cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

migrate_device.c (22269B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Device Memory Migration functionality.
      4 *
      5 * Originally written by Jérôme Glisse.
      6 */
      7#include <linux/export.h>
      8#include <linux/memremap.h>
      9#include <linux/migrate.h>
     10#include <linux/mm_inline.h>
     11#include <linux/mmu_notifier.h>
     12#include <linux/oom.h>
     13#include <linux/pagewalk.h>
     14#include <linux/rmap.h>
     15#include <linux/swapops.h>
     16#include <asm/tlbflush.h>
     17#include "internal.h"
     18
     19static int migrate_vma_collect_skip(unsigned long start,
     20				    unsigned long end,
     21				    struct mm_walk *walk)
     22{
     23	struct migrate_vma *migrate = walk->private;
     24	unsigned long addr;
     25
     26	for (addr = start; addr < end; addr += PAGE_SIZE) {
     27		migrate->dst[migrate->npages] = 0;
     28		migrate->src[migrate->npages++] = 0;
     29	}
     30
     31	return 0;
     32}
     33
     34static int migrate_vma_collect_hole(unsigned long start,
     35				    unsigned long end,
     36				    __always_unused int depth,
     37				    struct mm_walk *walk)
     38{
     39	struct migrate_vma *migrate = walk->private;
     40	unsigned long addr;
     41
     42	/* Only allow populating anonymous memory. */
     43	if (!vma_is_anonymous(walk->vma))
     44		return migrate_vma_collect_skip(start, end, walk);
     45
     46	for (addr = start; addr < end; addr += PAGE_SIZE) {
     47		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
     48		migrate->dst[migrate->npages] = 0;
     49		migrate->npages++;
     50		migrate->cpages++;
     51	}
     52
     53	return 0;
     54}
     55
     56static int migrate_vma_collect_pmd(pmd_t *pmdp,
     57				   unsigned long start,
     58				   unsigned long end,
     59				   struct mm_walk *walk)
     60{
     61	struct migrate_vma *migrate = walk->private;
     62	struct vm_area_struct *vma = walk->vma;
     63	struct mm_struct *mm = vma->vm_mm;
     64	unsigned long addr = start, unmapped = 0;
     65	spinlock_t *ptl;
     66	pte_t *ptep;
     67
     68again:
     69	if (pmd_none(*pmdp))
     70		return migrate_vma_collect_hole(start, end, -1, walk);
     71
     72	if (pmd_trans_huge(*pmdp)) {
     73		struct page *page;
     74
     75		ptl = pmd_lock(mm, pmdp);
     76		if (unlikely(!pmd_trans_huge(*pmdp))) {
     77			spin_unlock(ptl);
     78			goto again;
     79		}
     80
     81		page = pmd_page(*pmdp);
     82		if (is_huge_zero_page(page)) {
     83			spin_unlock(ptl);
     84			split_huge_pmd(vma, pmdp, addr);
     85			if (pmd_trans_unstable(pmdp))
     86				return migrate_vma_collect_skip(start, end,
     87								walk);
     88		} else {
     89			int ret;
     90
     91			get_page(page);
     92			spin_unlock(ptl);
     93			if (unlikely(!trylock_page(page)))
     94				return migrate_vma_collect_skip(start, end,
     95								walk);
     96			ret = split_huge_page(page);
     97			unlock_page(page);
     98			put_page(page);
     99			if (ret)
    100				return migrate_vma_collect_skip(start, end,
    101								walk);
    102			if (pmd_none(*pmdp))
    103				return migrate_vma_collect_hole(start, end, -1,
    104								walk);
    105		}
    106	}
    107
    108	if (unlikely(pmd_bad(*pmdp)))
    109		return migrate_vma_collect_skip(start, end, walk);
    110
    111	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
    112	arch_enter_lazy_mmu_mode();
    113
    114	for (; addr < end; addr += PAGE_SIZE, ptep++) {
    115		unsigned long mpfn = 0, pfn;
    116		struct page *page;
    117		swp_entry_t entry;
    118		pte_t pte;
    119
    120		pte = *ptep;
    121
    122		if (pte_none(pte)) {
    123			if (vma_is_anonymous(vma)) {
    124				mpfn = MIGRATE_PFN_MIGRATE;
    125				migrate->cpages++;
    126			}
    127			goto next;
    128		}
    129
    130		if (!pte_present(pte)) {
    131			/*
    132			 * Only care about unaddressable device page special
    133			 * page table entry. Other special swap entries are not
    134			 * migratable, and we ignore regular swapped page.
    135			 */
    136			entry = pte_to_swp_entry(pte);
    137			if (!is_device_private_entry(entry))
    138				goto next;
    139
    140			page = pfn_swap_entry_to_page(entry);
    141			if (!(migrate->flags &
    142				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
    143			    page->pgmap->owner != migrate->pgmap_owner)
    144				goto next;
    145
    146			mpfn = migrate_pfn(page_to_pfn(page)) |
    147					MIGRATE_PFN_MIGRATE;
    148			if (is_writable_device_private_entry(entry))
    149				mpfn |= MIGRATE_PFN_WRITE;
    150		} else {
    151			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
    152				goto next;
    153			pfn = pte_pfn(pte);
    154			if (is_zero_pfn(pfn)) {
    155				mpfn = MIGRATE_PFN_MIGRATE;
    156				migrate->cpages++;
    157				goto next;
    158			}
    159			page = vm_normal_page(migrate->vma, addr, pte);
    160			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
    161			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
    162		}
    163
    164		/* FIXME support THP */
    165		if (!page || !page->mapping || PageTransCompound(page)) {
    166			mpfn = 0;
    167			goto next;
    168		}
    169
    170		/*
    171		 * By getting a reference on the page we pin it and that blocks
    172		 * any kind of migration. Side effect is that it "freezes" the
    173		 * pte.
    174		 *
    175		 * We drop this reference after isolating the page from the lru
    176		 * for non device page (device page are not on the lru and thus
    177		 * can't be dropped from it).
    178		 */
    179		get_page(page);
    180
    181		/*
    182		 * Optimize for the common case where page is only mapped once
    183		 * in one process. If we can lock the page, then we can safely
    184		 * set up a special migration page table entry now.
    185		 */
    186		if (trylock_page(page)) {
    187			bool anon_exclusive;
    188			pte_t swp_pte;
    189
    190			anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
    191			if (anon_exclusive) {
    192				flush_cache_page(vma, addr, pte_pfn(*ptep));
    193				ptep_clear_flush(vma, addr, ptep);
    194
    195				if (page_try_share_anon_rmap(page)) {
    196					set_pte_at(mm, addr, ptep, pte);
    197					unlock_page(page);
    198					put_page(page);
    199					mpfn = 0;
    200					goto next;
    201				}
    202			} else {
    203				ptep_get_and_clear(mm, addr, ptep);
    204			}
    205
    206			migrate->cpages++;
    207
    208			/* Setup special migration page table entry */
    209			if (mpfn & MIGRATE_PFN_WRITE)
    210				entry = make_writable_migration_entry(
    211							page_to_pfn(page));
    212			else if (anon_exclusive)
    213				entry = make_readable_exclusive_migration_entry(
    214							page_to_pfn(page));
    215			else
    216				entry = make_readable_migration_entry(
    217							page_to_pfn(page));
    218			swp_pte = swp_entry_to_pte(entry);
    219			if (pte_present(pte)) {
    220				if (pte_soft_dirty(pte))
    221					swp_pte = pte_swp_mksoft_dirty(swp_pte);
    222				if (pte_uffd_wp(pte))
    223					swp_pte = pte_swp_mkuffd_wp(swp_pte);
    224			} else {
    225				if (pte_swp_soft_dirty(pte))
    226					swp_pte = pte_swp_mksoft_dirty(swp_pte);
    227				if (pte_swp_uffd_wp(pte))
    228					swp_pte = pte_swp_mkuffd_wp(swp_pte);
    229			}
    230			set_pte_at(mm, addr, ptep, swp_pte);
    231
    232			/*
    233			 * This is like regular unmap: we remove the rmap and
    234			 * drop page refcount. Page won't be freed, as we took
    235			 * a reference just above.
    236			 */
    237			page_remove_rmap(page, vma, false);
    238			put_page(page);
    239
    240			if (pte_present(pte))
    241				unmapped++;
    242		} else {
    243			put_page(page);
    244			mpfn = 0;
    245		}
    246
    247next:
    248		migrate->dst[migrate->npages] = 0;
    249		migrate->src[migrate->npages++] = mpfn;
    250	}
    251	arch_leave_lazy_mmu_mode();
    252	pte_unmap_unlock(ptep - 1, ptl);
    253
    254	/* Only flush the TLB if we actually modified any entries */
    255	if (unmapped)
    256		flush_tlb_range(walk->vma, start, end);
    257
    258	return 0;
    259}
    260
    261static const struct mm_walk_ops migrate_vma_walk_ops = {
    262	.pmd_entry		= migrate_vma_collect_pmd,
    263	.pte_hole		= migrate_vma_collect_hole,
    264};
    265
    266/*
    267 * migrate_vma_collect() - collect pages over a range of virtual addresses
    268 * @migrate: migrate struct containing all migration information
    269 *
    270 * This will walk the CPU page table. For each virtual address backed by a
    271 * valid page, it updates the src array and takes a reference on the page, in
    272 * order to pin the page until we lock it and unmap it.
    273 */
    274static void migrate_vma_collect(struct migrate_vma *migrate)
    275{
    276	struct mmu_notifier_range range;
    277
    278	/*
    279	 * Note that the pgmap_owner is passed to the mmu notifier callback so
    280	 * that the registered device driver can skip invalidating device
    281	 * private page mappings that won't be migrated.
    282	 */
    283	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
    284		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
    285		migrate->pgmap_owner);
    286	mmu_notifier_invalidate_range_start(&range);
    287
    288	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
    289			&migrate_vma_walk_ops, migrate);
    290
    291	mmu_notifier_invalidate_range_end(&range);
    292	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
    293}
    294
    295/*
    296 * migrate_vma_check_page() - check if page is pinned or not
    297 * @page: struct page to check
    298 *
    299 * Pinned pages cannot be migrated. This is the same test as in
    300 * folio_migrate_mapping(), except that here we allow migration of a
    301 * ZONE_DEVICE page.
    302 */
    303static bool migrate_vma_check_page(struct page *page)
    304{
    305	/*
    306	 * One extra ref because caller holds an extra reference, either from
    307	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
    308	 * a device page.
    309	 */
    310	int extra = 1;
    311
    312	/*
    313	 * FIXME support THP (transparent huge page), it is bit more complex to
    314	 * check them than regular pages, because they can be mapped with a pmd
    315	 * or with a pte (split pte mapping).
    316	 */
    317	if (PageCompound(page))
    318		return false;
    319
    320	/* Page from ZONE_DEVICE have one extra reference */
    321	if (is_zone_device_page(page))
    322		extra++;
    323
    324	/* For file back page */
    325	if (page_mapping(page))
    326		extra += 1 + page_has_private(page);
    327
    328	if ((page_count(page) - extra) > page_mapcount(page))
    329		return false;
    330
    331	return true;
    332}
    333
    334/*
    335 * migrate_vma_unmap() - replace page mapping with special migration pte entry
    336 * @migrate: migrate struct containing all migration information
    337 *
    338 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
    339 * special migration pte entry and check if it has been pinned. Pinned pages are
    340 * restored because we cannot migrate them.
    341 *
    342 * This is the last step before we call the device driver callback to allocate
    343 * destination memory and copy contents of original page over to new page.
    344 */
    345static void migrate_vma_unmap(struct migrate_vma *migrate)
    346{
    347	const unsigned long npages = migrate->npages;
    348	unsigned long i, restore = 0;
    349	bool allow_drain = true;
    350
    351	lru_add_drain();
    352
    353	for (i = 0; i < npages; i++) {
    354		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    355		struct folio *folio;
    356
    357		if (!page)
    358			continue;
    359
    360		/* ZONE_DEVICE pages are not on LRU */
    361		if (!is_zone_device_page(page)) {
    362			if (!PageLRU(page) && allow_drain) {
    363				/* Drain CPU's pagevec */
    364				lru_add_drain_all();
    365				allow_drain = false;
    366			}
    367
    368			if (isolate_lru_page(page)) {
    369				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    370				migrate->cpages--;
    371				restore++;
    372				continue;
    373			}
    374
    375			/* Drop the reference we took in collect */
    376			put_page(page);
    377		}
    378
    379		folio = page_folio(page);
    380		if (folio_mapped(folio))
    381			try_to_migrate(folio, 0);
    382
    383		if (page_mapped(page) || !migrate_vma_check_page(page)) {
    384			if (!is_zone_device_page(page)) {
    385				get_page(page);
    386				putback_lru_page(page);
    387			}
    388
    389			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    390			migrate->cpages--;
    391			restore++;
    392			continue;
    393		}
    394	}
    395
    396	for (i = 0; i < npages && restore; i++) {
    397		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    398		struct folio *folio;
    399
    400		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
    401			continue;
    402
    403		folio = page_folio(page);
    404		remove_migration_ptes(folio, folio, false);
    405
    406		migrate->src[i] = 0;
    407		folio_unlock(folio);
    408		folio_put(folio);
    409		restore--;
    410	}
    411}
    412
    413/**
    414 * migrate_vma_setup() - prepare to migrate a range of memory
    415 * @args: contains the vma, start, and pfns arrays for the migration
    416 *
    417 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
    418 * without an error.
    419 *
    420 * Prepare to migrate a range of memory virtual address range by collecting all
    421 * the pages backing each virtual address in the range, saving them inside the
    422 * src array.  Then lock those pages and unmap them. Once the pages are locked
    423 * and unmapped, check whether each page is pinned or not.  Pages that aren't
    424 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
    425 * corresponding src array entry.  Then restores any pages that are pinned, by
    426 * remapping and unlocking those pages.
    427 *
    428 * The caller should then allocate destination memory and copy source memory to
    429 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
    430 * flag set).  Once these are allocated and copied, the caller must update each
    431 * corresponding entry in the dst array with the pfn value of the destination
    432 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
    433 * lock_page().
    434 *
    435 * Note that the caller does not have to migrate all the pages that are marked
    436 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
    437 * device memory to system memory.  If the caller cannot migrate a device page
    438 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
    439 * consequences for the userspace process, so it must be avoided if at all
    440 * possible.
    441 *
    442 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
    443 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
    444 * allowing the caller to allocate device memory for those unbacked virtual
    445 * addresses.  For this the caller simply has to allocate device memory and
    446 * properly set the destination entry like for regular migration.  Note that
    447 * this can still fail, and thus inside the device driver you must check if the
    448 * migration was successful for those entries after calling migrate_vma_pages(),
    449 * just like for regular migration.
    450 *
    451 * After that, the callers must call migrate_vma_pages() to go over each entry
    452 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
    453 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
    454 * then migrate_vma_pages() to migrate struct page information from the source
    455 * struct page to the destination struct page.  If it fails to migrate the
    456 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
    457 * src array.
    458 *
    459 * At this point all successfully migrated pages have an entry in the src
    460 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
    461 * array entry with MIGRATE_PFN_VALID flag set.
    462 *
    463 * Once migrate_vma_pages() returns the caller may inspect which pages were
    464 * successfully migrated, and which were not.  Successfully migrated pages will
    465 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
    466 *
    467 * It is safe to update device page table after migrate_vma_pages() because
    468 * both destination and source page are still locked, and the mmap_lock is held
    469 * in read mode (hence no one can unmap the range being migrated).
    470 *
    471 * Once the caller is done cleaning up things and updating its page table (if it
    472 * chose to do so, this is not an obligation) it finally calls
    473 * migrate_vma_finalize() to update the CPU page table to point to new pages
    474 * for successfully migrated pages or otherwise restore the CPU page table to
    475 * point to the original source pages.
    476 */
    477int migrate_vma_setup(struct migrate_vma *args)
    478{
    479	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
    480
    481	args->start &= PAGE_MASK;
    482	args->end &= PAGE_MASK;
    483	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
    484	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
    485		return -EINVAL;
    486	if (nr_pages <= 0)
    487		return -EINVAL;
    488	if (args->start < args->vma->vm_start ||
    489	    args->start >= args->vma->vm_end)
    490		return -EINVAL;
    491	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
    492		return -EINVAL;
    493	if (!args->src || !args->dst)
    494		return -EINVAL;
    495
    496	memset(args->src, 0, sizeof(*args->src) * nr_pages);
    497	args->cpages = 0;
    498	args->npages = 0;
    499
    500	migrate_vma_collect(args);
    501
    502	if (args->cpages)
    503		migrate_vma_unmap(args);
    504
    505	/*
    506	 * At this point pages are locked and unmapped, and thus they have
    507	 * stable content and can safely be copied to destination memory that
    508	 * is allocated by the drivers.
    509	 */
    510	return 0;
    511
    512}
    513EXPORT_SYMBOL(migrate_vma_setup);
    514
    515/*
    516 * This code closely matches the code in:
    517 *   __handle_mm_fault()
    518 *     handle_pte_fault()
    519 *       do_anonymous_page()
    520 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
    521 * private page.
    522 */
    523static void migrate_vma_insert_page(struct migrate_vma *migrate,
    524				    unsigned long addr,
    525				    struct page *page,
    526				    unsigned long *src)
    527{
    528	struct vm_area_struct *vma = migrate->vma;
    529	struct mm_struct *mm = vma->vm_mm;
    530	bool flush = false;
    531	spinlock_t *ptl;
    532	pte_t entry;
    533	pgd_t *pgdp;
    534	p4d_t *p4dp;
    535	pud_t *pudp;
    536	pmd_t *pmdp;
    537	pte_t *ptep;
    538
    539	/* Only allow populating anonymous memory */
    540	if (!vma_is_anonymous(vma))
    541		goto abort;
    542
    543	pgdp = pgd_offset(mm, addr);
    544	p4dp = p4d_alloc(mm, pgdp, addr);
    545	if (!p4dp)
    546		goto abort;
    547	pudp = pud_alloc(mm, p4dp, addr);
    548	if (!pudp)
    549		goto abort;
    550	pmdp = pmd_alloc(mm, pudp, addr);
    551	if (!pmdp)
    552		goto abort;
    553
    554	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
    555		goto abort;
    556
    557	/*
    558	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
    559	 * pte_offset_map() on pmds where a huge pmd might be created
    560	 * from a different thread.
    561	 *
    562	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
    563	 * parallel threads are excluded by other means.
    564	 *
    565	 * Here we only have mmap_read_lock(mm).
    566	 */
    567	if (pte_alloc(mm, pmdp))
    568		goto abort;
    569
    570	/* See the comment in pte_alloc_one_map() */
    571	if (unlikely(pmd_trans_unstable(pmdp)))
    572		goto abort;
    573
    574	if (unlikely(anon_vma_prepare(vma)))
    575		goto abort;
    576	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
    577		goto abort;
    578
    579	/*
    580	 * The memory barrier inside __SetPageUptodate makes sure that
    581	 * preceding stores to the page contents become visible before
    582	 * the set_pte_at() write.
    583	 */
    584	__SetPageUptodate(page);
    585
    586	if (is_device_private_page(page)) {
    587		swp_entry_t swp_entry;
    588
    589		if (vma->vm_flags & VM_WRITE)
    590			swp_entry = make_writable_device_private_entry(
    591						page_to_pfn(page));
    592		else
    593			swp_entry = make_readable_device_private_entry(
    594						page_to_pfn(page));
    595		entry = swp_entry_to_pte(swp_entry);
    596	} else {
    597		/*
    598		 * For now we only support migrating to un-addressable device
    599		 * memory.
    600		 */
    601		if (is_zone_device_page(page)) {
    602			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
    603			goto abort;
    604		}
    605		entry = mk_pte(page, vma->vm_page_prot);
    606		if (vma->vm_flags & VM_WRITE)
    607			entry = pte_mkwrite(pte_mkdirty(entry));
    608	}
    609
    610	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
    611
    612	if (check_stable_address_space(mm))
    613		goto unlock_abort;
    614
    615	if (pte_present(*ptep)) {
    616		unsigned long pfn = pte_pfn(*ptep);
    617
    618		if (!is_zero_pfn(pfn))
    619			goto unlock_abort;
    620		flush = true;
    621	} else if (!pte_none(*ptep))
    622		goto unlock_abort;
    623
    624	/*
    625	 * Check for userfaultfd but do not deliver the fault. Instead,
    626	 * just back off.
    627	 */
    628	if (userfaultfd_missing(vma))
    629		goto unlock_abort;
    630
    631	inc_mm_counter(mm, MM_ANONPAGES);
    632	page_add_new_anon_rmap(page, vma, addr);
    633	if (!is_zone_device_page(page))
    634		lru_cache_add_inactive_or_unevictable(page, vma);
    635	get_page(page);
    636
    637	if (flush) {
    638		flush_cache_page(vma, addr, pte_pfn(*ptep));
    639		ptep_clear_flush_notify(vma, addr, ptep);
    640		set_pte_at_notify(mm, addr, ptep, entry);
    641		update_mmu_cache(vma, addr, ptep);
    642	} else {
    643		/* No need to invalidate - it was non-present before */
    644		set_pte_at(mm, addr, ptep, entry);
    645		update_mmu_cache(vma, addr, ptep);
    646	}
    647
    648	pte_unmap_unlock(ptep, ptl);
    649	*src = MIGRATE_PFN_MIGRATE;
    650	return;
    651
    652unlock_abort:
    653	pte_unmap_unlock(ptep, ptl);
    654abort:
    655	*src &= ~MIGRATE_PFN_MIGRATE;
    656}
    657
    658/**
    659 * migrate_vma_pages() - migrate meta-data from src page to dst page
    660 * @migrate: migrate struct containing all migration information
    661 *
    662 * This migrates struct page meta-data from source struct page to destination
    663 * struct page. This effectively finishes the migration from source page to the
    664 * destination page.
    665 */
    666void migrate_vma_pages(struct migrate_vma *migrate)
    667{
    668	const unsigned long npages = migrate->npages;
    669	const unsigned long start = migrate->start;
    670	struct mmu_notifier_range range;
    671	unsigned long addr, i;
    672	bool notified = false;
    673
    674	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
    675		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
    676		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    677		struct address_space *mapping;
    678		int r;
    679
    680		if (!newpage) {
    681			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    682			continue;
    683		}
    684
    685		if (!page) {
    686			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
    687				continue;
    688			if (!notified) {
    689				notified = true;
    690
    691				mmu_notifier_range_init_owner(&range,
    692					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
    693					migrate->vma->vm_mm, addr, migrate->end,
    694					migrate->pgmap_owner);
    695				mmu_notifier_invalidate_range_start(&range);
    696			}
    697			migrate_vma_insert_page(migrate, addr, newpage,
    698						&migrate->src[i]);
    699			continue;
    700		}
    701
    702		mapping = page_mapping(page);
    703
    704		if (is_device_private_page(newpage)) {
    705			/*
    706			 * For now only support private anonymous when migrating
    707			 * to un-addressable device memory.
    708			 */
    709			if (mapping) {
    710				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    711				continue;
    712			}
    713		} else if (is_zone_device_page(newpage)) {
    714			/*
    715			 * Other types of ZONE_DEVICE page are not supported.
    716			 */
    717			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    718			continue;
    719		}
    720
    721		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
    722		if (r != MIGRATEPAGE_SUCCESS)
    723			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    724	}
    725
    726	/*
    727	 * No need to double call mmu_notifier->invalidate_range() callback as
    728	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
    729	 * did already call it.
    730	 */
    731	if (notified)
    732		mmu_notifier_invalidate_range_only_end(&range);
    733}
    734EXPORT_SYMBOL(migrate_vma_pages);
    735
    736/**
    737 * migrate_vma_finalize() - restore CPU page table entry
    738 * @migrate: migrate struct containing all migration information
    739 *
    740 * This replaces the special migration pte entry with either a mapping to the
    741 * new page if migration was successful for that page, or to the original page
    742 * otherwise.
    743 *
    744 * This also unlocks the pages and puts them back on the lru, or drops the extra
    745 * refcount, for device pages.
    746 */
    747void migrate_vma_finalize(struct migrate_vma *migrate)
    748{
    749	const unsigned long npages = migrate->npages;
    750	unsigned long i;
    751
    752	for (i = 0; i < npages; i++) {
    753		struct folio *dst, *src;
    754		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
    755		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    756
    757		if (!page) {
    758			if (newpage) {
    759				unlock_page(newpage);
    760				put_page(newpage);
    761			}
    762			continue;
    763		}
    764
    765		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
    766			if (newpage) {
    767				unlock_page(newpage);
    768				put_page(newpage);
    769			}
    770			newpage = page;
    771		}
    772
    773		src = page_folio(page);
    774		dst = page_folio(newpage);
    775		remove_migration_ptes(src, dst, false);
    776		folio_unlock(src);
    777
    778		if (is_zone_device_page(page))
    779			put_page(page);
    780		else
    781			putback_lru_page(page);
    782
    783		if (newpage != page) {
    784			unlock_page(newpage);
    785			if (is_zone_device_page(newpage))
    786				put_page(newpage);
    787			else
    788				putback_lru_page(newpage);
    789		}
    790	}
    791}
    792EXPORT_SYMBOL(migrate_vma_finalize);