cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

memory_hotplug.c (65650B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/mm/memory_hotplug.c
      4 *
      5 *  Copyright (C)
      6 */
      7
      8#include <linux/stddef.h>
      9#include <linux/mm.h>
     10#include <linux/sched/signal.h>
     11#include <linux/swap.h>
     12#include <linux/interrupt.h>
     13#include <linux/pagemap.h>
     14#include <linux/compiler.h>
     15#include <linux/export.h>
     16#include <linux/pagevec.h>
     17#include <linux/writeback.h>
     18#include <linux/slab.h>
     19#include <linux/sysctl.h>
     20#include <linux/cpu.h>
     21#include <linux/memory.h>
     22#include <linux/memremap.h>
     23#include <linux/memory_hotplug.h>
     24#include <linux/vmalloc.h>
     25#include <linux/ioport.h>
     26#include <linux/delay.h>
     27#include <linux/migrate.h>
     28#include <linux/page-isolation.h>
     29#include <linux/pfn.h>
     30#include <linux/suspend.h>
     31#include <linux/mm_inline.h>
     32#include <linux/firmware-map.h>
     33#include <linux/stop_machine.h>
     34#include <linux/hugetlb.h>
     35#include <linux/memblock.h>
     36#include <linux/compaction.h>
     37#include <linux/rmap.h>
     38#include <linux/module.h>
     39
     40#include <asm/tlbflush.h>
     41
     42#include "internal.h"
     43#include "shuffle.h"
     44
     45#ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
     46static int memmap_on_memory_set(const char *val, const struct kernel_param *kp)
     47{
     48	if (hugetlb_optimize_vmemmap_enabled())
     49		return 0;
     50	return param_set_bool(val, kp);
     51}
     52
     53static const struct kernel_param_ops memmap_on_memory_ops = {
     54	.flags	= KERNEL_PARAM_OPS_FL_NOARG,
     55	.set	= memmap_on_memory_set,
     56	.get	= param_get_bool,
     57};
     58
     59/*
     60 * memory_hotplug.memmap_on_memory parameter
     61 */
     62static bool memmap_on_memory __ro_after_init;
     63module_param_cb(memmap_on_memory, &memmap_on_memory_ops, &memmap_on_memory, 0444);
     64MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
     65
     66bool mhp_memmap_on_memory(void)
     67{
     68	return memmap_on_memory;
     69}
     70#endif
     71
     72enum {
     73	ONLINE_POLICY_CONTIG_ZONES = 0,
     74	ONLINE_POLICY_AUTO_MOVABLE,
     75};
     76
     77static const char * const online_policy_to_str[] = {
     78	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
     79	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
     80};
     81
     82static int set_online_policy(const char *val, const struct kernel_param *kp)
     83{
     84	int ret = sysfs_match_string(online_policy_to_str, val);
     85
     86	if (ret < 0)
     87		return ret;
     88	*((int *)kp->arg) = ret;
     89	return 0;
     90}
     91
     92static int get_online_policy(char *buffer, const struct kernel_param *kp)
     93{
     94	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
     95}
     96
     97/*
     98 * memory_hotplug.online_policy: configure online behavior when onlining without
     99 * specifying a zone (MMOP_ONLINE)
    100 *
    101 * "contig-zones": keep zone contiguous
    102 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
    103 *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
    104 */
    105static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
    106static const struct kernel_param_ops online_policy_ops = {
    107	.set = set_online_policy,
    108	.get = get_online_policy,
    109};
    110module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
    111MODULE_PARM_DESC(online_policy,
    112		"Set the online policy (\"contig-zones\", \"auto-movable\") "
    113		"Default: \"contig-zones\"");
    114
    115/*
    116 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
    117 *
    118 * The ratio represent an upper limit and the kernel might decide to not
    119 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
    120 * doesn't allow for more MOVABLE memory.
    121 */
    122static unsigned int auto_movable_ratio __read_mostly = 301;
    123module_param(auto_movable_ratio, uint, 0644);
    124MODULE_PARM_DESC(auto_movable_ratio,
    125		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
    126		"in percent for \"auto-movable\" online policy. Default: 301");
    127
    128/*
    129 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
    130 */
    131#ifdef CONFIG_NUMA
    132static bool auto_movable_numa_aware __read_mostly = true;
    133module_param(auto_movable_numa_aware, bool, 0644);
    134MODULE_PARM_DESC(auto_movable_numa_aware,
    135		"Consider numa node stats in addition to global stats in "
    136		"\"auto-movable\" online policy. Default: true");
    137#endif /* CONFIG_NUMA */
    138
    139/*
    140 * online_page_callback contains pointer to current page onlining function.
    141 * Initially it is generic_online_page(). If it is required it could be
    142 * changed by calling set_online_page_callback() for callback registration
    143 * and restore_online_page_callback() for generic callback restore.
    144 */
    145
    146static online_page_callback_t online_page_callback = generic_online_page;
    147static DEFINE_MUTEX(online_page_callback_lock);
    148
    149DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
    150
    151void get_online_mems(void)
    152{
    153	percpu_down_read(&mem_hotplug_lock);
    154}
    155
    156void put_online_mems(void)
    157{
    158	percpu_up_read(&mem_hotplug_lock);
    159}
    160
    161bool movable_node_enabled = false;
    162
    163#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
    164int mhp_default_online_type = MMOP_OFFLINE;
    165#else
    166int mhp_default_online_type = MMOP_ONLINE;
    167#endif
    168
    169static int __init setup_memhp_default_state(char *str)
    170{
    171	const int online_type = mhp_online_type_from_str(str);
    172
    173	if (online_type >= 0)
    174		mhp_default_online_type = online_type;
    175
    176	return 1;
    177}
    178__setup("memhp_default_state=", setup_memhp_default_state);
    179
    180void mem_hotplug_begin(void)
    181{
    182	cpus_read_lock();
    183	percpu_down_write(&mem_hotplug_lock);
    184}
    185
    186void mem_hotplug_done(void)
    187{
    188	percpu_up_write(&mem_hotplug_lock);
    189	cpus_read_unlock();
    190}
    191
    192u64 max_mem_size = U64_MAX;
    193
    194/* add this memory to iomem resource */
    195static struct resource *register_memory_resource(u64 start, u64 size,
    196						 const char *resource_name)
    197{
    198	struct resource *res;
    199	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
    200
    201	if (strcmp(resource_name, "System RAM"))
    202		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
    203
    204	if (!mhp_range_allowed(start, size, true))
    205		return ERR_PTR(-E2BIG);
    206
    207	/*
    208	 * Make sure value parsed from 'mem=' only restricts memory adding
    209	 * while booting, so that memory hotplug won't be impacted. Please
    210	 * refer to document of 'mem=' in kernel-parameters.txt for more
    211	 * details.
    212	 */
    213	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
    214		return ERR_PTR(-E2BIG);
    215
    216	/*
    217	 * Request ownership of the new memory range.  This might be
    218	 * a child of an existing resource that was present but
    219	 * not marked as busy.
    220	 */
    221	res = __request_region(&iomem_resource, start, size,
    222			       resource_name, flags);
    223
    224	if (!res) {
    225		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
    226				start, start + size);
    227		return ERR_PTR(-EEXIST);
    228	}
    229	return res;
    230}
    231
    232static void release_memory_resource(struct resource *res)
    233{
    234	if (!res)
    235		return;
    236	release_resource(res);
    237	kfree(res);
    238}
    239
    240static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
    241		const char *reason)
    242{
    243	/*
    244	 * Disallow all operations smaller than a sub-section and only
    245	 * allow operations smaller than a section for
    246	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
    247	 * enforces a larger memory_block_size_bytes() granularity for
    248	 * memory that will be marked online, so this check should only
    249	 * fire for direct arch_{add,remove}_memory() users outside of
    250	 * add_memory_resource().
    251	 */
    252	unsigned long min_align;
    253
    254	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
    255		min_align = PAGES_PER_SUBSECTION;
    256	else
    257		min_align = PAGES_PER_SECTION;
    258	if (!IS_ALIGNED(pfn, min_align)
    259			|| !IS_ALIGNED(nr_pages, min_align)) {
    260		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
    261				reason, pfn, pfn + nr_pages - 1);
    262		return -EINVAL;
    263	}
    264	return 0;
    265}
    266
    267/*
    268 * Return page for the valid pfn only if the page is online. All pfn
    269 * walkers which rely on the fully initialized page->flags and others
    270 * should use this rather than pfn_valid && pfn_to_page
    271 */
    272struct page *pfn_to_online_page(unsigned long pfn)
    273{
    274	unsigned long nr = pfn_to_section_nr(pfn);
    275	struct dev_pagemap *pgmap;
    276	struct mem_section *ms;
    277
    278	if (nr >= NR_MEM_SECTIONS)
    279		return NULL;
    280
    281	ms = __nr_to_section(nr);
    282	if (!online_section(ms))
    283		return NULL;
    284
    285	/*
    286	 * Save some code text when online_section() +
    287	 * pfn_section_valid() are sufficient.
    288	 */
    289	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
    290		return NULL;
    291
    292	if (!pfn_section_valid(ms, pfn))
    293		return NULL;
    294
    295	if (!online_device_section(ms))
    296		return pfn_to_page(pfn);
    297
    298	/*
    299	 * Slowpath: when ZONE_DEVICE collides with
    300	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
    301	 * the section may be 'offline' but 'valid'. Only
    302	 * get_dev_pagemap() can determine sub-section online status.
    303	 */
    304	pgmap = get_dev_pagemap(pfn, NULL);
    305	put_dev_pagemap(pgmap);
    306
    307	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
    308	if (pgmap)
    309		return NULL;
    310
    311	return pfn_to_page(pfn);
    312}
    313EXPORT_SYMBOL_GPL(pfn_to_online_page);
    314
    315int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
    316		struct mhp_params *params)
    317{
    318	const unsigned long end_pfn = pfn + nr_pages;
    319	unsigned long cur_nr_pages;
    320	int err;
    321	struct vmem_altmap *altmap = params->altmap;
    322
    323	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
    324		return -EINVAL;
    325
    326	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
    327
    328	if (altmap) {
    329		/*
    330		 * Validate altmap is within bounds of the total request
    331		 */
    332		if (altmap->base_pfn != pfn
    333				|| vmem_altmap_offset(altmap) > nr_pages) {
    334			pr_warn_once("memory add fail, invalid altmap\n");
    335			return -EINVAL;
    336		}
    337		altmap->alloc = 0;
    338	}
    339
    340	err = check_pfn_span(pfn, nr_pages, "add");
    341	if (err)
    342		return err;
    343
    344	for (; pfn < end_pfn; pfn += cur_nr_pages) {
    345		/* Select all remaining pages up to the next section boundary */
    346		cur_nr_pages = min(end_pfn - pfn,
    347				   SECTION_ALIGN_UP(pfn + 1) - pfn);
    348		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
    349					 params->pgmap);
    350		if (err)
    351			break;
    352		cond_resched();
    353	}
    354	vmemmap_populate_print_last();
    355	return err;
    356}
    357
    358/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
    359static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
    360				     unsigned long start_pfn,
    361				     unsigned long end_pfn)
    362{
    363	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
    364		if (unlikely(!pfn_to_online_page(start_pfn)))
    365			continue;
    366
    367		if (unlikely(pfn_to_nid(start_pfn) != nid))
    368			continue;
    369
    370		if (zone != page_zone(pfn_to_page(start_pfn)))
    371			continue;
    372
    373		return start_pfn;
    374	}
    375
    376	return 0;
    377}
    378
    379/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
    380static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
    381				    unsigned long start_pfn,
    382				    unsigned long end_pfn)
    383{
    384	unsigned long pfn;
    385
    386	/* pfn is the end pfn of a memory section. */
    387	pfn = end_pfn - 1;
    388	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
    389		if (unlikely(!pfn_to_online_page(pfn)))
    390			continue;
    391
    392		if (unlikely(pfn_to_nid(pfn) != nid))
    393			continue;
    394
    395		if (zone != page_zone(pfn_to_page(pfn)))
    396			continue;
    397
    398		return pfn;
    399	}
    400
    401	return 0;
    402}
    403
    404static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
    405			     unsigned long end_pfn)
    406{
    407	unsigned long pfn;
    408	int nid = zone_to_nid(zone);
    409
    410	if (zone->zone_start_pfn == start_pfn) {
    411		/*
    412		 * If the section is smallest section in the zone, it need
    413		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
    414		 * In this case, we find second smallest valid mem_section
    415		 * for shrinking zone.
    416		 */
    417		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
    418						zone_end_pfn(zone));
    419		if (pfn) {
    420			zone->spanned_pages = zone_end_pfn(zone) - pfn;
    421			zone->zone_start_pfn = pfn;
    422		} else {
    423			zone->zone_start_pfn = 0;
    424			zone->spanned_pages = 0;
    425		}
    426	} else if (zone_end_pfn(zone) == end_pfn) {
    427		/*
    428		 * If the section is biggest section in the zone, it need
    429		 * shrink zone->spanned_pages.
    430		 * In this case, we find second biggest valid mem_section for
    431		 * shrinking zone.
    432		 */
    433		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
    434					       start_pfn);
    435		if (pfn)
    436			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
    437		else {
    438			zone->zone_start_pfn = 0;
    439			zone->spanned_pages = 0;
    440		}
    441	}
    442}
    443
    444static void update_pgdat_span(struct pglist_data *pgdat)
    445{
    446	unsigned long node_start_pfn = 0, node_end_pfn = 0;
    447	struct zone *zone;
    448
    449	for (zone = pgdat->node_zones;
    450	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
    451		unsigned long end_pfn = zone_end_pfn(zone);
    452
    453		/* No need to lock the zones, they can't change. */
    454		if (!zone->spanned_pages)
    455			continue;
    456		if (!node_end_pfn) {
    457			node_start_pfn = zone->zone_start_pfn;
    458			node_end_pfn = end_pfn;
    459			continue;
    460		}
    461
    462		if (end_pfn > node_end_pfn)
    463			node_end_pfn = end_pfn;
    464		if (zone->zone_start_pfn < node_start_pfn)
    465			node_start_pfn = zone->zone_start_pfn;
    466	}
    467
    468	pgdat->node_start_pfn = node_start_pfn;
    469	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
    470}
    471
    472void __ref remove_pfn_range_from_zone(struct zone *zone,
    473				      unsigned long start_pfn,
    474				      unsigned long nr_pages)
    475{
    476	const unsigned long end_pfn = start_pfn + nr_pages;
    477	struct pglist_data *pgdat = zone->zone_pgdat;
    478	unsigned long pfn, cur_nr_pages;
    479
    480	/* Poison struct pages because they are now uninitialized again. */
    481	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
    482		cond_resched();
    483
    484		/* Select all remaining pages up to the next section boundary */
    485		cur_nr_pages =
    486			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
    487		page_init_poison(pfn_to_page(pfn),
    488				 sizeof(struct page) * cur_nr_pages);
    489	}
    490
    491	/*
    492	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
    493	 * we will not try to shrink the zones - which is okay as
    494	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
    495	 */
    496	if (zone_is_zone_device(zone))
    497		return;
    498
    499	clear_zone_contiguous(zone);
    500
    501	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
    502	update_pgdat_span(pgdat);
    503
    504	set_zone_contiguous(zone);
    505}
    506
    507static void __remove_section(unsigned long pfn, unsigned long nr_pages,
    508			     unsigned long map_offset,
    509			     struct vmem_altmap *altmap)
    510{
    511	struct mem_section *ms = __pfn_to_section(pfn);
    512
    513	if (WARN_ON_ONCE(!valid_section(ms)))
    514		return;
    515
    516	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
    517}
    518
    519/**
    520 * __remove_pages() - remove sections of pages
    521 * @pfn: starting pageframe (must be aligned to start of a section)
    522 * @nr_pages: number of pages to remove (must be multiple of section size)
    523 * @altmap: alternative device page map or %NULL if default memmap is used
    524 *
    525 * Generic helper function to remove section mappings and sysfs entries
    526 * for the section of the memory we are removing. Caller needs to make
    527 * sure that pages are marked reserved and zones are adjust properly by
    528 * calling offline_pages().
    529 */
    530void __remove_pages(unsigned long pfn, unsigned long nr_pages,
    531		    struct vmem_altmap *altmap)
    532{
    533	const unsigned long end_pfn = pfn + nr_pages;
    534	unsigned long cur_nr_pages;
    535	unsigned long map_offset = 0;
    536
    537	map_offset = vmem_altmap_offset(altmap);
    538
    539	if (check_pfn_span(pfn, nr_pages, "remove"))
    540		return;
    541
    542	for (; pfn < end_pfn; pfn += cur_nr_pages) {
    543		cond_resched();
    544		/* Select all remaining pages up to the next section boundary */
    545		cur_nr_pages = min(end_pfn - pfn,
    546				   SECTION_ALIGN_UP(pfn + 1) - pfn);
    547		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
    548		map_offset = 0;
    549	}
    550}
    551
    552int set_online_page_callback(online_page_callback_t callback)
    553{
    554	int rc = -EINVAL;
    555
    556	get_online_mems();
    557	mutex_lock(&online_page_callback_lock);
    558
    559	if (online_page_callback == generic_online_page) {
    560		online_page_callback = callback;
    561		rc = 0;
    562	}
    563
    564	mutex_unlock(&online_page_callback_lock);
    565	put_online_mems();
    566
    567	return rc;
    568}
    569EXPORT_SYMBOL_GPL(set_online_page_callback);
    570
    571int restore_online_page_callback(online_page_callback_t callback)
    572{
    573	int rc = -EINVAL;
    574
    575	get_online_mems();
    576	mutex_lock(&online_page_callback_lock);
    577
    578	if (online_page_callback == callback) {
    579		online_page_callback = generic_online_page;
    580		rc = 0;
    581	}
    582
    583	mutex_unlock(&online_page_callback_lock);
    584	put_online_mems();
    585
    586	return rc;
    587}
    588EXPORT_SYMBOL_GPL(restore_online_page_callback);
    589
    590void generic_online_page(struct page *page, unsigned int order)
    591{
    592	/*
    593	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
    594	 * so we should map it first. This is better than introducing a special
    595	 * case in page freeing fast path.
    596	 */
    597	debug_pagealloc_map_pages(page, 1 << order);
    598	__free_pages_core(page, order);
    599	totalram_pages_add(1UL << order);
    600}
    601EXPORT_SYMBOL_GPL(generic_online_page);
    602
    603static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
    604{
    605	const unsigned long end_pfn = start_pfn + nr_pages;
    606	unsigned long pfn;
    607
    608	/*
    609	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
    610	 * decide to not expose all pages to the buddy (e.g., expose them
    611	 * later). We account all pages as being online and belonging to this
    612	 * zone ("present").
    613	 * When using memmap_on_memory, the range might not be aligned to
    614	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
    615	 * this and the first chunk to online will be pageblock_nr_pages.
    616	 */
    617	for (pfn = start_pfn; pfn < end_pfn;) {
    618		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
    619
    620		(*online_page_callback)(pfn_to_page(pfn), order);
    621		pfn += (1UL << order);
    622	}
    623
    624	/* mark all involved sections as online */
    625	online_mem_sections(start_pfn, end_pfn);
    626}
    627
    628/* check which state of node_states will be changed when online memory */
    629static void node_states_check_changes_online(unsigned long nr_pages,
    630	struct zone *zone, struct memory_notify *arg)
    631{
    632	int nid = zone_to_nid(zone);
    633
    634	arg->status_change_nid = NUMA_NO_NODE;
    635	arg->status_change_nid_normal = NUMA_NO_NODE;
    636
    637	if (!node_state(nid, N_MEMORY))
    638		arg->status_change_nid = nid;
    639	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
    640		arg->status_change_nid_normal = nid;
    641}
    642
    643static void node_states_set_node(int node, struct memory_notify *arg)
    644{
    645	if (arg->status_change_nid_normal >= 0)
    646		node_set_state(node, N_NORMAL_MEMORY);
    647
    648	if (arg->status_change_nid >= 0)
    649		node_set_state(node, N_MEMORY);
    650}
    651
    652static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
    653		unsigned long nr_pages)
    654{
    655	unsigned long old_end_pfn = zone_end_pfn(zone);
    656
    657	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
    658		zone->zone_start_pfn = start_pfn;
    659
    660	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
    661}
    662
    663static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
    664                                     unsigned long nr_pages)
    665{
    666	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
    667
    668	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
    669		pgdat->node_start_pfn = start_pfn;
    670
    671	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
    672
    673}
    674
    675static void section_taint_zone_device(unsigned long pfn)
    676{
    677	struct mem_section *ms = __pfn_to_section(pfn);
    678
    679	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
    680}
    681
    682/*
    683 * Associate the pfn range with the given zone, initializing the memmaps
    684 * and resizing the pgdat/zone data to span the added pages. After this
    685 * call, all affected pages are PG_reserved.
    686 *
    687 * All aligned pageblocks are initialized to the specified migratetype
    688 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
    689 * zone stats (e.g., nr_isolate_pageblock) are touched.
    690 */
    691void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
    692				  unsigned long nr_pages,
    693				  struct vmem_altmap *altmap, int migratetype)
    694{
    695	struct pglist_data *pgdat = zone->zone_pgdat;
    696	int nid = pgdat->node_id;
    697
    698	clear_zone_contiguous(zone);
    699
    700	if (zone_is_empty(zone))
    701		init_currently_empty_zone(zone, start_pfn, nr_pages);
    702	resize_zone_range(zone, start_pfn, nr_pages);
    703	resize_pgdat_range(pgdat, start_pfn, nr_pages);
    704
    705	/*
    706	 * Subsection population requires care in pfn_to_online_page().
    707	 * Set the taint to enable the slow path detection of
    708	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
    709	 * section.
    710	 */
    711	if (zone_is_zone_device(zone)) {
    712		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
    713			section_taint_zone_device(start_pfn);
    714		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
    715			section_taint_zone_device(start_pfn + nr_pages);
    716	}
    717
    718	/*
    719	 * TODO now we have a visible range of pages which are not associated
    720	 * with their zone properly. Not nice but set_pfnblock_flags_mask
    721	 * expects the zone spans the pfn range. All the pages in the range
    722	 * are reserved so nobody should be touching them so we should be safe
    723	 */
    724	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
    725			 MEMINIT_HOTPLUG, altmap, migratetype);
    726
    727	set_zone_contiguous(zone);
    728}
    729
    730struct auto_movable_stats {
    731	unsigned long kernel_early_pages;
    732	unsigned long movable_pages;
    733};
    734
    735static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
    736					    struct zone *zone)
    737{
    738	if (zone_idx(zone) == ZONE_MOVABLE) {
    739		stats->movable_pages += zone->present_pages;
    740	} else {
    741		stats->kernel_early_pages += zone->present_early_pages;
    742#ifdef CONFIG_CMA
    743		/*
    744		 * CMA pages (never on hotplugged memory) behave like
    745		 * ZONE_MOVABLE.
    746		 */
    747		stats->movable_pages += zone->cma_pages;
    748		stats->kernel_early_pages -= zone->cma_pages;
    749#endif /* CONFIG_CMA */
    750	}
    751}
    752struct auto_movable_group_stats {
    753	unsigned long movable_pages;
    754	unsigned long req_kernel_early_pages;
    755};
    756
    757static int auto_movable_stats_account_group(struct memory_group *group,
    758					   void *arg)
    759{
    760	const int ratio = READ_ONCE(auto_movable_ratio);
    761	struct auto_movable_group_stats *stats = arg;
    762	long pages;
    763
    764	/*
    765	 * We don't support modifying the config while the auto-movable online
    766	 * policy is already enabled. Just avoid the division by zero below.
    767	 */
    768	if (!ratio)
    769		return 0;
    770
    771	/*
    772	 * Calculate how many early kernel pages this group requires to
    773	 * satisfy the configured zone ratio.
    774	 */
    775	pages = group->present_movable_pages * 100 / ratio;
    776	pages -= group->present_kernel_pages;
    777
    778	if (pages > 0)
    779		stats->req_kernel_early_pages += pages;
    780	stats->movable_pages += group->present_movable_pages;
    781	return 0;
    782}
    783
    784static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
    785					    unsigned long nr_pages)
    786{
    787	unsigned long kernel_early_pages, movable_pages;
    788	struct auto_movable_group_stats group_stats = {};
    789	struct auto_movable_stats stats = {};
    790	pg_data_t *pgdat = NODE_DATA(nid);
    791	struct zone *zone;
    792	int i;
    793
    794	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
    795	if (nid == NUMA_NO_NODE) {
    796		/* TODO: cache values */
    797		for_each_populated_zone(zone)
    798			auto_movable_stats_account_zone(&stats, zone);
    799	} else {
    800		for (i = 0; i < MAX_NR_ZONES; i++) {
    801			zone = pgdat->node_zones + i;
    802			if (populated_zone(zone))
    803				auto_movable_stats_account_zone(&stats, zone);
    804		}
    805	}
    806
    807	kernel_early_pages = stats.kernel_early_pages;
    808	movable_pages = stats.movable_pages;
    809
    810	/*
    811	 * Kernel memory inside dynamic memory group allows for more MOVABLE
    812	 * memory within the same group. Remove the effect of all but the
    813	 * current group from the stats.
    814	 */
    815	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
    816				   group, &group_stats);
    817	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
    818		return false;
    819	kernel_early_pages -= group_stats.req_kernel_early_pages;
    820	movable_pages -= group_stats.movable_pages;
    821
    822	if (group && group->is_dynamic)
    823		kernel_early_pages += group->present_kernel_pages;
    824
    825	/*
    826	 * Test if we could online the given number of pages to ZONE_MOVABLE
    827	 * and still stay in the configured ratio.
    828	 */
    829	movable_pages += nr_pages;
    830	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
    831}
    832
    833/*
    834 * Returns a default kernel memory zone for the given pfn range.
    835 * If no kernel zone covers this pfn range it will automatically go
    836 * to the ZONE_NORMAL.
    837 */
    838static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
    839		unsigned long nr_pages)
    840{
    841	struct pglist_data *pgdat = NODE_DATA(nid);
    842	int zid;
    843
    844	for (zid = 0; zid < ZONE_NORMAL; zid++) {
    845		struct zone *zone = &pgdat->node_zones[zid];
    846
    847		if (zone_intersects(zone, start_pfn, nr_pages))
    848			return zone;
    849	}
    850
    851	return &pgdat->node_zones[ZONE_NORMAL];
    852}
    853
    854/*
    855 * Determine to which zone to online memory dynamically based on user
    856 * configuration and system stats. We care about the following ratio:
    857 *
    858 *   MOVABLE : KERNEL
    859 *
    860 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
    861 * one of the kernel zones. CMA pages inside one of the kernel zones really
    862 * behaves like ZONE_MOVABLE, so we treat them accordingly.
    863 *
    864 * We don't allow for hotplugged memory in a KERNEL zone to increase the
    865 * amount of MOVABLE memory we can have, so we end up with:
    866 *
    867 *   MOVABLE : KERNEL_EARLY
    868 *
    869 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
    870 * boot. We base our calculation on KERNEL_EARLY internally, because:
    871 *
    872 * a) Hotplugged memory in one of the kernel zones can sometimes still get
    873 *    hotunplugged, especially when hot(un)plugging individual memory blocks.
    874 *    There is no coordination across memory devices, therefore "automatic"
    875 *    hotunplugging, as implemented in hypervisors, could result in zone
    876 *    imbalances.
    877 * b) Early/boot memory in one of the kernel zones can usually not get
    878 *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
    879 *    with unmovable allocations). While there are corner cases where it might
    880 *    still work, it is barely relevant in practice.
    881 *
    882 * Exceptions are dynamic memory groups, which allow for more MOVABLE
    883 * memory within the same memory group -- because in that case, there is
    884 * coordination within the single memory device managed by a single driver.
    885 *
    886 * We rely on "present pages" instead of "managed pages", as the latter is
    887 * highly unreliable and dynamic in virtualized environments, and does not
    888 * consider boot time allocations. For example, memory ballooning adjusts the
    889 * managed pages when inflating/deflating the balloon, and balloon compaction
    890 * can even migrate inflated pages between zones.
    891 *
    892 * Using "present pages" is better but some things to keep in mind are:
    893 *
    894 * a) Some memblock allocations, such as for the crashkernel area, are
    895 *    effectively unused by the kernel, yet they account to "present pages".
    896 *    Fortunately, these allocations are comparatively small in relevant setups
    897 *    (e.g., fraction of system memory).
    898 * b) Some hotplugged memory blocks in virtualized environments, esecially
    899 *    hotplugged by virtio-mem, look like they are completely present, however,
    900 *    only parts of the memory block are actually currently usable.
    901 *    "present pages" is an upper limit that can get reached at runtime. As
    902 *    we base our calculations on KERNEL_EARLY, this is not an issue.
    903 */
    904static struct zone *auto_movable_zone_for_pfn(int nid,
    905					      struct memory_group *group,
    906					      unsigned long pfn,
    907					      unsigned long nr_pages)
    908{
    909	unsigned long online_pages = 0, max_pages, end_pfn;
    910	struct page *page;
    911
    912	if (!auto_movable_ratio)
    913		goto kernel_zone;
    914
    915	if (group && !group->is_dynamic) {
    916		max_pages = group->s.max_pages;
    917		online_pages = group->present_movable_pages;
    918
    919		/* If anything is !MOVABLE online the rest !MOVABLE. */
    920		if (group->present_kernel_pages)
    921			goto kernel_zone;
    922	} else if (!group || group->d.unit_pages == nr_pages) {
    923		max_pages = nr_pages;
    924	} else {
    925		max_pages = group->d.unit_pages;
    926		/*
    927		 * Take a look at all online sections in the current unit.
    928		 * We can safely assume that all pages within a section belong
    929		 * to the same zone, because dynamic memory groups only deal
    930		 * with hotplugged memory.
    931		 */
    932		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
    933		end_pfn = pfn + group->d.unit_pages;
    934		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
    935			page = pfn_to_online_page(pfn);
    936			if (!page)
    937				continue;
    938			/* If anything is !MOVABLE online the rest !MOVABLE. */
    939			if (page_zonenum(page) != ZONE_MOVABLE)
    940				goto kernel_zone;
    941			online_pages += PAGES_PER_SECTION;
    942		}
    943	}
    944
    945	/*
    946	 * Online MOVABLE if we could *currently* online all remaining parts
    947	 * MOVABLE. We expect to (add+) online them immediately next, so if
    948	 * nobody interferes, all will be MOVABLE if possible.
    949	 */
    950	nr_pages = max_pages - online_pages;
    951	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
    952		goto kernel_zone;
    953
    954#ifdef CONFIG_NUMA
    955	if (auto_movable_numa_aware &&
    956	    !auto_movable_can_online_movable(nid, group, nr_pages))
    957		goto kernel_zone;
    958#endif /* CONFIG_NUMA */
    959
    960	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
    961kernel_zone:
    962	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
    963}
    964
    965static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
    966		unsigned long nr_pages)
    967{
    968	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
    969			nr_pages);
    970	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
    971	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
    972	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
    973
    974	/*
    975	 * We inherit the existing zone in a simple case where zones do not
    976	 * overlap in the given range
    977	 */
    978	if (in_kernel ^ in_movable)
    979		return (in_kernel) ? kernel_zone : movable_zone;
    980
    981	/*
    982	 * If the range doesn't belong to any zone or two zones overlap in the
    983	 * given range then we use movable zone only if movable_node is
    984	 * enabled because we always online to a kernel zone by default.
    985	 */
    986	return movable_node_enabled ? movable_zone : kernel_zone;
    987}
    988
    989struct zone *zone_for_pfn_range(int online_type, int nid,
    990		struct memory_group *group, unsigned long start_pfn,
    991		unsigned long nr_pages)
    992{
    993	if (online_type == MMOP_ONLINE_KERNEL)
    994		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
    995
    996	if (online_type == MMOP_ONLINE_MOVABLE)
    997		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
    998
    999	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
   1000		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
   1001
   1002	return default_zone_for_pfn(nid, start_pfn, nr_pages);
   1003}
   1004
   1005/*
   1006 * This function should only be called by memory_block_{online,offline},
   1007 * and {online,offline}_pages.
   1008 */
   1009void adjust_present_page_count(struct page *page, struct memory_group *group,
   1010			       long nr_pages)
   1011{
   1012	struct zone *zone = page_zone(page);
   1013	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
   1014
   1015	/*
   1016	 * We only support onlining/offlining/adding/removing of complete
   1017	 * memory blocks; therefore, either all is either early or hotplugged.
   1018	 */
   1019	if (early_section(__pfn_to_section(page_to_pfn(page))))
   1020		zone->present_early_pages += nr_pages;
   1021	zone->present_pages += nr_pages;
   1022	zone->zone_pgdat->node_present_pages += nr_pages;
   1023
   1024	if (group && movable)
   1025		group->present_movable_pages += nr_pages;
   1026	else if (group && !movable)
   1027		group->present_kernel_pages += nr_pages;
   1028}
   1029
   1030int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
   1031			      struct zone *zone)
   1032{
   1033	unsigned long end_pfn = pfn + nr_pages;
   1034	int ret;
   1035
   1036	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
   1037	if (ret)
   1038		return ret;
   1039
   1040	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
   1041
   1042	/*
   1043	 * It might be that the vmemmap_pages fully span sections. If that is
   1044	 * the case, mark those sections online here as otherwise they will be
   1045	 * left offline.
   1046	 */
   1047	if (nr_pages >= PAGES_PER_SECTION)
   1048	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
   1049
   1050	return ret;
   1051}
   1052
   1053void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
   1054{
   1055	unsigned long end_pfn = pfn + nr_pages;
   1056
   1057	/*
   1058	 * It might be that the vmemmap_pages fully span sections. If that is
   1059	 * the case, mark those sections offline here as otherwise they will be
   1060	 * left online.
   1061	 */
   1062	if (nr_pages >= PAGES_PER_SECTION)
   1063		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
   1064
   1065        /*
   1066	 * The pages associated with this vmemmap have been offlined, so
   1067	 * we can reset its state here.
   1068	 */
   1069	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
   1070	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
   1071}
   1072
   1073int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
   1074		       struct zone *zone, struct memory_group *group)
   1075{
   1076	unsigned long flags;
   1077	int need_zonelists_rebuild = 0;
   1078	const int nid = zone_to_nid(zone);
   1079	int ret;
   1080	struct memory_notify arg;
   1081
   1082	/*
   1083	 * {on,off}lining is constrained to full memory sections (or more
   1084	 * precisely to memory blocks from the user space POV).
   1085	 * memmap_on_memory is an exception because it reserves initial part
   1086	 * of the physical memory space for vmemmaps. That space is pageblock
   1087	 * aligned.
   1088	 */
   1089	if (WARN_ON_ONCE(!nr_pages ||
   1090			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
   1091			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
   1092		return -EINVAL;
   1093
   1094	mem_hotplug_begin();
   1095
   1096	/* associate pfn range with the zone */
   1097	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
   1098
   1099	arg.start_pfn = pfn;
   1100	arg.nr_pages = nr_pages;
   1101	node_states_check_changes_online(nr_pages, zone, &arg);
   1102
   1103	ret = memory_notify(MEM_GOING_ONLINE, &arg);
   1104	ret = notifier_to_errno(ret);
   1105	if (ret)
   1106		goto failed_addition;
   1107
   1108	/*
   1109	 * Fixup the number of isolated pageblocks before marking the sections
   1110	 * onlining, such that undo_isolate_page_range() works correctly.
   1111	 */
   1112	spin_lock_irqsave(&zone->lock, flags);
   1113	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
   1114	spin_unlock_irqrestore(&zone->lock, flags);
   1115
   1116	/*
   1117	 * If this zone is not populated, then it is not in zonelist.
   1118	 * This means the page allocator ignores this zone.
   1119	 * So, zonelist must be updated after online.
   1120	 */
   1121	if (!populated_zone(zone)) {
   1122		need_zonelists_rebuild = 1;
   1123		setup_zone_pageset(zone);
   1124	}
   1125
   1126	online_pages_range(pfn, nr_pages);
   1127	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
   1128
   1129	node_states_set_node(nid, &arg);
   1130	if (need_zonelists_rebuild)
   1131		build_all_zonelists(NULL);
   1132
   1133	/* Basic onlining is complete, allow allocation of onlined pages. */
   1134	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
   1135
   1136	/*
   1137	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
   1138	 * the tail of the freelist when undoing isolation). Shuffle the whole
   1139	 * zone to make sure the just onlined pages are properly distributed
   1140	 * across the whole freelist - to create an initial shuffle.
   1141	 */
   1142	shuffle_zone(zone);
   1143
   1144	/* reinitialise watermarks and update pcp limits */
   1145	init_per_zone_wmark_min();
   1146
   1147	kswapd_run(nid);
   1148	kcompactd_run(nid);
   1149
   1150	writeback_set_ratelimit();
   1151
   1152	memory_notify(MEM_ONLINE, &arg);
   1153	mem_hotplug_done();
   1154	return 0;
   1155
   1156failed_addition:
   1157	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
   1158		 (unsigned long long) pfn << PAGE_SHIFT,
   1159		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
   1160	memory_notify(MEM_CANCEL_ONLINE, &arg);
   1161	remove_pfn_range_from_zone(zone, pfn, nr_pages);
   1162	mem_hotplug_done();
   1163	return ret;
   1164}
   1165
   1166static void reset_node_present_pages(pg_data_t *pgdat)
   1167{
   1168	struct zone *z;
   1169
   1170	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
   1171		z->present_pages = 0;
   1172
   1173	pgdat->node_present_pages = 0;
   1174}
   1175
   1176/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
   1177static pg_data_t __ref *hotadd_init_pgdat(int nid)
   1178{
   1179	struct pglist_data *pgdat;
   1180
   1181	/*
   1182	 * NODE_DATA is preallocated (free_area_init) but its internal
   1183	 * state is not allocated completely. Add missing pieces.
   1184	 * Completely offline nodes stay around and they just need
   1185	 * reintialization.
   1186	 */
   1187	pgdat = NODE_DATA(nid);
   1188
   1189	/* init node's zones as empty zones, we don't have any present pages.*/
   1190	free_area_init_core_hotplug(pgdat);
   1191
   1192	/*
   1193	 * The node we allocated has no zone fallback lists. For avoiding
   1194	 * to access not-initialized zonelist, build here.
   1195	 */
   1196	build_all_zonelists(pgdat);
   1197
   1198	/*
   1199	 * When memory is hot-added, all the memory is in offline state. So
   1200	 * clear all zones' present_pages because they will be updated in
   1201	 * online_pages() and offline_pages().
   1202	 * TODO: should be in free_area_init_core_hotplug?
   1203	 */
   1204	reset_node_managed_pages(pgdat);
   1205	reset_node_present_pages(pgdat);
   1206
   1207	return pgdat;
   1208}
   1209
   1210/*
   1211 * __try_online_node - online a node if offlined
   1212 * @nid: the node ID
   1213 * @set_node_online: Whether we want to online the node
   1214 * called by cpu_up() to online a node without onlined memory.
   1215 *
   1216 * Returns:
   1217 * 1 -> a new node has been allocated
   1218 * 0 -> the node is already online
   1219 * -ENOMEM -> the node could not be allocated
   1220 */
   1221static int __try_online_node(int nid, bool set_node_online)
   1222{
   1223	pg_data_t *pgdat;
   1224	int ret = 1;
   1225
   1226	if (node_online(nid))
   1227		return 0;
   1228
   1229	pgdat = hotadd_init_pgdat(nid);
   1230	if (!pgdat) {
   1231		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
   1232		ret = -ENOMEM;
   1233		goto out;
   1234	}
   1235
   1236	if (set_node_online) {
   1237		node_set_online(nid);
   1238		ret = register_one_node(nid);
   1239		BUG_ON(ret);
   1240	}
   1241out:
   1242	return ret;
   1243}
   1244
   1245/*
   1246 * Users of this function always want to online/register the node
   1247 */
   1248int try_online_node(int nid)
   1249{
   1250	int ret;
   1251
   1252	mem_hotplug_begin();
   1253	ret =  __try_online_node(nid, true);
   1254	mem_hotplug_done();
   1255	return ret;
   1256}
   1257
   1258static int check_hotplug_memory_range(u64 start, u64 size)
   1259{
   1260	/* memory range must be block size aligned */
   1261	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
   1262	    !IS_ALIGNED(size, memory_block_size_bytes())) {
   1263		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
   1264		       memory_block_size_bytes(), start, size);
   1265		return -EINVAL;
   1266	}
   1267
   1268	return 0;
   1269}
   1270
   1271static int online_memory_block(struct memory_block *mem, void *arg)
   1272{
   1273	mem->online_type = mhp_default_online_type;
   1274	return device_online(&mem->dev);
   1275}
   1276
   1277bool mhp_supports_memmap_on_memory(unsigned long size)
   1278{
   1279	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
   1280	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
   1281	unsigned long remaining_size = size - vmemmap_size;
   1282
   1283	/*
   1284	 * Besides having arch support and the feature enabled at runtime, we
   1285	 * need a few more assumptions to hold true:
   1286	 *
   1287	 * a) We span a single memory block: memory onlining/offlinin;g happens
   1288	 *    in memory block granularity. We don't want the vmemmap of online
   1289	 *    memory blocks to reside on offline memory blocks. In the future,
   1290	 *    we might want to support variable-sized memory blocks to make the
   1291	 *    feature more versatile.
   1292	 *
   1293	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
   1294	 *    to populate memory from the altmap for unrelated parts (i.e.,
   1295	 *    other memory blocks)
   1296	 *
   1297	 * c) The vmemmap pages (and thereby the pages that will be exposed to
   1298	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
   1299	 *    code requires applicable ranges to be page-aligned, for example, to
   1300	 *    set the migratetypes properly.
   1301	 *
   1302	 * TODO: Although we have a check here to make sure that vmemmap pages
   1303	 *       fully populate a PMD, it is not the right place to check for
   1304	 *       this. A much better solution involves improving vmemmap code
   1305	 *       to fallback to base pages when trying to populate vmemmap using
   1306	 *       altmap as an alternative source of memory, and we do not exactly
   1307	 *       populate a single PMD.
   1308	 */
   1309	return mhp_memmap_on_memory() &&
   1310	       size == memory_block_size_bytes() &&
   1311	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
   1312	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
   1313}
   1314
   1315/*
   1316 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
   1317 * and online/offline operations (triggered e.g. by sysfs).
   1318 *
   1319 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
   1320 */
   1321int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
   1322{
   1323	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
   1324	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
   1325	struct vmem_altmap mhp_altmap = {};
   1326	struct memory_group *group = NULL;
   1327	u64 start, size;
   1328	bool new_node = false;
   1329	int ret;
   1330
   1331	start = res->start;
   1332	size = resource_size(res);
   1333
   1334	ret = check_hotplug_memory_range(start, size);
   1335	if (ret)
   1336		return ret;
   1337
   1338	if (mhp_flags & MHP_NID_IS_MGID) {
   1339		group = memory_group_find_by_id(nid);
   1340		if (!group)
   1341			return -EINVAL;
   1342		nid = group->nid;
   1343	}
   1344
   1345	if (!node_possible(nid)) {
   1346		WARN(1, "node %d was absent from the node_possible_map\n", nid);
   1347		return -EINVAL;
   1348	}
   1349
   1350	mem_hotplug_begin();
   1351
   1352	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
   1353		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
   1354			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
   1355		ret = memblock_add_node(start, size, nid, memblock_flags);
   1356		if (ret)
   1357			goto error_mem_hotplug_end;
   1358	}
   1359
   1360	ret = __try_online_node(nid, false);
   1361	if (ret < 0)
   1362		goto error;
   1363	new_node = ret;
   1364
   1365	/*
   1366	 * Self hosted memmap array
   1367	 */
   1368	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
   1369		if (!mhp_supports_memmap_on_memory(size)) {
   1370			ret = -EINVAL;
   1371			goto error;
   1372		}
   1373		mhp_altmap.free = PHYS_PFN(size);
   1374		mhp_altmap.base_pfn = PHYS_PFN(start);
   1375		params.altmap = &mhp_altmap;
   1376	}
   1377
   1378	/* call arch's memory hotadd */
   1379	ret = arch_add_memory(nid, start, size, &params);
   1380	if (ret < 0)
   1381		goto error;
   1382
   1383	/* create memory block devices after memory was added */
   1384	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
   1385					  group);
   1386	if (ret) {
   1387		arch_remove_memory(start, size, NULL);
   1388		goto error;
   1389	}
   1390
   1391	if (new_node) {
   1392		/* If sysfs file of new node can't be created, cpu on the node
   1393		 * can't be hot-added. There is no rollback way now.
   1394		 * So, check by BUG_ON() to catch it reluctantly..
   1395		 * We online node here. We can't roll back from here.
   1396		 */
   1397		node_set_online(nid);
   1398		ret = __register_one_node(nid);
   1399		BUG_ON(ret);
   1400	}
   1401
   1402	register_memory_blocks_under_node(nid, PFN_DOWN(start),
   1403					  PFN_UP(start + size - 1),
   1404					  MEMINIT_HOTPLUG);
   1405
   1406	/* create new memmap entry */
   1407	if (!strcmp(res->name, "System RAM"))
   1408		firmware_map_add_hotplug(start, start + size, "System RAM");
   1409
   1410	/* device_online() will take the lock when calling online_pages() */
   1411	mem_hotplug_done();
   1412
   1413	/*
   1414	 * In case we're allowed to merge the resource, flag it and trigger
   1415	 * merging now that adding succeeded.
   1416	 */
   1417	if (mhp_flags & MHP_MERGE_RESOURCE)
   1418		merge_system_ram_resource(res);
   1419
   1420	/* online pages if requested */
   1421	if (mhp_default_online_type != MMOP_OFFLINE)
   1422		walk_memory_blocks(start, size, NULL, online_memory_block);
   1423
   1424	return ret;
   1425error:
   1426	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
   1427		memblock_remove(start, size);
   1428error_mem_hotplug_end:
   1429	mem_hotplug_done();
   1430	return ret;
   1431}
   1432
   1433/* requires device_hotplug_lock, see add_memory_resource() */
   1434int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
   1435{
   1436	struct resource *res;
   1437	int ret;
   1438
   1439	res = register_memory_resource(start, size, "System RAM");
   1440	if (IS_ERR(res))
   1441		return PTR_ERR(res);
   1442
   1443	ret = add_memory_resource(nid, res, mhp_flags);
   1444	if (ret < 0)
   1445		release_memory_resource(res);
   1446	return ret;
   1447}
   1448
   1449int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
   1450{
   1451	int rc;
   1452
   1453	lock_device_hotplug();
   1454	rc = __add_memory(nid, start, size, mhp_flags);
   1455	unlock_device_hotplug();
   1456
   1457	return rc;
   1458}
   1459EXPORT_SYMBOL_GPL(add_memory);
   1460
   1461/*
   1462 * Add special, driver-managed memory to the system as system RAM. Such
   1463 * memory is not exposed via the raw firmware-provided memmap as system
   1464 * RAM, instead, it is detected and added by a driver - during cold boot,
   1465 * after a reboot, and after kexec.
   1466 *
   1467 * Reasons why this memory should not be used for the initial memmap of a
   1468 * kexec kernel or for placing kexec images:
   1469 * - The booting kernel is in charge of determining how this memory will be
   1470 *   used (e.g., use persistent memory as system RAM)
   1471 * - Coordination with a hypervisor is required before this memory
   1472 *   can be used (e.g., inaccessible parts).
   1473 *
   1474 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
   1475 * memory map") are created. Also, the created memory resource is flagged
   1476 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
   1477 * this memory as well (esp., not place kexec images onto it).
   1478 *
   1479 * The resource_name (visible via /proc/iomem) has to have the format
   1480 * "System RAM ($DRIVER)".
   1481 */
   1482int add_memory_driver_managed(int nid, u64 start, u64 size,
   1483			      const char *resource_name, mhp_t mhp_flags)
   1484{
   1485	struct resource *res;
   1486	int rc;
   1487
   1488	if (!resource_name ||
   1489	    strstr(resource_name, "System RAM (") != resource_name ||
   1490	    resource_name[strlen(resource_name) - 1] != ')')
   1491		return -EINVAL;
   1492
   1493	lock_device_hotplug();
   1494
   1495	res = register_memory_resource(start, size, resource_name);
   1496	if (IS_ERR(res)) {
   1497		rc = PTR_ERR(res);
   1498		goto out_unlock;
   1499	}
   1500
   1501	rc = add_memory_resource(nid, res, mhp_flags);
   1502	if (rc < 0)
   1503		release_memory_resource(res);
   1504
   1505out_unlock:
   1506	unlock_device_hotplug();
   1507	return rc;
   1508}
   1509EXPORT_SYMBOL_GPL(add_memory_driver_managed);
   1510
   1511/*
   1512 * Platforms should define arch_get_mappable_range() that provides
   1513 * maximum possible addressable physical memory range for which the
   1514 * linear mapping could be created. The platform returned address
   1515 * range must adhere to these following semantics.
   1516 *
   1517 * - range.start <= range.end
   1518 * - Range includes both end points [range.start..range.end]
   1519 *
   1520 * There is also a fallback definition provided here, allowing the
   1521 * entire possible physical address range in case any platform does
   1522 * not define arch_get_mappable_range().
   1523 */
   1524struct range __weak arch_get_mappable_range(void)
   1525{
   1526	struct range mhp_range = {
   1527		.start = 0UL,
   1528		.end = -1ULL,
   1529	};
   1530	return mhp_range;
   1531}
   1532
   1533struct range mhp_get_pluggable_range(bool need_mapping)
   1534{
   1535	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
   1536	struct range mhp_range;
   1537
   1538	if (need_mapping) {
   1539		mhp_range = arch_get_mappable_range();
   1540		if (mhp_range.start > max_phys) {
   1541			mhp_range.start = 0;
   1542			mhp_range.end = 0;
   1543		}
   1544		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
   1545	} else {
   1546		mhp_range.start = 0;
   1547		mhp_range.end = max_phys;
   1548	}
   1549	return mhp_range;
   1550}
   1551EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
   1552
   1553bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
   1554{
   1555	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
   1556	u64 end = start + size;
   1557
   1558	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
   1559		return true;
   1560
   1561	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
   1562		start, end, mhp_range.start, mhp_range.end);
   1563	return false;
   1564}
   1565
   1566#ifdef CONFIG_MEMORY_HOTREMOVE
   1567/*
   1568 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
   1569 * non-lru movable pages and hugepages). Will skip over most unmovable
   1570 * pages (esp., pages that can be skipped when offlining), but bail out on
   1571 * definitely unmovable pages.
   1572 *
   1573 * Returns:
   1574 *	0 in case a movable page is found and movable_pfn was updated.
   1575 *	-ENOENT in case no movable page was found.
   1576 *	-EBUSY in case a definitely unmovable page was found.
   1577 */
   1578static int scan_movable_pages(unsigned long start, unsigned long end,
   1579			      unsigned long *movable_pfn)
   1580{
   1581	unsigned long pfn;
   1582
   1583	for (pfn = start; pfn < end; pfn++) {
   1584		struct page *page, *head;
   1585		unsigned long skip;
   1586
   1587		if (!pfn_valid(pfn))
   1588			continue;
   1589		page = pfn_to_page(pfn);
   1590		if (PageLRU(page))
   1591			goto found;
   1592		if (__PageMovable(page))
   1593			goto found;
   1594
   1595		/*
   1596		 * PageOffline() pages that are not marked __PageMovable() and
   1597		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
   1598		 * definitely unmovable. If their reference count would be 0,
   1599		 * they could at least be skipped when offlining memory.
   1600		 */
   1601		if (PageOffline(page) && page_count(page))
   1602			return -EBUSY;
   1603
   1604		if (!PageHuge(page))
   1605			continue;
   1606		head = compound_head(page);
   1607		/*
   1608		 * This test is racy as we hold no reference or lock.  The
   1609		 * hugetlb page could have been free'ed and head is no longer
   1610		 * a hugetlb page before the following check.  In such unlikely
   1611		 * cases false positives and negatives are possible.  Calling
   1612		 * code must deal with these scenarios.
   1613		 */
   1614		if (HPageMigratable(head))
   1615			goto found;
   1616		skip = compound_nr(head) - (page - head);
   1617		pfn += skip - 1;
   1618	}
   1619	return -ENOENT;
   1620found:
   1621	*movable_pfn = pfn;
   1622	return 0;
   1623}
   1624
   1625static int
   1626do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
   1627{
   1628	unsigned long pfn;
   1629	struct page *page, *head;
   1630	int ret = 0;
   1631	LIST_HEAD(source);
   1632	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
   1633				      DEFAULT_RATELIMIT_BURST);
   1634
   1635	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
   1636		struct folio *folio;
   1637
   1638		if (!pfn_valid(pfn))
   1639			continue;
   1640		page = pfn_to_page(pfn);
   1641		folio = page_folio(page);
   1642		head = &folio->page;
   1643
   1644		if (PageHuge(page)) {
   1645			pfn = page_to_pfn(head) + compound_nr(head) - 1;
   1646			isolate_huge_page(head, &source);
   1647			continue;
   1648		} else if (PageTransHuge(page))
   1649			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
   1650
   1651		/*
   1652		 * HWPoison pages have elevated reference counts so the migration would
   1653		 * fail on them. It also doesn't make any sense to migrate them in the
   1654		 * first place. Still try to unmap such a page in case it is still mapped
   1655		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
   1656		 * the unmap as the catch all safety net).
   1657		 */
   1658		if (PageHWPoison(page)) {
   1659			if (WARN_ON(folio_test_lru(folio)))
   1660				folio_isolate_lru(folio);
   1661			if (folio_mapped(folio))
   1662				try_to_unmap(folio, TTU_IGNORE_MLOCK);
   1663			continue;
   1664		}
   1665
   1666		if (!get_page_unless_zero(page))
   1667			continue;
   1668		/*
   1669		 * We can skip free pages. And we can deal with pages on
   1670		 * LRU and non-lru movable pages.
   1671		 */
   1672		if (PageLRU(page))
   1673			ret = isolate_lru_page(page);
   1674		else
   1675			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
   1676		if (!ret) { /* Success */
   1677			list_add_tail(&page->lru, &source);
   1678			if (!__PageMovable(page))
   1679				inc_node_page_state(page, NR_ISOLATED_ANON +
   1680						    page_is_file_lru(page));
   1681
   1682		} else {
   1683			if (__ratelimit(&migrate_rs)) {
   1684				pr_warn("failed to isolate pfn %lx\n", pfn);
   1685				dump_page(page, "isolation failed");
   1686			}
   1687		}
   1688		put_page(page);
   1689	}
   1690	if (!list_empty(&source)) {
   1691		nodemask_t nmask = node_states[N_MEMORY];
   1692		struct migration_target_control mtc = {
   1693			.nmask = &nmask,
   1694			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
   1695		};
   1696
   1697		/*
   1698		 * We have checked that migration range is on a single zone so
   1699		 * we can use the nid of the first page to all the others.
   1700		 */
   1701		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
   1702
   1703		/*
   1704		 * try to allocate from a different node but reuse this node
   1705		 * if there are no other online nodes to be used (e.g. we are
   1706		 * offlining a part of the only existing node)
   1707		 */
   1708		node_clear(mtc.nid, nmask);
   1709		if (nodes_empty(nmask))
   1710			node_set(mtc.nid, nmask);
   1711		ret = migrate_pages(&source, alloc_migration_target, NULL,
   1712			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
   1713		if (ret) {
   1714			list_for_each_entry(page, &source, lru) {
   1715				if (__ratelimit(&migrate_rs)) {
   1716					pr_warn("migrating pfn %lx failed ret:%d\n",
   1717						page_to_pfn(page), ret);
   1718					dump_page(page, "migration failure");
   1719				}
   1720			}
   1721			putback_movable_pages(&source);
   1722		}
   1723	}
   1724
   1725	return ret;
   1726}
   1727
   1728static int __init cmdline_parse_movable_node(char *p)
   1729{
   1730	movable_node_enabled = true;
   1731	return 0;
   1732}
   1733early_param("movable_node", cmdline_parse_movable_node);
   1734
   1735/* check which state of node_states will be changed when offline memory */
   1736static void node_states_check_changes_offline(unsigned long nr_pages,
   1737		struct zone *zone, struct memory_notify *arg)
   1738{
   1739	struct pglist_data *pgdat = zone->zone_pgdat;
   1740	unsigned long present_pages = 0;
   1741	enum zone_type zt;
   1742
   1743	arg->status_change_nid = NUMA_NO_NODE;
   1744	arg->status_change_nid_normal = NUMA_NO_NODE;
   1745
   1746	/*
   1747	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
   1748	 * If the memory to be offline is within the range
   1749	 * [0..ZONE_NORMAL], and it is the last present memory there,
   1750	 * the zones in that range will become empty after the offlining,
   1751	 * thus we can determine that we need to clear the node from
   1752	 * node_states[N_NORMAL_MEMORY].
   1753	 */
   1754	for (zt = 0; zt <= ZONE_NORMAL; zt++)
   1755		present_pages += pgdat->node_zones[zt].present_pages;
   1756	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
   1757		arg->status_change_nid_normal = zone_to_nid(zone);
   1758
   1759	/*
   1760	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
   1761	 * does not apply as we don't support 32bit.
   1762	 * Here we count the possible pages from ZONE_MOVABLE.
   1763	 * If after having accounted all the pages, we see that the nr_pages
   1764	 * to be offlined is over or equal to the accounted pages,
   1765	 * we know that the node will become empty, and so, we can clear
   1766	 * it for N_MEMORY as well.
   1767	 */
   1768	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
   1769
   1770	if (nr_pages >= present_pages)
   1771		arg->status_change_nid = zone_to_nid(zone);
   1772}
   1773
   1774static void node_states_clear_node(int node, struct memory_notify *arg)
   1775{
   1776	if (arg->status_change_nid_normal >= 0)
   1777		node_clear_state(node, N_NORMAL_MEMORY);
   1778
   1779	if (arg->status_change_nid >= 0)
   1780		node_clear_state(node, N_MEMORY);
   1781}
   1782
   1783static int count_system_ram_pages_cb(unsigned long start_pfn,
   1784				     unsigned long nr_pages, void *data)
   1785{
   1786	unsigned long *nr_system_ram_pages = data;
   1787
   1788	*nr_system_ram_pages += nr_pages;
   1789	return 0;
   1790}
   1791
   1792int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
   1793			struct zone *zone, struct memory_group *group)
   1794{
   1795	const unsigned long end_pfn = start_pfn + nr_pages;
   1796	unsigned long pfn, system_ram_pages = 0;
   1797	const int node = zone_to_nid(zone);
   1798	unsigned long flags;
   1799	struct memory_notify arg;
   1800	char *reason;
   1801	int ret;
   1802
   1803	/*
   1804	 * {on,off}lining is constrained to full memory sections (or more
   1805	 * precisely to memory blocks from the user space POV).
   1806	 * memmap_on_memory is an exception because it reserves initial part
   1807	 * of the physical memory space for vmemmaps. That space is pageblock
   1808	 * aligned.
   1809	 */
   1810	if (WARN_ON_ONCE(!nr_pages ||
   1811			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
   1812			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
   1813		return -EINVAL;
   1814
   1815	mem_hotplug_begin();
   1816
   1817	/*
   1818	 * Don't allow to offline memory blocks that contain holes.
   1819	 * Consequently, memory blocks with holes can never get onlined
   1820	 * via the hotplug path - online_pages() - as hotplugged memory has
   1821	 * no holes. This way, we e.g., don't have to worry about marking
   1822	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
   1823	 * avoid using walk_system_ram_range() later.
   1824	 */
   1825	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
   1826			      count_system_ram_pages_cb);
   1827	if (system_ram_pages != nr_pages) {
   1828		ret = -EINVAL;
   1829		reason = "memory holes";
   1830		goto failed_removal;
   1831	}
   1832
   1833	/*
   1834	 * We only support offlining of memory blocks managed by a single zone,
   1835	 * checked by calling code. This is just a sanity check that we might
   1836	 * want to remove in the future.
   1837	 */
   1838	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
   1839			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
   1840		ret = -EINVAL;
   1841		reason = "multizone range";
   1842		goto failed_removal;
   1843	}
   1844
   1845	/*
   1846	 * Disable pcplists so that page isolation cannot race with freeing
   1847	 * in a way that pages from isolated pageblock are left on pcplists.
   1848	 */
   1849	zone_pcp_disable(zone);
   1850	lru_cache_disable();
   1851
   1852	/* set above range as isolated */
   1853	ret = start_isolate_page_range(start_pfn, end_pfn,
   1854				       MIGRATE_MOVABLE,
   1855				       MEMORY_OFFLINE | REPORT_FAILURE,
   1856				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
   1857	if (ret) {
   1858		reason = "failure to isolate range";
   1859		goto failed_removal_pcplists_disabled;
   1860	}
   1861
   1862	arg.start_pfn = start_pfn;
   1863	arg.nr_pages = nr_pages;
   1864	node_states_check_changes_offline(nr_pages, zone, &arg);
   1865
   1866	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
   1867	ret = notifier_to_errno(ret);
   1868	if (ret) {
   1869		reason = "notifier failure";
   1870		goto failed_removal_isolated;
   1871	}
   1872
   1873	do {
   1874		pfn = start_pfn;
   1875		do {
   1876			if (signal_pending(current)) {
   1877				ret = -EINTR;
   1878				reason = "signal backoff";
   1879				goto failed_removal_isolated;
   1880			}
   1881
   1882			cond_resched();
   1883
   1884			ret = scan_movable_pages(pfn, end_pfn, &pfn);
   1885			if (!ret) {
   1886				/*
   1887				 * TODO: fatal migration failures should bail
   1888				 * out
   1889				 */
   1890				do_migrate_range(pfn, end_pfn);
   1891			}
   1892		} while (!ret);
   1893
   1894		if (ret != -ENOENT) {
   1895			reason = "unmovable page";
   1896			goto failed_removal_isolated;
   1897		}
   1898
   1899		/*
   1900		 * Dissolve free hugepages in the memory block before doing
   1901		 * offlining actually in order to make hugetlbfs's object
   1902		 * counting consistent.
   1903		 */
   1904		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
   1905		if (ret) {
   1906			reason = "failure to dissolve huge pages";
   1907			goto failed_removal_isolated;
   1908		}
   1909
   1910		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
   1911
   1912	} while (ret);
   1913
   1914	/* Mark all sections offline and remove free pages from the buddy. */
   1915	__offline_isolated_pages(start_pfn, end_pfn);
   1916	pr_debug("Offlined Pages %ld\n", nr_pages);
   1917
   1918	/*
   1919	 * The memory sections are marked offline, and the pageblock flags
   1920	 * effectively stale; nobody should be touching them. Fixup the number
   1921	 * of isolated pageblocks, memory onlining will properly revert this.
   1922	 */
   1923	spin_lock_irqsave(&zone->lock, flags);
   1924	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
   1925	spin_unlock_irqrestore(&zone->lock, flags);
   1926
   1927	lru_cache_enable();
   1928	zone_pcp_enable(zone);
   1929
   1930	/* removal success */
   1931	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
   1932	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
   1933
   1934	/* reinitialise watermarks and update pcp limits */
   1935	init_per_zone_wmark_min();
   1936
   1937	if (!populated_zone(zone)) {
   1938		zone_pcp_reset(zone);
   1939		build_all_zonelists(NULL);
   1940	}
   1941
   1942	node_states_clear_node(node, &arg);
   1943	if (arg.status_change_nid >= 0) {
   1944		kswapd_stop(node);
   1945		kcompactd_stop(node);
   1946	}
   1947
   1948	writeback_set_ratelimit();
   1949
   1950	memory_notify(MEM_OFFLINE, &arg);
   1951	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
   1952	mem_hotplug_done();
   1953	return 0;
   1954
   1955failed_removal_isolated:
   1956	/* pushback to free area */
   1957	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
   1958	memory_notify(MEM_CANCEL_OFFLINE, &arg);
   1959failed_removal_pcplists_disabled:
   1960	lru_cache_enable();
   1961	zone_pcp_enable(zone);
   1962failed_removal:
   1963	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
   1964		 (unsigned long long) start_pfn << PAGE_SHIFT,
   1965		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
   1966		 reason);
   1967	mem_hotplug_done();
   1968	return ret;
   1969}
   1970
   1971static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
   1972{
   1973	int ret = !is_memblock_offlined(mem);
   1974	int *nid = arg;
   1975
   1976	*nid = mem->nid;
   1977	if (unlikely(ret)) {
   1978		phys_addr_t beginpa, endpa;
   1979
   1980		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
   1981		endpa = beginpa + memory_block_size_bytes() - 1;
   1982		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
   1983			&beginpa, &endpa);
   1984
   1985		return -EBUSY;
   1986	}
   1987	return 0;
   1988}
   1989
   1990static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
   1991{
   1992	/*
   1993	 * If not set, continue with the next block.
   1994	 */
   1995	return mem->nr_vmemmap_pages;
   1996}
   1997
   1998static int check_cpu_on_node(int nid)
   1999{
   2000	int cpu;
   2001
   2002	for_each_present_cpu(cpu) {
   2003		if (cpu_to_node(cpu) == nid)
   2004			/*
   2005			 * the cpu on this node isn't removed, and we can't
   2006			 * offline this node.
   2007			 */
   2008			return -EBUSY;
   2009	}
   2010
   2011	return 0;
   2012}
   2013
   2014static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
   2015{
   2016	int nid = *(int *)arg;
   2017
   2018	/*
   2019	 * If a memory block belongs to multiple nodes, the stored nid is not
   2020	 * reliable. However, such blocks are always online (e.g., cannot get
   2021	 * offlined) and, therefore, are still spanned by the node.
   2022	 */
   2023	return mem->nid == nid ? -EEXIST : 0;
   2024}
   2025
   2026/**
   2027 * try_offline_node
   2028 * @nid: the node ID
   2029 *
   2030 * Offline a node if all memory sections and cpus of the node are removed.
   2031 *
   2032 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
   2033 * and online/offline operations before this call.
   2034 */
   2035void try_offline_node(int nid)
   2036{
   2037	int rc;
   2038
   2039	/*
   2040	 * If the node still spans pages (especially ZONE_DEVICE), don't
   2041	 * offline it. A node spans memory after move_pfn_range_to_zone(),
   2042	 * e.g., after the memory block was onlined.
   2043	 */
   2044	if (node_spanned_pages(nid))
   2045		return;
   2046
   2047	/*
   2048	 * Especially offline memory blocks might not be spanned by the
   2049	 * node. They will get spanned by the node once they get onlined.
   2050	 * However, they link to the node in sysfs and can get onlined later.
   2051	 */
   2052	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
   2053	if (rc)
   2054		return;
   2055
   2056	if (check_cpu_on_node(nid))
   2057		return;
   2058
   2059	/*
   2060	 * all memory/cpu of this node are removed, we can offline this
   2061	 * node now.
   2062	 */
   2063	node_set_offline(nid);
   2064	unregister_one_node(nid);
   2065}
   2066EXPORT_SYMBOL(try_offline_node);
   2067
   2068static int __ref try_remove_memory(u64 start, u64 size)
   2069{
   2070	struct vmem_altmap mhp_altmap = {};
   2071	struct vmem_altmap *altmap = NULL;
   2072	unsigned long nr_vmemmap_pages;
   2073	int rc = 0, nid = NUMA_NO_NODE;
   2074
   2075	BUG_ON(check_hotplug_memory_range(start, size));
   2076
   2077	/*
   2078	 * All memory blocks must be offlined before removing memory.  Check
   2079	 * whether all memory blocks in question are offline and return error
   2080	 * if this is not the case.
   2081	 *
   2082	 * While at it, determine the nid. Note that if we'd have mixed nodes,
   2083	 * we'd only try to offline the last determined one -- which is good
   2084	 * enough for the cases we care about.
   2085	 */
   2086	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
   2087	if (rc)
   2088		return rc;
   2089
   2090	/*
   2091	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
   2092	 * the same granularity it was added - a single memory block.
   2093	 */
   2094	if (mhp_memmap_on_memory()) {
   2095		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
   2096						      get_nr_vmemmap_pages_cb);
   2097		if (nr_vmemmap_pages) {
   2098			if (size != memory_block_size_bytes()) {
   2099				pr_warn("Refuse to remove %#llx - %#llx,"
   2100					"wrong granularity\n",
   2101					start, start + size);
   2102				return -EINVAL;
   2103			}
   2104
   2105			/*
   2106			 * Let remove_pmd_table->free_hugepage_table do the
   2107			 * right thing if we used vmem_altmap when hot-adding
   2108			 * the range.
   2109			 */
   2110			mhp_altmap.alloc = nr_vmemmap_pages;
   2111			altmap = &mhp_altmap;
   2112		}
   2113	}
   2114
   2115	/* remove memmap entry */
   2116	firmware_map_remove(start, start + size, "System RAM");
   2117
   2118	/*
   2119	 * Memory block device removal under the device_hotplug_lock is
   2120	 * a barrier against racing online attempts.
   2121	 */
   2122	remove_memory_block_devices(start, size);
   2123
   2124	mem_hotplug_begin();
   2125
   2126	arch_remove_memory(start, size, altmap);
   2127
   2128	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
   2129		memblock_phys_free(start, size);
   2130		memblock_remove(start, size);
   2131	}
   2132
   2133	release_mem_region_adjustable(start, size);
   2134
   2135	if (nid != NUMA_NO_NODE)
   2136		try_offline_node(nid);
   2137
   2138	mem_hotplug_done();
   2139	return 0;
   2140}
   2141
   2142/**
   2143 * __remove_memory - Remove memory if every memory block is offline
   2144 * @start: physical address of the region to remove
   2145 * @size: size of the region to remove
   2146 *
   2147 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
   2148 * and online/offline operations before this call, as required by
   2149 * try_offline_node().
   2150 */
   2151void __remove_memory(u64 start, u64 size)
   2152{
   2153
   2154	/*
   2155	 * trigger BUG() if some memory is not offlined prior to calling this
   2156	 * function
   2157	 */
   2158	if (try_remove_memory(start, size))
   2159		BUG();
   2160}
   2161
   2162/*
   2163 * Remove memory if every memory block is offline, otherwise return -EBUSY is
   2164 * some memory is not offline
   2165 */
   2166int remove_memory(u64 start, u64 size)
   2167{
   2168	int rc;
   2169
   2170	lock_device_hotplug();
   2171	rc = try_remove_memory(start, size);
   2172	unlock_device_hotplug();
   2173
   2174	return rc;
   2175}
   2176EXPORT_SYMBOL_GPL(remove_memory);
   2177
   2178static int try_offline_memory_block(struct memory_block *mem, void *arg)
   2179{
   2180	uint8_t online_type = MMOP_ONLINE_KERNEL;
   2181	uint8_t **online_types = arg;
   2182	struct page *page;
   2183	int rc;
   2184
   2185	/*
   2186	 * Sense the online_type via the zone of the memory block. Offlining
   2187	 * with multiple zones within one memory block will be rejected
   2188	 * by offlining code ... so we don't care about that.
   2189	 */
   2190	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
   2191	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
   2192		online_type = MMOP_ONLINE_MOVABLE;
   2193
   2194	rc = device_offline(&mem->dev);
   2195	/*
   2196	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
   2197	 * so try_reonline_memory_block() can do the right thing.
   2198	 */
   2199	if (!rc)
   2200		**online_types = online_type;
   2201
   2202	(*online_types)++;
   2203	/* Ignore if already offline. */
   2204	return rc < 0 ? rc : 0;
   2205}
   2206
   2207static int try_reonline_memory_block(struct memory_block *mem, void *arg)
   2208{
   2209	uint8_t **online_types = arg;
   2210	int rc;
   2211
   2212	if (**online_types != MMOP_OFFLINE) {
   2213		mem->online_type = **online_types;
   2214		rc = device_online(&mem->dev);
   2215		if (rc < 0)
   2216			pr_warn("%s: Failed to re-online memory: %d",
   2217				__func__, rc);
   2218	}
   2219
   2220	/* Continue processing all remaining memory blocks. */
   2221	(*online_types)++;
   2222	return 0;
   2223}
   2224
   2225/*
   2226 * Try to offline and remove memory. Might take a long time to finish in case
   2227 * memory is still in use. Primarily useful for memory devices that logically
   2228 * unplugged all memory (so it's no longer in use) and want to offline + remove
   2229 * that memory.
   2230 */
   2231int offline_and_remove_memory(u64 start, u64 size)
   2232{
   2233	const unsigned long mb_count = size / memory_block_size_bytes();
   2234	uint8_t *online_types, *tmp;
   2235	int rc;
   2236
   2237	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
   2238	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
   2239		return -EINVAL;
   2240
   2241	/*
   2242	 * We'll remember the old online type of each memory block, so we can
   2243	 * try to revert whatever we did when offlining one memory block fails
   2244	 * after offlining some others succeeded.
   2245	 */
   2246	online_types = kmalloc_array(mb_count, sizeof(*online_types),
   2247				     GFP_KERNEL);
   2248	if (!online_types)
   2249		return -ENOMEM;
   2250	/*
   2251	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
   2252	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
   2253	 * try_reonline_memory_block().
   2254	 */
   2255	memset(online_types, MMOP_OFFLINE, mb_count);
   2256
   2257	lock_device_hotplug();
   2258
   2259	tmp = online_types;
   2260	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
   2261
   2262	/*
   2263	 * In case we succeeded to offline all memory, remove it.
   2264	 * This cannot fail as it cannot get onlined in the meantime.
   2265	 */
   2266	if (!rc) {
   2267		rc = try_remove_memory(start, size);
   2268		if (rc)
   2269			pr_err("%s: Failed to remove memory: %d", __func__, rc);
   2270	}
   2271
   2272	/*
   2273	 * Rollback what we did. While memory onlining might theoretically fail
   2274	 * (nacked by a notifier), it barely ever happens.
   2275	 */
   2276	if (rc) {
   2277		tmp = online_types;
   2278		walk_memory_blocks(start, size, &tmp,
   2279				   try_reonline_memory_block);
   2280	}
   2281	unlock_device_hotplug();
   2282
   2283	kfree(online_types);
   2284	return rc;
   2285}
   2286EXPORT_SYMBOL_GPL(offline_and_remove_memory);
   2287#endif /* CONFIG_MEMORY_HOTREMOVE */