kmemleak.c (58417B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and 17 * accesses to the object_tree_root. The object_list is the main list 18 * holding the metadata (struct kmemleak_object) for the allocated memory 19 * blocks. The object_tree_root is a red black tree used to look-up 20 * metadata based on a pointer to the corresponding memory block. The 21 * kmemleak_object structures are added to the object_list and 22 * object_tree_root in the create_object() function called from the 23 * kmemleak_alloc() callback and removed in delete_object() called from the 24 * kmemleak_free() callback 25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 26 * Accesses to the metadata (e.g. count) are protected by this lock. Note 27 * that some members of this structure may be protected by other means 28 * (atomic or kmemleak_lock). This lock is also held when scanning the 29 * corresponding memory block to avoid the kernel freeing it via the 30 * kmemleak_free() callback. This is less heavyweight than holding a global 31 * lock like kmemleak_lock during scanning. 32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 33 * unreferenced objects at a time. The gray_list contains the objects which 34 * are already referenced or marked as false positives and need to be 35 * scanned. This list is only modified during a scanning episode when the 36 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 37 * Note that the kmemleak_object.use_count is incremented when an object is 38 * added to the gray_list and therefore cannot be freed. This mutex also 39 * prevents multiple users of the "kmemleak" debugfs file together with 40 * modifications to the memory scanning parameters including the scan_thread 41 * pointer 42 * 43 * Locks and mutexes are acquired/nested in the following order: 44 * 45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 46 * 47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 48 * regions. 49 * 50 * The kmemleak_object structures have a use_count incremented or decremented 51 * using the get_object()/put_object() functions. When the use_count becomes 52 * 0, this count can no longer be incremented and put_object() schedules the 53 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 54 * function must be protected by rcu_read_lock() to avoid accessing a freed 55 * structure. 56 */ 57 58#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 59 60#include <linux/init.h> 61#include <linux/kernel.h> 62#include <linux/list.h> 63#include <linux/sched/signal.h> 64#include <linux/sched/task.h> 65#include <linux/sched/task_stack.h> 66#include <linux/jiffies.h> 67#include <linux/delay.h> 68#include <linux/export.h> 69#include <linux/kthread.h> 70#include <linux/rbtree.h> 71#include <linux/fs.h> 72#include <linux/debugfs.h> 73#include <linux/seq_file.h> 74#include <linux/cpumask.h> 75#include <linux/spinlock.h> 76#include <linux/module.h> 77#include <linux/mutex.h> 78#include <linux/rcupdate.h> 79#include <linux/stacktrace.h> 80#include <linux/cache.h> 81#include <linux/percpu.h> 82#include <linux/memblock.h> 83#include <linux/pfn.h> 84#include <linux/mmzone.h> 85#include <linux/slab.h> 86#include <linux/thread_info.h> 87#include <linux/err.h> 88#include <linux/uaccess.h> 89#include <linux/string.h> 90#include <linux/nodemask.h> 91#include <linux/mm.h> 92#include <linux/workqueue.h> 93#include <linux/crc32.h> 94 95#include <asm/sections.h> 96#include <asm/processor.h> 97#include <linux/atomic.h> 98 99#include <linux/kasan.h> 100#include <linux/kfence.h> 101#include <linux/kmemleak.h> 102#include <linux/memory_hotplug.h> 103 104/* 105 * Kmemleak configuration and common defines. 106 */ 107#define MAX_TRACE 16 /* stack trace length */ 108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 109#define SECS_FIRST_SCAN 60 /* delay before the first scan */ 110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 111#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 112 113#define BYTES_PER_POINTER sizeof(void *) 114 115/* GFP bitmask for kmemleak internal allocations */ 116#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 117 __GFP_NOLOCKDEP)) | \ 118 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 119 __GFP_NOWARN) 120 121/* scanning area inside a memory block */ 122struct kmemleak_scan_area { 123 struct hlist_node node; 124 unsigned long start; 125 size_t size; 126}; 127 128#define KMEMLEAK_GREY 0 129#define KMEMLEAK_BLACK -1 130 131/* 132 * Structure holding the metadata for each allocated memory block. 133 * Modifications to such objects should be made while holding the 134 * object->lock. Insertions or deletions from object_list, gray_list or 135 * rb_node are already protected by the corresponding locks or mutex (see 136 * the notes on locking above). These objects are reference-counted 137 * (use_count) and freed using the RCU mechanism. 138 */ 139struct kmemleak_object { 140 raw_spinlock_t lock; 141 unsigned int flags; /* object status flags */ 142 struct list_head object_list; 143 struct list_head gray_list; 144 struct rb_node rb_node; 145 struct rcu_head rcu; /* object_list lockless traversal */ 146 /* object usage count; object freed when use_count == 0 */ 147 atomic_t use_count; 148 unsigned long pointer; 149 size_t size; 150 /* pass surplus references to this pointer */ 151 unsigned long excess_ref; 152 /* minimum number of a pointers found before it is considered leak */ 153 int min_count; 154 /* the total number of pointers found pointing to this object */ 155 int count; 156 /* checksum for detecting modified objects */ 157 u32 checksum; 158 /* memory ranges to be scanned inside an object (empty for all) */ 159 struct hlist_head area_list; 160 unsigned long trace[MAX_TRACE]; 161 unsigned int trace_len; 162 unsigned long jiffies; /* creation timestamp */ 163 pid_t pid; /* pid of the current task */ 164 char comm[TASK_COMM_LEN]; /* executable name */ 165}; 166 167/* flag representing the memory block allocation status */ 168#define OBJECT_ALLOCATED (1 << 0) 169/* flag set after the first reporting of an unreference object */ 170#define OBJECT_REPORTED (1 << 1) 171/* flag set to not scan the object */ 172#define OBJECT_NO_SCAN (1 << 2) 173/* flag set to fully scan the object when scan_area allocation failed */ 174#define OBJECT_FULL_SCAN (1 << 3) 175 176#define HEX_PREFIX " " 177/* number of bytes to print per line; must be 16 or 32 */ 178#define HEX_ROW_SIZE 16 179/* number of bytes to print at a time (1, 2, 4, 8) */ 180#define HEX_GROUP_SIZE 1 181/* include ASCII after the hex output */ 182#define HEX_ASCII 1 183/* max number of lines to be printed */ 184#define HEX_MAX_LINES 2 185 186/* the list of all allocated objects */ 187static LIST_HEAD(object_list); 188/* the list of gray-colored objects (see color_gray comment below) */ 189static LIST_HEAD(gray_list); 190/* memory pool allocation */ 191static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 192static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 193static LIST_HEAD(mem_pool_free_list); 194/* search tree for object boundaries */ 195static struct rb_root object_tree_root = RB_ROOT; 196/* protecting the access to object_list and object_tree_root */ 197static DEFINE_RAW_SPINLOCK(kmemleak_lock); 198 199/* allocation caches for kmemleak internal data */ 200static struct kmem_cache *object_cache; 201static struct kmem_cache *scan_area_cache; 202 203/* set if tracing memory operations is enabled */ 204static int kmemleak_enabled = 1; 205/* same as above but only for the kmemleak_free() callback */ 206static int kmemleak_free_enabled = 1; 207/* set in the late_initcall if there were no errors */ 208static int kmemleak_initialized; 209/* set if a kmemleak warning was issued */ 210static int kmemleak_warning; 211/* set if a fatal kmemleak error has occurred */ 212static int kmemleak_error; 213 214/* minimum and maximum address that may be valid pointers */ 215static unsigned long min_addr = ULONG_MAX; 216static unsigned long max_addr; 217 218static struct task_struct *scan_thread; 219/* used to avoid reporting of recently allocated objects */ 220static unsigned long jiffies_min_age; 221static unsigned long jiffies_last_scan; 222/* delay between automatic memory scannings */ 223static unsigned long jiffies_scan_wait; 224/* enables or disables the task stacks scanning */ 225static int kmemleak_stack_scan = 1; 226/* protects the memory scanning, parameters and debug/kmemleak file access */ 227static DEFINE_MUTEX(scan_mutex); 228/* setting kmemleak=on, will set this var, skipping the disable */ 229static int kmemleak_skip_disable; 230/* If there are leaks that can be reported */ 231static bool kmemleak_found_leaks; 232 233static bool kmemleak_verbose; 234module_param_named(verbose, kmemleak_verbose, bool, 0600); 235 236static void kmemleak_disable(void); 237 238/* 239 * Print a warning and dump the stack trace. 240 */ 241#define kmemleak_warn(x...) do { \ 242 pr_warn(x); \ 243 dump_stack(); \ 244 kmemleak_warning = 1; \ 245} while (0) 246 247/* 248 * Macro invoked when a serious kmemleak condition occurred and cannot be 249 * recovered from. Kmemleak will be disabled and further allocation/freeing 250 * tracing no longer available. 251 */ 252#define kmemleak_stop(x...) do { \ 253 kmemleak_warn(x); \ 254 kmemleak_disable(); \ 255} while (0) 256 257#define warn_or_seq_printf(seq, fmt, ...) do { \ 258 if (seq) \ 259 seq_printf(seq, fmt, ##__VA_ARGS__); \ 260 else \ 261 pr_warn(fmt, ##__VA_ARGS__); \ 262} while (0) 263 264static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 265 int rowsize, int groupsize, const void *buf, 266 size_t len, bool ascii) 267{ 268 if (seq) 269 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 270 buf, len, ascii); 271 else 272 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 273 rowsize, groupsize, buf, len, ascii); 274} 275 276/* 277 * Printing of the objects hex dump to the seq file. The number of lines to be 278 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 279 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 280 * with the object->lock held. 281 */ 282static void hex_dump_object(struct seq_file *seq, 283 struct kmemleak_object *object) 284{ 285 const u8 *ptr = (const u8 *)object->pointer; 286 size_t len; 287 288 /* limit the number of lines to HEX_MAX_LINES */ 289 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 290 291 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 292 kasan_disable_current(); 293 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 294 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 295 kasan_enable_current(); 296} 297 298/* 299 * Object colors, encoded with count and min_count: 300 * - white - orphan object, not enough references to it (count < min_count) 301 * - gray - not orphan, not marked as false positive (min_count == 0) or 302 * sufficient references to it (count >= min_count) 303 * - black - ignore, it doesn't contain references (e.g. text section) 304 * (min_count == -1). No function defined for this color. 305 * Newly created objects don't have any color assigned (object->count == -1) 306 * before the next memory scan when they become white. 307 */ 308static bool color_white(const struct kmemleak_object *object) 309{ 310 return object->count != KMEMLEAK_BLACK && 311 object->count < object->min_count; 312} 313 314static bool color_gray(const struct kmemleak_object *object) 315{ 316 return object->min_count != KMEMLEAK_BLACK && 317 object->count >= object->min_count; 318} 319 320/* 321 * Objects are considered unreferenced only if their color is white, they have 322 * not be deleted and have a minimum age to avoid false positives caused by 323 * pointers temporarily stored in CPU registers. 324 */ 325static bool unreferenced_object(struct kmemleak_object *object) 326{ 327 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 328 time_before_eq(object->jiffies + jiffies_min_age, 329 jiffies_last_scan); 330} 331 332/* 333 * Printing of the unreferenced objects information to the seq file. The 334 * print_unreferenced function must be called with the object->lock held. 335 */ 336static void print_unreferenced(struct seq_file *seq, 337 struct kmemleak_object *object) 338{ 339 int i; 340 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 341 342 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 343 object->pointer, object->size); 344 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 345 object->comm, object->pid, object->jiffies, 346 msecs_age / 1000, msecs_age % 1000); 347 hex_dump_object(seq, object); 348 warn_or_seq_printf(seq, " backtrace:\n"); 349 350 for (i = 0; i < object->trace_len; i++) { 351 void *ptr = (void *)object->trace[i]; 352 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 353 } 354} 355 356/* 357 * Print the kmemleak_object information. This function is used mainly for 358 * debugging special cases when kmemleak operations. It must be called with 359 * the object->lock held. 360 */ 361static void dump_object_info(struct kmemleak_object *object) 362{ 363 pr_notice("Object 0x%08lx (size %zu):\n", 364 object->pointer, object->size); 365 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 366 object->comm, object->pid, object->jiffies); 367 pr_notice(" min_count = %d\n", object->min_count); 368 pr_notice(" count = %d\n", object->count); 369 pr_notice(" flags = 0x%x\n", object->flags); 370 pr_notice(" checksum = %u\n", object->checksum); 371 pr_notice(" backtrace:\n"); 372 stack_trace_print(object->trace, object->trace_len, 4); 373} 374 375/* 376 * Look-up a memory block metadata (kmemleak_object) in the object search 377 * tree based on a pointer value. If alias is 0, only values pointing to the 378 * beginning of the memory block are allowed. The kmemleak_lock must be held 379 * when calling this function. 380 */ 381static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 382{ 383 struct rb_node *rb = object_tree_root.rb_node; 384 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 385 386 while (rb) { 387 struct kmemleak_object *object; 388 unsigned long untagged_objp; 389 390 object = rb_entry(rb, struct kmemleak_object, rb_node); 391 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 392 393 if (untagged_ptr < untagged_objp) 394 rb = object->rb_node.rb_left; 395 else if (untagged_objp + object->size <= untagged_ptr) 396 rb = object->rb_node.rb_right; 397 else if (untagged_objp == untagged_ptr || alias) 398 return object; 399 else { 400 kmemleak_warn("Found object by alias at 0x%08lx\n", 401 ptr); 402 dump_object_info(object); 403 break; 404 } 405 } 406 return NULL; 407} 408 409/* 410 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 411 * that once an object's use_count reached 0, the RCU freeing was already 412 * registered and the object should no longer be used. This function must be 413 * called under the protection of rcu_read_lock(). 414 */ 415static int get_object(struct kmemleak_object *object) 416{ 417 return atomic_inc_not_zero(&object->use_count); 418} 419 420/* 421 * Memory pool allocation and freeing. kmemleak_lock must not be held. 422 */ 423static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 424{ 425 unsigned long flags; 426 struct kmemleak_object *object; 427 428 /* try the slab allocator first */ 429 if (object_cache) { 430 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 431 if (object) 432 return object; 433 } 434 435 /* slab allocation failed, try the memory pool */ 436 raw_spin_lock_irqsave(&kmemleak_lock, flags); 437 object = list_first_entry_or_null(&mem_pool_free_list, 438 typeof(*object), object_list); 439 if (object) 440 list_del(&object->object_list); 441 else if (mem_pool_free_count) 442 object = &mem_pool[--mem_pool_free_count]; 443 else 444 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 445 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 446 447 return object; 448} 449 450/* 451 * Return the object to either the slab allocator or the memory pool. 452 */ 453static void mem_pool_free(struct kmemleak_object *object) 454{ 455 unsigned long flags; 456 457 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 458 kmem_cache_free(object_cache, object); 459 return; 460 } 461 462 /* add the object to the memory pool free list */ 463 raw_spin_lock_irqsave(&kmemleak_lock, flags); 464 list_add(&object->object_list, &mem_pool_free_list); 465 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 466} 467 468/* 469 * RCU callback to free a kmemleak_object. 470 */ 471static void free_object_rcu(struct rcu_head *rcu) 472{ 473 struct hlist_node *tmp; 474 struct kmemleak_scan_area *area; 475 struct kmemleak_object *object = 476 container_of(rcu, struct kmemleak_object, rcu); 477 478 /* 479 * Once use_count is 0 (guaranteed by put_object), there is no other 480 * code accessing this object, hence no need for locking. 481 */ 482 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 483 hlist_del(&area->node); 484 kmem_cache_free(scan_area_cache, area); 485 } 486 mem_pool_free(object); 487} 488 489/* 490 * Decrement the object use_count. Once the count is 0, free the object using 491 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 492 * delete_object() path, the delayed RCU freeing ensures that there is no 493 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 494 * is also possible. 495 */ 496static void put_object(struct kmemleak_object *object) 497{ 498 if (!atomic_dec_and_test(&object->use_count)) 499 return; 500 501 /* should only get here after delete_object was called */ 502 WARN_ON(object->flags & OBJECT_ALLOCATED); 503 504 /* 505 * It may be too early for the RCU callbacks, however, there is no 506 * concurrent object_list traversal when !object_cache and all objects 507 * came from the memory pool. Free the object directly. 508 */ 509 if (object_cache) 510 call_rcu(&object->rcu, free_object_rcu); 511 else 512 free_object_rcu(&object->rcu); 513} 514 515/* 516 * Look up an object in the object search tree and increase its use_count. 517 */ 518static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 519{ 520 unsigned long flags; 521 struct kmemleak_object *object; 522 523 rcu_read_lock(); 524 raw_spin_lock_irqsave(&kmemleak_lock, flags); 525 object = lookup_object(ptr, alias); 526 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 527 528 /* check whether the object is still available */ 529 if (object && !get_object(object)) 530 object = NULL; 531 rcu_read_unlock(); 532 533 return object; 534} 535 536/* 537 * Remove an object from the object_tree_root and object_list. Must be called 538 * with the kmemleak_lock held _if_ kmemleak is still enabled. 539 */ 540static void __remove_object(struct kmemleak_object *object) 541{ 542 rb_erase(&object->rb_node, &object_tree_root); 543 list_del_rcu(&object->object_list); 544} 545 546/* 547 * Look up an object in the object search tree and remove it from both 548 * object_tree_root and object_list. The returned object's use_count should be 549 * at least 1, as initially set by create_object(). 550 */ 551static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 552{ 553 unsigned long flags; 554 struct kmemleak_object *object; 555 556 raw_spin_lock_irqsave(&kmemleak_lock, flags); 557 object = lookup_object(ptr, alias); 558 if (object) 559 __remove_object(object); 560 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 561 562 return object; 563} 564 565/* 566 * Save stack trace to the given array of MAX_TRACE size. 567 */ 568static int __save_stack_trace(unsigned long *trace) 569{ 570 return stack_trace_save(trace, MAX_TRACE, 2); 571} 572 573/* 574 * Create the metadata (struct kmemleak_object) corresponding to an allocated 575 * memory block and add it to the object_list and object_tree_root. 576 */ 577static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 578 int min_count, gfp_t gfp) 579{ 580 unsigned long flags; 581 struct kmemleak_object *object, *parent; 582 struct rb_node **link, *rb_parent; 583 unsigned long untagged_ptr; 584 unsigned long untagged_objp; 585 586 object = mem_pool_alloc(gfp); 587 if (!object) { 588 pr_warn("Cannot allocate a kmemleak_object structure\n"); 589 kmemleak_disable(); 590 return NULL; 591 } 592 593 INIT_LIST_HEAD(&object->object_list); 594 INIT_LIST_HEAD(&object->gray_list); 595 INIT_HLIST_HEAD(&object->area_list); 596 raw_spin_lock_init(&object->lock); 597 atomic_set(&object->use_count, 1); 598 object->flags = OBJECT_ALLOCATED; 599 object->pointer = ptr; 600 object->size = kfence_ksize((void *)ptr) ?: size; 601 object->excess_ref = 0; 602 object->min_count = min_count; 603 object->count = 0; /* white color initially */ 604 object->jiffies = jiffies; 605 object->checksum = 0; 606 607 /* task information */ 608 if (in_hardirq()) { 609 object->pid = 0; 610 strncpy(object->comm, "hardirq", sizeof(object->comm)); 611 } else if (in_serving_softirq()) { 612 object->pid = 0; 613 strncpy(object->comm, "softirq", sizeof(object->comm)); 614 } else { 615 object->pid = current->pid; 616 /* 617 * There is a small chance of a race with set_task_comm(), 618 * however using get_task_comm() here may cause locking 619 * dependency issues with current->alloc_lock. In the worst 620 * case, the command line is not correct. 621 */ 622 strncpy(object->comm, current->comm, sizeof(object->comm)); 623 } 624 625 /* kernel backtrace */ 626 object->trace_len = __save_stack_trace(object->trace); 627 628 raw_spin_lock_irqsave(&kmemleak_lock, flags); 629 630 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 631 min_addr = min(min_addr, untagged_ptr); 632 max_addr = max(max_addr, untagged_ptr + size); 633 link = &object_tree_root.rb_node; 634 rb_parent = NULL; 635 while (*link) { 636 rb_parent = *link; 637 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 638 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 639 if (untagged_ptr + size <= untagged_objp) 640 link = &parent->rb_node.rb_left; 641 else if (untagged_objp + parent->size <= untagged_ptr) 642 link = &parent->rb_node.rb_right; 643 else { 644 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 645 ptr); 646 /* 647 * No need for parent->lock here since "parent" cannot 648 * be freed while the kmemleak_lock is held. 649 */ 650 dump_object_info(parent); 651 kmem_cache_free(object_cache, object); 652 object = NULL; 653 goto out; 654 } 655 } 656 rb_link_node(&object->rb_node, rb_parent, link); 657 rb_insert_color(&object->rb_node, &object_tree_root); 658 659 list_add_tail_rcu(&object->object_list, &object_list); 660out: 661 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 662 return object; 663} 664 665/* 666 * Mark the object as not allocated and schedule RCU freeing via put_object(). 667 */ 668static void __delete_object(struct kmemleak_object *object) 669{ 670 unsigned long flags; 671 672 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 673 WARN_ON(atomic_read(&object->use_count) < 1); 674 675 /* 676 * Locking here also ensures that the corresponding memory block 677 * cannot be freed when it is being scanned. 678 */ 679 raw_spin_lock_irqsave(&object->lock, flags); 680 object->flags &= ~OBJECT_ALLOCATED; 681 raw_spin_unlock_irqrestore(&object->lock, flags); 682 put_object(object); 683} 684 685/* 686 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 687 * delete it. 688 */ 689static void delete_object_full(unsigned long ptr) 690{ 691 struct kmemleak_object *object; 692 693 object = find_and_remove_object(ptr, 0); 694 if (!object) { 695#ifdef DEBUG 696 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 697 ptr); 698#endif 699 return; 700 } 701 __delete_object(object); 702} 703 704/* 705 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 706 * delete it. If the memory block is partially freed, the function may create 707 * additional metadata for the remaining parts of the block. 708 */ 709static void delete_object_part(unsigned long ptr, size_t size) 710{ 711 struct kmemleak_object *object; 712 unsigned long start, end; 713 714 object = find_and_remove_object(ptr, 1); 715 if (!object) { 716#ifdef DEBUG 717 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 718 ptr, size); 719#endif 720 return; 721 } 722 723 /* 724 * Create one or two objects that may result from the memory block 725 * split. Note that partial freeing is only done by free_bootmem() and 726 * this happens before kmemleak_init() is called. 727 */ 728 start = object->pointer; 729 end = object->pointer + object->size; 730 if (ptr > start) 731 create_object(start, ptr - start, object->min_count, 732 GFP_KERNEL); 733 if (ptr + size < end) 734 create_object(ptr + size, end - ptr - size, object->min_count, 735 GFP_KERNEL); 736 737 __delete_object(object); 738} 739 740static void __paint_it(struct kmemleak_object *object, int color) 741{ 742 object->min_count = color; 743 if (color == KMEMLEAK_BLACK) 744 object->flags |= OBJECT_NO_SCAN; 745} 746 747static void paint_it(struct kmemleak_object *object, int color) 748{ 749 unsigned long flags; 750 751 raw_spin_lock_irqsave(&object->lock, flags); 752 __paint_it(object, color); 753 raw_spin_unlock_irqrestore(&object->lock, flags); 754} 755 756static void paint_ptr(unsigned long ptr, int color) 757{ 758 struct kmemleak_object *object; 759 760 object = find_and_get_object(ptr, 0); 761 if (!object) { 762 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 763 ptr, 764 (color == KMEMLEAK_GREY) ? "Grey" : 765 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 766 return; 767 } 768 paint_it(object, color); 769 put_object(object); 770} 771 772/* 773 * Mark an object permanently as gray-colored so that it can no longer be 774 * reported as a leak. This is used in general to mark a false positive. 775 */ 776static void make_gray_object(unsigned long ptr) 777{ 778 paint_ptr(ptr, KMEMLEAK_GREY); 779} 780 781/* 782 * Mark the object as black-colored so that it is ignored from scans and 783 * reporting. 784 */ 785static void make_black_object(unsigned long ptr) 786{ 787 paint_ptr(ptr, KMEMLEAK_BLACK); 788} 789 790/* 791 * Add a scanning area to the object. If at least one such area is added, 792 * kmemleak will only scan these ranges rather than the whole memory block. 793 */ 794static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 795{ 796 unsigned long flags; 797 struct kmemleak_object *object; 798 struct kmemleak_scan_area *area = NULL; 799 unsigned long untagged_ptr; 800 unsigned long untagged_objp; 801 802 object = find_and_get_object(ptr, 1); 803 if (!object) { 804 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 805 ptr); 806 return; 807 } 808 809 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 810 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 811 812 if (scan_area_cache) 813 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 814 815 raw_spin_lock_irqsave(&object->lock, flags); 816 if (!area) { 817 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 818 /* mark the object for full scan to avoid false positives */ 819 object->flags |= OBJECT_FULL_SCAN; 820 goto out_unlock; 821 } 822 if (size == SIZE_MAX) { 823 size = untagged_objp + object->size - untagged_ptr; 824 } else if (untagged_ptr + size > untagged_objp + object->size) { 825 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 826 dump_object_info(object); 827 kmem_cache_free(scan_area_cache, area); 828 goto out_unlock; 829 } 830 831 INIT_HLIST_NODE(&area->node); 832 area->start = ptr; 833 area->size = size; 834 835 hlist_add_head(&area->node, &object->area_list); 836out_unlock: 837 raw_spin_unlock_irqrestore(&object->lock, flags); 838 put_object(object); 839} 840 841/* 842 * Any surplus references (object already gray) to 'ptr' are passed to 843 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 844 * vm_struct may be used as an alternative reference to the vmalloc'ed object 845 * (see free_thread_stack()). 846 */ 847static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 848{ 849 unsigned long flags; 850 struct kmemleak_object *object; 851 852 object = find_and_get_object(ptr, 0); 853 if (!object) { 854 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 855 ptr); 856 return; 857 } 858 859 raw_spin_lock_irqsave(&object->lock, flags); 860 object->excess_ref = excess_ref; 861 raw_spin_unlock_irqrestore(&object->lock, flags); 862 put_object(object); 863} 864 865/* 866 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 867 * pointer. Such object will not be scanned by kmemleak but references to it 868 * are searched. 869 */ 870static void object_no_scan(unsigned long ptr) 871{ 872 unsigned long flags; 873 struct kmemleak_object *object; 874 875 object = find_and_get_object(ptr, 0); 876 if (!object) { 877 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 878 return; 879 } 880 881 raw_spin_lock_irqsave(&object->lock, flags); 882 object->flags |= OBJECT_NO_SCAN; 883 raw_spin_unlock_irqrestore(&object->lock, flags); 884 put_object(object); 885} 886 887/** 888 * kmemleak_alloc - register a newly allocated object 889 * @ptr: pointer to beginning of the object 890 * @size: size of the object 891 * @min_count: minimum number of references to this object. If during memory 892 * scanning a number of references less than @min_count is found, 893 * the object is reported as a memory leak. If @min_count is 0, 894 * the object is never reported as a leak. If @min_count is -1, 895 * the object is ignored (not scanned and not reported as a leak) 896 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 897 * 898 * This function is called from the kernel allocators when a new object 899 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 900 */ 901void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 902 gfp_t gfp) 903{ 904 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 905 906 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 907 create_object((unsigned long)ptr, size, min_count, gfp); 908} 909EXPORT_SYMBOL_GPL(kmemleak_alloc); 910 911/** 912 * kmemleak_alloc_percpu - register a newly allocated __percpu object 913 * @ptr: __percpu pointer to beginning of the object 914 * @size: size of the object 915 * @gfp: flags used for kmemleak internal memory allocations 916 * 917 * This function is called from the kernel percpu allocator when a new object 918 * (memory block) is allocated (alloc_percpu). 919 */ 920void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 921 gfp_t gfp) 922{ 923 unsigned int cpu; 924 925 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 926 927 /* 928 * Percpu allocations are only scanned and not reported as leaks 929 * (min_count is set to 0). 930 */ 931 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 932 for_each_possible_cpu(cpu) 933 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 934 size, 0, gfp); 935} 936EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 937 938/** 939 * kmemleak_vmalloc - register a newly vmalloc'ed object 940 * @area: pointer to vm_struct 941 * @size: size of the object 942 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 943 * 944 * This function is called from the vmalloc() kernel allocator when a new 945 * object (memory block) is allocated. 946 */ 947void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 948{ 949 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 950 951 /* 952 * A min_count = 2 is needed because vm_struct contains a reference to 953 * the virtual address of the vmalloc'ed block. 954 */ 955 if (kmemleak_enabled) { 956 create_object((unsigned long)area->addr, size, 2, gfp); 957 object_set_excess_ref((unsigned long)area, 958 (unsigned long)area->addr); 959 } 960} 961EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 962 963/** 964 * kmemleak_free - unregister a previously registered object 965 * @ptr: pointer to beginning of the object 966 * 967 * This function is called from the kernel allocators when an object (memory 968 * block) is freed (kmem_cache_free, kfree, vfree etc.). 969 */ 970void __ref kmemleak_free(const void *ptr) 971{ 972 pr_debug("%s(0x%p)\n", __func__, ptr); 973 974 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 975 delete_object_full((unsigned long)ptr); 976} 977EXPORT_SYMBOL_GPL(kmemleak_free); 978 979/** 980 * kmemleak_free_part - partially unregister a previously registered object 981 * @ptr: pointer to the beginning or inside the object. This also 982 * represents the start of the range to be freed 983 * @size: size to be unregistered 984 * 985 * This function is called when only a part of a memory block is freed 986 * (usually from the bootmem allocator). 987 */ 988void __ref kmemleak_free_part(const void *ptr, size_t size) 989{ 990 pr_debug("%s(0x%p)\n", __func__, ptr); 991 992 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 993 delete_object_part((unsigned long)ptr, size); 994} 995EXPORT_SYMBOL_GPL(kmemleak_free_part); 996 997/** 998 * kmemleak_free_percpu - unregister a previously registered __percpu object 999 * @ptr: __percpu pointer to beginning of the object 1000 * 1001 * This function is called from the kernel percpu allocator when an object 1002 * (memory block) is freed (free_percpu). 1003 */ 1004void __ref kmemleak_free_percpu(const void __percpu *ptr) 1005{ 1006 unsigned int cpu; 1007 1008 pr_debug("%s(0x%p)\n", __func__, ptr); 1009 1010 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1011 for_each_possible_cpu(cpu) 1012 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1013 cpu)); 1014} 1015EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1016 1017/** 1018 * kmemleak_update_trace - update object allocation stack trace 1019 * @ptr: pointer to beginning of the object 1020 * 1021 * Override the object allocation stack trace for cases where the actual 1022 * allocation place is not always useful. 1023 */ 1024void __ref kmemleak_update_trace(const void *ptr) 1025{ 1026 struct kmemleak_object *object; 1027 unsigned long flags; 1028 1029 pr_debug("%s(0x%p)\n", __func__, ptr); 1030 1031 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1032 return; 1033 1034 object = find_and_get_object((unsigned long)ptr, 1); 1035 if (!object) { 1036#ifdef DEBUG 1037 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1038 ptr); 1039#endif 1040 return; 1041 } 1042 1043 raw_spin_lock_irqsave(&object->lock, flags); 1044 object->trace_len = __save_stack_trace(object->trace); 1045 raw_spin_unlock_irqrestore(&object->lock, flags); 1046 1047 put_object(object); 1048} 1049EXPORT_SYMBOL(kmemleak_update_trace); 1050 1051/** 1052 * kmemleak_not_leak - mark an allocated object as false positive 1053 * @ptr: pointer to beginning of the object 1054 * 1055 * Calling this function on an object will cause the memory block to no longer 1056 * be reported as leak and always be scanned. 1057 */ 1058void __ref kmemleak_not_leak(const void *ptr) 1059{ 1060 pr_debug("%s(0x%p)\n", __func__, ptr); 1061 1062 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1063 make_gray_object((unsigned long)ptr); 1064} 1065EXPORT_SYMBOL(kmemleak_not_leak); 1066 1067/** 1068 * kmemleak_ignore - ignore an allocated object 1069 * @ptr: pointer to beginning of the object 1070 * 1071 * Calling this function on an object will cause the memory block to be 1072 * ignored (not scanned and not reported as a leak). This is usually done when 1073 * it is known that the corresponding block is not a leak and does not contain 1074 * any references to other allocated memory blocks. 1075 */ 1076void __ref kmemleak_ignore(const void *ptr) 1077{ 1078 pr_debug("%s(0x%p)\n", __func__, ptr); 1079 1080 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1081 make_black_object((unsigned long)ptr); 1082} 1083EXPORT_SYMBOL(kmemleak_ignore); 1084 1085/** 1086 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1087 * @ptr: pointer to beginning or inside the object. This also 1088 * represents the start of the scan area 1089 * @size: size of the scan area 1090 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1091 * 1092 * This function is used when it is known that only certain parts of an object 1093 * contain references to other objects. Kmemleak will only scan these areas 1094 * reducing the number false negatives. 1095 */ 1096void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1097{ 1098 pr_debug("%s(0x%p)\n", __func__, ptr); 1099 1100 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1101 add_scan_area((unsigned long)ptr, size, gfp); 1102} 1103EXPORT_SYMBOL(kmemleak_scan_area); 1104 1105/** 1106 * kmemleak_no_scan - do not scan an allocated object 1107 * @ptr: pointer to beginning of the object 1108 * 1109 * This function notifies kmemleak not to scan the given memory block. Useful 1110 * in situations where it is known that the given object does not contain any 1111 * references to other objects. Kmemleak will not scan such objects reducing 1112 * the number of false negatives. 1113 */ 1114void __ref kmemleak_no_scan(const void *ptr) 1115{ 1116 pr_debug("%s(0x%p)\n", __func__, ptr); 1117 1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1119 object_no_scan((unsigned long)ptr); 1120} 1121EXPORT_SYMBOL(kmemleak_no_scan); 1122 1123/** 1124 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1125 * address argument 1126 * @phys: physical address of the object 1127 * @size: size of the object 1128 * @min_count: minimum number of references to this object. 1129 * See kmemleak_alloc() 1130 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1131 */ 1132void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1133 gfp_t gfp) 1134{ 1135 if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn) 1136 kmemleak_alloc(__va(phys), size, min_count, gfp); 1137} 1138EXPORT_SYMBOL(kmemleak_alloc_phys); 1139 1140/** 1141 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1142 * physical address argument 1143 * @phys: physical address if the beginning or inside an object. This 1144 * also represents the start of the range to be freed 1145 * @size: size to be unregistered 1146 */ 1147void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1148{ 1149 if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn) 1150 kmemleak_free_part(__va(phys), size); 1151} 1152EXPORT_SYMBOL(kmemleak_free_part_phys); 1153 1154/** 1155 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1156 * address argument 1157 * @phys: physical address of the object 1158 */ 1159void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1160{ 1161 if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn) 1162 kmemleak_not_leak(__va(phys)); 1163} 1164EXPORT_SYMBOL(kmemleak_not_leak_phys); 1165 1166/** 1167 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1168 * address argument 1169 * @phys: physical address of the object 1170 */ 1171void __ref kmemleak_ignore_phys(phys_addr_t phys) 1172{ 1173 if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn) 1174 kmemleak_ignore(__va(phys)); 1175} 1176EXPORT_SYMBOL(kmemleak_ignore_phys); 1177 1178/* 1179 * Update an object's checksum and return true if it was modified. 1180 */ 1181static bool update_checksum(struct kmemleak_object *object) 1182{ 1183 u32 old_csum = object->checksum; 1184 1185 kasan_disable_current(); 1186 kcsan_disable_current(); 1187 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1188 kasan_enable_current(); 1189 kcsan_enable_current(); 1190 1191 return object->checksum != old_csum; 1192} 1193 1194/* 1195 * Update an object's references. object->lock must be held by the caller. 1196 */ 1197static void update_refs(struct kmemleak_object *object) 1198{ 1199 if (!color_white(object)) { 1200 /* non-orphan, ignored or new */ 1201 return; 1202 } 1203 1204 /* 1205 * Increase the object's reference count (number of pointers to the 1206 * memory block). If this count reaches the required minimum, the 1207 * object's color will become gray and it will be added to the 1208 * gray_list. 1209 */ 1210 object->count++; 1211 if (color_gray(object)) { 1212 /* put_object() called when removing from gray_list */ 1213 WARN_ON(!get_object(object)); 1214 list_add_tail(&object->gray_list, &gray_list); 1215 } 1216} 1217 1218/* 1219 * Memory scanning is a long process and it needs to be interruptible. This 1220 * function checks whether such interrupt condition occurred. 1221 */ 1222static int scan_should_stop(void) 1223{ 1224 if (!kmemleak_enabled) 1225 return 1; 1226 1227 /* 1228 * This function may be called from either process or kthread context, 1229 * hence the need to check for both stop conditions. 1230 */ 1231 if (current->mm) 1232 return signal_pending(current); 1233 else 1234 return kthread_should_stop(); 1235 1236 return 0; 1237} 1238 1239/* 1240 * Scan a memory block (exclusive range) for valid pointers and add those 1241 * found to the gray list. 1242 */ 1243static void scan_block(void *_start, void *_end, 1244 struct kmemleak_object *scanned) 1245{ 1246 unsigned long *ptr; 1247 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1248 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1249 unsigned long flags; 1250 unsigned long untagged_ptr; 1251 1252 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1253 for (ptr = start; ptr < end; ptr++) { 1254 struct kmemleak_object *object; 1255 unsigned long pointer; 1256 unsigned long excess_ref; 1257 1258 if (scan_should_stop()) 1259 break; 1260 1261 kasan_disable_current(); 1262 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1263 kasan_enable_current(); 1264 1265 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1266 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1267 continue; 1268 1269 /* 1270 * No need for get_object() here since we hold kmemleak_lock. 1271 * object->use_count cannot be dropped to 0 while the object 1272 * is still present in object_tree_root and object_list 1273 * (with updates protected by kmemleak_lock). 1274 */ 1275 object = lookup_object(pointer, 1); 1276 if (!object) 1277 continue; 1278 if (object == scanned) 1279 /* self referenced, ignore */ 1280 continue; 1281 1282 /* 1283 * Avoid the lockdep recursive warning on object->lock being 1284 * previously acquired in scan_object(). These locks are 1285 * enclosed by scan_mutex. 1286 */ 1287 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1288 /* only pass surplus references (object already gray) */ 1289 if (color_gray(object)) { 1290 excess_ref = object->excess_ref; 1291 /* no need for update_refs() if object already gray */ 1292 } else { 1293 excess_ref = 0; 1294 update_refs(object); 1295 } 1296 raw_spin_unlock(&object->lock); 1297 1298 if (excess_ref) { 1299 object = lookup_object(excess_ref, 0); 1300 if (!object) 1301 continue; 1302 if (object == scanned) 1303 /* circular reference, ignore */ 1304 continue; 1305 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1306 update_refs(object); 1307 raw_spin_unlock(&object->lock); 1308 } 1309 } 1310 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1311} 1312 1313/* 1314 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1315 */ 1316#ifdef CONFIG_SMP 1317static void scan_large_block(void *start, void *end) 1318{ 1319 void *next; 1320 1321 while (start < end) { 1322 next = min(start + MAX_SCAN_SIZE, end); 1323 scan_block(start, next, NULL); 1324 start = next; 1325 cond_resched(); 1326 } 1327} 1328#endif 1329 1330/* 1331 * Scan a memory block corresponding to a kmemleak_object. A condition is 1332 * that object->use_count >= 1. 1333 */ 1334static void scan_object(struct kmemleak_object *object) 1335{ 1336 struct kmemleak_scan_area *area; 1337 unsigned long flags; 1338 1339 /* 1340 * Once the object->lock is acquired, the corresponding memory block 1341 * cannot be freed (the same lock is acquired in delete_object). 1342 */ 1343 raw_spin_lock_irqsave(&object->lock, flags); 1344 if (object->flags & OBJECT_NO_SCAN) 1345 goto out; 1346 if (!(object->flags & OBJECT_ALLOCATED)) 1347 /* already freed object */ 1348 goto out; 1349 if (hlist_empty(&object->area_list) || 1350 object->flags & OBJECT_FULL_SCAN) { 1351 void *start = (void *)object->pointer; 1352 void *end = (void *)(object->pointer + object->size); 1353 void *next; 1354 1355 do { 1356 next = min(start + MAX_SCAN_SIZE, end); 1357 scan_block(start, next, object); 1358 1359 start = next; 1360 if (start >= end) 1361 break; 1362 1363 raw_spin_unlock_irqrestore(&object->lock, flags); 1364 cond_resched(); 1365 raw_spin_lock_irqsave(&object->lock, flags); 1366 } while (object->flags & OBJECT_ALLOCATED); 1367 } else 1368 hlist_for_each_entry(area, &object->area_list, node) 1369 scan_block((void *)area->start, 1370 (void *)(area->start + area->size), 1371 object); 1372out: 1373 raw_spin_unlock_irqrestore(&object->lock, flags); 1374} 1375 1376/* 1377 * Scan the objects already referenced (gray objects). More objects will be 1378 * referenced and, if there are no memory leaks, all the objects are scanned. 1379 */ 1380static void scan_gray_list(void) 1381{ 1382 struct kmemleak_object *object, *tmp; 1383 1384 /* 1385 * The list traversal is safe for both tail additions and removals 1386 * from inside the loop. The kmemleak objects cannot be freed from 1387 * outside the loop because their use_count was incremented. 1388 */ 1389 object = list_entry(gray_list.next, typeof(*object), gray_list); 1390 while (&object->gray_list != &gray_list) { 1391 cond_resched(); 1392 1393 /* may add new objects to the list */ 1394 if (!scan_should_stop()) 1395 scan_object(object); 1396 1397 tmp = list_entry(object->gray_list.next, typeof(*object), 1398 gray_list); 1399 1400 /* remove the object from the list and release it */ 1401 list_del(&object->gray_list); 1402 put_object(object); 1403 1404 object = tmp; 1405 } 1406 WARN_ON(!list_empty(&gray_list)); 1407} 1408 1409/* 1410 * Scan data sections and all the referenced memory blocks allocated via the 1411 * kernel's standard allocators. This function must be called with the 1412 * scan_mutex held. 1413 */ 1414static void kmemleak_scan(void) 1415{ 1416 unsigned long flags; 1417 struct kmemleak_object *object; 1418 struct zone *zone; 1419 int __maybe_unused i; 1420 int new_leaks = 0; 1421 1422 jiffies_last_scan = jiffies; 1423 1424 /* prepare the kmemleak_object's */ 1425 rcu_read_lock(); 1426 list_for_each_entry_rcu(object, &object_list, object_list) { 1427 raw_spin_lock_irqsave(&object->lock, flags); 1428#ifdef DEBUG 1429 /* 1430 * With a few exceptions there should be a maximum of 1431 * 1 reference to any object at this point. 1432 */ 1433 if (atomic_read(&object->use_count) > 1) { 1434 pr_debug("object->use_count = %d\n", 1435 atomic_read(&object->use_count)); 1436 dump_object_info(object); 1437 } 1438#endif 1439 /* reset the reference count (whiten the object) */ 1440 object->count = 0; 1441 if (color_gray(object) && get_object(object)) 1442 list_add_tail(&object->gray_list, &gray_list); 1443 1444 raw_spin_unlock_irqrestore(&object->lock, flags); 1445 } 1446 rcu_read_unlock(); 1447 1448#ifdef CONFIG_SMP 1449 /* per-cpu sections scanning */ 1450 for_each_possible_cpu(i) 1451 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1452 __per_cpu_end + per_cpu_offset(i)); 1453#endif 1454 1455 /* 1456 * Struct page scanning for each node. 1457 */ 1458 get_online_mems(); 1459 for_each_populated_zone(zone) { 1460 unsigned long start_pfn = zone->zone_start_pfn; 1461 unsigned long end_pfn = zone_end_pfn(zone); 1462 unsigned long pfn; 1463 1464 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1465 struct page *page = pfn_to_online_page(pfn); 1466 1467 if (!page) 1468 continue; 1469 1470 /* only scan pages belonging to this zone */ 1471 if (page_zone(page) != zone) 1472 continue; 1473 /* only scan if page is in use */ 1474 if (page_count(page) == 0) 1475 continue; 1476 scan_block(page, page + 1, NULL); 1477 if (!(pfn & 63)) 1478 cond_resched(); 1479 } 1480 } 1481 put_online_mems(); 1482 1483 /* 1484 * Scanning the task stacks (may introduce false negatives). 1485 */ 1486 if (kmemleak_stack_scan) { 1487 struct task_struct *p, *g; 1488 1489 rcu_read_lock(); 1490 for_each_process_thread(g, p) { 1491 void *stack = try_get_task_stack(p); 1492 if (stack) { 1493 scan_block(stack, stack + THREAD_SIZE, NULL); 1494 put_task_stack(p); 1495 } 1496 } 1497 rcu_read_unlock(); 1498 } 1499 1500 /* 1501 * Scan the objects already referenced from the sections scanned 1502 * above. 1503 */ 1504 scan_gray_list(); 1505 1506 /* 1507 * Check for new or unreferenced objects modified since the previous 1508 * scan and color them gray until the next scan. 1509 */ 1510 rcu_read_lock(); 1511 list_for_each_entry_rcu(object, &object_list, object_list) { 1512 raw_spin_lock_irqsave(&object->lock, flags); 1513 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1514 && update_checksum(object) && get_object(object)) { 1515 /* color it gray temporarily */ 1516 object->count = object->min_count; 1517 list_add_tail(&object->gray_list, &gray_list); 1518 } 1519 raw_spin_unlock_irqrestore(&object->lock, flags); 1520 } 1521 rcu_read_unlock(); 1522 1523 /* 1524 * Re-scan the gray list for modified unreferenced objects. 1525 */ 1526 scan_gray_list(); 1527 1528 /* 1529 * If scanning was stopped do not report any new unreferenced objects. 1530 */ 1531 if (scan_should_stop()) 1532 return; 1533 1534 /* 1535 * Scanning result reporting. 1536 */ 1537 rcu_read_lock(); 1538 list_for_each_entry_rcu(object, &object_list, object_list) { 1539 raw_spin_lock_irqsave(&object->lock, flags); 1540 if (unreferenced_object(object) && 1541 !(object->flags & OBJECT_REPORTED)) { 1542 object->flags |= OBJECT_REPORTED; 1543 1544 if (kmemleak_verbose) 1545 print_unreferenced(NULL, object); 1546 1547 new_leaks++; 1548 } 1549 raw_spin_unlock_irqrestore(&object->lock, flags); 1550 } 1551 rcu_read_unlock(); 1552 1553 if (new_leaks) { 1554 kmemleak_found_leaks = true; 1555 1556 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1557 new_leaks); 1558 } 1559 1560} 1561 1562/* 1563 * Thread function performing automatic memory scanning. Unreferenced objects 1564 * at the end of a memory scan are reported but only the first time. 1565 */ 1566static int kmemleak_scan_thread(void *arg) 1567{ 1568 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1569 1570 pr_info("Automatic memory scanning thread started\n"); 1571 set_user_nice(current, 10); 1572 1573 /* 1574 * Wait before the first scan to allow the system to fully initialize. 1575 */ 1576 if (first_run) { 1577 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1578 first_run = 0; 1579 while (timeout && !kthread_should_stop()) 1580 timeout = schedule_timeout_interruptible(timeout); 1581 } 1582 1583 while (!kthread_should_stop()) { 1584 signed long timeout = READ_ONCE(jiffies_scan_wait); 1585 1586 mutex_lock(&scan_mutex); 1587 kmemleak_scan(); 1588 mutex_unlock(&scan_mutex); 1589 1590 /* wait before the next scan */ 1591 while (timeout && !kthread_should_stop()) 1592 timeout = schedule_timeout_interruptible(timeout); 1593 } 1594 1595 pr_info("Automatic memory scanning thread ended\n"); 1596 1597 return 0; 1598} 1599 1600/* 1601 * Start the automatic memory scanning thread. This function must be called 1602 * with the scan_mutex held. 1603 */ 1604static void start_scan_thread(void) 1605{ 1606 if (scan_thread) 1607 return; 1608 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1609 if (IS_ERR(scan_thread)) { 1610 pr_warn("Failed to create the scan thread\n"); 1611 scan_thread = NULL; 1612 } 1613} 1614 1615/* 1616 * Stop the automatic memory scanning thread. 1617 */ 1618static void stop_scan_thread(void) 1619{ 1620 if (scan_thread) { 1621 kthread_stop(scan_thread); 1622 scan_thread = NULL; 1623 } 1624} 1625 1626/* 1627 * Iterate over the object_list and return the first valid object at or after 1628 * the required position with its use_count incremented. The function triggers 1629 * a memory scanning when the pos argument points to the first position. 1630 */ 1631static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1632{ 1633 struct kmemleak_object *object; 1634 loff_t n = *pos; 1635 int err; 1636 1637 err = mutex_lock_interruptible(&scan_mutex); 1638 if (err < 0) 1639 return ERR_PTR(err); 1640 1641 rcu_read_lock(); 1642 list_for_each_entry_rcu(object, &object_list, object_list) { 1643 if (n-- > 0) 1644 continue; 1645 if (get_object(object)) 1646 goto out; 1647 } 1648 object = NULL; 1649out: 1650 return object; 1651} 1652 1653/* 1654 * Return the next object in the object_list. The function decrements the 1655 * use_count of the previous object and increases that of the next one. 1656 */ 1657static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1658{ 1659 struct kmemleak_object *prev_obj = v; 1660 struct kmemleak_object *next_obj = NULL; 1661 struct kmemleak_object *obj = prev_obj; 1662 1663 ++(*pos); 1664 1665 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1666 if (get_object(obj)) { 1667 next_obj = obj; 1668 break; 1669 } 1670 } 1671 1672 put_object(prev_obj); 1673 return next_obj; 1674} 1675 1676/* 1677 * Decrement the use_count of the last object required, if any. 1678 */ 1679static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1680{ 1681 if (!IS_ERR(v)) { 1682 /* 1683 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1684 * waiting was interrupted, so only release it if !IS_ERR. 1685 */ 1686 rcu_read_unlock(); 1687 mutex_unlock(&scan_mutex); 1688 if (v) 1689 put_object(v); 1690 } 1691} 1692 1693/* 1694 * Print the information for an unreferenced object to the seq file. 1695 */ 1696static int kmemleak_seq_show(struct seq_file *seq, void *v) 1697{ 1698 struct kmemleak_object *object = v; 1699 unsigned long flags; 1700 1701 raw_spin_lock_irqsave(&object->lock, flags); 1702 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1703 print_unreferenced(seq, object); 1704 raw_spin_unlock_irqrestore(&object->lock, flags); 1705 return 0; 1706} 1707 1708static const struct seq_operations kmemleak_seq_ops = { 1709 .start = kmemleak_seq_start, 1710 .next = kmemleak_seq_next, 1711 .stop = kmemleak_seq_stop, 1712 .show = kmemleak_seq_show, 1713}; 1714 1715static int kmemleak_open(struct inode *inode, struct file *file) 1716{ 1717 return seq_open(file, &kmemleak_seq_ops); 1718} 1719 1720static int dump_str_object_info(const char *str) 1721{ 1722 unsigned long flags; 1723 struct kmemleak_object *object; 1724 unsigned long addr; 1725 1726 if (kstrtoul(str, 0, &addr)) 1727 return -EINVAL; 1728 object = find_and_get_object(addr, 0); 1729 if (!object) { 1730 pr_info("Unknown object at 0x%08lx\n", addr); 1731 return -EINVAL; 1732 } 1733 1734 raw_spin_lock_irqsave(&object->lock, flags); 1735 dump_object_info(object); 1736 raw_spin_unlock_irqrestore(&object->lock, flags); 1737 1738 put_object(object); 1739 return 0; 1740} 1741 1742/* 1743 * We use grey instead of black to ensure we can do future scans on the same 1744 * objects. If we did not do future scans these black objects could 1745 * potentially contain references to newly allocated objects in the future and 1746 * we'd end up with false positives. 1747 */ 1748static void kmemleak_clear(void) 1749{ 1750 struct kmemleak_object *object; 1751 unsigned long flags; 1752 1753 rcu_read_lock(); 1754 list_for_each_entry_rcu(object, &object_list, object_list) { 1755 raw_spin_lock_irqsave(&object->lock, flags); 1756 if ((object->flags & OBJECT_REPORTED) && 1757 unreferenced_object(object)) 1758 __paint_it(object, KMEMLEAK_GREY); 1759 raw_spin_unlock_irqrestore(&object->lock, flags); 1760 } 1761 rcu_read_unlock(); 1762 1763 kmemleak_found_leaks = false; 1764} 1765 1766static void __kmemleak_do_cleanup(void); 1767 1768/* 1769 * File write operation to configure kmemleak at run-time. The following 1770 * commands can be written to the /sys/kernel/debug/kmemleak file: 1771 * off - disable kmemleak (irreversible) 1772 * stack=on - enable the task stacks scanning 1773 * stack=off - disable the tasks stacks scanning 1774 * scan=on - start the automatic memory scanning thread 1775 * scan=off - stop the automatic memory scanning thread 1776 * scan=... - set the automatic memory scanning period in seconds (0 to 1777 * disable it) 1778 * scan - trigger a memory scan 1779 * clear - mark all current reported unreferenced kmemleak objects as 1780 * grey to ignore printing them, or free all kmemleak objects 1781 * if kmemleak has been disabled. 1782 * dump=... - dump information about the object found at the given address 1783 */ 1784static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1785 size_t size, loff_t *ppos) 1786{ 1787 char buf[64]; 1788 int buf_size; 1789 int ret; 1790 1791 buf_size = min(size, (sizeof(buf) - 1)); 1792 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1793 return -EFAULT; 1794 buf[buf_size] = 0; 1795 1796 ret = mutex_lock_interruptible(&scan_mutex); 1797 if (ret < 0) 1798 return ret; 1799 1800 if (strncmp(buf, "clear", 5) == 0) { 1801 if (kmemleak_enabled) 1802 kmemleak_clear(); 1803 else 1804 __kmemleak_do_cleanup(); 1805 goto out; 1806 } 1807 1808 if (!kmemleak_enabled) { 1809 ret = -EPERM; 1810 goto out; 1811 } 1812 1813 if (strncmp(buf, "off", 3) == 0) 1814 kmemleak_disable(); 1815 else if (strncmp(buf, "stack=on", 8) == 0) 1816 kmemleak_stack_scan = 1; 1817 else if (strncmp(buf, "stack=off", 9) == 0) 1818 kmemleak_stack_scan = 0; 1819 else if (strncmp(buf, "scan=on", 7) == 0) 1820 start_scan_thread(); 1821 else if (strncmp(buf, "scan=off", 8) == 0) 1822 stop_scan_thread(); 1823 else if (strncmp(buf, "scan=", 5) == 0) { 1824 unsigned secs; 1825 unsigned long msecs; 1826 1827 ret = kstrtouint(buf + 5, 0, &secs); 1828 if (ret < 0) 1829 goto out; 1830 1831 msecs = secs * MSEC_PER_SEC; 1832 if (msecs > UINT_MAX) 1833 msecs = UINT_MAX; 1834 1835 stop_scan_thread(); 1836 if (msecs) { 1837 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 1838 start_scan_thread(); 1839 } 1840 } else if (strncmp(buf, "scan", 4) == 0) 1841 kmemleak_scan(); 1842 else if (strncmp(buf, "dump=", 5) == 0) 1843 ret = dump_str_object_info(buf + 5); 1844 else 1845 ret = -EINVAL; 1846 1847out: 1848 mutex_unlock(&scan_mutex); 1849 if (ret < 0) 1850 return ret; 1851 1852 /* ignore the rest of the buffer, only one command at a time */ 1853 *ppos += size; 1854 return size; 1855} 1856 1857static const struct file_operations kmemleak_fops = { 1858 .owner = THIS_MODULE, 1859 .open = kmemleak_open, 1860 .read = seq_read, 1861 .write = kmemleak_write, 1862 .llseek = seq_lseek, 1863 .release = seq_release, 1864}; 1865 1866static void __kmemleak_do_cleanup(void) 1867{ 1868 struct kmemleak_object *object, *tmp; 1869 1870 /* 1871 * Kmemleak has already been disabled, no need for RCU list traversal 1872 * or kmemleak_lock held. 1873 */ 1874 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 1875 __remove_object(object); 1876 __delete_object(object); 1877 } 1878} 1879 1880/* 1881 * Stop the memory scanning thread and free the kmemleak internal objects if 1882 * no previous scan thread (otherwise, kmemleak may still have some useful 1883 * information on memory leaks). 1884 */ 1885static void kmemleak_do_cleanup(struct work_struct *work) 1886{ 1887 stop_scan_thread(); 1888 1889 mutex_lock(&scan_mutex); 1890 /* 1891 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1892 * longer track object freeing. Ordering of the scan thread stopping and 1893 * the memory accesses below is guaranteed by the kthread_stop() 1894 * function. 1895 */ 1896 kmemleak_free_enabled = 0; 1897 mutex_unlock(&scan_mutex); 1898 1899 if (!kmemleak_found_leaks) 1900 __kmemleak_do_cleanup(); 1901 else 1902 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1903} 1904 1905static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1906 1907/* 1908 * Disable kmemleak. No memory allocation/freeing will be traced once this 1909 * function is called. Disabling kmemleak is an irreversible operation. 1910 */ 1911static void kmemleak_disable(void) 1912{ 1913 /* atomically check whether it was already invoked */ 1914 if (cmpxchg(&kmemleak_error, 0, 1)) 1915 return; 1916 1917 /* stop any memory operation tracing */ 1918 kmemleak_enabled = 0; 1919 1920 /* check whether it is too early for a kernel thread */ 1921 if (kmemleak_initialized) 1922 schedule_work(&cleanup_work); 1923 else 1924 kmemleak_free_enabled = 0; 1925 1926 pr_info("Kernel memory leak detector disabled\n"); 1927} 1928 1929/* 1930 * Allow boot-time kmemleak disabling (enabled by default). 1931 */ 1932static int __init kmemleak_boot_config(char *str) 1933{ 1934 if (!str) 1935 return -EINVAL; 1936 if (strcmp(str, "off") == 0) 1937 kmemleak_disable(); 1938 else if (strcmp(str, "on") == 0) 1939 kmemleak_skip_disable = 1; 1940 else 1941 return -EINVAL; 1942 return 0; 1943} 1944early_param("kmemleak", kmemleak_boot_config); 1945 1946/* 1947 * Kmemleak initialization. 1948 */ 1949void __init kmemleak_init(void) 1950{ 1951#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1952 if (!kmemleak_skip_disable) { 1953 kmemleak_disable(); 1954 return; 1955 } 1956#endif 1957 1958 if (kmemleak_error) 1959 return; 1960 1961 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1962 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1963 1964 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1965 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1966 1967 /* register the data/bss sections */ 1968 create_object((unsigned long)_sdata, _edata - _sdata, 1969 KMEMLEAK_GREY, GFP_ATOMIC); 1970 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 1971 KMEMLEAK_GREY, GFP_ATOMIC); 1972 /* only register .data..ro_after_init if not within .data */ 1973 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 1974 create_object((unsigned long)__start_ro_after_init, 1975 __end_ro_after_init - __start_ro_after_init, 1976 KMEMLEAK_GREY, GFP_ATOMIC); 1977} 1978 1979/* 1980 * Late initialization function. 1981 */ 1982static int __init kmemleak_late_init(void) 1983{ 1984 kmemleak_initialized = 1; 1985 1986 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 1987 1988 if (kmemleak_error) { 1989 /* 1990 * Some error occurred and kmemleak was disabled. There is a 1991 * small chance that kmemleak_disable() was called immediately 1992 * after setting kmemleak_initialized and we may end up with 1993 * two clean-up threads but serialized by scan_mutex. 1994 */ 1995 schedule_work(&cleanup_work); 1996 return -ENOMEM; 1997 } 1998 1999 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2000 mutex_lock(&scan_mutex); 2001 start_scan_thread(); 2002 mutex_unlock(&scan_mutex); 2003 } 2004 2005 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2006 mem_pool_free_count); 2007 2008 return 0; 2009} 2010late_initcall(kmemleak_late_init);