cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmap.c (104455B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * mm/mmap.c
      4 *
      5 * Written by obz.
      6 *
      7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
      8 */
      9
     10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     11
     12#include <linux/kernel.h>
     13#include <linux/slab.h>
     14#include <linux/backing-dev.h>
     15#include <linux/mm.h>
     16#include <linux/mm_inline.h>
     17#include <linux/vmacache.h>
     18#include <linux/shm.h>
     19#include <linux/mman.h>
     20#include <linux/pagemap.h>
     21#include <linux/swap.h>
     22#include <linux/syscalls.h>
     23#include <linux/capability.h>
     24#include <linux/init.h>
     25#include <linux/file.h>
     26#include <linux/fs.h>
     27#include <linux/personality.h>
     28#include <linux/security.h>
     29#include <linux/hugetlb.h>
     30#include <linux/shmem_fs.h>
     31#include <linux/profile.h>
     32#include <linux/export.h>
     33#include <linux/mount.h>
     34#include <linux/mempolicy.h>
     35#include <linux/rmap.h>
     36#include <linux/mmu_notifier.h>
     37#include <linux/mmdebug.h>
     38#include <linux/perf_event.h>
     39#include <linux/audit.h>
     40#include <linux/khugepaged.h>
     41#include <linux/uprobes.h>
     42#include <linux/rbtree_augmented.h>
     43#include <linux/notifier.h>
     44#include <linux/memory.h>
     45#include <linux/printk.h>
     46#include <linux/userfaultfd_k.h>
     47#include <linux/moduleparam.h>
     48#include <linux/pkeys.h>
     49#include <linux/oom.h>
     50#include <linux/sched/mm.h>
     51
     52#include <linux/uaccess.h>
     53#include <asm/cacheflush.h>
     54#include <asm/tlb.h>
     55#include <asm/mmu_context.h>
     56
     57#define CREATE_TRACE_POINTS
     58#include <trace/events/mmap.h>
     59
     60#include "internal.h"
     61
     62#ifndef arch_mmap_check
     63#define arch_mmap_check(addr, len, flags)	(0)
     64#endif
     65
     66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
     67const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
     68const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
     69int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
     70#endif
     71#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
     72const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
     73const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
     74int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
     75#endif
     76
     77static bool ignore_rlimit_data;
     78core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
     79
     80static void unmap_region(struct mm_struct *mm,
     81		struct vm_area_struct *vma, struct vm_area_struct *prev,
     82		unsigned long start, unsigned long end);
     83
     84/* description of effects of mapping type and prot in current implementation.
     85 * this is due to the limited x86 page protection hardware.  The expected
     86 * behavior is in parens:
     87 *
     88 * map_type	prot
     89 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
     90 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
     91 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
     92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
     93 *
     94 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
     95 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
     96 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
     97 *
     98 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
     99 * MAP_PRIVATE (with Enhanced PAN supported):
    100 *								r: (no) no
    101 *								w: (no) no
    102 *								x: (yes) yes
    103 */
    104pgprot_t protection_map[16] __ro_after_init = {
    105	[VM_NONE]					= __P000,
    106	[VM_READ]					= __P001,
    107	[VM_WRITE]					= __P010,
    108	[VM_WRITE | VM_READ]				= __P011,
    109	[VM_EXEC]					= __P100,
    110	[VM_EXEC | VM_READ]				= __P101,
    111	[VM_EXEC | VM_WRITE]				= __P110,
    112	[VM_EXEC | VM_WRITE | VM_READ]			= __P111,
    113	[VM_SHARED]					= __S000,
    114	[VM_SHARED | VM_READ]				= __S001,
    115	[VM_SHARED | VM_WRITE]				= __S010,
    116	[VM_SHARED | VM_WRITE | VM_READ]		= __S011,
    117	[VM_SHARED | VM_EXEC]				= __S100,
    118	[VM_SHARED | VM_EXEC | VM_READ]			= __S101,
    119	[VM_SHARED | VM_EXEC | VM_WRITE]		= __S110,
    120	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __S111
    121};
    122
    123#ifndef CONFIG_ARCH_HAS_VM_GET_PAGE_PROT
    124pgprot_t vm_get_page_prot(unsigned long vm_flags)
    125{
    126	return protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
    127}
    128EXPORT_SYMBOL(vm_get_page_prot);
    129#endif	/* CONFIG_ARCH_HAS_VM_GET_PAGE_PROT */
    130
    131static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
    132{
    133	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
    134}
    135
    136/* Update vma->vm_page_prot to reflect vma->vm_flags. */
    137void vma_set_page_prot(struct vm_area_struct *vma)
    138{
    139	unsigned long vm_flags = vma->vm_flags;
    140	pgprot_t vm_page_prot;
    141
    142	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
    143	if (vma_wants_writenotify(vma, vm_page_prot)) {
    144		vm_flags &= ~VM_SHARED;
    145		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
    146	}
    147	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
    148	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
    149}
    150
    151/*
    152 * Requires inode->i_mapping->i_mmap_rwsem
    153 */
    154static void __remove_shared_vm_struct(struct vm_area_struct *vma,
    155		struct file *file, struct address_space *mapping)
    156{
    157	if (vma->vm_flags & VM_SHARED)
    158		mapping_unmap_writable(mapping);
    159
    160	flush_dcache_mmap_lock(mapping);
    161	vma_interval_tree_remove(vma, &mapping->i_mmap);
    162	flush_dcache_mmap_unlock(mapping);
    163}
    164
    165/*
    166 * Unlink a file-based vm structure from its interval tree, to hide
    167 * vma from rmap and vmtruncate before freeing its page tables.
    168 */
    169void unlink_file_vma(struct vm_area_struct *vma)
    170{
    171	struct file *file = vma->vm_file;
    172
    173	if (file) {
    174		struct address_space *mapping = file->f_mapping;
    175		i_mmap_lock_write(mapping);
    176		__remove_shared_vm_struct(vma, file, mapping);
    177		i_mmap_unlock_write(mapping);
    178	}
    179}
    180
    181/*
    182 * Close a vm structure and free it, returning the next.
    183 */
    184static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
    185{
    186	struct vm_area_struct *next = vma->vm_next;
    187
    188	might_sleep();
    189	if (vma->vm_ops && vma->vm_ops->close)
    190		vma->vm_ops->close(vma);
    191	if (vma->vm_file)
    192		fput(vma->vm_file);
    193	mpol_put(vma_policy(vma));
    194	vm_area_free(vma);
    195	return next;
    196}
    197
    198static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
    199		struct list_head *uf);
    200SYSCALL_DEFINE1(brk, unsigned long, brk)
    201{
    202	unsigned long newbrk, oldbrk, origbrk;
    203	struct mm_struct *mm = current->mm;
    204	struct vm_area_struct *next;
    205	unsigned long min_brk;
    206	bool populate;
    207	bool downgraded = false;
    208	LIST_HEAD(uf);
    209
    210	if (mmap_write_lock_killable(mm))
    211		return -EINTR;
    212
    213	origbrk = mm->brk;
    214
    215#ifdef CONFIG_COMPAT_BRK
    216	/*
    217	 * CONFIG_COMPAT_BRK can still be overridden by setting
    218	 * randomize_va_space to 2, which will still cause mm->start_brk
    219	 * to be arbitrarily shifted
    220	 */
    221	if (current->brk_randomized)
    222		min_brk = mm->start_brk;
    223	else
    224		min_brk = mm->end_data;
    225#else
    226	min_brk = mm->start_brk;
    227#endif
    228	if (brk < min_brk)
    229		goto out;
    230
    231	/*
    232	 * Check against rlimit here. If this check is done later after the test
    233	 * of oldbrk with newbrk then it can escape the test and let the data
    234	 * segment grow beyond its set limit the in case where the limit is
    235	 * not page aligned -Ram Gupta
    236	 */
    237	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
    238			      mm->end_data, mm->start_data))
    239		goto out;
    240
    241	newbrk = PAGE_ALIGN(brk);
    242	oldbrk = PAGE_ALIGN(mm->brk);
    243	if (oldbrk == newbrk) {
    244		mm->brk = brk;
    245		goto success;
    246	}
    247
    248	/*
    249	 * Always allow shrinking brk.
    250	 * __do_munmap() may downgrade mmap_lock to read.
    251	 */
    252	if (brk <= mm->brk) {
    253		int ret;
    254
    255		/*
    256		 * mm->brk must to be protected by write mmap_lock so update it
    257		 * before downgrading mmap_lock. When __do_munmap() fails,
    258		 * mm->brk will be restored from origbrk.
    259		 */
    260		mm->brk = brk;
    261		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
    262		if (ret < 0) {
    263			mm->brk = origbrk;
    264			goto out;
    265		} else if (ret == 1) {
    266			downgraded = true;
    267		}
    268		goto success;
    269	}
    270
    271	/* Check against existing mmap mappings. */
    272	next = find_vma(mm, oldbrk);
    273	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
    274		goto out;
    275
    276	/* Ok, looks good - let it rip. */
    277	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
    278		goto out;
    279	mm->brk = brk;
    280
    281success:
    282	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
    283	if (downgraded)
    284		mmap_read_unlock(mm);
    285	else
    286		mmap_write_unlock(mm);
    287	userfaultfd_unmap_complete(mm, &uf);
    288	if (populate)
    289		mm_populate(oldbrk, newbrk - oldbrk);
    290	return brk;
    291
    292out:
    293	mmap_write_unlock(mm);
    294	return origbrk;
    295}
    296
    297static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
    298{
    299	unsigned long gap, prev_end;
    300
    301	/*
    302	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
    303	 * allow two stack_guard_gaps between them here, and when choosing
    304	 * an unmapped area; whereas when expanding we only require one.
    305	 * That's a little inconsistent, but keeps the code here simpler.
    306	 */
    307	gap = vm_start_gap(vma);
    308	if (vma->vm_prev) {
    309		prev_end = vm_end_gap(vma->vm_prev);
    310		if (gap > prev_end)
    311			gap -= prev_end;
    312		else
    313			gap = 0;
    314	}
    315	return gap;
    316}
    317
    318#ifdef CONFIG_DEBUG_VM_RB
    319static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
    320{
    321	unsigned long max = vma_compute_gap(vma), subtree_gap;
    322	if (vma->vm_rb.rb_left) {
    323		subtree_gap = rb_entry(vma->vm_rb.rb_left,
    324				struct vm_area_struct, vm_rb)->rb_subtree_gap;
    325		if (subtree_gap > max)
    326			max = subtree_gap;
    327	}
    328	if (vma->vm_rb.rb_right) {
    329		subtree_gap = rb_entry(vma->vm_rb.rb_right,
    330				struct vm_area_struct, vm_rb)->rb_subtree_gap;
    331		if (subtree_gap > max)
    332			max = subtree_gap;
    333	}
    334	return max;
    335}
    336
    337static int browse_rb(struct mm_struct *mm)
    338{
    339	struct rb_root *root = &mm->mm_rb;
    340	int i = 0, j, bug = 0;
    341	struct rb_node *nd, *pn = NULL;
    342	unsigned long prev = 0, pend = 0;
    343
    344	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
    345		struct vm_area_struct *vma;
    346		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
    347		if (vma->vm_start < prev) {
    348			pr_emerg("vm_start %lx < prev %lx\n",
    349				  vma->vm_start, prev);
    350			bug = 1;
    351		}
    352		if (vma->vm_start < pend) {
    353			pr_emerg("vm_start %lx < pend %lx\n",
    354				  vma->vm_start, pend);
    355			bug = 1;
    356		}
    357		if (vma->vm_start > vma->vm_end) {
    358			pr_emerg("vm_start %lx > vm_end %lx\n",
    359				  vma->vm_start, vma->vm_end);
    360			bug = 1;
    361		}
    362		spin_lock(&mm->page_table_lock);
    363		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
    364			pr_emerg("free gap %lx, correct %lx\n",
    365			       vma->rb_subtree_gap,
    366			       vma_compute_subtree_gap(vma));
    367			bug = 1;
    368		}
    369		spin_unlock(&mm->page_table_lock);
    370		i++;
    371		pn = nd;
    372		prev = vma->vm_start;
    373		pend = vma->vm_end;
    374	}
    375	j = 0;
    376	for (nd = pn; nd; nd = rb_prev(nd))
    377		j++;
    378	if (i != j) {
    379		pr_emerg("backwards %d, forwards %d\n", j, i);
    380		bug = 1;
    381	}
    382	return bug ? -1 : i;
    383}
    384
    385static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
    386{
    387	struct rb_node *nd;
    388
    389	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
    390		struct vm_area_struct *vma;
    391		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
    392		VM_BUG_ON_VMA(vma != ignore &&
    393			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
    394			vma);
    395	}
    396}
    397
    398static void validate_mm(struct mm_struct *mm)
    399{
    400	int bug = 0;
    401	int i = 0;
    402	unsigned long highest_address = 0;
    403	struct vm_area_struct *vma = mm->mmap;
    404
    405	while (vma) {
    406		struct anon_vma *anon_vma = vma->anon_vma;
    407		struct anon_vma_chain *avc;
    408
    409		if (anon_vma) {
    410			anon_vma_lock_read(anon_vma);
    411			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
    412				anon_vma_interval_tree_verify(avc);
    413			anon_vma_unlock_read(anon_vma);
    414		}
    415
    416		highest_address = vm_end_gap(vma);
    417		vma = vma->vm_next;
    418		i++;
    419	}
    420	if (i != mm->map_count) {
    421		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
    422		bug = 1;
    423	}
    424	if (highest_address != mm->highest_vm_end) {
    425		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
    426			  mm->highest_vm_end, highest_address);
    427		bug = 1;
    428	}
    429	i = browse_rb(mm);
    430	if (i != mm->map_count) {
    431		if (i != -1)
    432			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
    433		bug = 1;
    434	}
    435	VM_BUG_ON_MM(bug, mm);
    436}
    437#else
    438#define validate_mm_rb(root, ignore) do { } while (0)
    439#define validate_mm(mm) do { } while (0)
    440#endif
    441
    442RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
    443			 struct vm_area_struct, vm_rb,
    444			 unsigned long, rb_subtree_gap, vma_compute_gap)
    445
    446/*
    447 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
    448 * vma->vm_prev->vm_end values changed, without modifying the vma's position
    449 * in the rbtree.
    450 */
    451static void vma_gap_update(struct vm_area_struct *vma)
    452{
    453	/*
    454	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
    455	 * a callback function that does exactly what we want.
    456	 */
    457	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
    458}
    459
    460static inline void vma_rb_insert(struct vm_area_struct *vma,
    461				 struct rb_root *root)
    462{
    463	/* All rb_subtree_gap values must be consistent prior to insertion */
    464	validate_mm_rb(root, NULL);
    465
    466	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
    467}
    468
    469static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
    470{
    471	/*
    472	 * Note rb_erase_augmented is a fairly large inline function,
    473	 * so make sure we instantiate it only once with our desired
    474	 * augmented rbtree callbacks.
    475	 */
    476	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
    477}
    478
    479static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
    480						struct rb_root *root,
    481						struct vm_area_struct *ignore)
    482{
    483	/*
    484	 * All rb_subtree_gap values must be consistent prior to erase,
    485	 * with the possible exception of
    486	 *
    487	 * a. the "next" vma being erased if next->vm_start was reduced in
    488	 *    __vma_adjust() -> __vma_unlink()
    489	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
    490	 *    vma_rb_erase()
    491	 */
    492	validate_mm_rb(root, ignore);
    493
    494	__vma_rb_erase(vma, root);
    495}
    496
    497static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
    498					 struct rb_root *root)
    499{
    500	vma_rb_erase_ignore(vma, root, vma);
    501}
    502
    503/*
    504 * vma has some anon_vma assigned, and is already inserted on that
    505 * anon_vma's interval trees.
    506 *
    507 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
    508 * vma must be removed from the anon_vma's interval trees using
    509 * anon_vma_interval_tree_pre_update_vma().
    510 *
    511 * After the update, the vma will be reinserted using
    512 * anon_vma_interval_tree_post_update_vma().
    513 *
    514 * The entire update must be protected by exclusive mmap_lock and by
    515 * the root anon_vma's mutex.
    516 */
    517static inline void
    518anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
    519{
    520	struct anon_vma_chain *avc;
    521
    522	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
    523		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
    524}
    525
    526static inline void
    527anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
    528{
    529	struct anon_vma_chain *avc;
    530
    531	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
    532		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
    533}
    534
    535static int find_vma_links(struct mm_struct *mm, unsigned long addr,
    536		unsigned long end, struct vm_area_struct **pprev,
    537		struct rb_node ***rb_link, struct rb_node **rb_parent)
    538{
    539	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
    540
    541	mmap_assert_locked(mm);
    542	__rb_link = &mm->mm_rb.rb_node;
    543	rb_prev = __rb_parent = NULL;
    544
    545	while (*__rb_link) {
    546		struct vm_area_struct *vma_tmp;
    547
    548		__rb_parent = *__rb_link;
    549		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
    550
    551		if (vma_tmp->vm_end > addr) {
    552			/* Fail if an existing vma overlaps the area */
    553			if (vma_tmp->vm_start < end)
    554				return -ENOMEM;
    555			__rb_link = &__rb_parent->rb_left;
    556		} else {
    557			rb_prev = __rb_parent;
    558			__rb_link = &__rb_parent->rb_right;
    559		}
    560	}
    561
    562	*pprev = NULL;
    563	if (rb_prev)
    564		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
    565	*rb_link = __rb_link;
    566	*rb_parent = __rb_parent;
    567	return 0;
    568}
    569
    570/*
    571 * vma_next() - Get the next VMA.
    572 * @mm: The mm_struct.
    573 * @vma: The current vma.
    574 *
    575 * If @vma is NULL, return the first vma in the mm.
    576 *
    577 * Returns: The next VMA after @vma.
    578 */
    579static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
    580					 struct vm_area_struct *vma)
    581{
    582	if (!vma)
    583		return mm->mmap;
    584
    585	return vma->vm_next;
    586}
    587
    588/*
    589 * munmap_vma_range() - munmap VMAs that overlap a range.
    590 * @mm: The mm struct
    591 * @start: The start of the range.
    592 * @len: The length of the range.
    593 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
    594 * @rb_link: the rb_node
    595 * @rb_parent: the parent rb_node
    596 *
    597 * Find all the vm_area_struct that overlap from @start to
    598 * @end and munmap them.  Set @pprev to the previous vm_area_struct.
    599 *
    600 * Returns: -ENOMEM on munmap failure or 0 on success.
    601 */
    602static inline int
    603munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
    604		 struct vm_area_struct **pprev, struct rb_node ***link,
    605		 struct rb_node **parent, struct list_head *uf)
    606{
    607
    608	while (find_vma_links(mm, start, start + len, pprev, link, parent))
    609		if (do_munmap(mm, start, len, uf))
    610			return -ENOMEM;
    611
    612	return 0;
    613}
    614static unsigned long count_vma_pages_range(struct mm_struct *mm,
    615		unsigned long addr, unsigned long end)
    616{
    617	unsigned long nr_pages = 0;
    618	struct vm_area_struct *vma;
    619
    620	/* Find first overlapping mapping */
    621	vma = find_vma_intersection(mm, addr, end);
    622	if (!vma)
    623		return 0;
    624
    625	nr_pages = (min(end, vma->vm_end) -
    626		max(addr, vma->vm_start)) >> PAGE_SHIFT;
    627
    628	/* Iterate over the rest of the overlaps */
    629	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
    630		unsigned long overlap_len;
    631
    632		if (vma->vm_start > end)
    633			break;
    634
    635		overlap_len = min(end, vma->vm_end) - vma->vm_start;
    636		nr_pages += overlap_len >> PAGE_SHIFT;
    637	}
    638
    639	return nr_pages;
    640}
    641
    642void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
    643		struct rb_node **rb_link, struct rb_node *rb_parent)
    644{
    645	/* Update tracking information for the gap following the new vma. */
    646	if (vma->vm_next)
    647		vma_gap_update(vma->vm_next);
    648	else
    649		mm->highest_vm_end = vm_end_gap(vma);
    650
    651	/*
    652	 * vma->vm_prev wasn't known when we followed the rbtree to find the
    653	 * correct insertion point for that vma. As a result, we could not
    654	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
    655	 * So, we first insert the vma with a zero rb_subtree_gap value
    656	 * (to be consistent with what we did on the way down), and then
    657	 * immediately update the gap to the correct value. Finally we
    658	 * rebalance the rbtree after all augmented values have been set.
    659	 */
    660	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
    661	vma->rb_subtree_gap = 0;
    662	vma_gap_update(vma);
    663	vma_rb_insert(vma, &mm->mm_rb);
    664}
    665
    666static void __vma_link_file(struct vm_area_struct *vma)
    667{
    668	struct file *file;
    669
    670	file = vma->vm_file;
    671	if (file) {
    672		struct address_space *mapping = file->f_mapping;
    673
    674		if (vma->vm_flags & VM_SHARED)
    675			mapping_allow_writable(mapping);
    676
    677		flush_dcache_mmap_lock(mapping);
    678		vma_interval_tree_insert(vma, &mapping->i_mmap);
    679		flush_dcache_mmap_unlock(mapping);
    680	}
    681}
    682
    683static void
    684__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
    685	struct vm_area_struct *prev, struct rb_node **rb_link,
    686	struct rb_node *rb_parent)
    687{
    688	__vma_link_list(mm, vma, prev);
    689	__vma_link_rb(mm, vma, rb_link, rb_parent);
    690}
    691
    692static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
    693			struct vm_area_struct *prev, struct rb_node **rb_link,
    694			struct rb_node *rb_parent)
    695{
    696	struct address_space *mapping = NULL;
    697
    698	if (vma->vm_file) {
    699		mapping = vma->vm_file->f_mapping;
    700		i_mmap_lock_write(mapping);
    701	}
    702
    703	__vma_link(mm, vma, prev, rb_link, rb_parent);
    704	__vma_link_file(vma);
    705
    706	if (mapping)
    707		i_mmap_unlock_write(mapping);
    708
    709	mm->map_count++;
    710	validate_mm(mm);
    711}
    712
    713/*
    714 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
    715 * mm's list and rbtree.  It has already been inserted into the interval tree.
    716 */
    717static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
    718{
    719	struct vm_area_struct *prev;
    720	struct rb_node **rb_link, *rb_parent;
    721
    722	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
    723			   &prev, &rb_link, &rb_parent))
    724		BUG();
    725	__vma_link(mm, vma, prev, rb_link, rb_parent);
    726	mm->map_count++;
    727}
    728
    729static __always_inline void __vma_unlink(struct mm_struct *mm,
    730						struct vm_area_struct *vma,
    731						struct vm_area_struct *ignore)
    732{
    733	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
    734	__vma_unlink_list(mm, vma);
    735	/* Kill the cache */
    736	vmacache_invalidate(mm);
    737}
    738
    739/*
    740 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
    741 * is already present in an i_mmap tree without adjusting the tree.
    742 * The following helper function should be used when such adjustments
    743 * are necessary.  The "insert" vma (if any) is to be inserted
    744 * before we drop the necessary locks.
    745 */
    746int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
    747	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
    748	struct vm_area_struct *expand)
    749{
    750	struct mm_struct *mm = vma->vm_mm;
    751	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
    752	struct address_space *mapping = NULL;
    753	struct rb_root_cached *root = NULL;
    754	struct anon_vma *anon_vma = NULL;
    755	struct file *file = vma->vm_file;
    756	bool start_changed = false, end_changed = false;
    757	long adjust_next = 0;
    758	int remove_next = 0;
    759
    760	if (next && !insert) {
    761		struct vm_area_struct *exporter = NULL, *importer = NULL;
    762
    763		if (end >= next->vm_end) {
    764			/*
    765			 * vma expands, overlapping all the next, and
    766			 * perhaps the one after too (mprotect case 6).
    767			 * The only other cases that gets here are
    768			 * case 1, case 7 and case 8.
    769			 */
    770			if (next == expand) {
    771				/*
    772				 * The only case where we don't expand "vma"
    773				 * and we expand "next" instead is case 8.
    774				 */
    775				VM_WARN_ON(end != next->vm_end);
    776				/*
    777				 * remove_next == 3 means we're
    778				 * removing "vma" and that to do so we
    779				 * swapped "vma" and "next".
    780				 */
    781				remove_next = 3;
    782				VM_WARN_ON(file != next->vm_file);
    783				swap(vma, next);
    784			} else {
    785				VM_WARN_ON(expand != vma);
    786				/*
    787				 * case 1, 6, 7, remove_next == 2 is case 6,
    788				 * remove_next == 1 is case 1 or 7.
    789				 */
    790				remove_next = 1 + (end > next->vm_end);
    791				VM_WARN_ON(remove_next == 2 &&
    792					   end != next->vm_next->vm_end);
    793				/* trim end to next, for case 6 first pass */
    794				end = next->vm_end;
    795			}
    796
    797			exporter = next;
    798			importer = vma;
    799
    800			/*
    801			 * If next doesn't have anon_vma, import from vma after
    802			 * next, if the vma overlaps with it.
    803			 */
    804			if (remove_next == 2 && !next->anon_vma)
    805				exporter = next->vm_next;
    806
    807		} else if (end > next->vm_start) {
    808			/*
    809			 * vma expands, overlapping part of the next:
    810			 * mprotect case 5 shifting the boundary up.
    811			 */
    812			adjust_next = (end - next->vm_start);
    813			exporter = next;
    814			importer = vma;
    815			VM_WARN_ON(expand != importer);
    816		} else if (end < vma->vm_end) {
    817			/*
    818			 * vma shrinks, and !insert tells it's not
    819			 * split_vma inserting another: so it must be
    820			 * mprotect case 4 shifting the boundary down.
    821			 */
    822			adjust_next = -(vma->vm_end - end);
    823			exporter = vma;
    824			importer = next;
    825			VM_WARN_ON(expand != importer);
    826		}
    827
    828		/*
    829		 * Easily overlooked: when mprotect shifts the boundary,
    830		 * make sure the expanding vma has anon_vma set if the
    831		 * shrinking vma had, to cover any anon pages imported.
    832		 */
    833		if (exporter && exporter->anon_vma && !importer->anon_vma) {
    834			int error;
    835
    836			importer->anon_vma = exporter->anon_vma;
    837			error = anon_vma_clone(importer, exporter);
    838			if (error)
    839				return error;
    840		}
    841	}
    842again:
    843	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
    844
    845	if (file) {
    846		mapping = file->f_mapping;
    847		root = &mapping->i_mmap;
    848		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
    849
    850		if (adjust_next)
    851			uprobe_munmap(next, next->vm_start, next->vm_end);
    852
    853		i_mmap_lock_write(mapping);
    854		if (insert) {
    855			/*
    856			 * Put into interval tree now, so instantiated pages
    857			 * are visible to arm/parisc __flush_dcache_page
    858			 * throughout; but we cannot insert into address
    859			 * space until vma start or end is updated.
    860			 */
    861			__vma_link_file(insert);
    862		}
    863	}
    864
    865	anon_vma = vma->anon_vma;
    866	if (!anon_vma && adjust_next)
    867		anon_vma = next->anon_vma;
    868	if (anon_vma) {
    869		VM_WARN_ON(adjust_next && next->anon_vma &&
    870			   anon_vma != next->anon_vma);
    871		anon_vma_lock_write(anon_vma);
    872		anon_vma_interval_tree_pre_update_vma(vma);
    873		if (adjust_next)
    874			anon_vma_interval_tree_pre_update_vma(next);
    875	}
    876
    877	if (file) {
    878		flush_dcache_mmap_lock(mapping);
    879		vma_interval_tree_remove(vma, root);
    880		if (adjust_next)
    881			vma_interval_tree_remove(next, root);
    882	}
    883
    884	if (start != vma->vm_start) {
    885		vma->vm_start = start;
    886		start_changed = true;
    887	}
    888	if (end != vma->vm_end) {
    889		vma->vm_end = end;
    890		end_changed = true;
    891	}
    892	vma->vm_pgoff = pgoff;
    893	if (adjust_next) {
    894		next->vm_start += adjust_next;
    895		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
    896	}
    897
    898	if (file) {
    899		if (adjust_next)
    900			vma_interval_tree_insert(next, root);
    901		vma_interval_tree_insert(vma, root);
    902		flush_dcache_mmap_unlock(mapping);
    903	}
    904
    905	if (remove_next) {
    906		/*
    907		 * vma_merge has merged next into vma, and needs
    908		 * us to remove next before dropping the locks.
    909		 */
    910		if (remove_next != 3)
    911			__vma_unlink(mm, next, next);
    912		else
    913			/*
    914			 * vma is not before next if they've been
    915			 * swapped.
    916			 *
    917			 * pre-swap() next->vm_start was reduced so
    918			 * tell validate_mm_rb to ignore pre-swap()
    919			 * "next" (which is stored in post-swap()
    920			 * "vma").
    921			 */
    922			__vma_unlink(mm, next, vma);
    923		if (file)
    924			__remove_shared_vm_struct(next, file, mapping);
    925	} else if (insert) {
    926		/*
    927		 * split_vma has split insert from vma, and needs
    928		 * us to insert it before dropping the locks
    929		 * (it may either follow vma or precede it).
    930		 */
    931		__insert_vm_struct(mm, insert);
    932	} else {
    933		if (start_changed)
    934			vma_gap_update(vma);
    935		if (end_changed) {
    936			if (!next)
    937				mm->highest_vm_end = vm_end_gap(vma);
    938			else if (!adjust_next)
    939				vma_gap_update(next);
    940		}
    941	}
    942
    943	if (anon_vma) {
    944		anon_vma_interval_tree_post_update_vma(vma);
    945		if (adjust_next)
    946			anon_vma_interval_tree_post_update_vma(next);
    947		anon_vma_unlock_write(anon_vma);
    948	}
    949
    950	if (file) {
    951		i_mmap_unlock_write(mapping);
    952		uprobe_mmap(vma);
    953
    954		if (adjust_next)
    955			uprobe_mmap(next);
    956	}
    957
    958	if (remove_next) {
    959		if (file) {
    960			uprobe_munmap(next, next->vm_start, next->vm_end);
    961			fput(file);
    962		}
    963		if (next->anon_vma)
    964			anon_vma_merge(vma, next);
    965		mm->map_count--;
    966		mpol_put(vma_policy(next));
    967		vm_area_free(next);
    968		/*
    969		 * In mprotect's case 6 (see comments on vma_merge),
    970		 * we must remove another next too. It would clutter
    971		 * up the code too much to do both in one go.
    972		 */
    973		if (remove_next != 3) {
    974			/*
    975			 * If "next" was removed and vma->vm_end was
    976			 * expanded (up) over it, in turn
    977			 * "next->vm_prev->vm_end" changed and the
    978			 * "vma->vm_next" gap must be updated.
    979			 */
    980			next = vma->vm_next;
    981		} else {
    982			/*
    983			 * For the scope of the comment "next" and
    984			 * "vma" considered pre-swap(): if "vma" was
    985			 * removed, next->vm_start was expanded (down)
    986			 * over it and the "next" gap must be updated.
    987			 * Because of the swap() the post-swap() "vma"
    988			 * actually points to pre-swap() "next"
    989			 * (post-swap() "next" as opposed is now a
    990			 * dangling pointer).
    991			 */
    992			next = vma;
    993		}
    994		if (remove_next == 2) {
    995			remove_next = 1;
    996			end = next->vm_end;
    997			goto again;
    998		}
    999		else if (next)
   1000			vma_gap_update(next);
   1001		else {
   1002			/*
   1003			 * If remove_next == 2 we obviously can't
   1004			 * reach this path.
   1005			 *
   1006			 * If remove_next == 3 we can't reach this
   1007			 * path because pre-swap() next is always not
   1008			 * NULL. pre-swap() "next" is not being
   1009			 * removed and its next->vm_end is not altered
   1010			 * (and furthermore "end" already matches
   1011			 * next->vm_end in remove_next == 3).
   1012			 *
   1013			 * We reach this only in the remove_next == 1
   1014			 * case if the "next" vma that was removed was
   1015			 * the highest vma of the mm. However in such
   1016			 * case next->vm_end == "end" and the extended
   1017			 * "vma" has vma->vm_end == next->vm_end so
   1018			 * mm->highest_vm_end doesn't need any update
   1019			 * in remove_next == 1 case.
   1020			 */
   1021			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
   1022		}
   1023	}
   1024	if (insert && file)
   1025		uprobe_mmap(insert);
   1026
   1027	validate_mm(mm);
   1028
   1029	return 0;
   1030}
   1031
   1032/*
   1033 * If the vma has a ->close operation then the driver probably needs to release
   1034 * per-vma resources, so we don't attempt to merge those.
   1035 */
   1036static inline int is_mergeable_vma(struct vm_area_struct *vma,
   1037				struct file *file, unsigned long vm_flags,
   1038				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
   1039				struct anon_vma_name *anon_name)
   1040{
   1041	/*
   1042	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
   1043	 * match the flags but dirty bit -- the caller should mark
   1044	 * merged VMA as dirty. If dirty bit won't be excluded from
   1045	 * comparison, we increase pressure on the memory system forcing
   1046	 * the kernel to generate new VMAs when old one could be
   1047	 * extended instead.
   1048	 */
   1049	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
   1050		return 0;
   1051	if (vma->vm_file != file)
   1052		return 0;
   1053	if (vma->vm_ops && vma->vm_ops->close)
   1054		return 0;
   1055	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
   1056		return 0;
   1057	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
   1058		return 0;
   1059	return 1;
   1060}
   1061
   1062static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
   1063					struct anon_vma *anon_vma2,
   1064					struct vm_area_struct *vma)
   1065{
   1066	/*
   1067	 * The list_is_singular() test is to avoid merging VMA cloned from
   1068	 * parents. This can improve scalability caused by anon_vma lock.
   1069	 */
   1070	if ((!anon_vma1 || !anon_vma2) && (!vma ||
   1071		list_is_singular(&vma->anon_vma_chain)))
   1072		return 1;
   1073	return anon_vma1 == anon_vma2;
   1074}
   1075
   1076/*
   1077 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
   1078 * in front of (at a lower virtual address and file offset than) the vma.
   1079 *
   1080 * We cannot merge two vmas if they have differently assigned (non-NULL)
   1081 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
   1082 *
   1083 * We don't check here for the merged mmap wrapping around the end of pagecache
   1084 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
   1085 * wrap, nor mmaps which cover the final page at index -1UL.
   1086 */
   1087static int
   1088can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
   1089		     struct anon_vma *anon_vma, struct file *file,
   1090		     pgoff_t vm_pgoff,
   1091		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
   1092		     struct anon_vma_name *anon_name)
   1093{
   1094	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
   1095	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
   1096		if (vma->vm_pgoff == vm_pgoff)
   1097			return 1;
   1098	}
   1099	return 0;
   1100}
   1101
   1102/*
   1103 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
   1104 * beyond (at a higher virtual address and file offset than) the vma.
   1105 *
   1106 * We cannot merge two vmas if they have differently assigned (non-NULL)
   1107 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
   1108 */
   1109static int
   1110can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
   1111		    struct anon_vma *anon_vma, struct file *file,
   1112		    pgoff_t vm_pgoff,
   1113		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
   1114		    struct anon_vma_name *anon_name)
   1115{
   1116	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
   1117	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
   1118		pgoff_t vm_pglen;
   1119		vm_pglen = vma_pages(vma);
   1120		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
   1121			return 1;
   1122	}
   1123	return 0;
   1124}
   1125
   1126/*
   1127 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
   1128 * figure out whether that can be merged with its predecessor or its
   1129 * successor.  Or both (it neatly fills a hole).
   1130 *
   1131 * In most cases - when called for mmap, brk or mremap - [addr,end) is
   1132 * certain not to be mapped by the time vma_merge is called; but when
   1133 * called for mprotect, it is certain to be already mapped (either at
   1134 * an offset within prev, or at the start of next), and the flags of
   1135 * this area are about to be changed to vm_flags - and the no-change
   1136 * case has already been eliminated.
   1137 *
   1138 * The following mprotect cases have to be considered, where AAAA is
   1139 * the area passed down from mprotect_fixup, never extending beyond one
   1140 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
   1141 *
   1142 *     AAAA             AAAA                   AAAA
   1143 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
   1144 *    cannot merge    might become       might become
   1145 *                    PPNNNNNNNNNN       PPPPPPPPPPNN
   1146 *    mmap, brk or    case 4 below       case 5 below
   1147 *    mremap move:
   1148 *                        AAAA               AAAA
   1149 *                    PPPP    NNNN       PPPPNNNNXXXX
   1150 *                    might become       might become
   1151 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
   1152 *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
   1153 *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
   1154 *
   1155 * It is important for case 8 that the vma NNNN overlapping the
   1156 * region AAAA is never going to extended over XXXX. Instead XXXX must
   1157 * be extended in region AAAA and NNNN must be removed. This way in
   1158 * all cases where vma_merge succeeds, the moment vma_adjust drops the
   1159 * rmap_locks, the properties of the merged vma will be already
   1160 * correct for the whole merged range. Some of those properties like
   1161 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
   1162 * be correct for the whole merged range immediately after the
   1163 * rmap_locks are released. Otherwise if XXXX would be removed and
   1164 * NNNN would be extended over the XXXX range, remove_migration_ptes
   1165 * or other rmap walkers (if working on addresses beyond the "end"
   1166 * parameter) may establish ptes with the wrong permissions of NNNN
   1167 * instead of the right permissions of XXXX.
   1168 */
   1169struct vm_area_struct *vma_merge(struct mm_struct *mm,
   1170			struct vm_area_struct *prev, unsigned long addr,
   1171			unsigned long end, unsigned long vm_flags,
   1172			struct anon_vma *anon_vma, struct file *file,
   1173			pgoff_t pgoff, struct mempolicy *policy,
   1174			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
   1175			struct anon_vma_name *anon_name)
   1176{
   1177	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
   1178	struct vm_area_struct *area, *next;
   1179	int err;
   1180
   1181	/*
   1182	 * We later require that vma->vm_flags == vm_flags,
   1183	 * so this tests vma->vm_flags & VM_SPECIAL, too.
   1184	 */
   1185	if (vm_flags & VM_SPECIAL)
   1186		return NULL;
   1187
   1188	next = vma_next(mm, prev);
   1189	area = next;
   1190	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
   1191		next = next->vm_next;
   1192
   1193	/* verify some invariant that must be enforced by the caller */
   1194	VM_WARN_ON(prev && addr <= prev->vm_start);
   1195	VM_WARN_ON(area && end > area->vm_end);
   1196	VM_WARN_ON(addr >= end);
   1197
   1198	/*
   1199	 * Can it merge with the predecessor?
   1200	 */
   1201	if (prev && prev->vm_end == addr &&
   1202			mpol_equal(vma_policy(prev), policy) &&
   1203			can_vma_merge_after(prev, vm_flags,
   1204					    anon_vma, file, pgoff,
   1205					    vm_userfaultfd_ctx, anon_name)) {
   1206		/*
   1207		 * OK, it can.  Can we now merge in the successor as well?
   1208		 */
   1209		if (next && end == next->vm_start &&
   1210				mpol_equal(policy, vma_policy(next)) &&
   1211				can_vma_merge_before(next, vm_flags,
   1212						     anon_vma, file,
   1213						     pgoff+pglen,
   1214						     vm_userfaultfd_ctx, anon_name) &&
   1215				is_mergeable_anon_vma(prev->anon_vma,
   1216						      next->anon_vma, NULL)) {
   1217							/* cases 1, 6 */
   1218			err = __vma_adjust(prev, prev->vm_start,
   1219					 next->vm_end, prev->vm_pgoff, NULL,
   1220					 prev);
   1221		} else					/* cases 2, 5, 7 */
   1222			err = __vma_adjust(prev, prev->vm_start,
   1223					 end, prev->vm_pgoff, NULL, prev);
   1224		if (err)
   1225			return NULL;
   1226		khugepaged_enter_vma(prev, vm_flags);
   1227		return prev;
   1228	}
   1229
   1230	/*
   1231	 * Can this new request be merged in front of next?
   1232	 */
   1233	if (next && end == next->vm_start &&
   1234			mpol_equal(policy, vma_policy(next)) &&
   1235			can_vma_merge_before(next, vm_flags,
   1236					     anon_vma, file, pgoff+pglen,
   1237					     vm_userfaultfd_ctx, anon_name)) {
   1238		if (prev && addr < prev->vm_end)	/* case 4 */
   1239			err = __vma_adjust(prev, prev->vm_start,
   1240					 addr, prev->vm_pgoff, NULL, next);
   1241		else {					/* cases 3, 8 */
   1242			err = __vma_adjust(area, addr, next->vm_end,
   1243					 next->vm_pgoff - pglen, NULL, next);
   1244			/*
   1245			 * In case 3 area is already equal to next and
   1246			 * this is a noop, but in case 8 "area" has
   1247			 * been removed and next was expanded over it.
   1248			 */
   1249			area = next;
   1250		}
   1251		if (err)
   1252			return NULL;
   1253		khugepaged_enter_vma(area, vm_flags);
   1254		return area;
   1255	}
   1256
   1257	return NULL;
   1258}
   1259
   1260/*
   1261 * Rough compatibility check to quickly see if it's even worth looking
   1262 * at sharing an anon_vma.
   1263 *
   1264 * They need to have the same vm_file, and the flags can only differ
   1265 * in things that mprotect may change.
   1266 *
   1267 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
   1268 * we can merge the two vma's. For example, we refuse to merge a vma if
   1269 * there is a vm_ops->close() function, because that indicates that the
   1270 * driver is doing some kind of reference counting. But that doesn't
   1271 * really matter for the anon_vma sharing case.
   1272 */
   1273static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
   1274{
   1275	return a->vm_end == b->vm_start &&
   1276		mpol_equal(vma_policy(a), vma_policy(b)) &&
   1277		a->vm_file == b->vm_file &&
   1278		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
   1279		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
   1280}
   1281
   1282/*
   1283 * Do some basic sanity checking to see if we can re-use the anon_vma
   1284 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
   1285 * the same as 'old', the other will be the new one that is trying
   1286 * to share the anon_vma.
   1287 *
   1288 * NOTE! This runs with mmap_lock held for reading, so it is possible that
   1289 * the anon_vma of 'old' is concurrently in the process of being set up
   1290 * by another page fault trying to merge _that_. But that's ok: if it
   1291 * is being set up, that automatically means that it will be a singleton
   1292 * acceptable for merging, so we can do all of this optimistically. But
   1293 * we do that READ_ONCE() to make sure that we never re-load the pointer.
   1294 *
   1295 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
   1296 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
   1297 * is to return an anon_vma that is "complex" due to having gone through
   1298 * a fork).
   1299 *
   1300 * We also make sure that the two vma's are compatible (adjacent,
   1301 * and with the same memory policies). That's all stable, even with just
   1302 * a read lock on the mmap_lock.
   1303 */
   1304static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
   1305{
   1306	if (anon_vma_compatible(a, b)) {
   1307		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
   1308
   1309		if (anon_vma && list_is_singular(&old->anon_vma_chain))
   1310			return anon_vma;
   1311	}
   1312	return NULL;
   1313}
   1314
   1315/*
   1316 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
   1317 * neighbouring vmas for a suitable anon_vma, before it goes off
   1318 * to allocate a new anon_vma.  It checks because a repetitive
   1319 * sequence of mprotects and faults may otherwise lead to distinct
   1320 * anon_vmas being allocated, preventing vma merge in subsequent
   1321 * mprotect.
   1322 */
   1323struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
   1324{
   1325	struct anon_vma *anon_vma = NULL;
   1326
   1327	/* Try next first. */
   1328	if (vma->vm_next) {
   1329		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
   1330		if (anon_vma)
   1331			return anon_vma;
   1332	}
   1333
   1334	/* Try prev next. */
   1335	if (vma->vm_prev)
   1336		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
   1337
   1338	/*
   1339	 * We might reach here with anon_vma == NULL if we can't find
   1340	 * any reusable anon_vma.
   1341	 * There's no absolute need to look only at touching neighbours:
   1342	 * we could search further afield for "compatible" anon_vmas.
   1343	 * But it would probably just be a waste of time searching,
   1344	 * or lead to too many vmas hanging off the same anon_vma.
   1345	 * We're trying to allow mprotect remerging later on,
   1346	 * not trying to minimize memory used for anon_vmas.
   1347	 */
   1348	return anon_vma;
   1349}
   1350
   1351/*
   1352 * If a hint addr is less than mmap_min_addr change hint to be as
   1353 * low as possible but still greater than mmap_min_addr
   1354 */
   1355static inline unsigned long round_hint_to_min(unsigned long hint)
   1356{
   1357	hint &= PAGE_MASK;
   1358	if (((void *)hint != NULL) &&
   1359	    (hint < mmap_min_addr))
   1360		return PAGE_ALIGN(mmap_min_addr);
   1361	return hint;
   1362}
   1363
   1364int mlock_future_check(struct mm_struct *mm, unsigned long flags,
   1365		       unsigned long len)
   1366{
   1367	unsigned long locked, lock_limit;
   1368
   1369	/*  mlock MCL_FUTURE? */
   1370	if (flags & VM_LOCKED) {
   1371		locked = len >> PAGE_SHIFT;
   1372		locked += mm->locked_vm;
   1373		lock_limit = rlimit(RLIMIT_MEMLOCK);
   1374		lock_limit >>= PAGE_SHIFT;
   1375		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
   1376			return -EAGAIN;
   1377	}
   1378	return 0;
   1379}
   1380
   1381static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
   1382{
   1383	if (S_ISREG(inode->i_mode))
   1384		return MAX_LFS_FILESIZE;
   1385
   1386	if (S_ISBLK(inode->i_mode))
   1387		return MAX_LFS_FILESIZE;
   1388
   1389	if (S_ISSOCK(inode->i_mode))
   1390		return MAX_LFS_FILESIZE;
   1391
   1392	/* Special "we do even unsigned file positions" case */
   1393	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
   1394		return 0;
   1395
   1396	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
   1397	return ULONG_MAX;
   1398}
   1399
   1400static inline bool file_mmap_ok(struct file *file, struct inode *inode,
   1401				unsigned long pgoff, unsigned long len)
   1402{
   1403	u64 maxsize = file_mmap_size_max(file, inode);
   1404
   1405	if (maxsize && len > maxsize)
   1406		return false;
   1407	maxsize -= len;
   1408	if (pgoff > maxsize >> PAGE_SHIFT)
   1409		return false;
   1410	return true;
   1411}
   1412
   1413/*
   1414 * The caller must write-lock current->mm->mmap_lock.
   1415 */
   1416unsigned long do_mmap(struct file *file, unsigned long addr,
   1417			unsigned long len, unsigned long prot,
   1418			unsigned long flags, unsigned long pgoff,
   1419			unsigned long *populate, struct list_head *uf)
   1420{
   1421	struct mm_struct *mm = current->mm;
   1422	vm_flags_t vm_flags;
   1423	int pkey = 0;
   1424
   1425	*populate = 0;
   1426
   1427	if (!len)
   1428		return -EINVAL;
   1429
   1430	/*
   1431	 * Does the application expect PROT_READ to imply PROT_EXEC?
   1432	 *
   1433	 * (the exception is when the underlying filesystem is noexec
   1434	 *  mounted, in which case we dont add PROT_EXEC.)
   1435	 */
   1436	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
   1437		if (!(file && path_noexec(&file->f_path)))
   1438			prot |= PROT_EXEC;
   1439
   1440	/* force arch specific MAP_FIXED handling in get_unmapped_area */
   1441	if (flags & MAP_FIXED_NOREPLACE)
   1442		flags |= MAP_FIXED;
   1443
   1444	if (!(flags & MAP_FIXED))
   1445		addr = round_hint_to_min(addr);
   1446
   1447	/* Careful about overflows.. */
   1448	len = PAGE_ALIGN(len);
   1449	if (!len)
   1450		return -ENOMEM;
   1451
   1452	/* offset overflow? */
   1453	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
   1454		return -EOVERFLOW;
   1455
   1456	/* Too many mappings? */
   1457	if (mm->map_count > sysctl_max_map_count)
   1458		return -ENOMEM;
   1459
   1460	/* Obtain the address to map to. we verify (or select) it and ensure
   1461	 * that it represents a valid section of the address space.
   1462	 */
   1463	addr = get_unmapped_area(file, addr, len, pgoff, flags);
   1464	if (IS_ERR_VALUE(addr))
   1465		return addr;
   1466
   1467	if (flags & MAP_FIXED_NOREPLACE) {
   1468		if (find_vma_intersection(mm, addr, addr + len))
   1469			return -EEXIST;
   1470	}
   1471
   1472	if (prot == PROT_EXEC) {
   1473		pkey = execute_only_pkey(mm);
   1474		if (pkey < 0)
   1475			pkey = 0;
   1476	}
   1477
   1478	/* Do simple checking here so the lower-level routines won't have
   1479	 * to. we assume access permissions have been handled by the open
   1480	 * of the memory object, so we don't do any here.
   1481	 */
   1482	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
   1483			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
   1484
   1485	if (flags & MAP_LOCKED)
   1486		if (!can_do_mlock())
   1487			return -EPERM;
   1488
   1489	if (mlock_future_check(mm, vm_flags, len))
   1490		return -EAGAIN;
   1491
   1492	if (file) {
   1493		struct inode *inode = file_inode(file);
   1494		unsigned long flags_mask;
   1495
   1496		if (!file_mmap_ok(file, inode, pgoff, len))
   1497			return -EOVERFLOW;
   1498
   1499		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
   1500
   1501		switch (flags & MAP_TYPE) {
   1502		case MAP_SHARED:
   1503			/*
   1504			 * Force use of MAP_SHARED_VALIDATE with non-legacy
   1505			 * flags. E.g. MAP_SYNC is dangerous to use with
   1506			 * MAP_SHARED as you don't know which consistency model
   1507			 * you will get. We silently ignore unsupported flags
   1508			 * with MAP_SHARED to preserve backward compatibility.
   1509			 */
   1510			flags &= LEGACY_MAP_MASK;
   1511			fallthrough;
   1512		case MAP_SHARED_VALIDATE:
   1513			if (flags & ~flags_mask)
   1514				return -EOPNOTSUPP;
   1515			if (prot & PROT_WRITE) {
   1516				if (!(file->f_mode & FMODE_WRITE))
   1517					return -EACCES;
   1518				if (IS_SWAPFILE(file->f_mapping->host))
   1519					return -ETXTBSY;
   1520			}
   1521
   1522			/*
   1523			 * Make sure we don't allow writing to an append-only
   1524			 * file..
   1525			 */
   1526			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
   1527				return -EACCES;
   1528
   1529			vm_flags |= VM_SHARED | VM_MAYSHARE;
   1530			if (!(file->f_mode & FMODE_WRITE))
   1531				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
   1532			fallthrough;
   1533		case MAP_PRIVATE:
   1534			if (!(file->f_mode & FMODE_READ))
   1535				return -EACCES;
   1536			if (path_noexec(&file->f_path)) {
   1537				if (vm_flags & VM_EXEC)
   1538					return -EPERM;
   1539				vm_flags &= ~VM_MAYEXEC;
   1540			}
   1541
   1542			if (!file->f_op->mmap)
   1543				return -ENODEV;
   1544			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
   1545				return -EINVAL;
   1546			break;
   1547
   1548		default:
   1549			return -EINVAL;
   1550		}
   1551	} else {
   1552		switch (flags & MAP_TYPE) {
   1553		case MAP_SHARED:
   1554			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
   1555				return -EINVAL;
   1556			/*
   1557			 * Ignore pgoff.
   1558			 */
   1559			pgoff = 0;
   1560			vm_flags |= VM_SHARED | VM_MAYSHARE;
   1561			break;
   1562		case MAP_PRIVATE:
   1563			/*
   1564			 * Set pgoff according to addr for anon_vma.
   1565			 */
   1566			pgoff = addr >> PAGE_SHIFT;
   1567			break;
   1568		default:
   1569			return -EINVAL;
   1570		}
   1571	}
   1572
   1573	/*
   1574	 * Set 'VM_NORESERVE' if we should not account for the
   1575	 * memory use of this mapping.
   1576	 */
   1577	if (flags & MAP_NORESERVE) {
   1578		/* We honor MAP_NORESERVE if allowed to overcommit */
   1579		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
   1580			vm_flags |= VM_NORESERVE;
   1581
   1582		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
   1583		if (file && is_file_hugepages(file))
   1584			vm_flags |= VM_NORESERVE;
   1585	}
   1586
   1587	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
   1588	if (!IS_ERR_VALUE(addr) &&
   1589	    ((vm_flags & VM_LOCKED) ||
   1590	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
   1591		*populate = len;
   1592	return addr;
   1593}
   1594
   1595unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
   1596			      unsigned long prot, unsigned long flags,
   1597			      unsigned long fd, unsigned long pgoff)
   1598{
   1599	struct file *file = NULL;
   1600	unsigned long retval;
   1601
   1602	if (!(flags & MAP_ANONYMOUS)) {
   1603		audit_mmap_fd(fd, flags);
   1604		file = fget(fd);
   1605		if (!file)
   1606			return -EBADF;
   1607		if (is_file_hugepages(file)) {
   1608			len = ALIGN(len, huge_page_size(hstate_file(file)));
   1609		} else if (unlikely(flags & MAP_HUGETLB)) {
   1610			retval = -EINVAL;
   1611			goto out_fput;
   1612		}
   1613	} else if (flags & MAP_HUGETLB) {
   1614		struct hstate *hs;
   1615
   1616		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
   1617		if (!hs)
   1618			return -EINVAL;
   1619
   1620		len = ALIGN(len, huge_page_size(hs));
   1621		/*
   1622		 * VM_NORESERVE is used because the reservations will be
   1623		 * taken when vm_ops->mmap() is called
   1624		 */
   1625		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
   1626				VM_NORESERVE,
   1627				HUGETLB_ANONHUGE_INODE,
   1628				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
   1629		if (IS_ERR(file))
   1630			return PTR_ERR(file);
   1631	}
   1632
   1633	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
   1634out_fput:
   1635	if (file)
   1636		fput(file);
   1637	return retval;
   1638}
   1639
   1640SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
   1641		unsigned long, prot, unsigned long, flags,
   1642		unsigned long, fd, unsigned long, pgoff)
   1643{
   1644	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
   1645}
   1646
   1647#ifdef __ARCH_WANT_SYS_OLD_MMAP
   1648struct mmap_arg_struct {
   1649	unsigned long addr;
   1650	unsigned long len;
   1651	unsigned long prot;
   1652	unsigned long flags;
   1653	unsigned long fd;
   1654	unsigned long offset;
   1655};
   1656
   1657SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
   1658{
   1659	struct mmap_arg_struct a;
   1660
   1661	if (copy_from_user(&a, arg, sizeof(a)))
   1662		return -EFAULT;
   1663	if (offset_in_page(a.offset))
   1664		return -EINVAL;
   1665
   1666	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
   1667			       a.offset >> PAGE_SHIFT);
   1668}
   1669#endif /* __ARCH_WANT_SYS_OLD_MMAP */
   1670
   1671/*
   1672 * Some shared mappings will want the pages marked read-only
   1673 * to track write events. If so, we'll downgrade vm_page_prot
   1674 * to the private version (using protection_map[] without the
   1675 * VM_SHARED bit).
   1676 */
   1677int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
   1678{
   1679	vm_flags_t vm_flags = vma->vm_flags;
   1680	const struct vm_operations_struct *vm_ops = vma->vm_ops;
   1681
   1682	/* If it was private or non-writable, the write bit is already clear */
   1683	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
   1684		return 0;
   1685
   1686	/* The backer wishes to know when pages are first written to? */
   1687	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
   1688		return 1;
   1689
   1690	/* The open routine did something to the protections that pgprot_modify
   1691	 * won't preserve? */
   1692	if (pgprot_val(vm_page_prot) !=
   1693	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
   1694		return 0;
   1695
   1696	/* Do we need to track softdirty? */
   1697	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
   1698		return 1;
   1699
   1700	/* Specialty mapping? */
   1701	if (vm_flags & VM_PFNMAP)
   1702		return 0;
   1703
   1704	/* Can the mapping track the dirty pages? */
   1705	return vma->vm_file && vma->vm_file->f_mapping &&
   1706		mapping_can_writeback(vma->vm_file->f_mapping);
   1707}
   1708
   1709/*
   1710 * We account for memory if it's a private writeable mapping,
   1711 * not hugepages and VM_NORESERVE wasn't set.
   1712 */
   1713static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
   1714{
   1715	/*
   1716	 * hugetlb has its own accounting separate from the core VM
   1717	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
   1718	 */
   1719	if (file && is_file_hugepages(file))
   1720		return 0;
   1721
   1722	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
   1723}
   1724
   1725unsigned long mmap_region(struct file *file, unsigned long addr,
   1726		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
   1727		struct list_head *uf)
   1728{
   1729	struct mm_struct *mm = current->mm;
   1730	struct vm_area_struct *vma, *prev, *merge;
   1731	int error;
   1732	struct rb_node **rb_link, *rb_parent;
   1733	unsigned long charged = 0;
   1734
   1735	/* Check against address space limit. */
   1736	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
   1737		unsigned long nr_pages;
   1738
   1739		/*
   1740		 * MAP_FIXED may remove pages of mappings that intersects with
   1741		 * requested mapping. Account for the pages it would unmap.
   1742		 */
   1743		nr_pages = count_vma_pages_range(mm, addr, addr + len);
   1744
   1745		if (!may_expand_vm(mm, vm_flags,
   1746					(len >> PAGE_SHIFT) - nr_pages))
   1747			return -ENOMEM;
   1748	}
   1749
   1750	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
   1751	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
   1752		return -ENOMEM;
   1753	/*
   1754	 * Private writable mapping: check memory availability
   1755	 */
   1756	if (accountable_mapping(file, vm_flags)) {
   1757		charged = len >> PAGE_SHIFT;
   1758		if (security_vm_enough_memory_mm(mm, charged))
   1759			return -ENOMEM;
   1760		vm_flags |= VM_ACCOUNT;
   1761	}
   1762
   1763	/*
   1764	 * Can we just expand an old mapping?
   1765	 */
   1766	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
   1767			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
   1768	if (vma)
   1769		goto out;
   1770
   1771	/*
   1772	 * Determine the object being mapped and call the appropriate
   1773	 * specific mapper. the address has already been validated, but
   1774	 * not unmapped, but the maps are removed from the list.
   1775	 */
   1776	vma = vm_area_alloc(mm);
   1777	if (!vma) {
   1778		error = -ENOMEM;
   1779		goto unacct_error;
   1780	}
   1781
   1782	vma->vm_start = addr;
   1783	vma->vm_end = addr + len;
   1784	vma->vm_flags = vm_flags;
   1785	vma->vm_page_prot = vm_get_page_prot(vm_flags);
   1786	vma->vm_pgoff = pgoff;
   1787
   1788	if (file) {
   1789		if (vm_flags & VM_SHARED) {
   1790			error = mapping_map_writable(file->f_mapping);
   1791			if (error)
   1792				goto free_vma;
   1793		}
   1794
   1795		vma->vm_file = get_file(file);
   1796		error = call_mmap(file, vma);
   1797		if (error)
   1798			goto unmap_and_free_vma;
   1799
   1800		/* Can addr have changed??
   1801		 *
   1802		 * Answer: Yes, several device drivers can do it in their
   1803		 *         f_op->mmap method. -DaveM
   1804		 * Bug: If addr is changed, prev, rb_link, rb_parent should
   1805		 *      be updated for vma_link()
   1806		 */
   1807		WARN_ON_ONCE(addr != vma->vm_start);
   1808
   1809		addr = vma->vm_start;
   1810
   1811		/* If vm_flags changed after call_mmap(), we should try merge vma again
   1812		 * as we may succeed this time.
   1813		 */
   1814		if (unlikely(vm_flags != vma->vm_flags && prev)) {
   1815			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
   1816				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
   1817			if (merge) {
   1818				/* ->mmap() can change vma->vm_file and fput the original file. So
   1819				 * fput the vma->vm_file here or we would add an extra fput for file
   1820				 * and cause general protection fault ultimately.
   1821				 */
   1822				fput(vma->vm_file);
   1823				vm_area_free(vma);
   1824				vma = merge;
   1825				/* Update vm_flags to pick up the change. */
   1826				vm_flags = vma->vm_flags;
   1827				goto unmap_writable;
   1828			}
   1829		}
   1830
   1831		vm_flags = vma->vm_flags;
   1832	} else if (vm_flags & VM_SHARED) {
   1833		error = shmem_zero_setup(vma);
   1834		if (error)
   1835			goto free_vma;
   1836	} else {
   1837		vma_set_anonymous(vma);
   1838	}
   1839
   1840	/* Allow architectures to sanity-check the vm_flags */
   1841	if (!arch_validate_flags(vma->vm_flags)) {
   1842		error = -EINVAL;
   1843		if (file)
   1844			goto unmap_and_free_vma;
   1845		else
   1846			goto free_vma;
   1847	}
   1848
   1849	vma_link(mm, vma, prev, rb_link, rb_parent);
   1850
   1851	/*
   1852	 * vma_merge() calls khugepaged_enter_vma() either, the below
   1853	 * call covers the non-merge case.
   1854	 */
   1855	khugepaged_enter_vma(vma, vma->vm_flags);
   1856
   1857	/* Once vma denies write, undo our temporary denial count */
   1858unmap_writable:
   1859	if (file && vm_flags & VM_SHARED)
   1860		mapping_unmap_writable(file->f_mapping);
   1861	file = vma->vm_file;
   1862out:
   1863	perf_event_mmap(vma);
   1864
   1865	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
   1866	if (vm_flags & VM_LOCKED) {
   1867		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
   1868					is_vm_hugetlb_page(vma) ||
   1869					vma == get_gate_vma(current->mm))
   1870			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
   1871		else
   1872			mm->locked_vm += (len >> PAGE_SHIFT);
   1873	}
   1874
   1875	if (file)
   1876		uprobe_mmap(vma);
   1877
   1878	/*
   1879	 * New (or expanded) vma always get soft dirty status.
   1880	 * Otherwise user-space soft-dirty page tracker won't
   1881	 * be able to distinguish situation when vma area unmapped,
   1882	 * then new mapped in-place (which must be aimed as
   1883	 * a completely new data area).
   1884	 */
   1885	vma->vm_flags |= VM_SOFTDIRTY;
   1886
   1887	vma_set_page_prot(vma);
   1888
   1889	return addr;
   1890
   1891unmap_and_free_vma:
   1892	fput(vma->vm_file);
   1893	vma->vm_file = NULL;
   1894
   1895	/* Undo any partial mapping done by a device driver. */
   1896	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
   1897	charged = 0;
   1898	if (vm_flags & VM_SHARED)
   1899		mapping_unmap_writable(file->f_mapping);
   1900free_vma:
   1901	vm_area_free(vma);
   1902unacct_error:
   1903	if (charged)
   1904		vm_unacct_memory(charged);
   1905	return error;
   1906}
   1907
   1908static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
   1909{
   1910	/*
   1911	 * We implement the search by looking for an rbtree node that
   1912	 * immediately follows a suitable gap. That is,
   1913	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
   1914	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
   1915	 * - gap_end - gap_start >= length
   1916	 */
   1917
   1918	struct mm_struct *mm = current->mm;
   1919	struct vm_area_struct *vma;
   1920	unsigned long length, low_limit, high_limit, gap_start, gap_end;
   1921
   1922	/* Adjust search length to account for worst case alignment overhead */
   1923	length = info->length + info->align_mask;
   1924	if (length < info->length)
   1925		return -ENOMEM;
   1926
   1927	/* Adjust search limits by the desired length */
   1928	if (info->high_limit < length)
   1929		return -ENOMEM;
   1930	high_limit = info->high_limit - length;
   1931
   1932	if (info->low_limit > high_limit)
   1933		return -ENOMEM;
   1934	low_limit = info->low_limit + length;
   1935
   1936	/* Check if rbtree root looks promising */
   1937	if (RB_EMPTY_ROOT(&mm->mm_rb))
   1938		goto check_highest;
   1939	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
   1940	if (vma->rb_subtree_gap < length)
   1941		goto check_highest;
   1942
   1943	while (true) {
   1944		/* Visit left subtree if it looks promising */
   1945		gap_end = vm_start_gap(vma);
   1946		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
   1947			struct vm_area_struct *left =
   1948				rb_entry(vma->vm_rb.rb_left,
   1949					 struct vm_area_struct, vm_rb);
   1950			if (left->rb_subtree_gap >= length) {
   1951				vma = left;
   1952				continue;
   1953			}
   1954		}
   1955
   1956		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
   1957check_current:
   1958		/* Check if current node has a suitable gap */
   1959		if (gap_start > high_limit)
   1960			return -ENOMEM;
   1961		if (gap_end >= low_limit &&
   1962		    gap_end > gap_start && gap_end - gap_start >= length)
   1963			goto found;
   1964
   1965		/* Visit right subtree if it looks promising */
   1966		if (vma->vm_rb.rb_right) {
   1967			struct vm_area_struct *right =
   1968				rb_entry(vma->vm_rb.rb_right,
   1969					 struct vm_area_struct, vm_rb);
   1970			if (right->rb_subtree_gap >= length) {
   1971				vma = right;
   1972				continue;
   1973			}
   1974		}
   1975
   1976		/* Go back up the rbtree to find next candidate node */
   1977		while (true) {
   1978			struct rb_node *prev = &vma->vm_rb;
   1979			if (!rb_parent(prev))
   1980				goto check_highest;
   1981			vma = rb_entry(rb_parent(prev),
   1982				       struct vm_area_struct, vm_rb);
   1983			if (prev == vma->vm_rb.rb_left) {
   1984				gap_start = vm_end_gap(vma->vm_prev);
   1985				gap_end = vm_start_gap(vma);
   1986				goto check_current;
   1987			}
   1988		}
   1989	}
   1990
   1991check_highest:
   1992	/* Check highest gap, which does not precede any rbtree node */
   1993	gap_start = mm->highest_vm_end;
   1994	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
   1995	if (gap_start > high_limit)
   1996		return -ENOMEM;
   1997
   1998found:
   1999	/* We found a suitable gap. Clip it with the original low_limit. */
   2000	if (gap_start < info->low_limit)
   2001		gap_start = info->low_limit;
   2002
   2003	/* Adjust gap address to the desired alignment */
   2004	gap_start += (info->align_offset - gap_start) & info->align_mask;
   2005
   2006	VM_BUG_ON(gap_start + info->length > info->high_limit);
   2007	VM_BUG_ON(gap_start + info->length > gap_end);
   2008	return gap_start;
   2009}
   2010
   2011static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
   2012{
   2013	struct mm_struct *mm = current->mm;
   2014	struct vm_area_struct *vma;
   2015	unsigned long length, low_limit, high_limit, gap_start, gap_end;
   2016
   2017	/* Adjust search length to account for worst case alignment overhead */
   2018	length = info->length + info->align_mask;
   2019	if (length < info->length)
   2020		return -ENOMEM;
   2021
   2022	/*
   2023	 * Adjust search limits by the desired length.
   2024	 * See implementation comment at top of unmapped_area().
   2025	 */
   2026	gap_end = info->high_limit;
   2027	if (gap_end < length)
   2028		return -ENOMEM;
   2029	high_limit = gap_end - length;
   2030
   2031	if (info->low_limit > high_limit)
   2032		return -ENOMEM;
   2033	low_limit = info->low_limit + length;
   2034
   2035	/* Check highest gap, which does not precede any rbtree node */
   2036	gap_start = mm->highest_vm_end;
   2037	if (gap_start <= high_limit)
   2038		goto found_highest;
   2039
   2040	/* Check if rbtree root looks promising */
   2041	if (RB_EMPTY_ROOT(&mm->mm_rb))
   2042		return -ENOMEM;
   2043	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
   2044	if (vma->rb_subtree_gap < length)
   2045		return -ENOMEM;
   2046
   2047	while (true) {
   2048		/* Visit right subtree if it looks promising */
   2049		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
   2050		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
   2051			struct vm_area_struct *right =
   2052				rb_entry(vma->vm_rb.rb_right,
   2053					 struct vm_area_struct, vm_rb);
   2054			if (right->rb_subtree_gap >= length) {
   2055				vma = right;
   2056				continue;
   2057			}
   2058		}
   2059
   2060check_current:
   2061		/* Check if current node has a suitable gap */
   2062		gap_end = vm_start_gap(vma);
   2063		if (gap_end < low_limit)
   2064			return -ENOMEM;
   2065		if (gap_start <= high_limit &&
   2066		    gap_end > gap_start && gap_end - gap_start >= length)
   2067			goto found;
   2068
   2069		/* Visit left subtree if it looks promising */
   2070		if (vma->vm_rb.rb_left) {
   2071			struct vm_area_struct *left =
   2072				rb_entry(vma->vm_rb.rb_left,
   2073					 struct vm_area_struct, vm_rb);
   2074			if (left->rb_subtree_gap >= length) {
   2075				vma = left;
   2076				continue;
   2077			}
   2078		}
   2079
   2080		/* Go back up the rbtree to find next candidate node */
   2081		while (true) {
   2082			struct rb_node *prev = &vma->vm_rb;
   2083			if (!rb_parent(prev))
   2084				return -ENOMEM;
   2085			vma = rb_entry(rb_parent(prev),
   2086				       struct vm_area_struct, vm_rb);
   2087			if (prev == vma->vm_rb.rb_right) {
   2088				gap_start = vma->vm_prev ?
   2089					vm_end_gap(vma->vm_prev) : 0;
   2090				goto check_current;
   2091			}
   2092		}
   2093	}
   2094
   2095found:
   2096	/* We found a suitable gap. Clip it with the original high_limit. */
   2097	if (gap_end > info->high_limit)
   2098		gap_end = info->high_limit;
   2099
   2100found_highest:
   2101	/* Compute highest gap address at the desired alignment */
   2102	gap_end -= info->length;
   2103	gap_end -= (gap_end - info->align_offset) & info->align_mask;
   2104
   2105	VM_BUG_ON(gap_end < info->low_limit);
   2106	VM_BUG_ON(gap_end < gap_start);
   2107	return gap_end;
   2108}
   2109
   2110/*
   2111 * Search for an unmapped address range.
   2112 *
   2113 * We are looking for a range that:
   2114 * - does not intersect with any VMA;
   2115 * - is contained within the [low_limit, high_limit) interval;
   2116 * - is at least the desired size.
   2117 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
   2118 */
   2119unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
   2120{
   2121	unsigned long addr;
   2122
   2123	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
   2124		addr = unmapped_area_topdown(info);
   2125	else
   2126		addr = unmapped_area(info);
   2127
   2128	trace_vm_unmapped_area(addr, info);
   2129	return addr;
   2130}
   2131
   2132/* Get an address range which is currently unmapped.
   2133 * For shmat() with addr=0.
   2134 *
   2135 * Ugly calling convention alert:
   2136 * Return value with the low bits set means error value,
   2137 * ie
   2138 *	if (ret & ~PAGE_MASK)
   2139 *		error = ret;
   2140 *
   2141 * This function "knows" that -ENOMEM has the bits set.
   2142 */
   2143unsigned long
   2144generic_get_unmapped_area(struct file *filp, unsigned long addr,
   2145			  unsigned long len, unsigned long pgoff,
   2146			  unsigned long flags)
   2147{
   2148	struct mm_struct *mm = current->mm;
   2149	struct vm_area_struct *vma, *prev;
   2150	struct vm_unmapped_area_info info;
   2151	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
   2152
   2153	if (len > mmap_end - mmap_min_addr)
   2154		return -ENOMEM;
   2155
   2156	if (flags & MAP_FIXED)
   2157		return addr;
   2158
   2159	if (addr) {
   2160		addr = PAGE_ALIGN(addr);
   2161		vma = find_vma_prev(mm, addr, &prev);
   2162		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
   2163		    (!vma || addr + len <= vm_start_gap(vma)) &&
   2164		    (!prev || addr >= vm_end_gap(prev)))
   2165			return addr;
   2166	}
   2167
   2168	info.flags = 0;
   2169	info.length = len;
   2170	info.low_limit = mm->mmap_base;
   2171	info.high_limit = mmap_end;
   2172	info.align_mask = 0;
   2173	info.align_offset = 0;
   2174	return vm_unmapped_area(&info);
   2175}
   2176
   2177#ifndef HAVE_ARCH_UNMAPPED_AREA
   2178unsigned long
   2179arch_get_unmapped_area(struct file *filp, unsigned long addr,
   2180		       unsigned long len, unsigned long pgoff,
   2181		       unsigned long flags)
   2182{
   2183	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
   2184}
   2185#endif
   2186
   2187/*
   2188 * This mmap-allocator allocates new areas top-down from below the
   2189 * stack's low limit (the base):
   2190 */
   2191unsigned long
   2192generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
   2193				  unsigned long len, unsigned long pgoff,
   2194				  unsigned long flags)
   2195{
   2196	struct vm_area_struct *vma, *prev;
   2197	struct mm_struct *mm = current->mm;
   2198	struct vm_unmapped_area_info info;
   2199	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
   2200
   2201	/* requested length too big for entire address space */
   2202	if (len > mmap_end - mmap_min_addr)
   2203		return -ENOMEM;
   2204
   2205	if (flags & MAP_FIXED)
   2206		return addr;
   2207
   2208	/* requesting a specific address */
   2209	if (addr) {
   2210		addr = PAGE_ALIGN(addr);
   2211		vma = find_vma_prev(mm, addr, &prev);
   2212		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
   2213				(!vma || addr + len <= vm_start_gap(vma)) &&
   2214				(!prev || addr >= vm_end_gap(prev)))
   2215			return addr;
   2216	}
   2217
   2218	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
   2219	info.length = len;
   2220	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
   2221	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
   2222	info.align_mask = 0;
   2223	info.align_offset = 0;
   2224	addr = vm_unmapped_area(&info);
   2225
   2226	/*
   2227	 * A failed mmap() very likely causes application failure,
   2228	 * so fall back to the bottom-up function here. This scenario
   2229	 * can happen with large stack limits and large mmap()
   2230	 * allocations.
   2231	 */
   2232	if (offset_in_page(addr)) {
   2233		VM_BUG_ON(addr != -ENOMEM);
   2234		info.flags = 0;
   2235		info.low_limit = TASK_UNMAPPED_BASE;
   2236		info.high_limit = mmap_end;
   2237		addr = vm_unmapped_area(&info);
   2238	}
   2239
   2240	return addr;
   2241}
   2242
   2243#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
   2244unsigned long
   2245arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
   2246			       unsigned long len, unsigned long pgoff,
   2247			       unsigned long flags)
   2248{
   2249	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
   2250}
   2251#endif
   2252
   2253unsigned long
   2254get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
   2255		unsigned long pgoff, unsigned long flags)
   2256{
   2257	unsigned long (*get_area)(struct file *, unsigned long,
   2258				  unsigned long, unsigned long, unsigned long);
   2259
   2260	unsigned long error = arch_mmap_check(addr, len, flags);
   2261	if (error)
   2262		return error;
   2263
   2264	/* Careful about overflows.. */
   2265	if (len > TASK_SIZE)
   2266		return -ENOMEM;
   2267
   2268	get_area = current->mm->get_unmapped_area;
   2269	if (file) {
   2270		if (file->f_op->get_unmapped_area)
   2271			get_area = file->f_op->get_unmapped_area;
   2272	} else if (flags & MAP_SHARED) {
   2273		/*
   2274		 * mmap_region() will call shmem_zero_setup() to create a file,
   2275		 * so use shmem's get_unmapped_area in case it can be huge.
   2276		 * do_mmap() will clear pgoff, so match alignment.
   2277		 */
   2278		pgoff = 0;
   2279		get_area = shmem_get_unmapped_area;
   2280	}
   2281
   2282	addr = get_area(file, addr, len, pgoff, flags);
   2283	if (IS_ERR_VALUE(addr))
   2284		return addr;
   2285
   2286	if (addr > TASK_SIZE - len)
   2287		return -ENOMEM;
   2288	if (offset_in_page(addr))
   2289		return -EINVAL;
   2290
   2291	error = security_mmap_addr(addr);
   2292	return error ? error : addr;
   2293}
   2294
   2295EXPORT_SYMBOL(get_unmapped_area);
   2296
   2297/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
   2298struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
   2299{
   2300	struct rb_node *rb_node;
   2301	struct vm_area_struct *vma;
   2302
   2303	mmap_assert_locked(mm);
   2304	/* Check the cache first. */
   2305	vma = vmacache_find(mm, addr);
   2306	if (likely(vma))
   2307		return vma;
   2308
   2309	rb_node = mm->mm_rb.rb_node;
   2310
   2311	while (rb_node) {
   2312		struct vm_area_struct *tmp;
   2313
   2314		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
   2315
   2316		if (tmp->vm_end > addr) {
   2317			vma = tmp;
   2318			if (tmp->vm_start <= addr)
   2319				break;
   2320			rb_node = rb_node->rb_left;
   2321		} else
   2322			rb_node = rb_node->rb_right;
   2323	}
   2324
   2325	if (vma)
   2326		vmacache_update(addr, vma);
   2327	return vma;
   2328}
   2329
   2330EXPORT_SYMBOL(find_vma);
   2331
   2332/*
   2333 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
   2334 */
   2335struct vm_area_struct *
   2336find_vma_prev(struct mm_struct *mm, unsigned long addr,
   2337			struct vm_area_struct **pprev)
   2338{
   2339	struct vm_area_struct *vma;
   2340
   2341	vma = find_vma(mm, addr);
   2342	if (vma) {
   2343		*pprev = vma->vm_prev;
   2344	} else {
   2345		struct rb_node *rb_node = rb_last(&mm->mm_rb);
   2346
   2347		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
   2348	}
   2349	return vma;
   2350}
   2351
   2352/*
   2353 * Verify that the stack growth is acceptable and
   2354 * update accounting. This is shared with both the
   2355 * grow-up and grow-down cases.
   2356 */
   2357static int acct_stack_growth(struct vm_area_struct *vma,
   2358			     unsigned long size, unsigned long grow)
   2359{
   2360	struct mm_struct *mm = vma->vm_mm;
   2361	unsigned long new_start;
   2362
   2363	/* address space limit tests */
   2364	if (!may_expand_vm(mm, vma->vm_flags, grow))
   2365		return -ENOMEM;
   2366
   2367	/* Stack limit test */
   2368	if (size > rlimit(RLIMIT_STACK))
   2369		return -ENOMEM;
   2370
   2371	/* mlock limit tests */
   2372	if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
   2373		return -ENOMEM;
   2374
   2375	/* Check to ensure the stack will not grow into a hugetlb-only region */
   2376	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
   2377			vma->vm_end - size;
   2378	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
   2379		return -EFAULT;
   2380
   2381	/*
   2382	 * Overcommit..  This must be the final test, as it will
   2383	 * update security statistics.
   2384	 */
   2385	if (security_vm_enough_memory_mm(mm, grow))
   2386		return -ENOMEM;
   2387
   2388	return 0;
   2389}
   2390
   2391#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
   2392/*
   2393 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
   2394 * vma is the last one with address > vma->vm_end.  Have to extend vma.
   2395 */
   2396int expand_upwards(struct vm_area_struct *vma, unsigned long address)
   2397{
   2398	struct mm_struct *mm = vma->vm_mm;
   2399	struct vm_area_struct *next;
   2400	unsigned long gap_addr;
   2401	int error = 0;
   2402
   2403	if (!(vma->vm_flags & VM_GROWSUP))
   2404		return -EFAULT;
   2405
   2406	/* Guard against exceeding limits of the address space. */
   2407	address &= PAGE_MASK;
   2408	if (address >= (TASK_SIZE & PAGE_MASK))
   2409		return -ENOMEM;
   2410	address += PAGE_SIZE;
   2411
   2412	/* Enforce stack_guard_gap */
   2413	gap_addr = address + stack_guard_gap;
   2414
   2415	/* Guard against overflow */
   2416	if (gap_addr < address || gap_addr > TASK_SIZE)
   2417		gap_addr = TASK_SIZE;
   2418
   2419	next = vma->vm_next;
   2420	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
   2421		if (!(next->vm_flags & VM_GROWSUP))
   2422			return -ENOMEM;
   2423		/* Check that both stack segments have the same anon_vma? */
   2424	}
   2425
   2426	/* We must make sure the anon_vma is allocated. */
   2427	if (unlikely(anon_vma_prepare(vma)))
   2428		return -ENOMEM;
   2429
   2430	/*
   2431	 * vma->vm_start/vm_end cannot change under us because the caller
   2432	 * is required to hold the mmap_lock in read mode.  We need the
   2433	 * anon_vma lock to serialize against concurrent expand_stacks.
   2434	 */
   2435	anon_vma_lock_write(vma->anon_vma);
   2436
   2437	/* Somebody else might have raced and expanded it already */
   2438	if (address > vma->vm_end) {
   2439		unsigned long size, grow;
   2440
   2441		size = address - vma->vm_start;
   2442		grow = (address - vma->vm_end) >> PAGE_SHIFT;
   2443
   2444		error = -ENOMEM;
   2445		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
   2446			error = acct_stack_growth(vma, size, grow);
   2447			if (!error) {
   2448				/*
   2449				 * vma_gap_update() doesn't support concurrent
   2450				 * updates, but we only hold a shared mmap_lock
   2451				 * lock here, so we need to protect against
   2452				 * concurrent vma expansions.
   2453				 * anon_vma_lock_write() doesn't help here, as
   2454				 * we don't guarantee that all growable vmas
   2455				 * in a mm share the same root anon vma.
   2456				 * So, we reuse mm->page_table_lock to guard
   2457				 * against concurrent vma expansions.
   2458				 */
   2459				spin_lock(&mm->page_table_lock);
   2460				if (vma->vm_flags & VM_LOCKED)
   2461					mm->locked_vm += grow;
   2462				vm_stat_account(mm, vma->vm_flags, grow);
   2463				anon_vma_interval_tree_pre_update_vma(vma);
   2464				vma->vm_end = address;
   2465				anon_vma_interval_tree_post_update_vma(vma);
   2466				if (vma->vm_next)
   2467					vma_gap_update(vma->vm_next);
   2468				else
   2469					mm->highest_vm_end = vm_end_gap(vma);
   2470				spin_unlock(&mm->page_table_lock);
   2471
   2472				perf_event_mmap(vma);
   2473			}
   2474		}
   2475	}
   2476	anon_vma_unlock_write(vma->anon_vma);
   2477	khugepaged_enter_vma(vma, vma->vm_flags);
   2478	validate_mm(mm);
   2479	return error;
   2480}
   2481#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
   2482
   2483/*
   2484 * vma is the first one with address < vma->vm_start.  Have to extend vma.
   2485 */
   2486int expand_downwards(struct vm_area_struct *vma,
   2487				   unsigned long address)
   2488{
   2489	struct mm_struct *mm = vma->vm_mm;
   2490	struct vm_area_struct *prev;
   2491	int error = 0;
   2492
   2493	address &= PAGE_MASK;
   2494	if (address < mmap_min_addr)
   2495		return -EPERM;
   2496
   2497	/* Enforce stack_guard_gap */
   2498	prev = vma->vm_prev;
   2499	/* Check that both stack segments have the same anon_vma? */
   2500	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
   2501			vma_is_accessible(prev)) {
   2502		if (address - prev->vm_end < stack_guard_gap)
   2503			return -ENOMEM;
   2504	}
   2505
   2506	/* We must make sure the anon_vma is allocated. */
   2507	if (unlikely(anon_vma_prepare(vma)))
   2508		return -ENOMEM;
   2509
   2510	/*
   2511	 * vma->vm_start/vm_end cannot change under us because the caller
   2512	 * is required to hold the mmap_lock in read mode.  We need the
   2513	 * anon_vma lock to serialize against concurrent expand_stacks.
   2514	 */
   2515	anon_vma_lock_write(vma->anon_vma);
   2516
   2517	/* Somebody else might have raced and expanded it already */
   2518	if (address < vma->vm_start) {
   2519		unsigned long size, grow;
   2520
   2521		size = vma->vm_end - address;
   2522		grow = (vma->vm_start - address) >> PAGE_SHIFT;
   2523
   2524		error = -ENOMEM;
   2525		if (grow <= vma->vm_pgoff) {
   2526			error = acct_stack_growth(vma, size, grow);
   2527			if (!error) {
   2528				/*
   2529				 * vma_gap_update() doesn't support concurrent
   2530				 * updates, but we only hold a shared mmap_lock
   2531				 * lock here, so we need to protect against
   2532				 * concurrent vma expansions.
   2533				 * anon_vma_lock_write() doesn't help here, as
   2534				 * we don't guarantee that all growable vmas
   2535				 * in a mm share the same root anon vma.
   2536				 * So, we reuse mm->page_table_lock to guard
   2537				 * against concurrent vma expansions.
   2538				 */
   2539				spin_lock(&mm->page_table_lock);
   2540				if (vma->vm_flags & VM_LOCKED)
   2541					mm->locked_vm += grow;
   2542				vm_stat_account(mm, vma->vm_flags, grow);
   2543				anon_vma_interval_tree_pre_update_vma(vma);
   2544				vma->vm_start = address;
   2545				vma->vm_pgoff -= grow;
   2546				anon_vma_interval_tree_post_update_vma(vma);
   2547				vma_gap_update(vma);
   2548				spin_unlock(&mm->page_table_lock);
   2549
   2550				perf_event_mmap(vma);
   2551			}
   2552		}
   2553	}
   2554	anon_vma_unlock_write(vma->anon_vma);
   2555	khugepaged_enter_vma(vma, vma->vm_flags);
   2556	validate_mm(mm);
   2557	return error;
   2558}
   2559
   2560/* enforced gap between the expanding stack and other mappings. */
   2561unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
   2562
   2563static int __init cmdline_parse_stack_guard_gap(char *p)
   2564{
   2565	unsigned long val;
   2566	char *endptr;
   2567
   2568	val = simple_strtoul(p, &endptr, 10);
   2569	if (!*endptr)
   2570		stack_guard_gap = val << PAGE_SHIFT;
   2571
   2572	return 1;
   2573}
   2574__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
   2575
   2576#ifdef CONFIG_STACK_GROWSUP
   2577int expand_stack(struct vm_area_struct *vma, unsigned long address)
   2578{
   2579	return expand_upwards(vma, address);
   2580}
   2581
   2582struct vm_area_struct *
   2583find_extend_vma(struct mm_struct *mm, unsigned long addr)
   2584{
   2585	struct vm_area_struct *vma, *prev;
   2586
   2587	addr &= PAGE_MASK;
   2588	vma = find_vma_prev(mm, addr, &prev);
   2589	if (vma && (vma->vm_start <= addr))
   2590		return vma;
   2591	/* don't alter vm_end if the coredump is running */
   2592	if (!prev || expand_stack(prev, addr))
   2593		return NULL;
   2594	if (prev->vm_flags & VM_LOCKED)
   2595		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
   2596	return prev;
   2597}
   2598#else
   2599int expand_stack(struct vm_area_struct *vma, unsigned long address)
   2600{
   2601	return expand_downwards(vma, address);
   2602}
   2603
   2604struct vm_area_struct *
   2605find_extend_vma(struct mm_struct *mm, unsigned long addr)
   2606{
   2607	struct vm_area_struct *vma;
   2608	unsigned long start;
   2609
   2610	addr &= PAGE_MASK;
   2611	vma = find_vma(mm, addr);
   2612	if (!vma)
   2613		return NULL;
   2614	if (vma->vm_start <= addr)
   2615		return vma;
   2616	if (!(vma->vm_flags & VM_GROWSDOWN))
   2617		return NULL;
   2618	start = vma->vm_start;
   2619	if (expand_stack(vma, addr))
   2620		return NULL;
   2621	if (vma->vm_flags & VM_LOCKED)
   2622		populate_vma_page_range(vma, addr, start, NULL);
   2623	return vma;
   2624}
   2625#endif
   2626
   2627EXPORT_SYMBOL_GPL(find_extend_vma);
   2628
   2629/*
   2630 * Ok - we have the memory areas we should free on the vma list,
   2631 * so release them, and do the vma updates.
   2632 *
   2633 * Called with the mm semaphore held.
   2634 */
   2635static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
   2636{
   2637	unsigned long nr_accounted = 0;
   2638
   2639	/* Update high watermark before we lower total_vm */
   2640	update_hiwater_vm(mm);
   2641	do {
   2642		long nrpages = vma_pages(vma);
   2643
   2644		if (vma->vm_flags & VM_ACCOUNT)
   2645			nr_accounted += nrpages;
   2646		vm_stat_account(mm, vma->vm_flags, -nrpages);
   2647		vma = remove_vma(vma);
   2648	} while (vma);
   2649	vm_unacct_memory(nr_accounted);
   2650	validate_mm(mm);
   2651}
   2652
   2653/*
   2654 * Get rid of page table information in the indicated region.
   2655 *
   2656 * Called with the mm semaphore held.
   2657 */
   2658static void unmap_region(struct mm_struct *mm,
   2659		struct vm_area_struct *vma, struct vm_area_struct *prev,
   2660		unsigned long start, unsigned long end)
   2661{
   2662	struct vm_area_struct *next = vma_next(mm, prev);
   2663	struct mmu_gather tlb;
   2664
   2665	lru_add_drain();
   2666	tlb_gather_mmu(&tlb, mm);
   2667	update_hiwater_rss(mm);
   2668	unmap_vmas(&tlb, vma, start, end);
   2669	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
   2670				 next ? next->vm_start : USER_PGTABLES_CEILING);
   2671	tlb_finish_mmu(&tlb);
   2672}
   2673
   2674/*
   2675 * Create a list of vma's touched by the unmap, removing them from the mm's
   2676 * vma list as we go..
   2677 */
   2678static bool
   2679detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
   2680	struct vm_area_struct *prev, unsigned long end)
   2681{
   2682	struct vm_area_struct **insertion_point;
   2683	struct vm_area_struct *tail_vma = NULL;
   2684
   2685	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
   2686	vma->vm_prev = NULL;
   2687	do {
   2688		vma_rb_erase(vma, &mm->mm_rb);
   2689		if (vma->vm_flags & VM_LOCKED)
   2690			mm->locked_vm -= vma_pages(vma);
   2691		mm->map_count--;
   2692		tail_vma = vma;
   2693		vma = vma->vm_next;
   2694	} while (vma && vma->vm_start < end);
   2695	*insertion_point = vma;
   2696	if (vma) {
   2697		vma->vm_prev = prev;
   2698		vma_gap_update(vma);
   2699	} else
   2700		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
   2701	tail_vma->vm_next = NULL;
   2702
   2703	/* Kill the cache */
   2704	vmacache_invalidate(mm);
   2705
   2706	/*
   2707	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
   2708	 * VM_GROWSUP VMA. Such VMAs can change their size under
   2709	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
   2710	 */
   2711	if (vma && (vma->vm_flags & VM_GROWSDOWN))
   2712		return false;
   2713	if (prev && (prev->vm_flags & VM_GROWSUP))
   2714		return false;
   2715	return true;
   2716}
   2717
   2718/*
   2719 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
   2720 * has already been checked or doesn't make sense to fail.
   2721 */
   2722int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
   2723		unsigned long addr, int new_below)
   2724{
   2725	struct vm_area_struct *new;
   2726	int err;
   2727
   2728	if (vma->vm_ops && vma->vm_ops->may_split) {
   2729		err = vma->vm_ops->may_split(vma, addr);
   2730		if (err)
   2731			return err;
   2732	}
   2733
   2734	new = vm_area_dup(vma);
   2735	if (!new)
   2736		return -ENOMEM;
   2737
   2738	if (new_below)
   2739		new->vm_end = addr;
   2740	else {
   2741		new->vm_start = addr;
   2742		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
   2743	}
   2744
   2745	err = vma_dup_policy(vma, new);
   2746	if (err)
   2747		goto out_free_vma;
   2748
   2749	err = anon_vma_clone(new, vma);
   2750	if (err)
   2751		goto out_free_mpol;
   2752
   2753	if (new->vm_file)
   2754		get_file(new->vm_file);
   2755
   2756	if (new->vm_ops && new->vm_ops->open)
   2757		new->vm_ops->open(new);
   2758
   2759	if (new_below)
   2760		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
   2761			((addr - new->vm_start) >> PAGE_SHIFT), new);
   2762	else
   2763		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
   2764
   2765	/* Success. */
   2766	if (!err)
   2767		return 0;
   2768
   2769	/* Clean everything up if vma_adjust failed. */
   2770	if (new->vm_ops && new->vm_ops->close)
   2771		new->vm_ops->close(new);
   2772	if (new->vm_file)
   2773		fput(new->vm_file);
   2774	unlink_anon_vmas(new);
   2775 out_free_mpol:
   2776	mpol_put(vma_policy(new));
   2777 out_free_vma:
   2778	vm_area_free(new);
   2779	return err;
   2780}
   2781
   2782/*
   2783 * Split a vma into two pieces at address 'addr', a new vma is allocated
   2784 * either for the first part or the tail.
   2785 */
   2786int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
   2787	      unsigned long addr, int new_below)
   2788{
   2789	if (mm->map_count >= sysctl_max_map_count)
   2790		return -ENOMEM;
   2791
   2792	return __split_vma(mm, vma, addr, new_below);
   2793}
   2794
   2795/* Munmap is split into 2 main parts -- this part which finds
   2796 * what needs doing, and the areas themselves, which do the
   2797 * work.  This now handles partial unmappings.
   2798 * Jeremy Fitzhardinge <jeremy@goop.org>
   2799 */
   2800int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
   2801		struct list_head *uf, bool downgrade)
   2802{
   2803	unsigned long end;
   2804	struct vm_area_struct *vma, *prev, *last;
   2805
   2806	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
   2807		return -EINVAL;
   2808
   2809	len = PAGE_ALIGN(len);
   2810	end = start + len;
   2811	if (len == 0)
   2812		return -EINVAL;
   2813
   2814	/*
   2815	 * arch_unmap() might do unmaps itself.  It must be called
   2816	 * and finish any rbtree manipulation before this code
   2817	 * runs and also starts to manipulate the rbtree.
   2818	 */
   2819	arch_unmap(mm, start, end);
   2820
   2821	/* Find the first overlapping VMA where start < vma->vm_end */
   2822	vma = find_vma_intersection(mm, start, end);
   2823	if (!vma)
   2824		return 0;
   2825	prev = vma->vm_prev;
   2826
   2827	/*
   2828	 * If we need to split any vma, do it now to save pain later.
   2829	 *
   2830	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
   2831	 * unmapped vm_area_struct will remain in use: so lower split_vma
   2832	 * places tmp vma above, and higher split_vma places tmp vma below.
   2833	 */
   2834	if (start > vma->vm_start) {
   2835		int error;
   2836
   2837		/*
   2838		 * Make sure that map_count on return from munmap() will
   2839		 * not exceed its limit; but let map_count go just above
   2840		 * its limit temporarily, to help free resources as expected.
   2841		 */
   2842		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
   2843			return -ENOMEM;
   2844
   2845		error = __split_vma(mm, vma, start, 0);
   2846		if (error)
   2847			return error;
   2848		prev = vma;
   2849	}
   2850
   2851	/* Does it split the last one? */
   2852	last = find_vma(mm, end);
   2853	if (last && end > last->vm_start) {
   2854		int error = __split_vma(mm, last, end, 1);
   2855		if (error)
   2856			return error;
   2857	}
   2858	vma = vma_next(mm, prev);
   2859
   2860	if (unlikely(uf)) {
   2861		/*
   2862		 * If userfaultfd_unmap_prep returns an error the vmas
   2863		 * will remain split, but userland will get a
   2864		 * highly unexpected error anyway. This is no
   2865		 * different than the case where the first of the two
   2866		 * __split_vma fails, but we don't undo the first
   2867		 * split, despite we could. This is unlikely enough
   2868		 * failure that it's not worth optimizing it for.
   2869		 */
   2870		int error = userfaultfd_unmap_prep(vma, start, end, uf);
   2871		if (error)
   2872			return error;
   2873	}
   2874
   2875	/* Detach vmas from rbtree */
   2876	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
   2877		downgrade = false;
   2878
   2879	if (downgrade)
   2880		mmap_write_downgrade(mm);
   2881
   2882	unmap_region(mm, vma, prev, start, end);
   2883
   2884	/* Fix up all other VM information */
   2885	remove_vma_list(mm, vma);
   2886
   2887	return downgrade ? 1 : 0;
   2888}
   2889
   2890int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
   2891	      struct list_head *uf)
   2892{
   2893	return __do_munmap(mm, start, len, uf, false);
   2894}
   2895
   2896static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
   2897{
   2898	int ret;
   2899	struct mm_struct *mm = current->mm;
   2900	LIST_HEAD(uf);
   2901
   2902	if (mmap_write_lock_killable(mm))
   2903		return -EINTR;
   2904
   2905	ret = __do_munmap(mm, start, len, &uf, downgrade);
   2906	/*
   2907	 * Returning 1 indicates mmap_lock is downgraded.
   2908	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
   2909	 * it to 0 before return.
   2910	 */
   2911	if (ret == 1) {
   2912		mmap_read_unlock(mm);
   2913		ret = 0;
   2914	} else
   2915		mmap_write_unlock(mm);
   2916
   2917	userfaultfd_unmap_complete(mm, &uf);
   2918	return ret;
   2919}
   2920
   2921int vm_munmap(unsigned long start, size_t len)
   2922{
   2923	return __vm_munmap(start, len, false);
   2924}
   2925EXPORT_SYMBOL(vm_munmap);
   2926
   2927SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
   2928{
   2929	addr = untagged_addr(addr);
   2930	return __vm_munmap(addr, len, true);
   2931}
   2932
   2933
   2934/*
   2935 * Emulation of deprecated remap_file_pages() syscall.
   2936 */
   2937SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
   2938		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
   2939{
   2940
   2941	struct mm_struct *mm = current->mm;
   2942	struct vm_area_struct *vma;
   2943	unsigned long populate = 0;
   2944	unsigned long ret = -EINVAL;
   2945	struct file *file;
   2946
   2947	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
   2948		     current->comm, current->pid);
   2949
   2950	if (prot)
   2951		return ret;
   2952	start = start & PAGE_MASK;
   2953	size = size & PAGE_MASK;
   2954
   2955	if (start + size <= start)
   2956		return ret;
   2957
   2958	/* Does pgoff wrap? */
   2959	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
   2960		return ret;
   2961
   2962	if (mmap_write_lock_killable(mm))
   2963		return -EINTR;
   2964
   2965	vma = vma_lookup(mm, start);
   2966
   2967	if (!vma || !(vma->vm_flags & VM_SHARED))
   2968		goto out;
   2969
   2970	if (start + size > vma->vm_end) {
   2971		struct vm_area_struct *next;
   2972
   2973		for (next = vma->vm_next; next; next = next->vm_next) {
   2974			/* hole between vmas ? */
   2975			if (next->vm_start != next->vm_prev->vm_end)
   2976				goto out;
   2977
   2978			if (next->vm_file != vma->vm_file)
   2979				goto out;
   2980
   2981			if (next->vm_flags != vma->vm_flags)
   2982				goto out;
   2983
   2984			if (start + size <= next->vm_end)
   2985				break;
   2986		}
   2987
   2988		if (!next)
   2989			goto out;
   2990	}
   2991
   2992	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
   2993	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
   2994	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
   2995
   2996	flags &= MAP_NONBLOCK;
   2997	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
   2998	if (vma->vm_flags & VM_LOCKED)
   2999		flags |= MAP_LOCKED;
   3000
   3001	file = get_file(vma->vm_file);
   3002	ret = do_mmap(vma->vm_file, start, size,
   3003			prot, flags, pgoff, &populate, NULL);
   3004	fput(file);
   3005out:
   3006	mmap_write_unlock(mm);
   3007	if (populate)
   3008		mm_populate(ret, populate);
   3009	if (!IS_ERR_VALUE(ret))
   3010		ret = 0;
   3011	return ret;
   3012}
   3013
   3014/*
   3015 *  this is really a simplified "do_mmap".  it only handles
   3016 *  anonymous maps.  eventually we may be able to do some
   3017 *  brk-specific accounting here.
   3018 */
   3019static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
   3020{
   3021	struct mm_struct *mm = current->mm;
   3022	struct vm_area_struct *vma, *prev;
   3023	struct rb_node **rb_link, *rb_parent;
   3024	pgoff_t pgoff = addr >> PAGE_SHIFT;
   3025	int error;
   3026	unsigned long mapped_addr;
   3027
   3028	/* Until we need other flags, refuse anything except VM_EXEC. */
   3029	if ((flags & (~VM_EXEC)) != 0)
   3030		return -EINVAL;
   3031	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
   3032
   3033	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
   3034	if (IS_ERR_VALUE(mapped_addr))
   3035		return mapped_addr;
   3036
   3037	error = mlock_future_check(mm, mm->def_flags, len);
   3038	if (error)
   3039		return error;
   3040
   3041	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
   3042	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
   3043		return -ENOMEM;
   3044
   3045	/* Check against address space limits *after* clearing old maps... */
   3046	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
   3047		return -ENOMEM;
   3048
   3049	if (mm->map_count > sysctl_max_map_count)
   3050		return -ENOMEM;
   3051
   3052	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
   3053		return -ENOMEM;
   3054
   3055	/* Can we just expand an old private anonymous mapping? */
   3056	vma = vma_merge(mm, prev, addr, addr + len, flags,
   3057			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
   3058	if (vma)
   3059		goto out;
   3060
   3061	/*
   3062	 * create a vma struct for an anonymous mapping
   3063	 */
   3064	vma = vm_area_alloc(mm);
   3065	if (!vma) {
   3066		vm_unacct_memory(len >> PAGE_SHIFT);
   3067		return -ENOMEM;
   3068	}
   3069
   3070	vma_set_anonymous(vma);
   3071	vma->vm_start = addr;
   3072	vma->vm_end = addr + len;
   3073	vma->vm_pgoff = pgoff;
   3074	vma->vm_flags = flags;
   3075	vma->vm_page_prot = vm_get_page_prot(flags);
   3076	vma_link(mm, vma, prev, rb_link, rb_parent);
   3077out:
   3078	perf_event_mmap(vma);
   3079	mm->total_vm += len >> PAGE_SHIFT;
   3080	mm->data_vm += len >> PAGE_SHIFT;
   3081	if (flags & VM_LOCKED)
   3082		mm->locked_vm += (len >> PAGE_SHIFT);
   3083	vma->vm_flags |= VM_SOFTDIRTY;
   3084	return 0;
   3085}
   3086
   3087int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
   3088{
   3089	struct mm_struct *mm = current->mm;
   3090	unsigned long len;
   3091	int ret;
   3092	bool populate;
   3093	LIST_HEAD(uf);
   3094
   3095	len = PAGE_ALIGN(request);
   3096	if (len < request)
   3097		return -ENOMEM;
   3098	if (!len)
   3099		return 0;
   3100
   3101	if (mmap_write_lock_killable(mm))
   3102		return -EINTR;
   3103
   3104	ret = do_brk_flags(addr, len, flags, &uf);
   3105	populate = ((mm->def_flags & VM_LOCKED) != 0);
   3106	mmap_write_unlock(mm);
   3107	userfaultfd_unmap_complete(mm, &uf);
   3108	if (populate && !ret)
   3109		mm_populate(addr, len);
   3110	return ret;
   3111}
   3112EXPORT_SYMBOL(vm_brk_flags);
   3113
   3114int vm_brk(unsigned long addr, unsigned long len)
   3115{
   3116	return vm_brk_flags(addr, len, 0);
   3117}
   3118EXPORT_SYMBOL(vm_brk);
   3119
   3120/* Release all mmaps. */
   3121void exit_mmap(struct mm_struct *mm)
   3122{
   3123	struct mmu_gather tlb;
   3124	struct vm_area_struct *vma;
   3125	unsigned long nr_accounted = 0;
   3126
   3127	/* mm's last user has gone, and its about to be pulled down */
   3128	mmu_notifier_release(mm);
   3129
   3130	if (unlikely(mm_is_oom_victim(mm))) {
   3131		/*
   3132		 * Manually reap the mm to free as much memory as possible.
   3133		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
   3134		 * this mm from further consideration.  Taking mm->mmap_lock for
   3135		 * write after setting MMF_OOM_SKIP will guarantee that the oom
   3136		 * reaper will not run on this mm again after mmap_lock is
   3137		 * dropped.
   3138		 *
   3139		 * Nothing can be holding mm->mmap_lock here and the above call
   3140		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
   3141		 * __oom_reap_task_mm() will not block.
   3142		 */
   3143		(void)__oom_reap_task_mm(mm);
   3144		set_bit(MMF_OOM_SKIP, &mm->flags);
   3145	}
   3146
   3147	mmap_write_lock(mm);
   3148	arch_exit_mmap(mm);
   3149
   3150	vma = mm->mmap;
   3151	if (!vma) {
   3152		/* Can happen if dup_mmap() received an OOM */
   3153		mmap_write_unlock(mm);
   3154		return;
   3155	}
   3156
   3157	lru_add_drain();
   3158	flush_cache_mm(mm);
   3159	tlb_gather_mmu_fullmm(&tlb, mm);
   3160	/* update_hiwater_rss(mm) here? but nobody should be looking */
   3161	/* Use -1 here to ensure all VMAs in the mm are unmapped */
   3162	unmap_vmas(&tlb, vma, 0, -1);
   3163	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
   3164	tlb_finish_mmu(&tlb);
   3165
   3166	/* Walk the list again, actually closing and freeing it. */
   3167	while (vma) {
   3168		if (vma->vm_flags & VM_ACCOUNT)
   3169			nr_accounted += vma_pages(vma);
   3170		vma = remove_vma(vma);
   3171		cond_resched();
   3172	}
   3173	mm->mmap = NULL;
   3174	mmap_write_unlock(mm);
   3175	vm_unacct_memory(nr_accounted);
   3176}
   3177
   3178/* Insert vm structure into process list sorted by address
   3179 * and into the inode's i_mmap tree.  If vm_file is non-NULL
   3180 * then i_mmap_rwsem is taken here.
   3181 */
   3182int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
   3183{
   3184	struct vm_area_struct *prev;
   3185	struct rb_node **rb_link, *rb_parent;
   3186
   3187	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
   3188			   &prev, &rb_link, &rb_parent))
   3189		return -ENOMEM;
   3190	if ((vma->vm_flags & VM_ACCOUNT) &&
   3191	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
   3192		return -ENOMEM;
   3193
   3194	/*
   3195	 * The vm_pgoff of a purely anonymous vma should be irrelevant
   3196	 * until its first write fault, when page's anon_vma and index
   3197	 * are set.  But now set the vm_pgoff it will almost certainly
   3198	 * end up with (unless mremap moves it elsewhere before that
   3199	 * first wfault), so /proc/pid/maps tells a consistent story.
   3200	 *
   3201	 * By setting it to reflect the virtual start address of the
   3202	 * vma, merges and splits can happen in a seamless way, just
   3203	 * using the existing file pgoff checks and manipulations.
   3204	 * Similarly in do_mmap and in do_brk_flags.
   3205	 */
   3206	if (vma_is_anonymous(vma)) {
   3207		BUG_ON(vma->anon_vma);
   3208		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
   3209	}
   3210
   3211	vma_link(mm, vma, prev, rb_link, rb_parent);
   3212	return 0;
   3213}
   3214
   3215/*
   3216 * Copy the vma structure to a new location in the same mm,
   3217 * prior to moving page table entries, to effect an mremap move.
   3218 */
   3219struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
   3220	unsigned long addr, unsigned long len, pgoff_t pgoff,
   3221	bool *need_rmap_locks)
   3222{
   3223	struct vm_area_struct *vma = *vmap;
   3224	unsigned long vma_start = vma->vm_start;
   3225	struct mm_struct *mm = vma->vm_mm;
   3226	struct vm_area_struct *new_vma, *prev;
   3227	struct rb_node **rb_link, *rb_parent;
   3228	bool faulted_in_anon_vma = true;
   3229
   3230	/*
   3231	 * If anonymous vma has not yet been faulted, update new pgoff
   3232	 * to match new location, to increase its chance of merging.
   3233	 */
   3234	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
   3235		pgoff = addr >> PAGE_SHIFT;
   3236		faulted_in_anon_vma = false;
   3237	}
   3238
   3239	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
   3240		return NULL;	/* should never get here */
   3241	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
   3242			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
   3243			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
   3244	if (new_vma) {
   3245		/*
   3246		 * Source vma may have been merged into new_vma
   3247		 */
   3248		if (unlikely(vma_start >= new_vma->vm_start &&
   3249			     vma_start < new_vma->vm_end)) {
   3250			/*
   3251			 * The only way we can get a vma_merge with
   3252			 * self during an mremap is if the vma hasn't
   3253			 * been faulted in yet and we were allowed to
   3254			 * reset the dst vma->vm_pgoff to the
   3255			 * destination address of the mremap to allow
   3256			 * the merge to happen. mremap must change the
   3257			 * vm_pgoff linearity between src and dst vmas
   3258			 * (in turn preventing a vma_merge) to be
   3259			 * safe. It is only safe to keep the vm_pgoff
   3260			 * linear if there are no pages mapped yet.
   3261			 */
   3262			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
   3263			*vmap = vma = new_vma;
   3264		}
   3265		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
   3266	} else {
   3267		new_vma = vm_area_dup(vma);
   3268		if (!new_vma)
   3269			goto out;
   3270		new_vma->vm_start = addr;
   3271		new_vma->vm_end = addr + len;
   3272		new_vma->vm_pgoff = pgoff;
   3273		if (vma_dup_policy(vma, new_vma))
   3274			goto out_free_vma;
   3275		if (anon_vma_clone(new_vma, vma))
   3276			goto out_free_mempol;
   3277		if (new_vma->vm_file)
   3278			get_file(new_vma->vm_file);
   3279		if (new_vma->vm_ops && new_vma->vm_ops->open)
   3280			new_vma->vm_ops->open(new_vma);
   3281		vma_link(mm, new_vma, prev, rb_link, rb_parent);
   3282		*need_rmap_locks = false;
   3283	}
   3284	return new_vma;
   3285
   3286out_free_mempol:
   3287	mpol_put(vma_policy(new_vma));
   3288out_free_vma:
   3289	vm_area_free(new_vma);
   3290out:
   3291	return NULL;
   3292}
   3293
   3294/*
   3295 * Return true if the calling process may expand its vm space by the passed
   3296 * number of pages
   3297 */
   3298bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
   3299{
   3300	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
   3301		return false;
   3302
   3303	if (is_data_mapping(flags) &&
   3304	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
   3305		/* Workaround for Valgrind */
   3306		if (rlimit(RLIMIT_DATA) == 0 &&
   3307		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
   3308			return true;
   3309
   3310		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
   3311			     current->comm, current->pid,
   3312			     (mm->data_vm + npages) << PAGE_SHIFT,
   3313			     rlimit(RLIMIT_DATA),
   3314			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
   3315
   3316		if (!ignore_rlimit_data)
   3317			return false;
   3318	}
   3319
   3320	return true;
   3321}
   3322
   3323void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
   3324{
   3325	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
   3326
   3327	if (is_exec_mapping(flags))
   3328		mm->exec_vm += npages;
   3329	else if (is_stack_mapping(flags))
   3330		mm->stack_vm += npages;
   3331	else if (is_data_mapping(flags))
   3332		mm->data_vm += npages;
   3333}
   3334
   3335static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
   3336
   3337/*
   3338 * Having a close hook prevents vma merging regardless of flags.
   3339 */
   3340static void special_mapping_close(struct vm_area_struct *vma)
   3341{
   3342}
   3343
   3344static const char *special_mapping_name(struct vm_area_struct *vma)
   3345{
   3346	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
   3347}
   3348
   3349static int special_mapping_mremap(struct vm_area_struct *new_vma)
   3350{
   3351	struct vm_special_mapping *sm = new_vma->vm_private_data;
   3352
   3353	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
   3354		return -EFAULT;
   3355
   3356	if (sm->mremap)
   3357		return sm->mremap(sm, new_vma);
   3358
   3359	return 0;
   3360}
   3361
   3362static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
   3363{
   3364	/*
   3365	 * Forbid splitting special mappings - kernel has expectations over
   3366	 * the number of pages in mapping. Together with VM_DONTEXPAND
   3367	 * the size of vma should stay the same over the special mapping's
   3368	 * lifetime.
   3369	 */
   3370	return -EINVAL;
   3371}
   3372
   3373static const struct vm_operations_struct special_mapping_vmops = {
   3374	.close = special_mapping_close,
   3375	.fault = special_mapping_fault,
   3376	.mremap = special_mapping_mremap,
   3377	.name = special_mapping_name,
   3378	/* vDSO code relies that VVAR can't be accessed remotely */
   3379	.access = NULL,
   3380	.may_split = special_mapping_split,
   3381};
   3382
   3383static const struct vm_operations_struct legacy_special_mapping_vmops = {
   3384	.close = special_mapping_close,
   3385	.fault = special_mapping_fault,
   3386};
   3387
   3388static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
   3389{
   3390	struct vm_area_struct *vma = vmf->vma;
   3391	pgoff_t pgoff;
   3392	struct page **pages;
   3393
   3394	if (vma->vm_ops == &legacy_special_mapping_vmops) {
   3395		pages = vma->vm_private_data;
   3396	} else {
   3397		struct vm_special_mapping *sm = vma->vm_private_data;
   3398
   3399		if (sm->fault)
   3400			return sm->fault(sm, vmf->vma, vmf);
   3401
   3402		pages = sm->pages;
   3403	}
   3404
   3405	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
   3406		pgoff--;
   3407
   3408	if (*pages) {
   3409		struct page *page = *pages;
   3410		get_page(page);
   3411		vmf->page = page;
   3412		return 0;
   3413	}
   3414
   3415	return VM_FAULT_SIGBUS;
   3416}
   3417
   3418static struct vm_area_struct *__install_special_mapping(
   3419	struct mm_struct *mm,
   3420	unsigned long addr, unsigned long len,
   3421	unsigned long vm_flags, void *priv,
   3422	const struct vm_operations_struct *ops)
   3423{
   3424	int ret;
   3425	struct vm_area_struct *vma;
   3426
   3427	vma = vm_area_alloc(mm);
   3428	if (unlikely(vma == NULL))
   3429		return ERR_PTR(-ENOMEM);
   3430
   3431	vma->vm_start = addr;
   3432	vma->vm_end = addr + len;
   3433
   3434	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
   3435	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
   3436	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
   3437
   3438	vma->vm_ops = ops;
   3439	vma->vm_private_data = priv;
   3440
   3441	ret = insert_vm_struct(mm, vma);
   3442	if (ret)
   3443		goto out;
   3444
   3445	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
   3446
   3447	perf_event_mmap(vma);
   3448
   3449	return vma;
   3450
   3451out:
   3452	vm_area_free(vma);
   3453	return ERR_PTR(ret);
   3454}
   3455
   3456bool vma_is_special_mapping(const struct vm_area_struct *vma,
   3457	const struct vm_special_mapping *sm)
   3458{
   3459	return vma->vm_private_data == sm &&
   3460		(vma->vm_ops == &special_mapping_vmops ||
   3461		 vma->vm_ops == &legacy_special_mapping_vmops);
   3462}
   3463
   3464/*
   3465 * Called with mm->mmap_lock held for writing.
   3466 * Insert a new vma covering the given region, with the given flags.
   3467 * Its pages are supplied by the given array of struct page *.
   3468 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
   3469 * The region past the last page supplied will always produce SIGBUS.
   3470 * The array pointer and the pages it points to are assumed to stay alive
   3471 * for as long as this mapping might exist.
   3472 */
   3473struct vm_area_struct *_install_special_mapping(
   3474	struct mm_struct *mm,
   3475	unsigned long addr, unsigned long len,
   3476	unsigned long vm_flags, const struct vm_special_mapping *spec)
   3477{
   3478	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
   3479					&special_mapping_vmops);
   3480}
   3481
   3482int install_special_mapping(struct mm_struct *mm,
   3483			    unsigned long addr, unsigned long len,
   3484			    unsigned long vm_flags, struct page **pages)
   3485{
   3486	struct vm_area_struct *vma = __install_special_mapping(
   3487		mm, addr, len, vm_flags, (void *)pages,
   3488		&legacy_special_mapping_vmops);
   3489
   3490	return PTR_ERR_OR_ZERO(vma);
   3491}
   3492
   3493static DEFINE_MUTEX(mm_all_locks_mutex);
   3494
   3495static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
   3496{
   3497	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
   3498		/*
   3499		 * The LSB of head.next can't change from under us
   3500		 * because we hold the mm_all_locks_mutex.
   3501		 */
   3502		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
   3503		/*
   3504		 * We can safely modify head.next after taking the
   3505		 * anon_vma->root->rwsem. If some other vma in this mm shares
   3506		 * the same anon_vma we won't take it again.
   3507		 *
   3508		 * No need of atomic instructions here, head.next
   3509		 * can't change from under us thanks to the
   3510		 * anon_vma->root->rwsem.
   3511		 */
   3512		if (__test_and_set_bit(0, (unsigned long *)
   3513				       &anon_vma->root->rb_root.rb_root.rb_node))
   3514			BUG();
   3515	}
   3516}
   3517
   3518static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
   3519{
   3520	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
   3521		/*
   3522		 * AS_MM_ALL_LOCKS can't change from under us because
   3523		 * we hold the mm_all_locks_mutex.
   3524		 *
   3525		 * Operations on ->flags have to be atomic because
   3526		 * even if AS_MM_ALL_LOCKS is stable thanks to the
   3527		 * mm_all_locks_mutex, there may be other cpus
   3528		 * changing other bitflags in parallel to us.
   3529		 */
   3530		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
   3531			BUG();
   3532		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
   3533	}
   3534}
   3535
   3536/*
   3537 * This operation locks against the VM for all pte/vma/mm related
   3538 * operations that could ever happen on a certain mm. This includes
   3539 * vmtruncate, try_to_unmap, and all page faults.
   3540 *
   3541 * The caller must take the mmap_lock in write mode before calling
   3542 * mm_take_all_locks(). The caller isn't allowed to release the
   3543 * mmap_lock until mm_drop_all_locks() returns.
   3544 *
   3545 * mmap_lock in write mode is required in order to block all operations
   3546 * that could modify pagetables and free pages without need of
   3547 * altering the vma layout. It's also needed in write mode to avoid new
   3548 * anon_vmas to be associated with existing vmas.
   3549 *
   3550 * A single task can't take more than one mm_take_all_locks() in a row
   3551 * or it would deadlock.
   3552 *
   3553 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
   3554 * mapping->flags avoid to take the same lock twice, if more than one
   3555 * vma in this mm is backed by the same anon_vma or address_space.
   3556 *
   3557 * We take locks in following order, accordingly to comment at beginning
   3558 * of mm/rmap.c:
   3559 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
   3560 *     hugetlb mapping);
   3561 *   - all i_mmap_rwsem locks;
   3562 *   - all anon_vma->rwseml
   3563 *
   3564 * We can take all locks within these types randomly because the VM code
   3565 * doesn't nest them and we protected from parallel mm_take_all_locks() by
   3566 * mm_all_locks_mutex.
   3567 *
   3568 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
   3569 * that may have to take thousand of locks.
   3570 *
   3571 * mm_take_all_locks() can fail if it's interrupted by signals.
   3572 */
   3573int mm_take_all_locks(struct mm_struct *mm)
   3574{
   3575	struct vm_area_struct *vma;
   3576	struct anon_vma_chain *avc;
   3577
   3578	mmap_assert_write_locked(mm);
   3579
   3580	mutex_lock(&mm_all_locks_mutex);
   3581
   3582	for (vma = mm->mmap; vma; vma = vma->vm_next) {
   3583		if (signal_pending(current))
   3584			goto out_unlock;
   3585		if (vma->vm_file && vma->vm_file->f_mapping &&
   3586				is_vm_hugetlb_page(vma))
   3587			vm_lock_mapping(mm, vma->vm_file->f_mapping);
   3588	}
   3589
   3590	for (vma = mm->mmap; vma; vma = vma->vm_next) {
   3591		if (signal_pending(current))
   3592			goto out_unlock;
   3593		if (vma->vm_file && vma->vm_file->f_mapping &&
   3594				!is_vm_hugetlb_page(vma))
   3595			vm_lock_mapping(mm, vma->vm_file->f_mapping);
   3596	}
   3597
   3598	for (vma = mm->mmap; vma; vma = vma->vm_next) {
   3599		if (signal_pending(current))
   3600			goto out_unlock;
   3601		if (vma->anon_vma)
   3602			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
   3603				vm_lock_anon_vma(mm, avc->anon_vma);
   3604	}
   3605
   3606	return 0;
   3607
   3608out_unlock:
   3609	mm_drop_all_locks(mm);
   3610	return -EINTR;
   3611}
   3612
   3613static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
   3614{
   3615	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
   3616		/*
   3617		 * The LSB of head.next can't change to 0 from under
   3618		 * us because we hold the mm_all_locks_mutex.
   3619		 *
   3620		 * We must however clear the bitflag before unlocking
   3621		 * the vma so the users using the anon_vma->rb_root will
   3622		 * never see our bitflag.
   3623		 *
   3624		 * No need of atomic instructions here, head.next
   3625		 * can't change from under us until we release the
   3626		 * anon_vma->root->rwsem.
   3627		 */
   3628		if (!__test_and_clear_bit(0, (unsigned long *)
   3629					  &anon_vma->root->rb_root.rb_root.rb_node))
   3630			BUG();
   3631		anon_vma_unlock_write(anon_vma);
   3632	}
   3633}
   3634
   3635static void vm_unlock_mapping(struct address_space *mapping)
   3636{
   3637	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
   3638		/*
   3639		 * AS_MM_ALL_LOCKS can't change to 0 from under us
   3640		 * because we hold the mm_all_locks_mutex.
   3641		 */
   3642		i_mmap_unlock_write(mapping);
   3643		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
   3644					&mapping->flags))
   3645			BUG();
   3646	}
   3647}
   3648
   3649/*
   3650 * The mmap_lock cannot be released by the caller until
   3651 * mm_drop_all_locks() returns.
   3652 */
   3653void mm_drop_all_locks(struct mm_struct *mm)
   3654{
   3655	struct vm_area_struct *vma;
   3656	struct anon_vma_chain *avc;
   3657
   3658	mmap_assert_write_locked(mm);
   3659	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
   3660
   3661	for (vma = mm->mmap; vma; vma = vma->vm_next) {
   3662		if (vma->anon_vma)
   3663			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
   3664				vm_unlock_anon_vma(avc->anon_vma);
   3665		if (vma->vm_file && vma->vm_file->f_mapping)
   3666			vm_unlock_mapping(vma->vm_file->f_mapping);
   3667	}
   3668
   3669	mutex_unlock(&mm_all_locks_mutex);
   3670}
   3671
   3672/*
   3673 * initialise the percpu counter for VM
   3674 */
   3675void __init mmap_init(void)
   3676{
   3677	int ret;
   3678
   3679	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
   3680	VM_BUG_ON(ret);
   3681}
   3682
   3683/*
   3684 * Initialise sysctl_user_reserve_kbytes.
   3685 *
   3686 * This is intended to prevent a user from starting a single memory hogging
   3687 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
   3688 * mode.
   3689 *
   3690 * The default value is min(3% of free memory, 128MB)
   3691 * 128MB is enough to recover with sshd/login, bash, and top/kill.
   3692 */
   3693static int init_user_reserve(void)
   3694{
   3695	unsigned long free_kbytes;
   3696
   3697	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
   3698
   3699	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
   3700	return 0;
   3701}
   3702subsys_initcall(init_user_reserve);
   3703
   3704/*
   3705 * Initialise sysctl_admin_reserve_kbytes.
   3706 *
   3707 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
   3708 * to log in and kill a memory hogging process.
   3709 *
   3710 * Systems with more than 256MB will reserve 8MB, enough to recover
   3711 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
   3712 * only reserve 3% of free pages by default.
   3713 */
   3714static int init_admin_reserve(void)
   3715{
   3716	unsigned long free_kbytes;
   3717
   3718	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
   3719
   3720	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
   3721	return 0;
   3722}
   3723subsys_initcall(init_admin_reserve);
   3724
   3725/*
   3726 * Reinititalise user and admin reserves if memory is added or removed.
   3727 *
   3728 * The default user reserve max is 128MB, and the default max for the
   3729 * admin reserve is 8MB. These are usually, but not always, enough to
   3730 * enable recovery from a memory hogging process using login/sshd, a shell,
   3731 * and tools like top. It may make sense to increase or even disable the
   3732 * reserve depending on the existence of swap or variations in the recovery
   3733 * tools. So, the admin may have changed them.
   3734 *
   3735 * If memory is added and the reserves have been eliminated or increased above
   3736 * the default max, then we'll trust the admin.
   3737 *
   3738 * If memory is removed and there isn't enough free memory, then we
   3739 * need to reset the reserves.
   3740 *
   3741 * Otherwise keep the reserve set by the admin.
   3742 */
   3743static int reserve_mem_notifier(struct notifier_block *nb,
   3744			     unsigned long action, void *data)
   3745{
   3746	unsigned long tmp, free_kbytes;
   3747
   3748	switch (action) {
   3749	case MEM_ONLINE:
   3750		/* Default max is 128MB. Leave alone if modified by operator. */
   3751		tmp = sysctl_user_reserve_kbytes;
   3752		if (0 < tmp && tmp < (1UL << 17))
   3753			init_user_reserve();
   3754
   3755		/* Default max is 8MB.  Leave alone if modified by operator. */
   3756		tmp = sysctl_admin_reserve_kbytes;
   3757		if (0 < tmp && tmp < (1UL << 13))
   3758			init_admin_reserve();
   3759
   3760		break;
   3761	case MEM_OFFLINE:
   3762		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
   3763
   3764		if (sysctl_user_reserve_kbytes > free_kbytes) {
   3765			init_user_reserve();
   3766			pr_info("vm.user_reserve_kbytes reset to %lu\n",
   3767				sysctl_user_reserve_kbytes);
   3768		}
   3769
   3770		if (sysctl_admin_reserve_kbytes > free_kbytes) {
   3771			init_admin_reserve();
   3772			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
   3773				sysctl_admin_reserve_kbytes);
   3774		}
   3775		break;
   3776	default:
   3777		break;
   3778	}
   3779	return NOTIFY_OK;
   3780}
   3781
   3782static struct notifier_block reserve_mem_nb = {
   3783	.notifier_call = reserve_mem_notifier,
   3784};
   3785
   3786static int __meminit init_reserve_notifier(void)
   3787{
   3788	if (register_hotmemory_notifier(&reserve_mem_nb))
   3789		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
   3790
   3791	return 0;
   3792}
   3793subsys_initcall(init_reserve_notifier);