cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

memory-failure.c (64422B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2008, 2009 Intel Corporation
      4 * Authors: Andi Kleen, Fengguang Wu
      5 *
      6 * High level machine check handler. Handles pages reported by the
      7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
      8 * failure.
      9 * 
     10 * In addition there is a "soft offline" entry point that allows stop using
     11 * not-yet-corrupted-by-suspicious pages without killing anything.
     12 *
     13 * Handles page cache pages in various states.	The tricky part
     14 * here is that we can access any page asynchronously in respect to 
     15 * other VM users, because memory failures could happen anytime and 
     16 * anywhere. This could violate some of their assumptions. This is why 
     17 * this code has to be extremely careful. Generally it tries to use 
     18 * normal locking rules, as in get the standard locks, even if that means 
     19 * the error handling takes potentially a long time.
     20 *
     21 * It can be very tempting to add handling for obscure cases here.
     22 * In general any code for handling new cases should only be added iff:
     23 * - You know how to test it.
     24 * - You have a test that can be added to mce-test
     25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
     26 * - The case actually shows up as a frequent (top 10) page state in
     27 *   tools/vm/page-types when running a real workload.
     28 * 
     29 * There are several operations here with exponential complexity because
     30 * of unsuitable VM data structures. For example the operation to map back 
     31 * from RMAP chains to processes has to walk the complete process list and 
     32 * has non linear complexity with the number. But since memory corruptions
     33 * are rare we hope to get away with this. This avoids impacting the core 
     34 * VM.
     35 */
     36#include <linux/kernel.h>
     37#include <linux/mm.h>
     38#include <linux/page-flags.h>
     39#include <linux/kernel-page-flags.h>
     40#include <linux/sched/signal.h>
     41#include <linux/sched/task.h>
     42#include <linux/dax.h>
     43#include <linux/ksm.h>
     44#include <linux/rmap.h>
     45#include <linux/export.h>
     46#include <linux/pagemap.h>
     47#include <linux/swap.h>
     48#include <linux/backing-dev.h>
     49#include <linux/migrate.h>
     50#include <linux/suspend.h>
     51#include <linux/slab.h>
     52#include <linux/swapops.h>
     53#include <linux/hugetlb.h>
     54#include <linux/memory_hotplug.h>
     55#include <linux/mm_inline.h>
     56#include <linux/memremap.h>
     57#include <linux/kfifo.h>
     58#include <linux/ratelimit.h>
     59#include <linux/page-isolation.h>
     60#include <linux/pagewalk.h>
     61#include <linux/shmem_fs.h>
     62#include "swap.h"
     63#include "internal.h"
     64#include "ras/ras_event.h"
     65
     66int sysctl_memory_failure_early_kill __read_mostly = 0;
     67
     68int sysctl_memory_failure_recovery __read_mostly = 1;
     69
     70atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
     71
     72static bool hw_memory_failure __read_mostly = false;
     73
     74static bool __page_handle_poison(struct page *page)
     75{
     76	int ret;
     77
     78	zone_pcp_disable(page_zone(page));
     79	ret = dissolve_free_huge_page(page);
     80	if (!ret)
     81		ret = take_page_off_buddy(page);
     82	zone_pcp_enable(page_zone(page));
     83
     84	return ret > 0;
     85}
     86
     87static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
     88{
     89	if (hugepage_or_freepage) {
     90		/*
     91		 * Doing this check for free pages is also fine since dissolve_free_huge_page
     92		 * returns 0 for non-hugetlb pages as well.
     93		 */
     94		if (!__page_handle_poison(page))
     95			/*
     96			 * We could fail to take off the target page from buddy
     97			 * for example due to racy page allocation, but that's
     98			 * acceptable because soft-offlined page is not broken
     99			 * and if someone really want to use it, they should
    100			 * take it.
    101			 */
    102			return false;
    103	}
    104
    105	SetPageHWPoison(page);
    106	if (release)
    107		put_page(page);
    108	page_ref_inc(page);
    109	num_poisoned_pages_inc();
    110
    111	return true;
    112}
    113
    114#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
    115
    116u32 hwpoison_filter_enable = 0;
    117u32 hwpoison_filter_dev_major = ~0U;
    118u32 hwpoison_filter_dev_minor = ~0U;
    119u64 hwpoison_filter_flags_mask;
    120u64 hwpoison_filter_flags_value;
    121EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
    122EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
    123EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
    124EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
    125EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
    126
    127static int hwpoison_filter_dev(struct page *p)
    128{
    129	struct address_space *mapping;
    130	dev_t dev;
    131
    132	if (hwpoison_filter_dev_major == ~0U &&
    133	    hwpoison_filter_dev_minor == ~0U)
    134		return 0;
    135
    136	mapping = page_mapping(p);
    137	if (mapping == NULL || mapping->host == NULL)
    138		return -EINVAL;
    139
    140	dev = mapping->host->i_sb->s_dev;
    141	if (hwpoison_filter_dev_major != ~0U &&
    142	    hwpoison_filter_dev_major != MAJOR(dev))
    143		return -EINVAL;
    144	if (hwpoison_filter_dev_minor != ~0U &&
    145	    hwpoison_filter_dev_minor != MINOR(dev))
    146		return -EINVAL;
    147
    148	return 0;
    149}
    150
    151static int hwpoison_filter_flags(struct page *p)
    152{
    153	if (!hwpoison_filter_flags_mask)
    154		return 0;
    155
    156	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
    157				    hwpoison_filter_flags_value)
    158		return 0;
    159	else
    160		return -EINVAL;
    161}
    162
    163/*
    164 * This allows stress tests to limit test scope to a collection of tasks
    165 * by putting them under some memcg. This prevents killing unrelated/important
    166 * processes such as /sbin/init. Note that the target task may share clean
    167 * pages with init (eg. libc text), which is harmless. If the target task
    168 * share _dirty_ pages with another task B, the test scheme must make sure B
    169 * is also included in the memcg. At last, due to race conditions this filter
    170 * can only guarantee that the page either belongs to the memcg tasks, or is
    171 * a freed page.
    172 */
    173#ifdef CONFIG_MEMCG
    174u64 hwpoison_filter_memcg;
    175EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
    176static int hwpoison_filter_task(struct page *p)
    177{
    178	if (!hwpoison_filter_memcg)
    179		return 0;
    180
    181	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
    182		return -EINVAL;
    183
    184	return 0;
    185}
    186#else
    187static int hwpoison_filter_task(struct page *p) { return 0; }
    188#endif
    189
    190int hwpoison_filter(struct page *p)
    191{
    192	if (!hwpoison_filter_enable)
    193		return 0;
    194
    195	if (hwpoison_filter_dev(p))
    196		return -EINVAL;
    197
    198	if (hwpoison_filter_flags(p))
    199		return -EINVAL;
    200
    201	if (hwpoison_filter_task(p))
    202		return -EINVAL;
    203
    204	return 0;
    205}
    206#else
    207int hwpoison_filter(struct page *p)
    208{
    209	return 0;
    210}
    211#endif
    212
    213EXPORT_SYMBOL_GPL(hwpoison_filter);
    214
    215/*
    216 * Kill all processes that have a poisoned page mapped and then isolate
    217 * the page.
    218 *
    219 * General strategy:
    220 * Find all processes having the page mapped and kill them.
    221 * But we keep a page reference around so that the page is not
    222 * actually freed yet.
    223 * Then stash the page away
    224 *
    225 * There's no convenient way to get back to mapped processes
    226 * from the VMAs. So do a brute-force search over all
    227 * running processes.
    228 *
    229 * Remember that machine checks are not common (or rather
    230 * if they are common you have other problems), so this shouldn't
    231 * be a performance issue.
    232 *
    233 * Also there are some races possible while we get from the
    234 * error detection to actually handle it.
    235 */
    236
    237struct to_kill {
    238	struct list_head nd;
    239	struct task_struct *tsk;
    240	unsigned long addr;
    241	short size_shift;
    242};
    243
    244/*
    245 * Send all the processes who have the page mapped a signal.
    246 * ``action optional'' if they are not immediately affected by the error
    247 * ``action required'' if error happened in current execution context
    248 */
    249static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
    250{
    251	struct task_struct *t = tk->tsk;
    252	short addr_lsb = tk->size_shift;
    253	int ret = 0;
    254
    255	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
    256			pfn, t->comm, t->pid);
    257
    258	if ((flags & MF_ACTION_REQUIRED) && (t == current))
    259		ret = force_sig_mceerr(BUS_MCEERR_AR,
    260				 (void __user *)tk->addr, addr_lsb);
    261	else
    262		/*
    263		 * Signal other processes sharing the page if they have
    264		 * PF_MCE_EARLY set.
    265		 * Don't use force here, it's convenient if the signal
    266		 * can be temporarily blocked.
    267		 * This could cause a loop when the user sets SIGBUS
    268		 * to SIG_IGN, but hopefully no one will do that?
    269		 */
    270		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
    271				      addr_lsb, t);  /* synchronous? */
    272	if (ret < 0)
    273		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
    274			t->comm, t->pid, ret);
    275	return ret;
    276}
    277
    278/*
    279 * Unknown page type encountered. Try to check whether it can turn PageLRU by
    280 * lru_add_drain_all.
    281 */
    282void shake_page(struct page *p)
    283{
    284	if (PageHuge(p))
    285		return;
    286
    287	if (!PageSlab(p)) {
    288		lru_add_drain_all();
    289		if (PageLRU(p) || is_free_buddy_page(p))
    290			return;
    291	}
    292
    293	/*
    294	 * TODO: Could shrink slab caches here if a lightweight range-based
    295	 * shrinker will be available.
    296	 */
    297}
    298EXPORT_SYMBOL_GPL(shake_page);
    299
    300static unsigned long dev_pagemap_mapping_shift(struct page *page,
    301		struct vm_area_struct *vma)
    302{
    303	unsigned long address = vma_address(page, vma);
    304	unsigned long ret = 0;
    305	pgd_t *pgd;
    306	p4d_t *p4d;
    307	pud_t *pud;
    308	pmd_t *pmd;
    309	pte_t *pte;
    310
    311	VM_BUG_ON_VMA(address == -EFAULT, vma);
    312	pgd = pgd_offset(vma->vm_mm, address);
    313	if (!pgd_present(*pgd))
    314		return 0;
    315	p4d = p4d_offset(pgd, address);
    316	if (!p4d_present(*p4d))
    317		return 0;
    318	pud = pud_offset(p4d, address);
    319	if (!pud_present(*pud))
    320		return 0;
    321	if (pud_devmap(*pud))
    322		return PUD_SHIFT;
    323	pmd = pmd_offset(pud, address);
    324	if (!pmd_present(*pmd))
    325		return 0;
    326	if (pmd_devmap(*pmd))
    327		return PMD_SHIFT;
    328	pte = pte_offset_map(pmd, address);
    329	if (pte_present(*pte) && pte_devmap(*pte))
    330		ret = PAGE_SHIFT;
    331	pte_unmap(pte);
    332	return ret;
    333}
    334
    335/*
    336 * Failure handling: if we can't find or can't kill a process there's
    337 * not much we can do.	We just print a message and ignore otherwise.
    338 */
    339
    340/*
    341 * Schedule a process for later kill.
    342 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
    343 */
    344static void add_to_kill(struct task_struct *tsk, struct page *p,
    345		       struct vm_area_struct *vma,
    346		       struct list_head *to_kill)
    347{
    348	struct to_kill *tk;
    349
    350	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
    351	if (!tk) {
    352		pr_err("Memory failure: Out of memory while machine check handling\n");
    353		return;
    354	}
    355
    356	tk->addr = page_address_in_vma(p, vma);
    357	if (is_zone_device_page(p))
    358		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
    359	else
    360		tk->size_shift = page_shift(compound_head(p));
    361
    362	/*
    363	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
    364	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
    365	 * so "tk->size_shift == 0" effectively checks no mapping on
    366	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
    367	 * to a process' address space, it's possible not all N VMAs
    368	 * contain mappings for the page, but at least one VMA does.
    369	 * Only deliver SIGBUS with payload derived from the VMA that
    370	 * has a mapping for the page.
    371	 */
    372	if (tk->addr == -EFAULT) {
    373		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
    374			page_to_pfn(p), tsk->comm);
    375	} else if (tk->size_shift == 0) {
    376		kfree(tk);
    377		return;
    378	}
    379
    380	get_task_struct(tsk);
    381	tk->tsk = tsk;
    382	list_add_tail(&tk->nd, to_kill);
    383}
    384
    385/*
    386 * Kill the processes that have been collected earlier.
    387 *
    388 * Only do anything when FORCEKILL is set, otherwise just free the
    389 * list (this is used for clean pages which do not need killing)
    390 * Also when FAIL is set do a force kill because something went
    391 * wrong earlier.
    392 */
    393static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
    394		unsigned long pfn, int flags)
    395{
    396	struct to_kill *tk, *next;
    397
    398	list_for_each_entry_safe (tk, next, to_kill, nd) {
    399		if (forcekill) {
    400			/*
    401			 * In case something went wrong with munmapping
    402			 * make sure the process doesn't catch the
    403			 * signal and then access the memory. Just kill it.
    404			 */
    405			if (fail || tk->addr == -EFAULT) {
    406				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
    407				       pfn, tk->tsk->comm, tk->tsk->pid);
    408				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
    409						 tk->tsk, PIDTYPE_PID);
    410			}
    411
    412			/*
    413			 * In theory the process could have mapped
    414			 * something else on the address in-between. We could
    415			 * check for that, but we need to tell the
    416			 * process anyways.
    417			 */
    418			else if (kill_proc(tk, pfn, flags) < 0)
    419				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
    420				       pfn, tk->tsk->comm, tk->tsk->pid);
    421		}
    422		put_task_struct(tk->tsk);
    423		kfree(tk);
    424	}
    425}
    426
    427/*
    428 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
    429 * on behalf of the thread group. Return task_struct of the (first found)
    430 * dedicated thread if found, and return NULL otherwise.
    431 *
    432 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
    433 * have to call rcu_read_lock/unlock() in this function.
    434 */
    435static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
    436{
    437	struct task_struct *t;
    438
    439	for_each_thread(tsk, t) {
    440		if (t->flags & PF_MCE_PROCESS) {
    441			if (t->flags & PF_MCE_EARLY)
    442				return t;
    443		} else {
    444			if (sysctl_memory_failure_early_kill)
    445				return t;
    446		}
    447	}
    448	return NULL;
    449}
    450
    451/*
    452 * Determine whether a given process is "early kill" process which expects
    453 * to be signaled when some page under the process is hwpoisoned.
    454 * Return task_struct of the dedicated thread (main thread unless explicitly
    455 * specified) if the process is "early kill" and otherwise returns NULL.
    456 *
    457 * Note that the above is true for Action Optional case. For Action Required
    458 * case, it's only meaningful to the current thread which need to be signaled
    459 * with SIGBUS, this error is Action Optional for other non current
    460 * processes sharing the same error page,if the process is "early kill", the
    461 * task_struct of the dedicated thread will also be returned.
    462 */
    463static struct task_struct *task_early_kill(struct task_struct *tsk,
    464					   int force_early)
    465{
    466	if (!tsk->mm)
    467		return NULL;
    468	/*
    469	 * Comparing ->mm here because current task might represent
    470	 * a subthread, while tsk always points to the main thread.
    471	 */
    472	if (force_early && tsk->mm == current->mm)
    473		return current;
    474
    475	return find_early_kill_thread(tsk);
    476}
    477
    478/*
    479 * Collect processes when the error hit an anonymous page.
    480 */
    481static void collect_procs_anon(struct page *page, struct list_head *to_kill,
    482				int force_early)
    483{
    484	struct folio *folio = page_folio(page);
    485	struct vm_area_struct *vma;
    486	struct task_struct *tsk;
    487	struct anon_vma *av;
    488	pgoff_t pgoff;
    489
    490	av = folio_lock_anon_vma_read(folio, NULL);
    491	if (av == NULL)	/* Not actually mapped anymore */
    492		return;
    493
    494	pgoff = page_to_pgoff(page);
    495	read_lock(&tasklist_lock);
    496	for_each_process (tsk) {
    497		struct anon_vma_chain *vmac;
    498		struct task_struct *t = task_early_kill(tsk, force_early);
    499
    500		if (!t)
    501			continue;
    502		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
    503					       pgoff, pgoff) {
    504			vma = vmac->vma;
    505			if (!page_mapped_in_vma(page, vma))
    506				continue;
    507			if (vma->vm_mm == t->mm)
    508				add_to_kill(t, page, vma, to_kill);
    509		}
    510	}
    511	read_unlock(&tasklist_lock);
    512	page_unlock_anon_vma_read(av);
    513}
    514
    515/*
    516 * Collect processes when the error hit a file mapped page.
    517 */
    518static void collect_procs_file(struct page *page, struct list_head *to_kill,
    519				int force_early)
    520{
    521	struct vm_area_struct *vma;
    522	struct task_struct *tsk;
    523	struct address_space *mapping = page->mapping;
    524	pgoff_t pgoff;
    525
    526	i_mmap_lock_read(mapping);
    527	read_lock(&tasklist_lock);
    528	pgoff = page_to_pgoff(page);
    529	for_each_process(tsk) {
    530		struct task_struct *t = task_early_kill(tsk, force_early);
    531
    532		if (!t)
    533			continue;
    534		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
    535				      pgoff) {
    536			/*
    537			 * Send early kill signal to tasks where a vma covers
    538			 * the page but the corrupted page is not necessarily
    539			 * mapped it in its pte.
    540			 * Assume applications who requested early kill want
    541			 * to be informed of all such data corruptions.
    542			 */
    543			if (vma->vm_mm == t->mm)
    544				add_to_kill(t, page, vma, to_kill);
    545		}
    546	}
    547	read_unlock(&tasklist_lock);
    548	i_mmap_unlock_read(mapping);
    549}
    550
    551/*
    552 * Collect the processes who have the corrupted page mapped to kill.
    553 */
    554static void collect_procs(struct page *page, struct list_head *tokill,
    555				int force_early)
    556{
    557	if (!page->mapping)
    558		return;
    559
    560	if (PageAnon(page))
    561		collect_procs_anon(page, tokill, force_early);
    562	else
    563		collect_procs_file(page, tokill, force_early);
    564}
    565
    566struct hwp_walk {
    567	struct to_kill tk;
    568	unsigned long pfn;
    569	int flags;
    570};
    571
    572static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
    573{
    574	tk->addr = addr;
    575	tk->size_shift = shift;
    576}
    577
    578static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
    579				unsigned long poisoned_pfn, struct to_kill *tk)
    580{
    581	unsigned long pfn = 0;
    582
    583	if (pte_present(pte)) {
    584		pfn = pte_pfn(pte);
    585	} else {
    586		swp_entry_t swp = pte_to_swp_entry(pte);
    587
    588		if (is_hwpoison_entry(swp))
    589			pfn = hwpoison_entry_to_pfn(swp);
    590	}
    591
    592	if (!pfn || pfn != poisoned_pfn)
    593		return 0;
    594
    595	set_to_kill(tk, addr, shift);
    596	return 1;
    597}
    598
    599#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    600static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
    601				      struct hwp_walk *hwp)
    602{
    603	pmd_t pmd = *pmdp;
    604	unsigned long pfn;
    605	unsigned long hwpoison_vaddr;
    606
    607	if (!pmd_present(pmd))
    608		return 0;
    609	pfn = pmd_pfn(pmd);
    610	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
    611		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
    612		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
    613		return 1;
    614	}
    615	return 0;
    616}
    617#else
    618static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
    619				      struct hwp_walk *hwp)
    620{
    621	return 0;
    622}
    623#endif
    624
    625static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
    626			      unsigned long end, struct mm_walk *walk)
    627{
    628	struct hwp_walk *hwp = walk->private;
    629	int ret = 0;
    630	pte_t *ptep, *mapped_pte;
    631	spinlock_t *ptl;
    632
    633	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
    634	if (ptl) {
    635		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
    636		spin_unlock(ptl);
    637		goto out;
    638	}
    639
    640	if (pmd_trans_unstable(pmdp))
    641		goto out;
    642
    643	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
    644						addr, &ptl);
    645	for (; addr != end; ptep++, addr += PAGE_SIZE) {
    646		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
    647					     hwp->pfn, &hwp->tk);
    648		if (ret == 1)
    649			break;
    650	}
    651	pte_unmap_unlock(mapped_pte, ptl);
    652out:
    653	cond_resched();
    654	return ret;
    655}
    656
    657#ifdef CONFIG_HUGETLB_PAGE
    658static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
    659			    unsigned long addr, unsigned long end,
    660			    struct mm_walk *walk)
    661{
    662	struct hwp_walk *hwp = walk->private;
    663	pte_t pte = huge_ptep_get(ptep);
    664	struct hstate *h = hstate_vma(walk->vma);
    665
    666	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
    667				      hwp->pfn, &hwp->tk);
    668}
    669#else
    670#define hwpoison_hugetlb_range	NULL
    671#endif
    672
    673static const struct mm_walk_ops hwp_walk_ops = {
    674	.pmd_entry = hwpoison_pte_range,
    675	.hugetlb_entry = hwpoison_hugetlb_range,
    676};
    677
    678/*
    679 * Sends SIGBUS to the current process with error info.
    680 *
    681 * This function is intended to handle "Action Required" MCEs on already
    682 * hardware poisoned pages. They could happen, for example, when
    683 * memory_failure() failed to unmap the error page at the first call, or
    684 * when multiple local machine checks happened on different CPUs.
    685 *
    686 * MCE handler currently has no easy access to the error virtual address,
    687 * so this function walks page table to find it. The returned virtual address
    688 * is proper in most cases, but it could be wrong when the application
    689 * process has multiple entries mapping the error page.
    690 */
    691static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
    692				  int flags)
    693{
    694	int ret;
    695	struct hwp_walk priv = {
    696		.pfn = pfn,
    697	};
    698	priv.tk.tsk = p;
    699
    700	mmap_read_lock(p->mm);
    701	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
    702			      (void *)&priv);
    703	if (ret == 1 && priv.tk.addr)
    704		kill_proc(&priv.tk, pfn, flags);
    705	else
    706		ret = 0;
    707	mmap_read_unlock(p->mm);
    708	return ret > 0 ? -EHWPOISON : -EFAULT;
    709}
    710
    711static const char *action_name[] = {
    712	[MF_IGNORED] = "Ignored",
    713	[MF_FAILED] = "Failed",
    714	[MF_DELAYED] = "Delayed",
    715	[MF_RECOVERED] = "Recovered",
    716};
    717
    718static const char * const action_page_types[] = {
    719	[MF_MSG_KERNEL]			= "reserved kernel page",
    720	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
    721	[MF_MSG_SLAB]			= "kernel slab page",
    722	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
    723	[MF_MSG_HUGE]			= "huge page",
    724	[MF_MSG_FREE_HUGE]		= "free huge page",
    725	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
    726	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
    727	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
    728	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
    729	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
    730	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
    731	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
    732	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
    733	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
    734	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
    735	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
    736	[MF_MSG_BUDDY]			= "free buddy page",
    737	[MF_MSG_DAX]			= "dax page",
    738	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
    739	[MF_MSG_UNKNOWN]		= "unknown page",
    740};
    741
    742/*
    743 * XXX: It is possible that a page is isolated from LRU cache,
    744 * and then kept in swap cache or failed to remove from page cache.
    745 * The page count will stop it from being freed by unpoison.
    746 * Stress tests should be aware of this memory leak problem.
    747 */
    748static int delete_from_lru_cache(struct page *p)
    749{
    750	if (!isolate_lru_page(p)) {
    751		/*
    752		 * Clear sensible page flags, so that the buddy system won't
    753		 * complain when the page is unpoison-and-freed.
    754		 */
    755		ClearPageActive(p);
    756		ClearPageUnevictable(p);
    757
    758		/*
    759		 * Poisoned page might never drop its ref count to 0 so we have
    760		 * to uncharge it manually from its memcg.
    761		 */
    762		mem_cgroup_uncharge(page_folio(p));
    763
    764		/*
    765		 * drop the page count elevated by isolate_lru_page()
    766		 */
    767		put_page(p);
    768		return 0;
    769	}
    770	return -EIO;
    771}
    772
    773static int truncate_error_page(struct page *p, unsigned long pfn,
    774				struct address_space *mapping)
    775{
    776	int ret = MF_FAILED;
    777
    778	if (mapping->a_ops->error_remove_page) {
    779		int err = mapping->a_ops->error_remove_page(mapping, p);
    780
    781		if (err != 0) {
    782			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
    783				pfn, err);
    784		} else if (page_has_private(p) &&
    785			   !try_to_release_page(p, GFP_NOIO)) {
    786			pr_info("Memory failure: %#lx: failed to release buffers\n",
    787				pfn);
    788		} else {
    789			ret = MF_RECOVERED;
    790		}
    791	} else {
    792		/*
    793		 * If the file system doesn't support it just invalidate
    794		 * This fails on dirty or anything with private pages
    795		 */
    796		if (invalidate_inode_page(p))
    797			ret = MF_RECOVERED;
    798		else
    799			pr_info("Memory failure: %#lx: Failed to invalidate\n",
    800				pfn);
    801	}
    802
    803	return ret;
    804}
    805
    806struct page_state {
    807	unsigned long mask;
    808	unsigned long res;
    809	enum mf_action_page_type type;
    810
    811	/* Callback ->action() has to unlock the relevant page inside it. */
    812	int (*action)(struct page_state *ps, struct page *p);
    813};
    814
    815/*
    816 * Return true if page is still referenced by others, otherwise return
    817 * false.
    818 *
    819 * The extra_pins is true when one extra refcount is expected.
    820 */
    821static bool has_extra_refcount(struct page_state *ps, struct page *p,
    822			       bool extra_pins)
    823{
    824	int count = page_count(p) - 1;
    825
    826	if (extra_pins)
    827		count -= 1;
    828
    829	if (count > 0) {
    830		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
    831		       page_to_pfn(p), action_page_types[ps->type], count);
    832		return true;
    833	}
    834
    835	return false;
    836}
    837
    838/*
    839 * Error hit kernel page.
    840 * Do nothing, try to be lucky and not touch this instead. For a few cases we
    841 * could be more sophisticated.
    842 */
    843static int me_kernel(struct page_state *ps, struct page *p)
    844{
    845	unlock_page(p);
    846	return MF_IGNORED;
    847}
    848
    849/*
    850 * Page in unknown state. Do nothing.
    851 */
    852static int me_unknown(struct page_state *ps, struct page *p)
    853{
    854	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
    855	unlock_page(p);
    856	return MF_FAILED;
    857}
    858
    859/*
    860 * Clean (or cleaned) page cache page.
    861 */
    862static int me_pagecache_clean(struct page_state *ps, struct page *p)
    863{
    864	int ret;
    865	struct address_space *mapping;
    866	bool extra_pins;
    867
    868	delete_from_lru_cache(p);
    869
    870	/*
    871	 * For anonymous pages we're done the only reference left
    872	 * should be the one m_f() holds.
    873	 */
    874	if (PageAnon(p)) {
    875		ret = MF_RECOVERED;
    876		goto out;
    877	}
    878
    879	/*
    880	 * Now truncate the page in the page cache. This is really
    881	 * more like a "temporary hole punch"
    882	 * Don't do this for block devices when someone else
    883	 * has a reference, because it could be file system metadata
    884	 * and that's not safe to truncate.
    885	 */
    886	mapping = page_mapping(p);
    887	if (!mapping) {
    888		/*
    889		 * Page has been teared down in the meanwhile
    890		 */
    891		ret = MF_FAILED;
    892		goto out;
    893	}
    894
    895	/*
    896	 * The shmem page is kept in page cache instead of truncating
    897	 * so is expected to have an extra refcount after error-handling.
    898	 */
    899	extra_pins = shmem_mapping(mapping);
    900
    901	/*
    902	 * Truncation is a bit tricky. Enable it per file system for now.
    903	 *
    904	 * Open: to take i_rwsem or not for this? Right now we don't.
    905	 */
    906	ret = truncate_error_page(p, page_to_pfn(p), mapping);
    907	if (has_extra_refcount(ps, p, extra_pins))
    908		ret = MF_FAILED;
    909
    910out:
    911	unlock_page(p);
    912
    913	return ret;
    914}
    915
    916/*
    917 * Dirty pagecache page
    918 * Issues: when the error hit a hole page the error is not properly
    919 * propagated.
    920 */
    921static int me_pagecache_dirty(struct page_state *ps, struct page *p)
    922{
    923	struct address_space *mapping = page_mapping(p);
    924
    925	SetPageError(p);
    926	/* TBD: print more information about the file. */
    927	if (mapping) {
    928		/*
    929		 * IO error will be reported by write(), fsync(), etc.
    930		 * who check the mapping.
    931		 * This way the application knows that something went
    932		 * wrong with its dirty file data.
    933		 *
    934		 * There's one open issue:
    935		 *
    936		 * The EIO will be only reported on the next IO
    937		 * operation and then cleared through the IO map.
    938		 * Normally Linux has two mechanisms to pass IO error
    939		 * first through the AS_EIO flag in the address space
    940		 * and then through the PageError flag in the page.
    941		 * Since we drop pages on memory failure handling the
    942		 * only mechanism open to use is through AS_AIO.
    943		 *
    944		 * This has the disadvantage that it gets cleared on
    945		 * the first operation that returns an error, while
    946		 * the PageError bit is more sticky and only cleared
    947		 * when the page is reread or dropped.  If an
    948		 * application assumes it will always get error on
    949		 * fsync, but does other operations on the fd before
    950		 * and the page is dropped between then the error
    951		 * will not be properly reported.
    952		 *
    953		 * This can already happen even without hwpoisoned
    954		 * pages: first on metadata IO errors (which only
    955		 * report through AS_EIO) or when the page is dropped
    956		 * at the wrong time.
    957		 *
    958		 * So right now we assume that the application DTRT on
    959		 * the first EIO, but we're not worse than other parts
    960		 * of the kernel.
    961		 */
    962		mapping_set_error(mapping, -EIO);
    963	}
    964
    965	return me_pagecache_clean(ps, p);
    966}
    967
    968/*
    969 * Clean and dirty swap cache.
    970 *
    971 * Dirty swap cache page is tricky to handle. The page could live both in page
    972 * cache and swap cache(ie. page is freshly swapped in). So it could be
    973 * referenced concurrently by 2 types of PTEs:
    974 * normal PTEs and swap PTEs. We try to handle them consistently by calling
    975 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
    976 * and then
    977 *      - clear dirty bit to prevent IO
    978 *      - remove from LRU
    979 *      - but keep in the swap cache, so that when we return to it on
    980 *        a later page fault, we know the application is accessing
    981 *        corrupted data and shall be killed (we installed simple
    982 *        interception code in do_swap_page to catch it).
    983 *
    984 * Clean swap cache pages can be directly isolated. A later page fault will
    985 * bring in the known good data from disk.
    986 */
    987static int me_swapcache_dirty(struct page_state *ps, struct page *p)
    988{
    989	int ret;
    990	bool extra_pins = false;
    991
    992	ClearPageDirty(p);
    993	/* Trigger EIO in shmem: */
    994	ClearPageUptodate(p);
    995
    996	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
    997	unlock_page(p);
    998
    999	if (ret == MF_DELAYED)
   1000		extra_pins = true;
   1001
   1002	if (has_extra_refcount(ps, p, extra_pins))
   1003		ret = MF_FAILED;
   1004
   1005	return ret;
   1006}
   1007
   1008static int me_swapcache_clean(struct page_state *ps, struct page *p)
   1009{
   1010	int ret;
   1011
   1012	delete_from_swap_cache(p);
   1013
   1014	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
   1015	unlock_page(p);
   1016
   1017	if (has_extra_refcount(ps, p, false))
   1018		ret = MF_FAILED;
   1019
   1020	return ret;
   1021}
   1022
   1023/*
   1024 * Huge pages. Needs work.
   1025 * Issues:
   1026 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
   1027 *   To narrow down kill region to one page, we need to break up pmd.
   1028 */
   1029static int me_huge_page(struct page_state *ps, struct page *p)
   1030{
   1031	int res;
   1032	struct page *hpage = compound_head(p);
   1033	struct address_space *mapping;
   1034
   1035	if (!PageHuge(hpage))
   1036		return MF_DELAYED;
   1037
   1038	mapping = page_mapping(hpage);
   1039	if (mapping) {
   1040		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
   1041		unlock_page(hpage);
   1042	} else {
   1043		res = MF_FAILED;
   1044		unlock_page(hpage);
   1045		/*
   1046		 * migration entry prevents later access on error hugepage,
   1047		 * so we can free and dissolve it into buddy to save healthy
   1048		 * subpages.
   1049		 */
   1050		put_page(hpage);
   1051		if (__page_handle_poison(p)) {
   1052			page_ref_inc(p);
   1053			res = MF_RECOVERED;
   1054		}
   1055	}
   1056
   1057	if (has_extra_refcount(ps, p, false))
   1058		res = MF_FAILED;
   1059
   1060	return res;
   1061}
   1062
   1063/*
   1064 * Various page states we can handle.
   1065 *
   1066 * A page state is defined by its current page->flags bits.
   1067 * The table matches them in order and calls the right handler.
   1068 *
   1069 * This is quite tricky because we can access page at any time
   1070 * in its live cycle, so all accesses have to be extremely careful.
   1071 *
   1072 * This is not complete. More states could be added.
   1073 * For any missing state don't attempt recovery.
   1074 */
   1075
   1076#define dirty		(1UL << PG_dirty)
   1077#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
   1078#define unevict		(1UL << PG_unevictable)
   1079#define mlock		(1UL << PG_mlocked)
   1080#define lru		(1UL << PG_lru)
   1081#define head		(1UL << PG_head)
   1082#define slab		(1UL << PG_slab)
   1083#define reserved	(1UL << PG_reserved)
   1084
   1085static struct page_state error_states[] = {
   1086	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
   1087	/*
   1088	 * free pages are specially detected outside this table:
   1089	 * PG_buddy pages only make a small fraction of all free pages.
   1090	 */
   1091
   1092	/*
   1093	 * Could in theory check if slab page is free or if we can drop
   1094	 * currently unused objects without touching them. But just
   1095	 * treat it as standard kernel for now.
   1096	 */
   1097	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
   1098
   1099	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
   1100
   1101	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
   1102	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
   1103
   1104	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
   1105	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
   1106
   1107	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
   1108	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
   1109
   1110	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
   1111	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
   1112
   1113	/*
   1114	 * Catchall entry: must be at end.
   1115	 */
   1116	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
   1117};
   1118
   1119#undef dirty
   1120#undef sc
   1121#undef unevict
   1122#undef mlock
   1123#undef lru
   1124#undef head
   1125#undef slab
   1126#undef reserved
   1127
   1128/*
   1129 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
   1130 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
   1131 */
   1132static void action_result(unsigned long pfn, enum mf_action_page_type type,
   1133			  enum mf_result result)
   1134{
   1135	trace_memory_failure_event(pfn, type, result);
   1136
   1137	num_poisoned_pages_inc();
   1138	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
   1139		pfn, action_page_types[type], action_name[result]);
   1140}
   1141
   1142static int page_action(struct page_state *ps, struct page *p,
   1143			unsigned long pfn)
   1144{
   1145	int result;
   1146
   1147	/* page p should be unlocked after returning from ps->action().  */
   1148	result = ps->action(ps, p);
   1149
   1150	action_result(pfn, ps->type, result);
   1151
   1152	/* Could do more checks here if page looks ok */
   1153	/*
   1154	 * Could adjust zone counters here to correct for the missing page.
   1155	 */
   1156
   1157	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
   1158}
   1159
   1160static inline bool PageHWPoisonTakenOff(struct page *page)
   1161{
   1162	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
   1163}
   1164
   1165void SetPageHWPoisonTakenOff(struct page *page)
   1166{
   1167	set_page_private(page, MAGIC_HWPOISON);
   1168}
   1169
   1170void ClearPageHWPoisonTakenOff(struct page *page)
   1171{
   1172	if (PageHWPoison(page))
   1173		set_page_private(page, 0);
   1174}
   1175
   1176/*
   1177 * Return true if a page type of a given page is supported by hwpoison
   1178 * mechanism (while handling could fail), otherwise false.  This function
   1179 * does not return true for hugetlb or device memory pages, so it's assumed
   1180 * to be called only in the context where we never have such pages.
   1181 */
   1182static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
   1183{
   1184	/* Soft offline could migrate non-LRU movable pages */
   1185	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
   1186		return true;
   1187
   1188	return PageLRU(page) || is_free_buddy_page(page);
   1189}
   1190
   1191static int __get_hwpoison_page(struct page *page, unsigned long flags)
   1192{
   1193	struct page *head = compound_head(page);
   1194	int ret = 0;
   1195	bool hugetlb = false;
   1196
   1197	ret = get_hwpoison_huge_page(head, &hugetlb);
   1198	if (hugetlb)
   1199		return ret;
   1200
   1201	/*
   1202	 * This check prevents from calling get_hwpoison_unless_zero()
   1203	 * for any unsupported type of page in order to reduce the risk of
   1204	 * unexpected races caused by taking a page refcount.
   1205	 */
   1206	if (!HWPoisonHandlable(head, flags))
   1207		return -EBUSY;
   1208
   1209	if (get_page_unless_zero(head)) {
   1210		if (head == compound_head(page))
   1211			return 1;
   1212
   1213		pr_info("Memory failure: %#lx cannot catch tail\n",
   1214			page_to_pfn(page));
   1215		put_page(head);
   1216	}
   1217
   1218	return 0;
   1219}
   1220
   1221static int get_any_page(struct page *p, unsigned long flags)
   1222{
   1223	int ret = 0, pass = 0;
   1224	bool count_increased = false;
   1225
   1226	if (flags & MF_COUNT_INCREASED)
   1227		count_increased = true;
   1228
   1229try_again:
   1230	if (!count_increased) {
   1231		ret = __get_hwpoison_page(p, flags);
   1232		if (!ret) {
   1233			if (page_count(p)) {
   1234				/* We raced with an allocation, retry. */
   1235				if (pass++ < 3)
   1236					goto try_again;
   1237				ret = -EBUSY;
   1238			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
   1239				/* We raced with put_page, retry. */
   1240				if (pass++ < 3)
   1241					goto try_again;
   1242				ret = -EIO;
   1243			}
   1244			goto out;
   1245		} else if (ret == -EBUSY) {
   1246			/*
   1247			 * We raced with (possibly temporary) unhandlable
   1248			 * page, retry.
   1249			 */
   1250			if (pass++ < 3) {
   1251				shake_page(p);
   1252				goto try_again;
   1253			}
   1254			ret = -EIO;
   1255			goto out;
   1256		}
   1257	}
   1258
   1259	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
   1260		ret = 1;
   1261	} else {
   1262		/*
   1263		 * A page we cannot handle. Check whether we can turn
   1264		 * it into something we can handle.
   1265		 */
   1266		if (pass++ < 3) {
   1267			put_page(p);
   1268			shake_page(p);
   1269			count_increased = false;
   1270			goto try_again;
   1271		}
   1272		put_page(p);
   1273		ret = -EIO;
   1274	}
   1275out:
   1276	if (ret == -EIO)
   1277		pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
   1278
   1279	return ret;
   1280}
   1281
   1282static int __get_unpoison_page(struct page *page)
   1283{
   1284	struct page *head = compound_head(page);
   1285	int ret = 0;
   1286	bool hugetlb = false;
   1287
   1288	ret = get_hwpoison_huge_page(head, &hugetlb);
   1289	if (hugetlb)
   1290		return ret;
   1291
   1292	/*
   1293	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
   1294	 * but also isolated from buddy freelist, so need to identify the
   1295	 * state and have to cancel both operations to unpoison.
   1296	 */
   1297	if (PageHWPoisonTakenOff(page))
   1298		return -EHWPOISON;
   1299
   1300	return get_page_unless_zero(page) ? 1 : 0;
   1301}
   1302
   1303/**
   1304 * get_hwpoison_page() - Get refcount for memory error handling
   1305 * @p:		Raw error page (hit by memory error)
   1306 * @flags:	Flags controlling behavior of error handling
   1307 *
   1308 * get_hwpoison_page() takes a page refcount of an error page to handle memory
   1309 * error on it, after checking that the error page is in a well-defined state
   1310 * (defined as a page-type we can successfully handle the memory error on it,
   1311 * such as LRU page and hugetlb page).
   1312 *
   1313 * Memory error handling could be triggered at any time on any type of page,
   1314 * so it's prone to race with typical memory management lifecycle (like
   1315 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
   1316 * extra care for the error page's state (as done in __get_hwpoison_page()),
   1317 * and has some retry logic in get_any_page().
   1318 *
   1319 * When called from unpoison_memory(), the caller should already ensure that
   1320 * the given page has PG_hwpoison. So it's never reused for other page
   1321 * allocations, and __get_unpoison_page() never races with them.
   1322 *
   1323 * Return: 0 on failure,
   1324 *         1 on success for in-use pages in a well-defined state,
   1325 *         -EIO for pages on which we can not handle memory errors,
   1326 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
   1327 *         operations like allocation and free,
   1328 *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
   1329 */
   1330static int get_hwpoison_page(struct page *p, unsigned long flags)
   1331{
   1332	int ret;
   1333
   1334	zone_pcp_disable(page_zone(p));
   1335	if (flags & MF_UNPOISON)
   1336		ret = __get_unpoison_page(p);
   1337	else
   1338		ret = get_any_page(p, flags);
   1339	zone_pcp_enable(page_zone(p));
   1340
   1341	return ret;
   1342}
   1343
   1344/*
   1345 * Do all that is necessary to remove user space mappings. Unmap
   1346 * the pages and send SIGBUS to the processes if the data was dirty.
   1347 */
   1348static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
   1349				  int flags, struct page *hpage)
   1350{
   1351	struct folio *folio = page_folio(hpage);
   1352	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
   1353	struct address_space *mapping;
   1354	LIST_HEAD(tokill);
   1355	bool unmap_success;
   1356	int kill = 1, forcekill;
   1357	bool mlocked = PageMlocked(hpage);
   1358
   1359	/*
   1360	 * Here we are interested only in user-mapped pages, so skip any
   1361	 * other types of pages.
   1362	 */
   1363	if (PageReserved(p) || PageSlab(p))
   1364		return true;
   1365	if (!(PageLRU(hpage) || PageHuge(p)))
   1366		return true;
   1367
   1368	/*
   1369	 * This check implies we don't kill processes if their pages
   1370	 * are in the swap cache early. Those are always late kills.
   1371	 */
   1372	if (!page_mapped(hpage))
   1373		return true;
   1374
   1375	if (PageKsm(p)) {
   1376		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
   1377		return false;
   1378	}
   1379
   1380	if (PageSwapCache(p)) {
   1381		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
   1382			pfn);
   1383		ttu |= TTU_IGNORE_HWPOISON;
   1384	}
   1385
   1386	/*
   1387	 * Propagate the dirty bit from PTEs to struct page first, because we
   1388	 * need this to decide if we should kill or just drop the page.
   1389	 * XXX: the dirty test could be racy: set_page_dirty() may not always
   1390	 * be called inside page lock (it's recommended but not enforced).
   1391	 */
   1392	mapping = page_mapping(hpage);
   1393	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
   1394	    mapping_can_writeback(mapping)) {
   1395		if (page_mkclean(hpage)) {
   1396			SetPageDirty(hpage);
   1397		} else {
   1398			kill = 0;
   1399			ttu |= TTU_IGNORE_HWPOISON;
   1400			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
   1401				pfn);
   1402		}
   1403	}
   1404
   1405	/*
   1406	 * First collect all the processes that have the page
   1407	 * mapped in dirty form.  This has to be done before try_to_unmap,
   1408	 * because ttu takes the rmap data structures down.
   1409	 *
   1410	 * Error handling: We ignore errors here because
   1411	 * there's nothing that can be done.
   1412	 */
   1413	if (kill)
   1414		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
   1415
   1416	if (PageHuge(hpage) && !PageAnon(hpage)) {
   1417		/*
   1418		 * For hugetlb pages in shared mappings, try_to_unmap
   1419		 * could potentially call huge_pmd_unshare.  Because of
   1420		 * this, take semaphore in write mode here and set
   1421		 * TTU_RMAP_LOCKED to indicate we have taken the lock
   1422		 * at this higher level.
   1423		 */
   1424		mapping = hugetlb_page_mapping_lock_write(hpage);
   1425		if (mapping) {
   1426			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
   1427			i_mmap_unlock_write(mapping);
   1428		} else
   1429			pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
   1430	} else {
   1431		try_to_unmap(folio, ttu);
   1432	}
   1433
   1434	unmap_success = !page_mapped(hpage);
   1435	if (!unmap_success)
   1436		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
   1437		       pfn, page_mapcount(hpage));
   1438
   1439	/*
   1440	 * try_to_unmap() might put mlocked page in lru cache, so call
   1441	 * shake_page() again to ensure that it's flushed.
   1442	 */
   1443	if (mlocked)
   1444		shake_page(hpage);
   1445
   1446	/*
   1447	 * Now that the dirty bit has been propagated to the
   1448	 * struct page and all unmaps done we can decide if
   1449	 * killing is needed or not.  Only kill when the page
   1450	 * was dirty or the process is not restartable,
   1451	 * otherwise the tokill list is merely
   1452	 * freed.  When there was a problem unmapping earlier
   1453	 * use a more force-full uncatchable kill to prevent
   1454	 * any accesses to the poisoned memory.
   1455	 */
   1456	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
   1457	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
   1458
   1459	return unmap_success;
   1460}
   1461
   1462static int identify_page_state(unsigned long pfn, struct page *p,
   1463				unsigned long page_flags)
   1464{
   1465	struct page_state *ps;
   1466
   1467	/*
   1468	 * The first check uses the current page flags which may not have any
   1469	 * relevant information. The second check with the saved page flags is
   1470	 * carried out only if the first check can't determine the page status.
   1471	 */
   1472	for (ps = error_states;; ps++)
   1473		if ((p->flags & ps->mask) == ps->res)
   1474			break;
   1475
   1476	page_flags |= (p->flags & (1UL << PG_dirty));
   1477
   1478	if (!ps->mask)
   1479		for (ps = error_states;; ps++)
   1480			if ((page_flags & ps->mask) == ps->res)
   1481				break;
   1482	return page_action(ps, p, pfn);
   1483}
   1484
   1485static int try_to_split_thp_page(struct page *page, const char *msg)
   1486{
   1487	lock_page(page);
   1488	if (unlikely(split_huge_page(page))) {
   1489		unsigned long pfn = page_to_pfn(page);
   1490
   1491		unlock_page(page);
   1492		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
   1493		put_page(page);
   1494		return -EBUSY;
   1495	}
   1496	unlock_page(page);
   1497
   1498	return 0;
   1499}
   1500
   1501/*
   1502 * Called from hugetlb code with hugetlb_lock held.
   1503 *
   1504 * Return values:
   1505 *   0             - free hugepage
   1506 *   1             - in-use hugepage
   1507 *   2             - not a hugepage
   1508 *   -EBUSY        - the hugepage is busy (try to retry)
   1509 *   -EHWPOISON    - the hugepage is already hwpoisoned
   1510 */
   1511int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
   1512{
   1513	struct page *page = pfn_to_page(pfn);
   1514	struct page *head = compound_head(page);
   1515	int ret = 2;	/* fallback to normal page handling */
   1516	bool count_increased = false;
   1517
   1518	if (!PageHeadHuge(head))
   1519		goto out;
   1520
   1521	if (flags & MF_COUNT_INCREASED) {
   1522		ret = 1;
   1523		count_increased = true;
   1524	} else if (HPageFreed(head)) {
   1525		ret = 0;
   1526	} else if (HPageMigratable(head)) {
   1527		ret = get_page_unless_zero(head);
   1528		if (ret)
   1529			count_increased = true;
   1530	} else {
   1531		ret = -EBUSY;
   1532		goto out;
   1533	}
   1534
   1535	if (TestSetPageHWPoison(head)) {
   1536		ret = -EHWPOISON;
   1537		goto out;
   1538	}
   1539
   1540	return ret;
   1541out:
   1542	if (count_increased)
   1543		put_page(head);
   1544	return ret;
   1545}
   1546
   1547#ifdef CONFIG_HUGETLB_PAGE
   1548/*
   1549 * Taking refcount of hugetlb pages needs extra care about race conditions
   1550 * with basic operations like hugepage allocation/free/demotion.
   1551 * So some of prechecks for hwpoison (pinning, and testing/setting
   1552 * PageHWPoison) should be done in single hugetlb_lock range.
   1553 */
   1554static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
   1555{
   1556	int res;
   1557	struct page *p = pfn_to_page(pfn);
   1558	struct page *head;
   1559	unsigned long page_flags;
   1560	bool retry = true;
   1561
   1562	*hugetlb = 1;
   1563retry:
   1564	res = get_huge_page_for_hwpoison(pfn, flags);
   1565	if (res == 2) { /* fallback to normal page handling */
   1566		*hugetlb = 0;
   1567		return 0;
   1568	} else if (res == -EHWPOISON) {
   1569		pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
   1570		if (flags & MF_ACTION_REQUIRED) {
   1571			head = compound_head(p);
   1572			res = kill_accessing_process(current, page_to_pfn(head), flags);
   1573		}
   1574		return res;
   1575	} else if (res == -EBUSY) {
   1576		if (retry) {
   1577			retry = false;
   1578			goto retry;
   1579		}
   1580		action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
   1581		return res;
   1582	}
   1583
   1584	head = compound_head(p);
   1585	lock_page(head);
   1586
   1587	if (hwpoison_filter(p)) {
   1588		ClearPageHWPoison(head);
   1589		res = -EOPNOTSUPP;
   1590		goto out;
   1591	}
   1592
   1593	/*
   1594	 * Handling free hugepage.  The possible race with hugepage allocation
   1595	 * or demotion can be prevented by PageHWPoison flag.
   1596	 */
   1597	if (res == 0) {
   1598		unlock_page(head);
   1599		res = MF_FAILED;
   1600		if (__page_handle_poison(p)) {
   1601			page_ref_inc(p);
   1602			res = MF_RECOVERED;
   1603		}
   1604		action_result(pfn, MF_MSG_FREE_HUGE, res);
   1605		return res == MF_RECOVERED ? 0 : -EBUSY;
   1606	}
   1607
   1608	page_flags = head->flags;
   1609
   1610	/*
   1611	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
   1612	 * simply disable it. In order to make it work properly, we need
   1613	 * make sure that:
   1614	 *  - conversion of a pud that maps an error hugetlb into hwpoison
   1615	 *    entry properly works, and
   1616	 *  - other mm code walking over page table is aware of pud-aligned
   1617	 *    hwpoison entries.
   1618	 */
   1619	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
   1620		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
   1621		res = -EBUSY;
   1622		goto out;
   1623	}
   1624
   1625	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
   1626		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
   1627		res = -EBUSY;
   1628		goto out;
   1629	}
   1630
   1631	return identify_page_state(pfn, p, page_flags);
   1632out:
   1633	unlock_page(head);
   1634	return res;
   1635}
   1636#else
   1637static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
   1638{
   1639	return 0;
   1640}
   1641#endif
   1642
   1643static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
   1644		struct dev_pagemap *pgmap)
   1645{
   1646	struct page *page = pfn_to_page(pfn);
   1647	unsigned long size = 0;
   1648	struct to_kill *tk;
   1649	LIST_HEAD(tokill);
   1650	int rc = -EBUSY;
   1651	loff_t start;
   1652	dax_entry_t cookie;
   1653
   1654	if (flags & MF_COUNT_INCREASED)
   1655		/*
   1656		 * Drop the extra refcount in case we come from madvise().
   1657		 */
   1658		put_page(page);
   1659
   1660	/* device metadata space is not recoverable */
   1661	if (!pgmap_pfn_valid(pgmap, pfn)) {
   1662		rc = -ENXIO;
   1663		goto out;
   1664	}
   1665
   1666	/*
   1667	 * Pages instantiated by device-dax (not filesystem-dax)
   1668	 * may be compound pages.
   1669	 */
   1670	page = compound_head(page);
   1671
   1672	/*
   1673	 * Prevent the inode from being freed while we are interrogating
   1674	 * the address_space, typically this would be handled by
   1675	 * lock_page(), but dax pages do not use the page lock. This
   1676	 * also prevents changes to the mapping of this pfn until
   1677	 * poison signaling is complete.
   1678	 */
   1679	cookie = dax_lock_page(page);
   1680	if (!cookie)
   1681		goto out;
   1682
   1683	if (hwpoison_filter(page)) {
   1684		rc = -EOPNOTSUPP;
   1685		goto unlock;
   1686	}
   1687
   1688	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
   1689		/*
   1690		 * TODO: Handle HMM pages which may need coordination
   1691		 * with device-side memory.
   1692		 */
   1693		goto unlock;
   1694	}
   1695
   1696	/*
   1697	 * Use this flag as an indication that the dax page has been
   1698	 * remapped UC to prevent speculative consumption of poison.
   1699	 */
   1700	SetPageHWPoison(page);
   1701
   1702	/*
   1703	 * Unlike System-RAM there is no possibility to swap in a
   1704	 * different physical page at a given virtual address, so all
   1705	 * userspace consumption of ZONE_DEVICE memory necessitates
   1706	 * SIGBUS (i.e. MF_MUST_KILL)
   1707	 */
   1708	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
   1709	collect_procs(page, &tokill, true);
   1710
   1711	list_for_each_entry(tk, &tokill, nd)
   1712		if (tk->size_shift)
   1713			size = max(size, 1UL << tk->size_shift);
   1714	if (size) {
   1715		/*
   1716		 * Unmap the largest mapping to avoid breaking up
   1717		 * device-dax mappings which are constant size. The
   1718		 * actual size of the mapping being torn down is
   1719		 * communicated in siginfo, see kill_proc()
   1720		 */
   1721		start = (page->index << PAGE_SHIFT) & ~(size - 1);
   1722		unmap_mapping_range(page->mapping, start, size, 0);
   1723	}
   1724	kill_procs(&tokill, true, false, pfn, flags);
   1725	rc = 0;
   1726unlock:
   1727	dax_unlock_page(page, cookie);
   1728out:
   1729	/* drop pgmap ref acquired in caller */
   1730	put_dev_pagemap(pgmap);
   1731	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
   1732	return rc;
   1733}
   1734
   1735static DEFINE_MUTEX(mf_mutex);
   1736
   1737/**
   1738 * memory_failure - Handle memory failure of a page.
   1739 * @pfn: Page Number of the corrupted page
   1740 * @flags: fine tune action taken
   1741 *
   1742 * This function is called by the low level machine check code
   1743 * of an architecture when it detects hardware memory corruption
   1744 * of a page. It tries its best to recover, which includes
   1745 * dropping pages, killing processes etc.
   1746 *
   1747 * The function is primarily of use for corruptions that
   1748 * happen outside the current execution context (e.g. when
   1749 * detected by a background scrubber)
   1750 *
   1751 * Must run in process context (e.g. a work queue) with interrupts
   1752 * enabled and no spinlocks hold.
   1753 *
   1754 * Return: 0 for successfully handled the memory error,
   1755 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
   1756 *         < 0(except -EOPNOTSUPP) on failure.
   1757 */
   1758int memory_failure(unsigned long pfn, int flags)
   1759{
   1760	struct page *p;
   1761	struct page *hpage;
   1762	struct dev_pagemap *pgmap;
   1763	int res = 0;
   1764	unsigned long page_flags;
   1765	bool retry = true;
   1766	int hugetlb = 0;
   1767
   1768	if (!sysctl_memory_failure_recovery)
   1769		panic("Memory failure on page %lx", pfn);
   1770
   1771	mutex_lock(&mf_mutex);
   1772
   1773	if (!(flags & MF_SW_SIMULATED))
   1774		hw_memory_failure = true;
   1775
   1776	p = pfn_to_online_page(pfn);
   1777	if (!p) {
   1778		res = arch_memory_failure(pfn, flags);
   1779		if (res == 0)
   1780			goto unlock_mutex;
   1781
   1782		if (pfn_valid(pfn)) {
   1783			pgmap = get_dev_pagemap(pfn, NULL);
   1784			if (pgmap) {
   1785				res = memory_failure_dev_pagemap(pfn, flags,
   1786								 pgmap);
   1787				goto unlock_mutex;
   1788			}
   1789		}
   1790		pr_err("Memory failure: %#lx: memory outside kernel control\n",
   1791			pfn);
   1792		res = -ENXIO;
   1793		goto unlock_mutex;
   1794	}
   1795
   1796try_again:
   1797	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
   1798	if (hugetlb)
   1799		goto unlock_mutex;
   1800
   1801	if (TestSetPageHWPoison(p)) {
   1802		pr_err("Memory failure: %#lx: already hardware poisoned\n",
   1803			pfn);
   1804		res = -EHWPOISON;
   1805		if (flags & MF_ACTION_REQUIRED)
   1806			res = kill_accessing_process(current, pfn, flags);
   1807		if (flags & MF_COUNT_INCREASED)
   1808			put_page(p);
   1809		goto unlock_mutex;
   1810	}
   1811
   1812	hpage = compound_head(p);
   1813
   1814	/*
   1815	 * We need/can do nothing about count=0 pages.
   1816	 * 1) it's a free page, and therefore in safe hand:
   1817	 *    prep_new_page() will be the gate keeper.
   1818	 * 2) it's part of a non-compound high order page.
   1819	 *    Implies some kernel user: cannot stop them from
   1820	 *    R/W the page; let's pray that the page has been
   1821	 *    used and will be freed some time later.
   1822	 * In fact it's dangerous to directly bump up page count from 0,
   1823	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
   1824	 */
   1825	if (!(flags & MF_COUNT_INCREASED)) {
   1826		res = get_hwpoison_page(p, flags);
   1827		if (!res) {
   1828			if (is_free_buddy_page(p)) {
   1829				if (take_page_off_buddy(p)) {
   1830					page_ref_inc(p);
   1831					res = MF_RECOVERED;
   1832				} else {
   1833					/* We lost the race, try again */
   1834					if (retry) {
   1835						ClearPageHWPoison(p);
   1836						retry = false;
   1837						goto try_again;
   1838					}
   1839					res = MF_FAILED;
   1840				}
   1841				action_result(pfn, MF_MSG_BUDDY, res);
   1842				res = res == MF_RECOVERED ? 0 : -EBUSY;
   1843			} else {
   1844				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
   1845				res = -EBUSY;
   1846			}
   1847			goto unlock_mutex;
   1848		} else if (res < 0) {
   1849			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
   1850			res = -EBUSY;
   1851			goto unlock_mutex;
   1852		}
   1853	}
   1854
   1855	if (PageTransHuge(hpage)) {
   1856		/*
   1857		 * The flag must be set after the refcount is bumped
   1858		 * otherwise it may race with THP split.
   1859		 * And the flag can't be set in get_hwpoison_page() since
   1860		 * it is called by soft offline too and it is just called
   1861		 * for !MF_COUNT_INCREASE.  So here seems to be the best
   1862		 * place.
   1863		 *
   1864		 * Don't need care about the above error handling paths for
   1865		 * get_hwpoison_page() since they handle either free page
   1866		 * or unhandlable page.  The refcount is bumped iff the
   1867		 * page is a valid handlable page.
   1868		 */
   1869		SetPageHasHWPoisoned(hpage);
   1870		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
   1871			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
   1872			res = -EBUSY;
   1873			goto unlock_mutex;
   1874		}
   1875		VM_BUG_ON_PAGE(!page_count(p), p);
   1876	}
   1877
   1878	/*
   1879	 * We ignore non-LRU pages for good reasons.
   1880	 * - PG_locked is only well defined for LRU pages and a few others
   1881	 * - to avoid races with __SetPageLocked()
   1882	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
   1883	 * The check (unnecessarily) ignores LRU pages being isolated and
   1884	 * walked by the page reclaim code, however that's not a big loss.
   1885	 */
   1886	shake_page(p);
   1887
   1888	lock_page(p);
   1889
   1890	/*
   1891	 * We're only intended to deal with the non-Compound page here.
   1892	 * However, the page could have changed compound pages due to
   1893	 * race window. If this happens, we could try again to hopefully
   1894	 * handle the page next round.
   1895	 */
   1896	if (PageCompound(p)) {
   1897		if (retry) {
   1898			ClearPageHWPoison(p);
   1899			unlock_page(p);
   1900			put_page(p);
   1901			flags &= ~MF_COUNT_INCREASED;
   1902			retry = false;
   1903			goto try_again;
   1904		}
   1905		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
   1906		res = -EBUSY;
   1907		goto unlock_page;
   1908	}
   1909
   1910	/*
   1911	 * We use page flags to determine what action should be taken, but
   1912	 * the flags can be modified by the error containment action.  One
   1913	 * example is an mlocked page, where PG_mlocked is cleared by
   1914	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
   1915	 * correctly, we save a copy of the page flags at this time.
   1916	 */
   1917	page_flags = p->flags;
   1918
   1919	if (hwpoison_filter(p)) {
   1920		TestClearPageHWPoison(p);
   1921		unlock_page(p);
   1922		put_page(p);
   1923		res = -EOPNOTSUPP;
   1924		goto unlock_mutex;
   1925	}
   1926
   1927	/*
   1928	 * __munlock_pagevec may clear a writeback page's LRU flag without
   1929	 * page_lock. We need wait writeback completion for this page or it
   1930	 * may trigger vfs BUG while evict inode.
   1931	 */
   1932	if (!PageLRU(p) && !PageWriteback(p))
   1933		goto identify_page_state;
   1934
   1935	/*
   1936	 * It's very difficult to mess with pages currently under IO
   1937	 * and in many cases impossible, so we just avoid it here.
   1938	 */
   1939	wait_on_page_writeback(p);
   1940
   1941	/*
   1942	 * Now take care of user space mappings.
   1943	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
   1944	 */
   1945	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
   1946		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
   1947		res = -EBUSY;
   1948		goto unlock_page;
   1949	}
   1950
   1951	/*
   1952	 * Torn down by someone else?
   1953	 */
   1954	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
   1955		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
   1956		res = -EBUSY;
   1957		goto unlock_page;
   1958	}
   1959
   1960identify_page_state:
   1961	res = identify_page_state(pfn, p, page_flags);
   1962	mutex_unlock(&mf_mutex);
   1963	return res;
   1964unlock_page:
   1965	unlock_page(p);
   1966unlock_mutex:
   1967	mutex_unlock(&mf_mutex);
   1968	return res;
   1969}
   1970EXPORT_SYMBOL_GPL(memory_failure);
   1971
   1972#define MEMORY_FAILURE_FIFO_ORDER	4
   1973#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
   1974
   1975struct memory_failure_entry {
   1976	unsigned long pfn;
   1977	int flags;
   1978};
   1979
   1980struct memory_failure_cpu {
   1981	DECLARE_KFIFO(fifo, struct memory_failure_entry,
   1982		      MEMORY_FAILURE_FIFO_SIZE);
   1983	spinlock_t lock;
   1984	struct work_struct work;
   1985};
   1986
   1987static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
   1988
   1989/**
   1990 * memory_failure_queue - Schedule handling memory failure of a page.
   1991 * @pfn: Page Number of the corrupted page
   1992 * @flags: Flags for memory failure handling
   1993 *
   1994 * This function is called by the low level hardware error handler
   1995 * when it detects hardware memory corruption of a page. It schedules
   1996 * the recovering of error page, including dropping pages, killing
   1997 * processes etc.
   1998 *
   1999 * The function is primarily of use for corruptions that
   2000 * happen outside the current execution context (e.g. when
   2001 * detected by a background scrubber)
   2002 *
   2003 * Can run in IRQ context.
   2004 */
   2005void memory_failure_queue(unsigned long pfn, int flags)
   2006{
   2007	struct memory_failure_cpu *mf_cpu;
   2008	unsigned long proc_flags;
   2009	struct memory_failure_entry entry = {
   2010		.pfn =		pfn,
   2011		.flags =	flags,
   2012	};
   2013
   2014	mf_cpu = &get_cpu_var(memory_failure_cpu);
   2015	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
   2016	if (kfifo_put(&mf_cpu->fifo, entry))
   2017		schedule_work_on(smp_processor_id(), &mf_cpu->work);
   2018	else
   2019		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
   2020		       pfn);
   2021	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
   2022	put_cpu_var(memory_failure_cpu);
   2023}
   2024EXPORT_SYMBOL_GPL(memory_failure_queue);
   2025
   2026static void memory_failure_work_func(struct work_struct *work)
   2027{
   2028	struct memory_failure_cpu *mf_cpu;
   2029	struct memory_failure_entry entry = { 0, };
   2030	unsigned long proc_flags;
   2031	int gotten;
   2032
   2033	mf_cpu = container_of(work, struct memory_failure_cpu, work);
   2034	for (;;) {
   2035		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
   2036		gotten = kfifo_get(&mf_cpu->fifo, &entry);
   2037		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
   2038		if (!gotten)
   2039			break;
   2040		if (entry.flags & MF_SOFT_OFFLINE)
   2041			soft_offline_page(entry.pfn, entry.flags);
   2042		else
   2043			memory_failure(entry.pfn, entry.flags);
   2044	}
   2045}
   2046
   2047/*
   2048 * Process memory_failure work queued on the specified CPU.
   2049 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
   2050 */
   2051void memory_failure_queue_kick(int cpu)
   2052{
   2053	struct memory_failure_cpu *mf_cpu;
   2054
   2055	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
   2056	cancel_work_sync(&mf_cpu->work);
   2057	memory_failure_work_func(&mf_cpu->work);
   2058}
   2059
   2060static int __init memory_failure_init(void)
   2061{
   2062	struct memory_failure_cpu *mf_cpu;
   2063	int cpu;
   2064
   2065	for_each_possible_cpu(cpu) {
   2066		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
   2067		spin_lock_init(&mf_cpu->lock);
   2068		INIT_KFIFO(mf_cpu->fifo);
   2069		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
   2070	}
   2071
   2072	return 0;
   2073}
   2074core_initcall(memory_failure_init);
   2075
   2076#define unpoison_pr_info(fmt, pfn, rs)			\
   2077({							\
   2078	if (__ratelimit(rs))				\
   2079		pr_info(fmt, pfn);			\
   2080})
   2081
   2082/**
   2083 * unpoison_memory - Unpoison a previously poisoned page
   2084 * @pfn: Page number of the to be unpoisoned page
   2085 *
   2086 * Software-unpoison a page that has been poisoned by
   2087 * memory_failure() earlier.
   2088 *
   2089 * This is only done on the software-level, so it only works
   2090 * for linux injected failures, not real hardware failures
   2091 *
   2092 * Returns 0 for success, otherwise -errno.
   2093 */
   2094int unpoison_memory(unsigned long pfn)
   2095{
   2096	struct page *page;
   2097	struct page *p;
   2098	int ret = -EBUSY;
   2099	int freeit = 0;
   2100	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
   2101					DEFAULT_RATELIMIT_BURST);
   2102
   2103	if (!pfn_valid(pfn))
   2104		return -ENXIO;
   2105
   2106	p = pfn_to_page(pfn);
   2107	page = compound_head(p);
   2108
   2109	mutex_lock(&mf_mutex);
   2110
   2111	if (hw_memory_failure) {
   2112		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
   2113				 pfn, &unpoison_rs);
   2114		ret = -EOPNOTSUPP;
   2115		goto unlock_mutex;
   2116	}
   2117
   2118	if (!PageHWPoison(p)) {
   2119		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
   2120				 pfn, &unpoison_rs);
   2121		goto unlock_mutex;
   2122	}
   2123
   2124	if (page_count(page) > 1) {
   2125		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
   2126				 pfn, &unpoison_rs);
   2127		goto unlock_mutex;
   2128	}
   2129
   2130	if (page_mapped(page)) {
   2131		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
   2132				 pfn, &unpoison_rs);
   2133		goto unlock_mutex;
   2134	}
   2135
   2136	if (page_mapping(page)) {
   2137		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
   2138				 pfn, &unpoison_rs);
   2139		goto unlock_mutex;
   2140	}
   2141
   2142	if (PageSlab(page) || PageTable(page))
   2143		goto unlock_mutex;
   2144
   2145	ret = get_hwpoison_page(p, MF_UNPOISON);
   2146	if (!ret) {
   2147		ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
   2148	} else if (ret < 0) {
   2149		if (ret == -EHWPOISON) {
   2150			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
   2151		} else
   2152			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
   2153					 pfn, &unpoison_rs);
   2154	} else {
   2155		freeit = !!TestClearPageHWPoison(p);
   2156
   2157		put_page(page);
   2158		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
   2159			put_page(page);
   2160			ret = 0;
   2161		}
   2162	}
   2163
   2164unlock_mutex:
   2165	mutex_unlock(&mf_mutex);
   2166	if (!ret || freeit) {
   2167		num_poisoned_pages_dec();
   2168		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
   2169				 page_to_pfn(p), &unpoison_rs);
   2170	}
   2171	return ret;
   2172}
   2173EXPORT_SYMBOL(unpoison_memory);
   2174
   2175static bool isolate_page(struct page *page, struct list_head *pagelist)
   2176{
   2177	bool isolated = false;
   2178	bool lru = PageLRU(page);
   2179
   2180	if (PageHuge(page)) {
   2181		isolated = isolate_huge_page(page, pagelist);
   2182	} else {
   2183		if (lru)
   2184			isolated = !isolate_lru_page(page);
   2185		else
   2186			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
   2187
   2188		if (isolated)
   2189			list_add(&page->lru, pagelist);
   2190	}
   2191
   2192	if (isolated && lru)
   2193		inc_node_page_state(page, NR_ISOLATED_ANON +
   2194				    page_is_file_lru(page));
   2195
   2196	/*
   2197	 * If we succeed to isolate the page, we grabbed another refcount on
   2198	 * the page, so we can safely drop the one we got from get_any_pages().
   2199	 * If we failed to isolate the page, it means that we cannot go further
   2200	 * and we will return an error, so drop the reference we got from
   2201	 * get_any_pages() as well.
   2202	 */
   2203	put_page(page);
   2204	return isolated;
   2205}
   2206
   2207/*
   2208 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
   2209 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
   2210 * If the page is mapped, it migrates the contents over.
   2211 */
   2212static int __soft_offline_page(struct page *page)
   2213{
   2214	long ret = 0;
   2215	unsigned long pfn = page_to_pfn(page);
   2216	struct page *hpage = compound_head(page);
   2217	char const *msg_page[] = {"page", "hugepage"};
   2218	bool huge = PageHuge(page);
   2219	LIST_HEAD(pagelist);
   2220	struct migration_target_control mtc = {
   2221		.nid = NUMA_NO_NODE,
   2222		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
   2223	};
   2224
   2225	lock_page(page);
   2226	if (!PageHuge(page))
   2227		wait_on_page_writeback(page);
   2228	if (PageHWPoison(page)) {
   2229		unlock_page(page);
   2230		put_page(page);
   2231		pr_info("soft offline: %#lx page already poisoned\n", pfn);
   2232		return 0;
   2233	}
   2234
   2235	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
   2236		/*
   2237		 * Try to invalidate first. This should work for
   2238		 * non dirty unmapped page cache pages.
   2239		 */
   2240		ret = invalidate_inode_page(page);
   2241	unlock_page(page);
   2242
   2243	if (ret) {
   2244		pr_info("soft_offline: %#lx: invalidated\n", pfn);
   2245		page_handle_poison(page, false, true);
   2246		return 0;
   2247	}
   2248
   2249	if (isolate_page(hpage, &pagelist)) {
   2250		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
   2251			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
   2252		if (!ret) {
   2253			bool release = !huge;
   2254
   2255			if (!page_handle_poison(page, huge, release))
   2256				ret = -EBUSY;
   2257		} else {
   2258			if (!list_empty(&pagelist))
   2259				putback_movable_pages(&pagelist);
   2260
   2261			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
   2262				pfn, msg_page[huge], ret, &page->flags);
   2263			if (ret > 0)
   2264				ret = -EBUSY;
   2265		}
   2266	} else {
   2267		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
   2268			pfn, msg_page[huge], page_count(page), &page->flags);
   2269		ret = -EBUSY;
   2270	}
   2271	return ret;
   2272}
   2273
   2274static int soft_offline_in_use_page(struct page *page)
   2275{
   2276	struct page *hpage = compound_head(page);
   2277
   2278	if (!PageHuge(page) && PageTransHuge(hpage))
   2279		if (try_to_split_thp_page(page, "soft offline") < 0)
   2280			return -EBUSY;
   2281	return __soft_offline_page(page);
   2282}
   2283
   2284static int soft_offline_free_page(struct page *page)
   2285{
   2286	int rc = 0;
   2287
   2288	if (!page_handle_poison(page, true, false))
   2289		rc = -EBUSY;
   2290
   2291	return rc;
   2292}
   2293
   2294static void put_ref_page(struct page *page)
   2295{
   2296	if (page)
   2297		put_page(page);
   2298}
   2299
   2300/**
   2301 * soft_offline_page - Soft offline a page.
   2302 * @pfn: pfn to soft-offline
   2303 * @flags: flags. Same as memory_failure().
   2304 *
   2305 * Returns 0 on success
   2306 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
   2307 *         < 0 otherwise negated errno.
   2308 *
   2309 * Soft offline a page, by migration or invalidation,
   2310 * without killing anything. This is for the case when
   2311 * a page is not corrupted yet (so it's still valid to access),
   2312 * but has had a number of corrected errors and is better taken
   2313 * out.
   2314 *
   2315 * The actual policy on when to do that is maintained by
   2316 * user space.
   2317 *
   2318 * This should never impact any application or cause data loss,
   2319 * however it might take some time.
   2320 *
   2321 * This is not a 100% solution for all memory, but tries to be
   2322 * ``good enough'' for the majority of memory.
   2323 */
   2324int soft_offline_page(unsigned long pfn, int flags)
   2325{
   2326	int ret;
   2327	bool try_again = true;
   2328	struct page *page, *ref_page = NULL;
   2329
   2330	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
   2331
   2332	if (!pfn_valid(pfn))
   2333		return -ENXIO;
   2334	if (flags & MF_COUNT_INCREASED)
   2335		ref_page = pfn_to_page(pfn);
   2336
   2337	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
   2338	page = pfn_to_online_page(pfn);
   2339	if (!page) {
   2340		put_ref_page(ref_page);
   2341		return -EIO;
   2342	}
   2343
   2344	mutex_lock(&mf_mutex);
   2345
   2346	if (PageHWPoison(page)) {
   2347		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
   2348		put_ref_page(ref_page);
   2349		mutex_unlock(&mf_mutex);
   2350		return 0;
   2351	}
   2352
   2353retry:
   2354	get_online_mems();
   2355	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
   2356	put_online_mems();
   2357
   2358	if (hwpoison_filter(page)) {
   2359		if (ret > 0)
   2360			put_page(page);
   2361		else
   2362			put_ref_page(ref_page);
   2363
   2364		mutex_unlock(&mf_mutex);
   2365		return -EOPNOTSUPP;
   2366	}
   2367
   2368	if (ret > 0) {
   2369		ret = soft_offline_in_use_page(page);
   2370	} else if (ret == 0) {
   2371		if (soft_offline_free_page(page) && try_again) {
   2372			try_again = false;
   2373			flags &= ~MF_COUNT_INCREASED;
   2374			goto retry;
   2375		}
   2376	}
   2377
   2378	mutex_unlock(&mf_mutex);
   2379
   2380	return ret;
   2381}
   2382
   2383void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
   2384{
   2385	int i;
   2386
   2387	/*
   2388	 * A further optimization is to have per section refcounted
   2389	 * num_poisoned_pages.  But that would need more space per memmap, so
   2390	 * for now just do a quick global check to speed up this routine in the
   2391	 * absence of bad pages.
   2392	 */
   2393	if (atomic_long_read(&num_poisoned_pages) == 0)
   2394		return;
   2395
   2396	for (i = 0; i < nr_pages; i++) {
   2397		if (PageHWPoison(&memmap[i])) {
   2398			num_poisoned_pages_dec();
   2399			ClearPageHWPoison(&memmap[i]);
   2400		}
   2401	}
   2402}