pte marker if needed */
   5087		if (huge_pte_uffd_wp(pte) &&
   5088		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
   5089			set_huge_pte_at(mm, address, ptep,
   5090					make_pte_marker(PTE_MARKER_UFFD_WP));
   5091		hugetlb_count_sub(pages_per_huge_page(h), mm);
   5092		page_remove_rmap(page, vma, true);
   5093
   5094		spin_unlock(ptl);
   5095		tlb_remove_page_size(tlb, page, huge_page_size(h));
   5096		/*
   5097		 * Bail out after unmapping reference page if supplied
   5098		 */
   5099		if (ref_page)
   5100			break;
   5101	}
   5102	mmu_notifier_invalidate_range_end(&range);
   5103	tlb_end_vma(tlb, vma);
   5104
   5105	/*
   5106	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
   5107	 * could defer the flush until now, since by holding i_mmap_rwsem we
   5108	 * guaranteed that the last refernece would not be dropped. But we must
   5109	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
   5110	 * dropped and the last reference to the shared PMDs page might be
   5111	 * dropped as well.
   5112	 *
   5113	 * In theory we could defer the freeing of the PMD pages as well, but
   5114	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
   5115	 * detect sharing, so we cannot defer the release of the page either.
   5116	 * Instead, do flush now.
   5117	 */
   5118	if (force_flush)
   5119		tlb_flush_mmu_tlbonly(tlb);
   5120}
   5121
   5122void __unmap_hugepage_range_final(struct mmu_gather *tlb,
   5123			  struct vm_area_struct *vma, unsigned long start,
   5124			  unsigned long end, struct page *ref_page,
   5125			  zap_flags_t zap_flags)
   5126{
   5127	__unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
   5128
   5129	/*
   5130	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
   5131	 * test will fail on a vma being torn down, and not grab a page table
   5132	 * on its way out.  We're lucky that the flag has such an appropriate
   5133	 * name, and can in fact be safely cleared here. We could clear it
   5134	 * before the __unmap_hugepage_range above, but all that's necessary
   5135	 * is to clear it before releasing the i_mmap_rwsem. This works
   5136	 * because in the context this is called, the VMA is about to be
   5137	 * destroyed and the i_mmap_rwsem is held.
   5138	 */
   5139	vma->vm_flags &= ~VM_MAYSHARE;
   5140}
   5141
   5142void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
   5143			  unsigned long end, struct page *ref_page,
   5144			  zap_flags_t zap_flags)
   5145{
   5146	struct mmu_gather tlb;
   5147
   5148	tlb_gather_mmu(&tlb, vma->vm_mm);
   5149	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
   5150	tlb_finish_mmu(&tlb);
   5151}
   5152
   5153/*
   5154 * This is called when the original mapper is failing to COW a MAP_PRIVATE
   5155 * mapping it owns the reserve page for. The intention is to unmap the page
   5156 * from other VMAs and let the children be SIGKILLed if they are faulting the
   5157 * same region.
   5158 */
   5159static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
   5160			      struct page *page, unsigned long address)
   5161{
   5162	struct hstate *h = hstate_vma(vma);
   5163	struct vm_area_struct *iter_vma;
   5164	struct address_space *mapping;
   5165	pgoff_t pgoff;
   5166
   5167	/*
   5168	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
   5169	 * from page cache lookup which is in HPAGE_SIZE units.
   5170	 */
   5171	address = address & huge_page_mask(h);
   5172	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
   5173			vma->vm_pgoff;
   5174	mapping = vma->vm_file->f_mapping;
   5175
   5176	/*
   5177	 * Take the mapping lock for the duration of the table walk. As
   5178	 * this mapping should be shared between all the VMAs,
   5179	 * __unmap_hugepage_range() is called as the lock is already held
   5180	 */
   5181	i_mmap_lock_write(mapping);
   5182	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
   5183		/* Do not unmap the current VMA */
   5184		if (iter_vma == vma)
   5185			continue;
   5186
   5187		/*
   5188		 * Shared VMAs have their own reserves and do not affect
   5189		 * MAP_PRIVATE accounting but it is possible that a shared
   5190		 * VMA is using the same page so check and skip such VMAs.
   5191		 */
   5192		if (iter_vma->vm_flags & VM_MAYSHARE)
   5193			continue;
   5194
   5195		/*
   5196		 * Unmap the page from other VMAs without their own reserves.
   5197		 * They get marked to be SIGKILLed if they fault in these
   5198		 * areas. This is because a future no-page fault on this VMA
   5199		 * could insert a zeroed page instead of the data existing
   5200		 * from the time of fork. This would look like data corruption
   5201		 */
   5202		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
   5203			unmap_hugepage_range(iter_vma, address,
   5204					     address + huge_page_size(h), page, 0);
   5205	}
   5206	i_mmap_unlock_write(mapping);
   5207}
   5208
   5209/*
   5210 * hugetlb_wp() should be called with page lock of the original hugepage held.
   5211 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
   5212 * cannot race with other handlers or page migration.
   5213 * Keep the pte_same checks anyway to make transition from the mutex easier.
   5214 */
   5215static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
   5216		       unsigned long address, pte_t *ptep, unsigned int flags,
   5217		       struct page *pagecache_page, spinlock_t *ptl)
   5218{
   5219	const bool unshare = flags & FAULT_FLAG_UNSHARE;
   5220	pte_t pte;
   5221	struct hstate *h = hstate_vma(vma);
   5222	struct page *old_page, *new_page;
   5223	int outside_reserve = 0;
   5224	vm_fault_t ret = 0;
   5225	unsigned long haddr = address & huge_page_mask(h);
   5226	struct mmu_notifier_range range;
   5227
   5228	VM_BUG_ON(unshare && (flags & FOLL_WRITE));
   5229	VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
   5230
   5231	pte = huge_ptep_get(ptep);
   5232	old_page = pte_page(pte);
   5233
   5234	delayacct_wpcopy_start();
   5235
   5236retry_avoidcopy:
   5237	/*
   5238	 * If no-one else is actually using this page, we're the exclusive
   5239	 * owner and can reuse this page.
   5240	 */
   5241	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
   5242		if (!PageAnonExclusive(old_page))
   5243			page_move_anon_rmap(old_page, vma);
   5244		if (likely(!unshare))
   5245			set_huge_ptep_writable(vma, haddr, ptep);
   5246
   5247		delayacct_wpcopy_end();
   5248		return 0;
   5249	}
   5250	VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
   5251		       old_page);
   5252
   5253	/*
   5254	 * If the process that created a MAP_PRIVATE mapping is about to
   5255	 * perform a COW due to a shared page count, attempt to satisfy
   5256	 * the allocation without using the existing reserves. The pagecache
   5257	 * page is used to determine if the reserve at this address was
   5258	 * consumed or not. If reserves were used, a partial faulted mapping
   5259	 * at the time of fork() could consume its reserves on COW instead
   5260	 * of the full address range.
   5261	 */
   5262	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
   5263			old_page != pagecache_page)
   5264		outside_reserve = 1;
   5265
   5266	get_page(old_page);
   5267
   5268	/*
   5269	 * Drop page table lock as buddy allocator may be called. It will
   5270	 * be acquired again before returning to the caller, as expected.
   5271	 */
   5272	spin_unlock(ptl);
   5273	new_page = alloc_huge_page(vma, haddr, outside_reserve);
   5274
   5275	if (IS_ERR(new_page)) {
   5276		/*
   5277		 * If a process owning a MAP_PRIVATE mapping fails to COW,
   5278		 * it is due to references held by a child and an insufficient
   5279		 * huge page pool. To guarantee the original mappers
   5280		 * reliability, unmap the page from child processes. The child
   5281		 * may get SIGKILLed if it later faults.
   5282		 */
   5283		if (outside_reserve) {
   5284			struct address_space *mapping = vma->vm_file->f_mapping;
   5285			pgoff_t idx;
   5286			u32 hash;
   5287
   5288			put_page(old_page);
   5289			BUG_ON(huge_pte_none(pte));
   5290			/*
   5291			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
   5292			 * unmapping.  unmapping needs to hold i_mmap_rwsem
   5293			 * in write mode.  Dropping i_mmap_rwsem in read mode
   5294			 * here is OK as COW mappings do not interact with
   5295			 * PMD sharing.
   5296			 *
   5297			 * Reacquire both after unmap operation.
   5298			 */
   5299			idx = vma_hugecache_offset(h, vma, haddr);
   5300			hash = hugetlb_fault_mutex_hash(mapping, idx);
   5301			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
   5302			i_mmap_unlock_read(mapping);
   5303
   5304			unmap_ref_private(mm, vma, old_page, haddr);
   5305
   5306			i_mmap_lock_read(mapping);
   5307			mutex_lock(&hugetlb_fault_mutex_table[hash]);
   5308			spin_lock(ptl);
   5309			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
   5310			if (likely(ptep &&
   5311				   pte_same(huge_ptep_get(ptep), pte)))
   5312				goto retry_avoidcopy;
   5313			/*
   5314			 * race occurs while re-acquiring page table
   5315			 * lock, and our job is done.
   5316			 */
   5317			delayacct_wpcopy_end();
   5318			return 0;
   5319		}
   5320
   5321		ret = vmf_error(PTR_ERR(new_page));
   5322		goto out_release_old;
   5323	}
   5324
   5325	/*
   5326	 * When the original hugepage is shared one, it does not have
   5327	 * anon_vma prepared.
   5328	 */
   5329	if (unlikely(anon_vma_prepare(vma))) {
   5330		ret = VM_FAULT_OOM;
   5331		goto out_release_all;
   5332	}
   5333
   5334	copy_user_huge_page(new_page, old_page, address, vma,
   5335			    pages_per_huge_page(h));
   5336	__SetPageUptodate(new_page);
   5337
   5338	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
   5339				haddr + huge_page_size(h));
   5340	mmu_notifier_invalidate_range_start(&range);
   5341
   5342	/*
   5343	 * Retake the page table lock to check for racing updates
   5344	 * before the page tables are altered
   5345	 */
   5346	spin_lock(ptl);
   5347	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
   5348	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
   5349		ClearHPageRestoreReserve(new_page);
   5350
   5351		/* Break COW or unshare */
   5352		huge_ptep_clear_flush(vma, haddr, ptep);
   5353		mmu_notifier_invalidate_range(mm, range.start, range.end);
   5354		page_remove_rmap(old_page, vma, true);
   5355		hugepage_add_new_anon_rmap(new_page, vma, haddr);
   5356		set_huge_pte_at(mm, haddr, ptep,
   5357				make_huge_pte(vma, new_page, !unshare));
   5358		SetHPageMigratable(new_page);
   5359		/* Make the old page be freed below */
   5360		new_page = old_page;
   5361	}
   5362	spin_unlock(ptl);
   5363	mmu_notifier_invalidate_range_end(&range);
   5364out_release_all:
   5365	/*
   5366	 * No restore in case of successful pagetable update (Break COW or
   5367	 * unshare)
   5368	 */
   5369	if (new_page != old_page)
   5370		restore_reserve_on_error(h, vma, haddr, new_page);
   5371	put_page(new_page);
   5372out_release_old:
   5373	put_page(old_page);
   5374
   5375	spin_lock(ptl); /* Caller expects lock to be held */
   5376
   5377	delayacct_wpcopy_end();
   5378	return ret;
   5379}
   5380
   5381/* Return the pagecache page at a given address within a VMA */
   5382static struct page *hugetlbfs_pagecache_page(struct hstate *h,
   5383			struct vm_area_struct *vma, unsigned long address)
   5384{
   5385	struct address_space *mapping;
   5386	pgoff_t idx;
   5387
   5388	mapping = vma->vm_file->f_mapping;
   5389	idx = vma_hugecache_offset(h, vma, address);
   5390
   5391	return find_lock_page(mapping, idx);
   5392}
   5393
   5394/*
   5395 * Return whether there is a pagecache page to back given address within VMA.
   5396 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
   5397 */
   5398static bool hugetlbfs_pagecache_present(struct hstate *h,
   5399			struct vm_area_struct *vma, unsigned long address)
   5400{
   5401	struct address_space *mapping;
   5402	pgoff_t idx;
   5403	struct page *page;
   5404
   5405	mapping = vma->vm_file->f_mapping;
   5406	idx = vma_hugecache_offset(h, vma, address);
   5407
   5408	page = find_get_page(mapping, idx);
   5409	if (page)
   5410		put_page(page);
   5411	return page != NULL;
   5412}
   5413
   5414int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
   5415			   pgoff_t idx)
   5416{
   5417	struct inode *inode = mapping->host;
   5418	struct hstate *h = hstate_inode(inode);
   5419	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
   5420
   5421	if (err)
   5422		return err;
   5423	ClearHPageRestoreReserve(page);
   5424
   5425	/*
   5426	 * set page dirty so that it will not be removed from cache/file
   5427	 * by non-hugetlbfs specific code paths.
   5428	 */
   5429	set_page_dirty(page);
   5430
   5431	spin_lock(&inode->i_lock);
   5432	inode->i_blocks += blocks_per_huge_page(h);
   5433	spin_unlock(&inode->i_lock);
   5434	return 0;
   5435}
   5436
   5437static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
   5438						  struct address_space *mapping,
   5439						  pgoff_t idx,
   5440						  unsigned int flags,
   5441						  unsigned long haddr,
   5442						  unsigned long addr,
   5443						  unsigned long reason)
   5444{
   5445	vm_fault_t ret;
   5446	u32 hash;
   5447	struct vm_fault vmf = {
   5448		.vma = vma,
   5449		.address = haddr,
   5450		.real_address = addr,
   5451		.flags = flags,
   5452
   5453		/*
   5454		 * Hard to debug if it ends up being
   5455		 * used by a callee that assumes
   5456		 * something about the other
   5457		 * uninitialized fields... same as in
   5458		 * memory.c
   5459		 */
   5460	};
   5461
   5462	/*
   5463	 * hugetlb_fault_mutex and i_mmap_rwsem must be
   5464	 * dropped before handling userfault.  Reacquire
   5465	 * after handling fault to make calling code simpler.
   5466	 */
   5467	hash = hugetlb_fault_mutex_hash(mapping, idx);
   5468	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
   5469	i_mmap_unlock_read(mapping);
   5470	ret = handle_userfault(&vmf, reason);
   5471	i_mmap_lock_read(mapping);
   5472	mutex_lock(&hugetlb_fault_mutex_table[hash]);
   5473
   5474	return ret;
   5475}
   5476
   5477static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
   5478			struct vm_area_struct *vma,
   5479			struct address_space *mapping, pgoff_t idx,
   5480			unsigned long address, pte_t *ptep,
   5481			pte_t old_pte, unsigned int flags)
   5482{
   5483	struct hstate *h = hstate_vma(vma);
   5484	vm_fault_t ret = VM_FAULT_SIGBUS;
   5485	int anon_rmap = 0;
   5486	unsigned long size;
   5487	struct page *page;
   5488	pte_t new_pte;
   5489	spinlock_t *ptl;
   5490	unsigned long haddr = address & huge_page_mask(h);
   5491	bool new_page, new_pagecache_page = false;
   5492
   5493	/*
   5494	 * Currently, we are forced to kill the process in the event the
   5495	 * original mapper has unmapped pages from the child due to a failed
   5496	 * COW/unsharing. Warn that such a situation has occurred as it may not
   5497	 * be obvious.
   5498	 */
   5499	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
   5500		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
   5501			   current->pid);
   5502		return ret;
   5503	}
   5504
   5505	/*
   5506	 * We can not race with truncation due to holding i_mmap_rwsem.
   5507	 * i_size is modified when holding i_mmap_rwsem, so check here
   5508	 * once for faults beyond end of file.
   5509	 */
   5510	size = i_size_read(mapping->host) >> huge_page_shift(h);
   5511	if (idx >= size)
   5512		goto out;
   5513
   5514retry:
   5515	new_page = false;
   5516	page = find_lock_page(mapping, idx);
   5517	if (!page) {
   5518		/* Check for page in userfault range */
   5519		if (userfaultfd_missing(vma)) {
   5520			ret = hugetlb_handle_userfault(vma, mapping, idx,
   5521						       flags, haddr, address,
   5522						       VM_UFFD_MISSING);
   5523			goto out;
   5524		}
   5525
   5526		page = alloc_huge_page(vma, haddr, 0);
   5527		if (IS_ERR(page)) {
   5528			/*
   5529			 * Returning error will result in faulting task being
   5530			 * sent SIGBUS.  The hugetlb fault mutex prevents two
   5531			 * tasks from racing to fault in the same page which
   5532			 * could result in false unable to allocate errors.
   5533			 * Page migration does not take the fault mutex, but
   5534			 * does a clear then write of pte's under page table
   5535			 * lock.  Page fault code could race with migration,
   5536			 * notice the clear pte and try to allocate a page
   5537			 * here.  Before returning error, get ptl and make
   5538			 * sure there really is no pte entry.
   5539			 */
   5540			ptl = huge_pte_lock(h, mm, ptep);
   5541			ret = 0;
   5542			if (huge_pte_none(huge_ptep_get(ptep)))
   5543				ret = vmf_error(PTR_ERR(page));
   5544			spin_unlock(ptl);
   5545			goto out;
   5546		}
   5547		clear_huge_page(page, address, pages_per_huge_page(h));
   5548		__SetPageUptodate(page);
   5549		new_page = true;
   5550
   5551		if (vma->vm_flags & VM_MAYSHARE) {
   5552			int err = huge_add_to_page_cache(page, mapping, idx);
   5553			if (err) {
   5554				put_page(page);
   5555				if (err == -EEXIST)
   5556					goto retry;
   5557				goto out;
   5558			}
   5559			new_pagecache_page = true;
   5560		} else {
   5561			lock_page(page);
   5562			if (unlikely(anon_vma_prepare(vma))) {
   5563				ret = VM_FAULT_OOM;
   5564				goto backout_unlocked;
   5565			}
   5566			anon_rmap = 1;
   5567		}
   5568	} else {
   5569		/*
   5570		 * If memory error occurs between mmap() and fault, some process
   5571		 * don't have hwpoisoned swap entry for errored virtual address.
   5572		 * So we need to block hugepage fault by PG_hwpoison bit check.
   5573		 */
   5574		if (unlikely(PageHWPoison(page))) {
   5575			ret = VM_FAULT_HWPOISON_LARGE |
   5576				VM_FAULT_SET_HINDEX(hstate_index(h));
   5577			goto backout_unlocked;
   5578		}
   5579
   5580		/* Check for page in userfault range. */
   5581		if (userfaultfd_minor(vma)) {
   5582			unlock_page(page);
   5583			put_page(page);
   5584			ret = hugetlb_handle_userfault(vma, mapping, idx,
   5585						       flags, haddr, address,
   5586						       VM_UFFD_MINOR);
   5587			goto out;
   5588		}
   5589	}
   5590
   5591	/*
   5592	 * If we are going to COW a private mapping later, we examine the
   5593	 * pending reservations for this page now. This will ensure that
   5594	 * any allocations necessary to record that reservation occur outside
   5595	 * the spinlock.
   5596	 */
   5597	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
   5598		if (vma_needs_reservation(h, vma, haddr) < 0) {
   5599			ret = VM_FAULT_OOM;
   5600			goto backout_unlocked;
   5601		}
   5602		/* Just decrements count, does not deallocate */
   5603		vma_end_reservation(h, vma, haddr);
   5604	}
   5605
   5606	ptl = huge_pte_lock(h, mm, ptep);
   5607	ret = 0;
   5608	/* If pte changed from under us, retry */
   5609	if (!pte_same(huge_ptep_get(ptep), old_pte))
   5610		goto backout;
   5611
   5612	if (anon_rmap) {
   5613		ClearHPageRestoreReserve(page);
   5614		hugepage_add_new_anon_rmap(page, vma, haddr);
   5615	} else
   5616		page_dup_file_rmap(page, true);
   5617	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
   5618				&& (vma->vm_flags & VM_SHARED)));
   5619	/*
   5620	 * If this pte was previously wr-protected, keep it wr-protected even
   5621	 * if populated.
   5622	 */
   5623	if (unlikely(pte_marker_uffd_wp(old_pte)))
   5624		new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
   5625	set_huge_pte_at(mm, haddr, ptep, new_pte);
   5626
   5627	hugetlb_count_add(pages_per_huge_page(h), mm);
   5628	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
   5629		/* Optimization, do the COW without a second fault */
   5630		ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
   5631	}
   5632
   5633	spin_unlock(ptl);
   5634
   5635	/*
   5636	 * Only set HPageMigratable in newly allocated pages.  Existing pages
   5637	 * found in the pagecache may not have HPageMigratableset if they have
   5638	 * been isolated for migration.
   5639	 */
   5640	if (new_page)
   5641		SetHPageMigratable(page);
   5642
   5643	unlock_page(page);
   5644out:
   5645	return ret;
   5646
   5647backout:
   5648	spin_unlock(ptl);
   5649backout_unlocked:
   5650	unlock_page(page);
   5651	/* restore reserve for newly allocated pages not in page cache */
   5652	if (new_page && !new_pagecache_page)
   5653		restore_reserve_on_error(h, vma, haddr, page);
   5654	put_page(page);
   5655	goto out;
   5656}
   5657
   5658#ifdef CONFIG_SMP
   5659u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
   5660{
   5661	unsigned long key[2];
   5662	u32 hash;
   5663
   5664	key[0] = (unsigned long) mapping;
   5665	key[1] = idx;
   5666
   5667	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
   5668
   5669	return hash & (num_fault_mutexes - 1);
   5670}
   5671#else
   5672/*
   5673 * For uniprocessor systems we always use a single mutex, so just
   5674 * return 0 and avoid the hashing overhead.
   5675 */
   5676u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
   5677{
   5678	return 0;
   5679}
   5680#endif
   5681
   5682vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
   5683			unsigned long address, unsigned int flags)
   5684{
   5685	pte_t *ptep, entry;
   5686	spinlock_t *ptl;
   5687	vm_fault_t ret;
   5688	u32 hash;
   5689	pgoff_t idx;
   5690	struct page *page = NULL;
   5691	struct page *pagecache_page = NULL;
   5692	struct hstate *h = hstate_vma(vma);
   5693	struct address_space *mapping;
   5694	int need_wait_lock = 0;
   5695	unsigned long haddr = address & huge_page_mask(h);
   5696
   5697	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
   5698	if (ptep) {
   5699		/*
   5700		 * Since we hold no locks, ptep could be stale.  That is
   5701		 * OK as we are only making decisions based on content and
   5702		 * not actually modifying content here.
   5703		 */
   5704		entry = huge_ptep_get(ptep);
   5705		if (unlikely(is_hugetlb_entry_migration(entry))) {
   5706			migration_entry_wait_huge(vma, mm, ptep);
   5707			return 0;
   5708		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
   5709			return VM_FAULT_HWPOISON_LARGE |
   5710				VM_FAULT_SET_HINDEX(hstate_index(h));
   5711	}
   5712
   5713	/*
   5714	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
   5715	 * until finished with ptep.  This serves two purposes:
   5716	 * 1) It prevents huge_pmd_unshare from being called elsewhere
   5717	 *    and making the ptep no longer valid.
   5718	 * 2) It synchronizes us with i_size modifications during truncation.
   5719	 *
   5720	 * ptep could have already be assigned via huge_pte_offset.  That
   5721	 * is OK, as huge_pte_alloc will return the same value unless
   5722	 * something has changed.
   5723	 */
   5724	mapping = vma->vm_file->f_mapping;
   5725	i_mmap_lock_read(mapping);
   5726	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
   5727	if (!ptep) {
   5728		i_mmap_unlock_read(mapping);
   5729		return VM_FAULT_OOM;
   5730	}
   5731
   5732	/*
   5733	 * Serialize hugepage allocation and instantiation, so that we don't
   5734	 * get spurious allocation failures if two CPUs race to instantiate
   5735	 * the same page in the page cache.
   5736	 */
   5737	idx = vma_hugecache_offset(h, vma, haddr);
   5738	hash = hugetlb_fault_mutex_hash(mapping, idx);
   5739	mutex_lock(&hugetlb_fault_mutex_table[hash]);
   5740
   5741	entry = huge_ptep_get(ptep);
   5742	/* PTE markers should be handled the same way as none pte */
   5743	if (huge_pte_none_mostly(entry)) {
   5744		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
   5745				      entry, flags);
   5746		goto out_mutex;
   5747	}
   5748
   5749	ret = 0;
   5750
   5751	/*
   5752	 * entry could be a migration/hwpoison entry at this point, so this
   5753	 * check prevents the kernel from going below assuming that we have
   5754	 * an active hugepage in pagecache. This goto expects the 2nd page
   5755	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
   5756	 * properly handle it.
   5757	 */
   5758	if (!pte_present(entry))
   5759		goto out_mutex;
   5760
   5761	/*
   5762	 * If we are going to COW/unshare the mapping later, we examine the
   5763	 * pending reservations for this page now. This will ensure that any
   5764	 * allocations necessary to record that reservation occur outside the
   5765	 * spinlock. For private mappings, we also lookup the pagecache
   5766	 * page now as it is used to determine if a reservation has been
   5767	 * consumed.
   5768	 */
   5769	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
   5770	    !huge_pte_write(entry)) {
   5771		if (vma_needs_reservation(h, vma, haddr) < 0) {
   5772			ret = VM_FAULT_OOM;
   5773			goto out_mutex;
   5774		}
   5775		/* Just decrements count, does not deallocate */
   5776		vma_end_reservation(h, vma, haddr);
   5777
   5778		if (!(vma->vm_flags & VM_MAYSHARE))
   5779			pagecache_page = hugetlbfs_pagecache_page(h,
   5780								vma, haddr);
   5781	}
   5782
   5783	ptl = huge_pte_lock(h, mm, ptep);
   5784
   5785	/* Check for a racing update before calling hugetlb_wp() */
   5786	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
   5787		goto out_ptl;
   5788
   5789	/* Handle userfault-wp first, before trying to lock more pages */
   5790	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
   5791	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
   5792		struct vm_fault vmf = {
   5793			.vma = vma,
   5794			.address = haddr,
   5795			.real_address = address,
   5796			.flags = flags,
   5797		};
   5798
   5799		spin_unlock(ptl);
   5800		if (pagecache_page) {
   5801			unlock_page(pagecache_page);
   5802			put_page(pagecache_page);
   5803		}
   5804		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
   5805		i_mmap_unlock_read(mapping);
   5806		return handle_userfault(&vmf, VM_UFFD_WP);
   5807	}
   5808
   5809	/*
   5810	 * hugetlb_wp() requires page locks of pte_page(entry) and
   5811	 * pagecache_page, so here we need take the former one
   5812	 * when page != pagecache_page or !pagecache_page.
   5813	 */
   5814	page = pte_page(entry);
   5815	if (page != pagecache_page)
   5816		if (!trylock_page(page)) {
   5817			need_wait_lock = 1;
   5818			goto out_ptl;
   5819		}
   5820
   5821	get_page(page);
   5822
   5823	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
   5824		if (!huge_pte_write(entry)) {
   5825			ret = hugetlb_wp(mm, vma, address, ptep, flags,
   5826					 pagecache_page, ptl);
   5827			goto out_put_page;
   5828		} else if (likely(flags & FAULT_FLAG_WRITE)) {
   5829			entry = huge_pte_mkdirty(entry);
   5830		}
   5831	}
   5832	entry = pte_mkyoung(entry);
   5833	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
   5834						flags & FAULT_FLAG_WRITE))
   5835		update_mmu_cache(vma, haddr, ptep);
   5836out_put_page:
   5837	if (page != pagecache_page)
   5838		unlock_page(page);
   5839	put_page(page);
   5840out_ptl:
   5841	spin_unlock(ptl);
   5842
   5843	if (pagecache_page) {
   5844		unlock_page(pagecache_page);
   5845		put_page(pagecache_page);
   5846	}
   5847out_mutex:
   5848	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
   5849	i_mmap_unlock_read(mapping);
   5850	/*
   5851	 * Generally it's safe to hold refcount during waiting page lock. But
   5852	 * here we just wait to defer the next page fault to avoid busy loop and
   5853	 * the page is not used after unlocked before returning from the current
   5854	 * page fault. So we are safe from accessing freed page, even if we wait
   5855	 * here without taking refcount.
   5856	 */
   5857	if (need_wait_lock)
   5858		wait_on_page_locked(page);
   5859	return ret;
   5860}
   5861
   5862#ifdef CONFIG_USERFAULTFD
   5863/*
   5864 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
   5865 * modifications for huge pages.
   5866 */
   5867int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
   5868			    pte_t *dst_pte,
   5869			    struct vm_area_struct *dst_vma,
   5870			    unsigned long dst_addr,
   5871			    unsigned long src_addr,
   5872			    enum mcopy_atomic_mode mode,
   5873			    struct page **pagep,
   5874			    bool wp_copy)
   5875{
   5876	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
   5877	struct hstate *h = hstate_vma(dst_vma);
   5878	struct address_space *mapping = dst_vma->vm_file->f_mapping;
   5879	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
   5880	unsigned long size;
   5881	int vm_shared = dst_vma->vm_flags & VM_SHARED;
   5882	pte_t _dst_pte;
   5883	spinlock_t *ptl;
   5884	int ret = -ENOMEM;
   5885	struct page *page;
   5886	int writable;
   5887	bool page_in_pagecache = false;
   5888
   5889	if (is_continue) {
   5890		ret = -EFAULT;
   5891		page = find_lock_page(mapping, idx);
   5892		if (!page)
   5893			goto out;
   5894		page_in_pagecache = true;
   5895	} else if (!*pagep) {
   5896		/* If a page already exists, then it's UFFDIO_COPY for
   5897		 * a non-missing case. Return -EEXIST.
   5898		 */
   5899		if (vm_shared &&
   5900		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
   5901			ret = -EEXIST;
   5902			goto out;
   5903		}
   5904
   5905		page = alloc_huge_page(dst_vma, dst_addr, 0);
   5906		if (IS_ERR(page)) {
   5907			ret = -ENOMEM;
   5908			goto out;
   5909		}
   5910
   5911		ret = copy_huge_page_from_user(page,
   5912						(const void __user *) src_addr,
   5913						pages_per_huge_page(h), false);
   5914
   5915		/* fallback to copy_from_user outside mmap_lock */
   5916		if (unlikely(ret)) {
   5917			ret = -ENOENT;
   5918			/* Free the allocated page which may have
   5919			 * consumed a reservation.
   5920			 */
   5921			restore_reserve_on_error(h, dst_vma, dst_addr, page);
   5922			put_page(page);
   5923
   5924			/* Allocate a temporary page to hold the copied
   5925			 * contents.
   5926			 */
   5927			page = alloc_huge_page_vma(h, dst_vma, dst_addr);
   5928			if (!page) {
   5929				ret = -ENOMEM;
   5930				goto out;
   5931			}
   5932			*pagep = page;
   5933			/* Set the outparam pagep and return to the caller to
   5934			 * copy the contents outside the lock. Don't free the
   5935			 * page.
   5936			 */
   5937			goto out;
   5938		}
   5939	} else {
   5940		if (vm_shared &&
   5941		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
   5942			put_page(*pagep);
   5943			ret = -EEXIST;
   5944			*pagep = NULL;
   5945			goto out;
   5946		}
   5947
   5948		page = alloc_huge_page(dst_vma, dst_addr, 0);
   5949		if (IS_ERR(page)) {
   5950			ret = -ENOMEM;
   5951			*pagep = NULL;
   5952			goto out;
   5953		}
   5954		copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
   5955				    pages_per_huge_page(h));
   5956		put_page(*pagep);
   5957		*pagep = NULL;
   5958	}
   5959
   5960	/*
   5961	 * The memory barrier inside __SetPageUptodate makes sure that
   5962	 * preceding stores to the page contents become visible before
   5963	 * the set_pte_at() write.
   5964	 */
   5965	__SetPageUptodate(page);
   5966
   5967	/* Add shared, newly allocated pages to the page cache. */
   5968	if (vm_shared && !is_continue) {
   5969		size = i_size_read(mapping->host) >> huge_page_shift(h);
   5970		ret = -EFAULT;
   5971		if (idx >= size)
   5972			goto out_release_nounlock;
   5973
   5974		/*
   5975		 * Serialization between remove_inode_hugepages() and
   5976		 * huge_add_to_page_cache() below happens through the
   5977		 * hugetlb_fault_mutex_table that here must be hold by
   5978		 * the caller.
   5979		 */
   5980		ret = huge_add_to_page_cache(page, mapping, idx);
   5981		if (ret)
   5982			goto out_release_nounlock;
   5983		page_in_pagecache = true;
   5984	}
   5985
   5986	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
   5987	spin_lock(ptl);
   5988
   5989	/*
   5990	 * Recheck the i_size after holding PT lock to make sure not
   5991	 * to leave any page mapped (as page_mapped()) beyond the end
   5992	 * of the i_size (remove_inode_hugepages() is strict about
   5993	 * enforcing that). If we bail out here, we'll also leave a
   5994	 * page in the radix tree in the vm_shared case beyond the end
   5995	 * of the i_size, but remove_inode_hugepages() will take care
   5996	 * of it as soon as we drop the hugetlb_fault_mutex_table.
   5997	 */
   5998	size = i_size_read(mapping->host) >> huge_page_shift(h);
   5999	ret = -EFAULT;
   6000	if (idx >= size)
   6001		goto out_release_unlock;
   6002
   6003	ret = -EEXIST;
   6004	/*
   6005	 * We allow to overwrite a pte marker: consider when both MISSING|WP
   6006	 * registered, we firstly wr-protect a none pte which has no page cache
   6007	 * page backing it, then access the page.
   6008	 */
   6009	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
   6010		goto out_release_unlock;
   6011
   6012	if (vm_shared) {
   6013		page_dup_file_rmap(page, true);
   6014	} else {
   6015		ClearHPageRestoreReserve(page);
   6016		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
   6017	}
   6018
   6019	/*
   6020	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
   6021	 * with wp flag set, don't set pte write bit.
   6022	 */
   6023	if (wp_copy || (is_continue && !vm_shared))
   6024		writable = 0;
   6025	else
   6026		writable = dst_vma->vm_flags & VM_WRITE;
   6027
   6028	_dst_pte = make_huge_pte(dst_vma, page, writable);
   6029	/*
   6030	 * Always mark UFFDIO_COPY page dirty; note that this may not be
   6031	 * extremely important for hugetlbfs for now since swapping is not
   6032	 * supported, but we should still be clear in that this page cannot be
   6033	 * thrown away at will, even if write bit not set.
   6034	 */
   6035	_dst_pte = huge_pte_mkdirty(_dst_pte);
   6036	_dst_pte = pte_mkyoung(_dst_pte);
   6037
   6038	if (wp_copy)
   6039		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
   6040
   6041	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
   6042
   6043	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
   6044					dst_vma->vm_flags & VM_WRITE);
   6045	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
   6046
   6047	/* No need to invalidate - it was non-present before */
   6048	update_mmu_cache(dst_vma, dst_addr, dst_pte);
   6049
   6050	spin_unlock(ptl);
   6051	if (!is_continue)
   6052		SetHPageMigratable(page);
   6053	if (vm_shared || is_continue)
   6054		unlock_page(page);
   6055	ret = 0;
   6056out:
   6057	return ret;
   6058out_release_unlock:
   6059	spin_unlock(ptl);
   6060	if (vm_shared || is_continue)
   6061		unlock_page(page);
   6062out_release_nounlock:
   6063	if (!page_in_pagecache)
   6064		restore_reserve_on_error(h, dst_vma, dst_addr, page);
   6065	put_page(page);
   6066	goto out;
   6067}
   6068#endif /* CONFIG_USERFAULTFD */
   6069
   6070static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
   6071				 int refs, struct page **pages,
   6072				 struct vm_area_struct **vmas)
   6073{
   6074	int nr;
   6075
   6076	for (nr = 0; nr < refs; nr++) {
   6077		if (likely(pages))
   6078			pages[nr] = mem_map_offset(page, nr);
   6079		if (vmas)
   6080			vmas[nr] = vma;
   6081	}
   6082}
   6083
   6084static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
   6085					       bool *unshare)
   6086{
   6087	pte_t pteval = huge_ptep_get(pte);
   6088
   6089	*unshare = false;
   6090	if (is_swap_pte(pteval))
   6091		return true;
   6092	if (huge_pte_write(pteval))
   6093		return false;
   6094	if (flags & FOLL_WRITE)
   6095		return true;
   6096	if (gup_must_unshare(flags, pte_page(pteval))) {
   6097		*unshare = true;
   6098		return true;
   6099	}
   6100	return false;
   6101}
   6102
   6103long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
   6104			 struct page **pages, struct vm_area_struct **vmas,
   6105			 unsigned long *position, unsigned long *nr_pages,
   6106			 long i, unsigned int flags, int *locked)
   6107{
   6108	unsigned long pfn_offset;
   6109	unsigned long vaddr = *position;
   6110	unsigned long remainder = *nr_pages;
   6111	struct hstate *h = hstate_vma(vma);
   6112	int err = -EFAULT, refs;
   6113
   6114	while (vaddr < vma->vm_end && remainder) {
   6115		pte_t *pte;
   6116		spinlock_t *ptl = NULL;
   6117		bool unshare = false;
   6118		int absent;
   6119		struct page *page;
   6120
   6121		/*
   6122		 * If we have a pending SIGKILL, don't keep faulting pages and
   6123		 * potentially allocating memory.
   6124		 */
   6125		if (fatal_signal_pending(current)) {
   6126			remainder = 0;
   6127			break;
   6128		}
   6129
   6130		/*
   6131		 * Some archs (sparc64, sh*) have multiple pte_ts to
   6132		 * each hugepage.  We have to make sure we get the
   6133		 * first, for the page indexing below to work.
   6134		 *
   6135		 * Note that page table lock is not held when pte is null.
   6136		 */
   6137		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
   6138				      huge_page_size(h));
   6139		if (pte)
   6140			ptl = huge_pte_lock(h, mm, pte);
   6141		absent = !pte || huge_pte_none(huge_ptep_get(pte));
   6142
   6143		/*
   6144		 * When coredumping, it suits get_dump_page if we just return
   6145		 * an error where there's an empty slot with no huge pagecache
   6146		 * to back it.  This way, we avoid allocating a hugepage, and
   6147		 * the sparse dumpfile avoids allocating disk blocks, but its
   6148		 * huge holes still show up with zeroes where they need to be.
   6149		 */
   6150		if (absent && (flags & FOLL_DUMP) &&
   6151		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
   6152			if (pte)
   6153				spin_unlock(ptl);
   6154			remainder = 0;
   6155			break;
   6156		}
   6157
   6158		/*
   6159		 * We need call hugetlb_fault for both hugepages under migration
   6160		 * (in which case hugetlb_fault waits for the migration,) and
   6161		 * hwpoisoned hugepages (in which case we need to prevent the
   6162		 * caller from accessing to them.) In order to do this, we use
   6163		 * here is_swap_pte instead of is_hugetlb_entry_migration and
   6164		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
   6165		 * both cases, and because we can't follow correct pages
   6166		 * directly from any kind of swap entries.
   6167		 */
   6168		if (absent ||
   6169		    __follow_hugetlb_must_fault(flags, pte, &unshare)) {
   6170			vm_fault_t ret;
   6171			unsigned int fault_flags = 0;
   6172
   6173			if (pte)
   6174				spin_unlock(ptl);
   6175			if (flags & FOLL_WRITE)
   6176				fault_flags |= FAULT_FLAG_WRITE;
   6177			else if (unshare)
   6178				fault_flags |= FAULT_FLAG_UNSHARE;
   6179			if (locked)
   6180				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
   6181					FAULT_FLAG_KILLABLE;
   6182			if (flags & FOLL_NOWAIT)
   6183				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
   6184					FAULT_FLAG_RETRY_NOWAIT;
   6185			if (flags & FOLL_TRIED) {
   6186				/*
   6187				 * Note: FAULT_FLAG_ALLOW_RETRY and
   6188				 * FAULT_FLAG_TRIED can co-exist
   6189				 */
   6190				fault_flags |= FAULT_FLAG_TRIED;
   6191			}
   6192			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
   6193			if (ret & VM_FAULT_ERROR) {
   6194				err = vm_fault_to_errno(ret, flags);
   6195				remainder = 0;
   6196				break;
   6197			}
   6198			if (ret & VM_FAULT_RETRY) {
   6199				if (locked &&
   6200				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
   6201					*locked = 0;
   6202				*nr_pages = 0;
   6203				/*
   6204				 * VM_FAULT_RETRY must not return an
   6205				 * error, it will return zero
   6206				 * instead.
   6207				 *
   6208				 * No need to update "position" as the
   6209				 * caller will not check it after
   6210				 * *nr_pages is set to 0.
   6211				 */
   6212				return i;
   6213			}
   6214			continue;
   6215		}
   6216
   6217		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
   6218		page = pte_page(huge_ptep_get(pte));
   6219
   6220		VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
   6221			       !PageAnonExclusive(page), page);
   6222
   6223		/*
   6224		 * If subpage information not requested, update counters
   6225		 * and skip the same_page loop below.
   6226		 */
   6227		if (!pages && !vmas && !pfn_offset &&
   6228		    (vaddr + huge_page_size(h) < vma->vm_end) &&
   6229		    (remainder >= pages_per_huge_page(h))) {
   6230			vaddr += huge_page_size(h);
   6231			remainder -= pages_per_huge_page(h);
   6232			i += pages_per_huge_page(h);
   6233			spin_unlock(ptl);
   6234			continue;
   6235		}
   6236
   6237		/* vaddr may not be aligned to PAGE_SIZE */
   6238		refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
   6239		    (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
   6240
   6241		if (pages || vmas)
   6242			record_subpages_vmas(mem_map_offset(page, pfn_offset),
   6243					     vma, refs,
   6244					     likely(pages) ? pages + i : NULL,
   6245					     vmas ? vmas + i : NULL);
   6246
   6247		if (pages) {
   6248			/*
   6249			 * try_grab_folio() should always succeed here,
   6250			 * because: a) we hold the ptl lock, and b) we've just
   6251			 * checked that the huge page is present in the page
   6252			 * tables. If the huge page is present, then the tail
   6253			 * pages must also be present. The ptl prevents the
   6254			 * head page and tail pages from being rearranged in
   6255			 * any way. So this page must be available at this
   6256			 * point, unless the page refcount overflowed:
   6257			 */
   6258			if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
   6259							 flags))) {
   6260				spin_unlock(ptl);
   6261				remainder = 0;
   6262				err = -ENOMEM;
   6263				break;
   6264			}
   6265		}
   6266
   6267		vaddr += (refs << PAGE_SHIFT);
   6268		remainder -= refs;
   6269		i += refs;
   6270
   6271		spin_unlock(ptl);
   6272	}
   6273	*nr_pages = remainder;
   6274	/*
   6275	 * setting position is actually required only if remainder is
   6276	 * not zero but it's faster not to add a "if (remainder)"
   6277	 * branch.
   6278	 */
   6279	*position = vaddr;
   6280
   6281	return i ? i : err;
   6282}
   6283
   6284unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
   6285		unsigned long address, unsigned long end,
   6286		pgprot_t newprot, unsigned long cp_flags)
   6287{
   6288	struct mm_struct *mm = vma->vm_mm;
   6289	unsigned long start = address;
   6290	pte_t *ptep;
   6291	pte_t pte;
   6292	struct hstate *h = hstate_vma(vma);
   6293	unsigned long pages = 0, psize = huge_page_size(h);
   6294	bool shared_pmd = false;
   6295	struct mmu_notifier_range range;
   6296	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
   6297	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
   6298
   6299	/*
   6300	 * In the case of shared PMDs, the area to flush could be beyond
   6301	 * start/end.  Set range.start/range.end to cover the maximum possible
   6302	 * range if PMD sharing is possible.
   6303	 */
   6304	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
   6305				0, vma, mm, start, end);
   6306	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
   6307
   6308	BUG_ON(address >= end);
   6309	flush_cache_range(vma, range.start, range.end);
   6310
   6311	mmu_notifier_invalidate_range_start(&range);
   6312	i_mmap_lock_write(vma->vm_file->f_mapping);
   6313	for (; address < end; address += psize) {
   6314		spinlock_t *ptl;
   6315		ptep = huge_pte_offset(mm, address, psize);
   6316		if (!ptep)
   6317			continue;
   6318		ptl = huge_pte_lock(h, mm, ptep);
   6319		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
   6320			/*
   6321			 * When uffd-wp is enabled on the vma, unshare
   6322			 * shouldn't happen at all.  Warn about it if it
   6323			 * happened due to some reason.
   6324			 */
   6325			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
   6326			pages++;
   6327			spin_unlock(ptl);
   6328			shared_pmd = true;
   6329			continue;
   6330		}
   6331		pte = huge_ptep_get(ptep);
   6332		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
   6333			spin_unlock(ptl);
   6334			continue;
   6335		}
   6336		if (unlikely(is_hugetlb_entry_migration(pte))) {
   6337			swp_entry_t entry = pte_to_swp_entry(pte);
   6338			struct page *page = pfn_swap_entry_to_page(entry);
   6339
   6340			if (!is_readable_migration_entry(entry)) {
   6341				pte_t newpte;
   6342
   6343				if (PageAnon(page))
   6344					entry = make_readable_exclusive_migration_entry(
   6345								swp_offset(entry));
   6346				else
   6347					entry = make_readable_migration_entry(
   6348								swp_offset(entry));
   6349				newpte = swp_entry_to_pte(entry);
   6350				if (uffd_wp)
   6351					newpte = pte_swp_mkuffd_wp(newpte);
   6352				else if (uffd_wp_resolve)
   6353					newpte = pte_swp_clear_uffd_wp(newpte);
   6354				set_huge_swap_pte_at(mm, address, ptep,
   6355						     newpte, psize);
   6356				pages++;
   6357			}
   6358			spin_unlock(ptl);
   6359			continue;
   6360		}
   6361		if (unlikely(pte_marker_uffd_wp(pte))) {
   6362			/*
   6363			 * This is changing a non-present pte into a none pte,
   6364			 * no need for huge_ptep_modify_prot_start/commit().
   6365			 */
   6366			if (uffd_wp_resolve)
   6367				huge_pte_clear(mm, address, ptep, psize);
   6368		}
   6369		if (!huge_pte_none(pte)) {
   6370			pte_t old_pte;
   6371			unsigned int shift = huge_page_shift(hstate_vma(vma));
   6372
   6373			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
   6374			pte = huge_pte_modify(old_pte, newprot);
   6375			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
   6376			if (uffd_wp)
   6377				pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
   6378			else if (uffd_wp_resolve)
   6379				pte = huge_pte_clear_uffd_wp(pte);
   6380			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
   6381			pages++;
   6382		} else {
   6383			/* None pte */
   6384			if (unlikely(uffd_wp))
   6385				/* Safe to modify directly (none->non-present). */
   6386				set_huge_pte_at(mm, address, ptep,
   6387						make_pte_marker(PTE_MARKER_UFFD_WP));
   6388		}
   6389		spin_unlock(ptl);
   6390	}
   6391	/*
   6392	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
   6393	 * may have cleared our pud entry and done put_page on the page table:
   6394	 * once we release i_mmap_rwsem, another task can do the final put_page
   6395	 * and that page table be reused and filled with junk.  If we actually
   6396	 * did unshare a page of pmds, flush the range corresponding to the pud.
   6397	 */
   6398	if (shared_pmd)
   6399		flush_hugetlb_tlb_range(vma, range.start, range.end);
   6400	else
   6401		flush_hugetlb_tlb_range(vma, start, end);
   6402	/*
   6403	 * No need to call mmu_notifier_invalidate_range() we are downgrading
   6404	 * page table protection not changing it to point to a new page.
   6405	 *
   6406	 * See Documentation/vm/mmu_notifier.rst
   6407	 */
   6408	i_mmap_unlock_write(vma->vm_file->f_mapping);
   6409	mmu_notifier_invalidate_range_end(&range);
   6410
   6411	return pages << h->order;
   6412}
   6413
   6414/* Return true if reservation was successful, false otherwise.  */
   6415bool hugetlb_reserve_pages(struct inode *inode,
   6416					long from, long to,
   6417					struct vm_area_struct *vma,
   6418					vm_flags_t vm_flags)
   6419{
   6420	long chg, add = -1;
   6421	struct hstate *h = hstate_inode(inode);
   6422	struct hugepage_subpool *spool = subpool_inode(inode);
   6423	struct resv_map *resv_map;
   6424	struct hugetlb_cgroup *h_cg = NULL;
   6425	long gbl_reserve, regions_needed = 0;
   6426
   6427	/* This should never happen */
   6428	if (from > to) {
   6429		VM_WARN(1, "%s called with a negative range\n", __func__);
   6430		return false;
   6431	}
   6432
   6433	/*
   6434	 * Only apply hugepage reservation if asked. At fault time, an
   6435	 * attempt will be made for VM_NORESERVE to allocate a page
   6436	 * without using reserves
   6437	 */
   6438	if (vm_flags & VM_NORESERVE)
   6439		return true;
   6440
   6441	/*
   6442	 * Shared mappings base their reservation on the number of pages that
   6443	 * are already allocated on behalf of the file. Private mappings need
   6444	 * to reserve the full area even if read-only as mprotect() may be
   6445	 * called to make the mapping read-write. Assume !vma is a shm mapping
   6446	 */
   6447	if (!vma || vma->vm_flags & VM_MAYSHARE) {
   6448		/*
   6449		 * resv_map can not be NULL as hugetlb_reserve_pages is only
   6450		 * called for inodes for which resv_maps were created (see
   6451		 * hugetlbfs_get_inode).
   6452		 */
   6453		resv_map = inode_resv_map(inode);
   6454
   6455		chg = region_chg(resv_map, from, to, &regions_needed);
   6456
   6457	} else {
   6458		/* Private mapping. */
   6459		resv_map = resv_map_alloc();
   6460		if (!resv_map)
   6461			return false;
   6462
   6463		chg = to - from;
   6464
   6465		set_vma_resv_map(vma, resv_map);
   6466		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
   6467	}
   6468
   6469	if (chg < 0)
   6470		goto out_err;
   6471
   6472	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
   6473				chg * pages_per_huge_page(h), &h_cg) < 0)
   6474		goto out_err;
   6475
   6476	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
   6477		/* For private mappings, the hugetlb_cgroup uncharge info hangs
   6478		 * of the resv_map.
   6479		 */
   6480		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
   6481	}
   6482
   6483	/*
   6484	 * There must be enough pages in the subpool for the mapping. If
   6485	 * the subpool has a minimum size, there may be some global
   6486	 * reservations already in place (gbl_reserve).
   6487	 */
   6488	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
   6489	if (gbl_reserve < 0)
   6490		goto out_uncharge_cgroup;
   6491
   6492	/*
   6493	 * Check enough hugepages are available for the reservation.
   6494	 * Hand the pages back to the subpool if there are not
   6495	 */
   6496	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
   6497		goto out_put_pages;
   6498
   6499	/*
   6500	 * Account for the reservations made. Shared mappings record regions
   6501	 * that have reservations as they are shared by multiple VMAs.
   6502	 * When the last VMA disappears, the region map says how much
   6503	 * the reservation was and the page cache tells how much of
   6504	 * the reservation was consumed. Private mappings are per-VMA and
   6505	 * only the consumed reservations are tracked. When the VMA
   6506	 * disappears, the original reservation is the VMA size and the
   6507	 * consumed reservations are stored in the map. Hence, nothing
   6508	 * else has to be done for private mappings here
   6509	 */
   6510	if (!vma || vma->vm_flags & VM_MAYSHARE) {
   6511		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
   6512
   6513		if (unlikely(add < 0)) {
   6514			hugetlb_acct_memory(h, -gbl_reserve);
   6515			goto out_put_pages;
   6516		} else if (unlikely(chg > add)) {
   6517			/*
   6518			 * pages in this range were added to the reserve
   6519			 * map between region_chg and region_add.  This
   6520			 * indicates a race with alloc_huge_page.  Adjust
   6521			 * the subpool and reserve counts modified above
   6522			 * based on the difference.
   6523			 */
   6524			long rsv_adjust;
   6525
   6526			/*
   6527			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
   6528			 * reference to h_cg->css. See comment below for detail.
   6529			 */
   6530			hugetlb_cgroup_uncharge_cgroup_rsvd(
   6531				hstate_index(h),
   6532				(chg - add) * pages_per_huge_page(h), h_cg);
   6533
   6534			rsv_adjust = hugepage_subpool_put_pages(spool,
   6535								chg - add);
   6536			hugetlb_acct_memory(h, -rsv_adjust);
   6537		} else if (h_cg) {
   6538			/*
   6539			 * The file_regions will hold their own reference to
   6540			 * h_cg->css. So we should release the reference held
   6541			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
   6542			 * done.
   6543			 */
   6544			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
   6545		}
   6546	}
   6547	return true;
   6548
   6549out_put_pages:
   6550	/* put back original number of pages, chg */
   6551	(void)hugepage_subpool_put_pages(spool, chg);
   6552out_uncharge_cgroup:
   6553	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
   6554					    chg * pages_per_huge_page(h), h_cg);
   6555out_err:
   6556	if (!vma || vma->vm_flags & VM_MAYSHARE)
   6557		/* Only call region_abort if the region_chg succeeded but the
   6558		 * region_add failed or didn't run.
   6559		 */
   6560		if (chg >= 0 && add < 0)
   6561			region_abort(resv_map, from, to, regions_needed);
   6562	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
   6563		kref_put(&resv_map->refs, resv_map_release);
   6564	return false;
   6565}
   6566
   6567long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
   6568								long freed)
   6569{
   6570	struct hstate *h = hstate_inode(inode);
   6571	struct resv_map *resv_map = inode_resv_map(inode);
   6572	long chg = 0;
   6573	struct hugepage_subpool *spool = subpool_inode(inode);
   6574	long gbl_reserve;
   6575
   6576	/*
   6577	 * Since this routine can be called in the evict inode path for all
   6578	 * hugetlbfs inodes, resv_map could be NULL.
   6579	 */
   6580	if (resv_map) {
   6581		chg = region_del(resv_map, start, end);
   6582		/*
   6583		 * region_del() can fail in the rare case where a region
   6584		 * must be split and another region descriptor can not be
   6585		 * allocated.  If end == LONG_MAX, it will not fail.
   6586		 */
   6587		if (chg < 0)
   6588			return chg;
   6589	}
   6590
   6591	spin_lock(&inode->i_lock);
   6592	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
   6593	spin_unlock(&inode->i_lock);
   6594
   6595	/*
   6596	 * If the subpool has a minimum size, the number of global
   6597	 * reservations to be released may be adjusted.
   6598	 *
   6599	 * Note that !resv_map implies freed == 0. So (chg - freed)
   6600	 * won't go negative.
   6601	 */
   6602	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
   6603	hugetlb_acct_memory(h, -gbl_reserve);
   6604
   6605	return 0;
   6606}
   6607
   6608#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
   6609static unsigned long page_table_shareable(struct vm_area_struct *svma,
   6610				struct vm_area_struct *vma,
   6611				unsigned long addr, pgoff_t idx)
   6612{
   6613	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
   6614				svma->vm_start;
   6615	unsigned long sbase = saddr & PUD_MASK;
   6616	unsigned long s_end = sbase + PUD_SIZE;
   6617
   6618	/* Allow segments to share if only one is marked locked */
   6619	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
   6620	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
   6621
   6622	/*
   6623	 * match the virtual addresses, permission and the alignment of the
   6624	 * page table page.
   6625	 */
   6626	if (pmd_index(addr) != pmd_index(saddr) ||
   6627	    vm_flags != svm_flags ||
   6628	    !range_in_vma(svma, sbase, s_end))
   6629		return 0;
   6630
   6631	return saddr;
   6632}
   6633
   6634static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
   6635{
   6636	unsigned long base = addr & PUD_MASK;
   6637	unsigned long end = base + PUD_SIZE;
   6638
   6639	/*
   6640	 * check on proper vm_flags and page table alignment
   6641	 */
   6642	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
   6643		return true;
   6644	return false;
   6645}
   6646
   6647bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
   6648{
   6649#ifdef CONFIG_USERFAULTFD
   6650	if (uffd_disable_huge_pmd_share(vma))
   6651		return false;
   6652#endif
   6653	return vma_shareable(vma, addr);
   6654}
   6655
   6656/*
   6657 * Determine if start,end range within vma could be mapped by shared pmd.
   6658 * If yes, adjust start and end to cover range associated with possible
   6659 * shared pmd mappings.
   6660 */
   6661void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
   6662				unsigned long *start, unsigned long *end)
   6663{
   6664	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
   6665		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
   6666
   6667	/*
   6668	 * vma needs to span at least one aligned PUD size, and the range
   6669	 * must be at least partially within in.
   6670	 */
   6671	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
   6672		(*end <= v_start) || (*start >= v_end))
   6673		return;
   6674
   6675	/* Extend the range to be PUD aligned for a worst case scenario */
   6676	if (*start > v_start)
   6677		*start = ALIGN_DOWN(*start, PUD_SIZE);
   6678
   6679	if (*end < v_end)
   6680		*end = ALIGN(*end, PUD_SIZE);
   6681}
   6682
   6683/*
   6684 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
   6685 * and returns the corresponding pte. While this is not necessary for the
   6686 * !shared pmd case because we can allocate the pmd later as well, it makes the
   6687 * code much cleaner.
   6688 *
   6689 * This routine must be called with i_mmap_rwsem held in at least read mode if
   6690 * sharing is possible.  For hugetlbfs, this prevents removal of any page
   6691 * table entries associated with the address space.  This is important as we
   6692 * are setting up sharing based on existing page table entries (mappings).
   6693 */
   6694pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
   6695		      unsigned long addr, pud_t *pud)
   6696{
   6697	struct address_space *mapping = vma->vm_file->f_mapping;
   6698	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
   6699			vma->vm_pgoff;
   6700	struct vm_area_struct *svma;
   6701	unsigned long saddr;
   6702	pte_t *spte = NULL;
   6703	pte_t *pte;
   6704	spinlock_t *ptl;
   6705
   6706	i_mmap_assert_locked(mapping);
   6707	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
   6708		if (svma == vma)
   6709			continue;
   6710
   6711		saddr = page_table_shareable(svma, vma, addr, idx);
   6712		if (saddr) {
   6713			spte = huge_pte_offset(svma->vm_mm, saddr,
   6714					       vma_mmu_pagesize(svma));
   6715			if (spte) {
   6716				get_page(virt_to_page(spte));
   6717				break;
   6718			}
   6719		}
   6720	}
   6721
   6722	if (!spte)
   6723		goto out;
   6724
   6725	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
   6726	if (pud_none(*pud)) {
   6727		pud_populate(mm, pud,
   6728				(pmd_t *)((unsigned long)spte & PAGE_MASK));
   6729		mm_inc_nr_pmds(mm);
   6730	} else {
   6731		put_page(virt_to_page(spte));
   6732	}
   6733	spin_unlock(ptl);
   6734out:
   6735	pte = (pte_t *)pmd_alloc(mm, pud, addr);
   6736	return pte;
   6737}
   6738
   6739/*
   6740 * unmap huge page backed by shared pte.
   6741 *
   6742 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
   6743 * indicated by page_count > 1, unmap is achieved by clearing pud and
   6744 * decrementing the ref count. If count == 1, the pte page is not shared.
   6745 *
   6746 * Called with page table lock held and i_mmap_rwsem held in write mode.
   6747 *
   6748 * returns: 1 successfully unmapped a shared pte page
   6749 *	    0 the underlying pte page is not shared, or it is the last user
   6750 */
   6751int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
   6752					unsigned long *addr, pte_t *ptep)
   6753{
   6754	pgd_t *pgd = pgd_offset(mm, *addr);
   6755	p4d_t *p4d = p4d_offset(pgd, *addr);
   6756	pud_t *pud = pud_offset(p4d, *addr);
   6757
   6758	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
   6759	BUG_ON(page_count(virt_to_page(ptep)) == 0);
   6760	if (page_count(virt_to_page(ptep)) == 1)
   6761		return 0;
   6762
   6763	pud_clear(pud);
   6764	put_page(virt_to_page(ptep));
   6765	mm_dec_nr_pmds(mm);
   6766	/*
   6767	 * This update of passed address optimizes loops sequentially
   6768	 * processing addresses in increments of huge page size (PMD_SIZE
   6769	 * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
   6770	 * Update address to the 'last page' in the cleared area so that
   6771	 * calling loop can move to first page past this area.
   6772	 */
   6773	*addr |= PUD_SIZE - PMD_SIZE;
   6774	return 1;
   6775}
   6776
   6777#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
   6778pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
   6779		      unsigned long addr, pud_t *pud)
   6780{
   6781	return NULL;
   6782}
   6783
   6784int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
   6785				unsigned long *addr, pte_t *ptep)
   6786{
   6787	return 0;
   6788}
   6789
   6790void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
   6791				unsigned long *start, unsigned long *end)
   6792{
   6793}
   6794
   6795bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
   6796{
   6797	return false;
   6798}
   6799#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
   6800
   6801#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
   6802pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
   6803			unsigned long addr, unsigned long sz)
   6804{
   6805	pgd_t *pgd;
   6806	p4d_t *p4d;
   6807	pud_t *pud;
   6808	pte_t *pte = NULL;
   6809
   6810	pgd = pgd_offset(mm, addr);
   6811	p4d = p4d_alloc(mm, pgd, addr);
   6812	if (!p4d)
   6813		return NULL;
   6814	pud = pud_alloc(mm, p4d, addr);
   6815	if (pud) {
   6816		if (sz == PUD_SIZE) {
   6817			pte = (pte_t *)pud;
   6818		} else {
   6819			BUG_ON(sz != PMD_SIZE);
   6820			if (want_pmd_share(vma, addr) && pud_none(*pud))
   6821				pte = huge_pmd_share(mm, vma, addr, pud);
   6822			else
   6823				pte = (pte_t *)pmd_alloc(mm, pud, addr);
   6824		}
   6825	}
   6826	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
   6827
   6828	return pte;
   6829}
   6830
   6831/*
   6832 * huge_pte_offset() - Walk the page table to resolve the hugepage
   6833 * entry at address @addr
   6834 *
   6835 * Return: Pointer to page table entry (PUD or PMD) for
   6836 * address @addr, or NULL if a !p*d_present() entry is encountered and the
   6837 * size @sz doesn't match the hugepage size at this level of the page
   6838 * table.
   6839 */
   6840pte_t *huge_pte_offset(struct mm_struct *mm,
   6841		       unsigned long addr, unsigned long sz)
   6842{
   6843	pgd_t *pgd;
   6844	p4d_t *p4d;
   6845	pud_t *pud;
   6846	pmd_t *pmd;
   6847
   6848	pgd = pgd_offset(mm, addr);
   6849	if (!pgd_present(*pgd))
   6850		return NULL;
   6851	p4d = p4d_offset(pgd, addr);
   6852	if (!p4d_present(*p4d))
   6853		return NULL;
   6854
   6855	pud = pud_offset(p4d, addr);
   6856	if (sz == PUD_SIZE)
   6857		/* must be pud huge, non-present or none */
   6858		return (pte_t *)pud;
   6859	if (!pud_present(*pud))
   6860		return NULL;
   6861	/* must have a valid entry and size to go further */
   6862
   6863	pmd = pmd_offset(pud, addr);
   6864	/* must be pmd huge, non-present or none */
   6865	return (pte_t *)pmd;
   6866}
   6867
   6868#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
   6869
   6870/*
   6871 * These functions are overwritable if your architecture needs its own
   6872 * behavior.
   6873 */
   6874struct page * __weak
   6875follow_huge_addr(struct mm_struct *mm, unsigned long address,
   6876			      int write)
   6877{
   6878	return ERR_PTR(-EINVAL);
   6879}
   6880
   6881struct page * __weak
   6882follow_huge_pd(struct vm_area_struct *vma,
   6883	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
   6884{
   6885	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
   6886	return NULL;
   6887}
   6888
   6889struct page * __weak
   6890follow_huge_pmd(struct mm_struct *mm, unsigned long address,
   6891		pmd_t *pmd, int flags)
   6892{
   6893	struct page *page = NULL;
   6894	spinlock_t *ptl;
   6895	pte_t pte;
   6896
   6897	/*
   6898	 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
   6899	 * follow_hugetlb_page().
   6900	 */
   6901	if (WARN_ON_ONCE(flags & FOLL_PIN))
   6902		return NULL;
   6903
   6904retry:
   6905	ptl = pmd_lockptr(mm, pmd);
   6906	spin_lock(ptl);
   6907	/*
   6908	 * make sure that the address range covered by this pmd is not
   6909	 * unmapped from other threads.
   6910	 */
   6911	if (!pmd_huge(*pmd))
   6912		goto out;
   6913	pte = huge_ptep_get((pte_t *)pmd);
   6914	if (pte_present(pte)) {
   6915		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
   6916		/*
   6917		 * try_grab_page() should always succeed here, because: a) we
   6918		 * hold the pmd (ptl) lock, and b) we've just checked that the
   6919		 * huge pmd (head) page is present in the page tables. The ptl
   6920		 * prevents the head page and tail pages from being rearranged
   6921		 * in any way. So this page must be available at this point,
   6922		 * unless the page refcount overflowed:
   6923		 */
   6924		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
   6925			page = NULL;
   6926			goto out;
   6927		}
   6928	} else {
   6929		if (is_hugetlb_entry_migration(pte)) {
   6930			spin_unlock(ptl);
   6931			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
   6932			goto retry;
   6933		}
   6934		/*
   6935		 * hwpoisoned entry is treated as no_page_table in
   6936		 * follow_page_mask().
   6937		 */
   6938	}
   6939out:
   6940	spin_unlock(ptl);
   6941	return page;
   6942}
   6943
   6944struct page * __weak
   6945follow_huge_pud(struct mm_struct *mm, unsigned long address,
   6946		pud_t *pud, int flags)
   6947{
   6948	if (flags & (FOLL_GET | FOLL_PIN))
   6949		return NULL;
   6950
   6951	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
   6952}
   6953
   6954struct page * __weak
   6955follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
   6956{
   6957	if (flags & (FOLL_GET | FOLL_PIN))
   6958		return NULL;
   6959
   6960	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
   6961}
   6962
   6963bool isolate_huge_page(struct page *page, struct list_head *list)
   6964{
   6965	bool ret = true;
   6966
   6967	spin_lock_irq(&hugetlb_lock);
   6968	if (!PageHeadHuge(page) ||
   6969	    !HPageMigratable(page) ||
   6970	    !get_page_unless_zero(page)) {
   6971		ret = false;
   6972		goto unlock;
   6973	}
   6974	ClearHPageMigratable(page);
   6975	list_move_tail(&page->lru, list);
   6976unlock:
   6977	spin_unlock_irq(&hugetlb_lock);
   6978	return ret;
   6979}
   6980
   6981int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
   6982{
   6983	int ret = 0;
   6984
   6985	*hugetlb = false;
   6986	spin_lock_irq(&hugetlb_lock);
   6987	if (PageHeadHuge(page)) {
   6988		*hugetlb = true;
   6989		if (HPageFreed(page))
   6990			ret = 0;
   6991		else if (HPageMigratable(page))
   6992			ret = get_page_unless_zero(page);
   6993		else
   6994			ret = -EBUSY;
   6995	}
   6996	spin_unlock_irq(&hugetlb_lock);
   6997	return ret;
   6998}
   6999
   7000int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
   7001{
   7002	int ret;
   7003
   7004	spin_lock_irq(&hugetlb_lock);
   7005	ret = __get_huge_page_for_hwpoison(pfn, flags);
   7006	spin_unlock_irq(&hugetlb_lock);
   7007	return ret;
   7008}
   7009
   7010void putback_active_hugepage(struct page *page)
   7011{
   7012	spin_lock_irq(&hugetlb_lock);
   7013	SetHPageMigratable(page);
   7014	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
   7015	spin_unlock_irq(&hugetlb_lock);
   7016	put_page(page);
   7017}
   7018
   7019void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
   7020{
   7021	struct hstate *h = page_hstate(oldpage);
   7022
   7023	hugetlb_cgroup_migrate(oldpage, newpage);
   7024	set_page_owner_migrate_reason(newpage, reason);
   7025
   7026	/*
   7027	 * transfer temporary state of the new huge page. This is
   7028	 * reverse to other transitions because the newpage is going to
   7029	 * be final while the old one will be freed so it takes over
   7030	 * the temporary status.
   7031	 *
   7032	 * Also note that we have to transfer the per-node surplus state
   7033	 * here as well otherwise the global surplus count will not match
   7034	 * the per-node's.
   7035	 */
   7036	if (HPageTemporary(newpage)) {
   7037		int old_nid = page_to_nid(oldpage);
   7038		int new_nid = page_to_nid(newpage);
   7039
   7040		SetHPageTemporary(oldpage);
   7041		ClearHPageTemporary(newpage);
   7042
   7043		/*
   7044		 * There is no need to transfer the per-node surplus state
   7045		 * when we do not cross the node.
   7046		 */
   7047		if (new_nid == old_nid)
   7048			return;
   7049		spin_lock_irq(&hugetlb_lock);
   7050		if (h->surplus_huge_pages_node[old_nid]) {
   7051			h->surplus_huge_pages_node[old_nid]--;
   7052			h->surplus_huge_pages_node[new_nid]++;
   7053		}
   7054		spin_unlock_irq(&hugetlb_lock);
   7055	}
   7056}
   7057
   7058/*
   7059 * This function will unconditionally remove all the shared pmd pgtable entries
   7060 * within the specific vma for a hugetlbfs memory range.
   7061 */
   7062void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
   7063{
   7064	struct hstate *h = hstate_vma(vma);
   7065	unsigned long sz = huge_page_size(h);
   7066	struct mm_struct *mm = vma->vm_mm;
   7067	struct mmu_notifier_range range;
   7068	unsigned long address, start, end;
   7069	spinlock_t *ptl;
   7070	pte_t *ptep;
   7071
   7072	if (!(vma->vm_flags & VM_MAYSHARE))
   7073		return;
   7074
   7075	start = ALIGN(vma->vm_start, PUD_SIZE);
   7076	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
   7077
   7078	if (start >= end)
   7079		return;
   7080
   7081	flush_cache_range(vma, start, end);
   7082	/*
   7083	 * No need to call adjust_range_if_pmd_sharing_possible(), because
   7084	 * we have already done the PUD_SIZE alignment.
   7085	 */
   7086	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
   7087				start, end);
   7088	mmu_notifier_invalidate_range_start(&range);
   7089	i_mmap_lock_write(vma->vm_file->f_mapping);
   7090	for (address = start; address < end; address += PUD_SIZE) {
   7091		unsigned long tmp = address;
   7092
   7093		ptep = huge_pte_offset(mm, address, sz);
   7094		if (!ptep)
   7095			continue;
   7096		ptl = huge_pte_lock(h, mm, ptep);
   7097		/* We don't want 'address' to be changed */
   7098		huge_pmd_unshare(mm, vma, &tmp, ptep);
   7099		spin_unlock(ptl);
   7100	}
   7101	flush_hugetlb_tlb_range(vma, start, end);
   7102	i_mmap_unlock_write(vma->vm_file->f_mapping);
   7103	/*
   7104	 * No need to call mmu_notifier_invalidate_range(), see
   7105	 * Documentation/vm/mmu_notifier.rst.
   7106	 */
   7107	mmu_notifier_invalidate_range_end(&range);
   7108}
   7109
   7110#ifdef CONFIG_CMA
   7111static bool cma_reserve_called __initdata;
   7112
   7113static int __init cmdline_parse_hugetlb_cma(char *p)
   7114{
   7115	int nid, count = 0;
   7116	unsigned long tmp;
   7117	char *s = p;
   7118
   7119	while (*s) {
   7120		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
   7121			break;
   7122
   7123		if (s[count] == ':') {
   7124			if (tmp >= MAX_NUMNODES)
   7125				break;
   7126			nid = array_index_nospec(tmp, MAX_NUMNODES);
   7127
   7128			s += count + 1;
   7129			tmp = memparse(s, &s);
   7130			hugetlb_cma_size_in_node[nid] = tmp;
   7131			hugetlb_cma_size += tmp;
   7132
   7133			/*
   7134			 * Skip the separator if have one, otherwise
   7135			 * break the parsing.
   7136			 */
   7137			if (*s == ',')
   7138				s++;
   7139			else
   7140				break;
   7141		} else {
   7142			hugetlb_cma_size = memparse(p, &p);
   7143			break;
   7144		}
   7145	}
   7146
   7147	return 0;
   7148}
   7149
   7150early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
   7151
   7152void __init hugetlb_cma_reserve(int order)
   7153{
   7154	unsigned long size, reserved, per_node;
   7155	bool node_specific_cma_alloc = false;
   7156	int nid;
   7157
   7158	cma_reserve_called = true;
   7159
   7160	if (!hugetlb_cma_size)
   7161		return;
   7162
   7163	for (nid = 0; nid < MAX_NUMNODES; nid++) {
   7164		if (hugetlb_cma_size_in_node[nid] == 0)
   7165			continue;
   7166
   7167		if (!node_online(nid)) {
   7168			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
   7169			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
   7170			hugetlb_cma_size_in_node[nid] = 0;
   7171			continue;
   7172		}
   7173
   7174		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
   7175			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
   7176				nid, (PAGE_SIZE << order) / SZ_1M);
   7177			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
   7178			hugetlb_cma_size_in_node[nid] = 0;
   7179		} else {
   7180			node_specific_cma_alloc = true;
   7181		}
   7182	}
   7183
   7184	/* Validate the CMA size again in case some invalid nodes specified. */
   7185	if (!hugetlb_cma_size)
   7186		return;
   7187
   7188	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
   7189		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
   7190			(PAGE_SIZE << order) / SZ_1M);
   7191		hugetlb_cma_size = 0;
   7192		return;
   7193	}
   7194
   7195	if (!node_specific_cma_alloc) {
   7196		/*
   7197		 * If 3 GB area is requested on a machine with 4 numa nodes,
   7198		 * let's allocate 1 GB on first three nodes and ignore the last one.
   7199		 */
   7200		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
   7201		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
   7202			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
   7203	}
   7204
   7205	reserved = 0;
   7206	for_each_online_node(nid) {
   7207		int res;
   7208		char name[CMA_MAX_NAME];
   7209
   7210		if (node_specific_cma_alloc) {
   7211			if (hugetlb_cma_size_in_node[nid] == 0)
   7212				continue;
   7213
   7214			size = hugetlb_cma_size_in_node[nid];
   7215		} else {
   7216			size = min(per_node, hugetlb_cma_size - reserved);
   7217		}
   7218
   7219		size = round_up(size, PAGE_SIZE << order);
   7220
   7221		snprintf(name, sizeof(name), "hugetlb%d", nid);
   7222		/*
   7223		 * Note that 'order per bit' is based on smallest size that
   7224		 * may be returned to CMA allocator in the case of
   7225		 * huge page demotion.
   7226		 */
   7227		res = cma_declare_contiguous_nid(0, size, 0,
   7228						PAGE_SIZE << HUGETLB_PAGE_ORDER,
   7229						 0, false, name,
   7230						 &hugetlb_cma[nid], nid);
   7231		if (res) {
   7232			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
   7233				res, nid);
   7234			continue;
   7235		}
   7236
   7237		reserved += size;
   7238		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
   7239			size / SZ_1M, nid);
   7240
   7241		if (reserved >= hugetlb_cma_size)
   7242			break;
   7243	}
   7244
   7245	if (!reserved)
   7246		/*
   7247		 * hugetlb_cma_size is used to determine if allocations from
   7248		 * cma are possible.  Set to zero if no cma regions are set up.
   7249		 */
   7250		hugetlb_cma_size = 0;
   7251}
   7252
   7253void __init hugetlb_cma_check(void)
   7254{
   7255	if (!hugetlb_cma_size || cma_reserve_called)
   7256		return;
   7257
   7258	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
   7259}
   7260
   7261#endif /* CONFIG_CMA */