report.c (14941B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * This file contains common KASAN error reporting code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12#include <linux/bitops.h> 13#include <linux/ftrace.h> 14#include <linux/init.h> 15#include <linux/kernel.h> 16#include <linux/lockdep.h> 17#include <linux/mm.h> 18#include <linux/printk.h> 19#include <linux/sched.h> 20#include <linux/slab.h> 21#include <linux/stackdepot.h> 22#include <linux/stacktrace.h> 23#include <linux/string.h> 24#include <linux/types.h> 25#include <linux/kasan.h> 26#include <linux/module.h> 27#include <linux/sched/task_stack.h> 28#include <linux/uaccess.h> 29#include <trace/events/error_report.h> 30 31#include <asm/sections.h> 32 33#include <kunit/test.h> 34 35#include "kasan.h" 36#include "../slab.h" 37 38static unsigned long kasan_flags; 39 40#define KASAN_BIT_REPORTED 0 41#define KASAN_BIT_MULTI_SHOT 1 42 43enum kasan_arg_fault { 44 KASAN_ARG_FAULT_DEFAULT, 45 KASAN_ARG_FAULT_REPORT, 46 KASAN_ARG_FAULT_PANIC, 47}; 48 49static enum kasan_arg_fault kasan_arg_fault __ro_after_init = KASAN_ARG_FAULT_DEFAULT; 50 51/* kasan.fault=report/panic */ 52static int __init early_kasan_fault(char *arg) 53{ 54 if (!arg) 55 return -EINVAL; 56 57 if (!strcmp(arg, "report")) 58 kasan_arg_fault = KASAN_ARG_FAULT_REPORT; 59 else if (!strcmp(arg, "panic")) 60 kasan_arg_fault = KASAN_ARG_FAULT_PANIC; 61 else 62 return -EINVAL; 63 64 return 0; 65} 66early_param("kasan.fault", early_kasan_fault); 67 68static int __init kasan_set_multi_shot(char *str) 69{ 70 set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 71 return 1; 72} 73__setup("kasan_multi_shot", kasan_set_multi_shot); 74 75/* 76 * Used to suppress reports within kasan_disable/enable_current() critical 77 * sections, which are used for marking accesses to slab metadata. 78 */ 79static bool report_suppressed(void) 80{ 81#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 82 if (current->kasan_depth) 83 return true; 84#endif 85 return false; 86} 87 88/* 89 * Used to avoid reporting more than one KASAN bug unless kasan_multi_shot 90 * is enabled. Note that KASAN tests effectively enable kasan_multi_shot 91 * for their duration. 92 */ 93static bool report_enabled(void) 94{ 95 if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 96 return true; 97 return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); 98} 99 100#if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) || IS_ENABLED(CONFIG_KASAN_MODULE_TEST) 101 102bool kasan_save_enable_multi_shot(void) 103{ 104 return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 105} 106EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot); 107 108void kasan_restore_multi_shot(bool enabled) 109{ 110 if (!enabled) 111 clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 112} 113EXPORT_SYMBOL_GPL(kasan_restore_multi_shot); 114 115#endif 116 117#if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) 118static void update_kunit_status(bool sync) 119{ 120 struct kunit *test; 121 struct kunit_resource *resource; 122 struct kunit_kasan_status *status; 123 124 test = current->kunit_test; 125 if (!test) 126 return; 127 128 resource = kunit_find_named_resource(test, "kasan_status"); 129 if (!resource) { 130 kunit_set_failure(test); 131 return; 132 } 133 134 status = (struct kunit_kasan_status *)resource->data; 135 WRITE_ONCE(status->report_found, true); 136 WRITE_ONCE(status->sync_fault, sync); 137 138 kunit_put_resource(resource); 139} 140#else 141static void update_kunit_status(bool sync) { } 142#endif 143 144static DEFINE_SPINLOCK(report_lock); 145 146static void start_report(unsigned long *flags, bool sync) 147{ 148 /* Respect the /proc/sys/kernel/traceoff_on_warning interface. */ 149 disable_trace_on_warning(); 150 /* Update status of the currently running KASAN test. */ 151 update_kunit_status(sync); 152 /* Do not allow LOCKDEP mangling KASAN reports. */ 153 lockdep_off(); 154 /* Make sure we don't end up in loop. */ 155 kasan_disable_current(); 156 spin_lock_irqsave(&report_lock, *flags); 157 pr_err("==================================================================\n"); 158} 159 160static void end_report(unsigned long *flags, void *addr) 161{ 162 if (addr) 163 trace_error_report_end(ERROR_DETECTOR_KASAN, 164 (unsigned long)addr); 165 pr_err("==================================================================\n"); 166 spin_unlock_irqrestore(&report_lock, *flags); 167 if (panic_on_warn && !test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 168 panic("panic_on_warn set ...\n"); 169 if (kasan_arg_fault == KASAN_ARG_FAULT_PANIC) 170 panic("kasan.fault=panic set ...\n"); 171 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 172 lockdep_on(); 173 kasan_enable_current(); 174} 175 176static void print_error_description(struct kasan_report_info *info) 177{ 178 if (info->type == KASAN_REPORT_INVALID_FREE) { 179 pr_err("BUG: KASAN: double-free or invalid-free in %pS\n", 180 (void *)info->ip); 181 return; 182 } 183 184 pr_err("BUG: KASAN: %s in %pS\n", 185 kasan_get_bug_type(info), (void *)info->ip); 186 if (info->access_size) 187 pr_err("%s of size %zu at addr %px by task %s/%d\n", 188 info->is_write ? "Write" : "Read", info->access_size, 189 info->access_addr, current->comm, task_pid_nr(current)); 190 else 191 pr_err("%s at addr %px by task %s/%d\n", 192 info->is_write ? "Write" : "Read", 193 info->access_addr, current->comm, task_pid_nr(current)); 194} 195 196static void print_track(struct kasan_track *track, const char *prefix) 197{ 198 pr_err("%s by task %u:\n", prefix, track->pid); 199 if (track->stack) { 200 stack_depot_print(track->stack); 201 } else { 202 pr_err("(stack is not available)\n"); 203 } 204} 205 206struct page *kasan_addr_to_page(const void *addr) 207{ 208 if ((addr >= (void *)PAGE_OFFSET) && 209 (addr < high_memory)) 210 return virt_to_head_page(addr); 211 return NULL; 212} 213 214struct slab *kasan_addr_to_slab(const void *addr) 215{ 216 if ((addr >= (void *)PAGE_OFFSET) && 217 (addr < high_memory)) 218 return virt_to_slab(addr); 219 return NULL; 220} 221 222static void describe_object_addr(struct kmem_cache *cache, void *object, 223 const void *addr) 224{ 225 unsigned long access_addr = (unsigned long)addr; 226 unsigned long object_addr = (unsigned long)object; 227 const char *rel_type; 228 int rel_bytes; 229 230 pr_err("The buggy address belongs to the object at %px\n" 231 " which belongs to the cache %s of size %d\n", 232 object, cache->name, cache->object_size); 233 234 if (access_addr < object_addr) { 235 rel_type = "to the left"; 236 rel_bytes = object_addr - access_addr; 237 } else if (access_addr >= object_addr + cache->object_size) { 238 rel_type = "to the right"; 239 rel_bytes = access_addr - (object_addr + cache->object_size); 240 } else { 241 rel_type = "inside"; 242 rel_bytes = access_addr - object_addr; 243 } 244 245 pr_err("The buggy address is located %d bytes %s of\n" 246 " %d-byte region [%px, %px)\n", 247 rel_bytes, rel_type, cache->object_size, (void *)object_addr, 248 (void *)(object_addr + cache->object_size)); 249} 250 251static void describe_object_stacks(struct kmem_cache *cache, void *object, 252 const void *addr, u8 tag) 253{ 254 struct kasan_alloc_meta *alloc_meta; 255 struct kasan_track *free_track; 256 257 alloc_meta = kasan_get_alloc_meta(cache, object); 258 if (alloc_meta) { 259 print_track(&alloc_meta->alloc_track, "Allocated"); 260 pr_err("\n"); 261 } 262 263 free_track = kasan_get_free_track(cache, object, tag); 264 if (free_track) { 265 print_track(free_track, "Freed"); 266 pr_err("\n"); 267 } 268 269#ifdef CONFIG_KASAN_GENERIC 270 if (!alloc_meta) 271 return; 272 if (alloc_meta->aux_stack[0]) { 273 pr_err("Last potentially related work creation:\n"); 274 stack_depot_print(alloc_meta->aux_stack[0]); 275 pr_err("\n"); 276 } 277 if (alloc_meta->aux_stack[1]) { 278 pr_err("Second to last potentially related work creation:\n"); 279 stack_depot_print(alloc_meta->aux_stack[1]); 280 pr_err("\n"); 281 } 282#endif 283} 284 285static void describe_object(struct kmem_cache *cache, void *object, 286 const void *addr, u8 tag) 287{ 288 if (kasan_stack_collection_enabled()) 289 describe_object_stacks(cache, object, addr, tag); 290 describe_object_addr(cache, object, addr); 291} 292 293static inline bool kernel_or_module_addr(const void *addr) 294{ 295 if (is_kernel((unsigned long)addr)) 296 return true; 297 if (is_module_address((unsigned long)addr)) 298 return true; 299 return false; 300} 301 302static inline bool init_task_stack_addr(const void *addr) 303{ 304 return addr >= (void *)&init_thread_union.stack && 305 (addr <= (void *)&init_thread_union.stack + 306 sizeof(init_thread_union.stack)); 307} 308 309static void print_address_description(void *addr, u8 tag) 310{ 311 struct page *page = kasan_addr_to_page(addr); 312 313 dump_stack_lvl(KERN_ERR); 314 pr_err("\n"); 315 316 if (page && PageSlab(page)) { 317 struct slab *slab = page_slab(page); 318 struct kmem_cache *cache = slab->slab_cache; 319 void *object = nearest_obj(cache, slab, addr); 320 321 describe_object(cache, object, addr, tag); 322 pr_err("\n"); 323 } 324 325 if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) { 326 pr_err("The buggy address belongs to the variable:\n"); 327 pr_err(" %pS\n", addr); 328 pr_err("\n"); 329 } 330 331 if (object_is_on_stack(addr)) { 332 /* 333 * Currently, KASAN supports printing frame information only 334 * for accesses to the task's own stack. 335 */ 336 kasan_print_address_stack_frame(addr); 337 pr_err("\n"); 338 } 339 340 if (is_vmalloc_addr(addr)) { 341 struct vm_struct *va = find_vm_area(addr); 342 343 if (va) { 344 pr_err("The buggy address belongs to the virtual mapping at\n" 345 " [%px, %px) created by:\n" 346 " %pS\n", 347 va->addr, va->addr + va->size, va->caller); 348 pr_err("\n"); 349 350 page = vmalloc_to_page(addr); 351 } 352 } 353 354 if (page) { 355 pr_err("The buggy address belongs to the physical page:\n"); 356 dump_page(page, "kasan: bad access detected"); 357 pr_err("\n"); 358 } 359} 360 361static bool meta_row_is_guilty(const void *row, const void *addr) 362{ 363 return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); 364} 365 366static int meta_pointer_offset(const void *row, const void *addr) 367{ 368 /* 369 * Memory state around the buggy address: 370 * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe 371 * ... 372 * 373 * The length of ">ff00ff00ff00ff00: " is 374 * 3 + (BITS_PER_LONG / 8) * 2 chars. 375 * The length of each granule metadata is 2 bytes 376 * plus 1 byte for space. 377 */ 378 return 3 + (BITS_PER_LONG / 8) * 2 + 379 (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; 380} 381 382static void print_memory_metadata(const void *addr) 383{ 384 int i; 385 void *row; 386 387 row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) 388 - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; 389 390 pr_err("Memory state around the buggy address:\n"); 391 392 for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { 393 char buffer[4 + (BITS_PER_LONG / 8) * 2]; 394 char metadata[META_BYTES_PER_ROW]; 395 396 snprintf(buffer, sizeof(buffer), 397 (i == 0) ? ">%px: " : " %px: ", row); 398 399 /* 400 * We should not pass a shadow pointer to generic 401 * function, because generic functions may try to 402 * access kasan mapping for the passed address. 403 */ 404 kasan_metadata_fetch_row(&metadata[0], row); 405 406 print_hex_dump(KERN_ERR, buffer, 407 DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, 408 metadata, META_BYTES_PER_ROW, 0); 409 410 if (meta_row_is_guilty(row, addr)) 411 pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); 412 413 row += META_MEM_BYTES_PER_ROW; 414 } 415} 416 417static void print_report(struct kasan_report_info *info) 418{ 419 void *tagged_addr = info->access_addr; 420 void *untagged_addr = kasan_reset_tag(tagged_addr); 421 u8 tag = get_tag(tagged_addr); 422 423 print_error_description(info); 424 if (addr_has_metadata(untagged_addr)) 425 kasan_print_tags(tag, info->first_bad_addr); 426 pr_err("\n"); 427 428 if (addr_has_metadata(untagged_addr)) { 429 print_address_description(untagged_addr, tag); 430 print_memory_metadata(info->first_bad_addr); 431 } else { 432 dump_stack_lvl(KERN_ERR); 433 } 434} 435 436void kasan_report_invalid_free(void *ptr, unsigned long ip) 437{ 438 unsigned long flags; 439 struct kasan_report_info info; 440 441 /* 442 * Do not check report_suppressed(), as an invalid-free cannot be 443 * caused by accessing slab metadata and thus should not be 444 * suppressed by kasan_disable/enable_current() critical sections. 445 */ 446 if (unlikely(!report_enabled())) 447 return; 448 449 start_report(&flags, true); 450 451 info.type = KASAN_REPORT_INVALID_FREE; 452 info.access_addr = ptr; 453 info.first_bad_addr = kasan_reset_tag(ptr); 454 info.access_size = 0; 455 info.is_write = false; 456 info.ip = ip; 457 458 print_report(&info); 459 460 end_report(&flags, ptr); 461} 462 463/* 464 * kasan_report() is the only reporting function that uses 465 * user_access_save/restore(): kasan_report_invalid_free() cannot be called 466 * from a UACCESS region, and kasan_report_async() is not used on x86. 467 */ 468bool kasan_report(unsigned long addr, size_t size, bool is_write, 469 unsigned long ip) 470{ 471 bool ret = true; 472 void *ptr = (void *)addr; 473 unsigned long ua_flags = user_access_save(); 474 unsigned long irq_flags; 475 struct kasan_report_info info; 476 477 if (unlikely(report_suppressed()) || unlikely(!report_enabled())) { 478 ret = false; 479 goto out; 480 } 481 482 start_report(&irq_flags, true); 483 484 info.type = KASAN_REPORT_ACCESS; 485 info.access_addr = ptr; 486 info.first_bad_addr = kasan_find_first_bad_addr(ptr, size); 487 info.access_size = size; 488 info.is_write = is_write; 489 info.ip = ip; 490 491 print_report(&info); 492 493 end_report(&irq_flags, ptr); 494 495out: 496 user_access_restore(ua_flags); 497 498 return ret; 499} 500 501#ifdef CONFIG_KASAN_HW_TAGS 502void kasan_report_async(void) 503{ 504 unsigned long flags; 505 506 /* 507 * Do not check report_suppressed(), as kasan_disable/enable_current() 508 * critical sections do not affect Hardware Tag-Based KASAN. 509 */ 510 if (unlikely(!report_enabled())) 511 return; 512 513 start_report(&flags, false); 514 pr_err("BUG: KASAN: invalid-access\n"); 515 pr_err("Asynchronous fault: no details available\n"); 516 pr_err("\n"); 517 dump_stack_lvl(KERN_ERR); 518 end_report(&flags, NULL); 519} 520#endif /* CONFIG_KASAN_HW_TAGS */ 521 522#ifdef CONFIG_KASAN_INLINE 523/* 524 * With CONFIG_KASAN_INLINE, accesses to bogus pointers (outside the high 525 * canonical half of the address space) cause out-of-bounds shadow memory reads 526 * before the actual access. For addresses in the low canonical half of the 527 * address space, as well as most non-canonical addresses, that out-of-bounds 528 * shadow memory access lands in the non-canonical part of the address space. 529 * Help the user figure out what the original bogus pointer was. 530 */ 531void kasan_non_canonical_hook(unsigned long addr) 532{ 533 unsigned long orig_addr; 534 const char *bug_type; 535 536 if (addr < KASAN_SHADOW_OFFSET) 537 return; 538 539 orig_addr = (addr - KASAN_SHADOW_OFFSET) << KASAN_SHADOW_SCALE_SHIFT; 540 /* 541 * For faults near the shadow address for NULL, we can be fairly certain 542 * that this is a KASAN shadow memory access. 543 * For faults that correspond to shadow for low canonical addresses, we 544 * can still be pretty sure - that shadow region is a fairly narrow 545 * chunk of the non-canonical address space. 546 * But faults that look like shadow for non-canonical addresses are a 547 * really large chunk of the address space. In that case, we still 548 * print the decoded address, but make it clear that this is not 549 * necessarily what's actually going on. 550 */ 551 if (orig_addr < PAGE_SIZE) 552 bug_type = "null-ptr-deref"; 553 else if (orig_addr < TASK_SIZE) 554 bug_type = "probably user-memory-access"; 555 else 556 bug_type = "maybe wild-memory-access"; 557 pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, 558 orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); 559} 560#endif