cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu_notifier.c (36125B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/mm/mmu_notifier.c
      4 *
      5 *  Copyright (C) 2008  Qumranet, Inc.
      6 *  Copyright (C) 2008  SGI
      7 *             Christoph Lameter <cl@linux.com>
      8 */
      9
     10#include <linux/rculist.h>
     11#include <linux/mmu_notifier.h>
     12#include <linux/export.h>
     13#include <linux/mm.h>
     14#include <linux/err.h>
     15#include <linux/interval_tree.h>
     16#include <linux/srcu.h>
     17#include <linux/rcupdate.h>
     18#include <linux/sched.h>
     19#include <linux/sched/mm.h>
     20#include <linux/slab.h>
     21
     22/* global SRCU for all MMs */
     23DEFINE_STATIC_SRCU(srcu);
     24
     25#ifdef CONFIG_LOCKDEP
     26struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
     27	.name = "mmu_notifier_invalidate_range_start"
     28};
     29#endif
     30
     31/*
     32 * The mmu_notifier_subscriptions structure is allocated and installed in
     33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected
     34 * critical section and it's released only when mm_count reaches zero
     35 * in mmdrop().
     36 */
     37struct mmu_notifier_subscriptions {
     38	/* all mmu notifiers registered in this mm are queued in this list */
     39	struct hlist_head list;
     40	bool has_itree;
     41	/* to serialize the list modifications and hlist_unhashed */
     42	spinlock_t lock;
     43	unsigned long invalidate_seq;
     44	unsigned long active_invalidate_ranges;
     45	struct rb_root_cached itree;
     46	wait_queue_head_t wq;
     47	struct hlist_head deferred_list;
     48};
     49
     50/*
     51 * This is a collision-retry read-side/write-side 'lock', a lot like a
     52 * seqcount, however this allows multiple write-sides to hold it at
     53 * once. Conceptually the write side is protecting the values of the PTEs in
     54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
     55 * writer exists.
     56 *
     57 * Note that the core mm creates nested invalidate_range_start()/end() regions
     58 * within the same thread, and runs invalidate_range_start()/end() in parallel
     59 * on multiple CPUs. This is designed to not reduce concurrency or block
     60 * progress on the mm side.
     61 *
     62 * As a secondary function, holding the full write side also serves to prevent
     63 * writers for the itree, this is an optimization to avoid extra locking
     64 * during invalidate_range_start/end notifiers.
     65 *
     66 * The write side has two states, fully excluded:
     67 *  - mm->active_invalidate_ranges != 0
     68 *  - subscriptions->invalidate_seq & 1 == True (odd)
     69 *  - some range on the mm_struct is being invalidated
     70 *  - the itree is not allowed to change
     71 *
     72 * And partially excluded:
     73 *  - mm->active_invalidate_ranges != 0
     74 *  - subscriptions->invalidate_seq & 1 == False (even)
     75 *  - some range on the mm_struct is being invalidated
     76 *  - the itree is allowed to change
     77 *
     78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
     79 *    seq |= 1  # Begin writing
     80 *    seq++     # Release the writing state
     81 *    seq & 1   # True if a writer exists
     82 *
     83 * The later state avoids some expensive work on inv_end in the common case of
     84 * no mmu_interval_notifier monitoring the VA.
     85 */
     86static bool
     87mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
     88{
     89	lockdep_assert_held(&subscriptions->lock);
     90	return subscriptions->invalidate_seq & 1;
     91}
     92
     93static struct mmu_interval_notifier *
     94mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
     95			 const struct mmu_notifier_range *range,
     96			 unsigned long *seq)
     97{
     98	struct interval_tree_node *node;
     99	struct mmu_interval_notifier *res = NULL;
    100
    101	spin_lock(&subscriptions->lock);
    102	subscriptions->active_invalidate_ranges++;
    103	node = interval_tree_iter_first(&subscriptions->itree, range->start,
    104					range->end - 1);
    105	if (node) {
    106		subscriptions->invalidate_seq |= 1;
    107		res = container_of(node, struct mmu_interval_notifier,
    108				   interval_tree);
    109	}
    110
    111	*seq = subscriptions->invalidate_seq;
    112	spin_unlock(&subscriptions->lock);
    113	return res;
    114}
    115
    116static struct mmu_interval_notifier *
    117mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
    118		  const struct mmu_notifier_range *range)
    119{
    120	struct interval_tree_node *node;
    121
    122	node = interval_tree_iter_next(&interval_sub->interval_tree,
    123				       range->start, range->end - 1);
    124	if (!node)
    125		return NULL;
    126	return container_of(node, struct mmu_interval_notifier, interval_tree);
    127}
    128
    129static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
    130{
    131	struct mmu_interval_notifier *interval_sub;
    132	struct hlist_node *next;
    133
    134	spin_lock(&subscriptions->lock);
    135	if (--subscriptions->active_invalidate_ranges ||
    136	    !mn_itree_is_invalidating(subscriptions)) {
    137		spin_unlock(&subscriptions->lock);
    138		return;
    139	}
    140
    141	/* Make invalidate_seq even */
    142	subscriptions->invalidate_seq++;
    143
    144	/*
    145	 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
    146	 * Adds and removes are queued until the final inv_end happens then
    147	 * they are progressed. This arrangement for tree updates is used to
    148	 * avoid using a blocking lock during invalidate_range_start.
    149	 */
    150	hlist_for_each_entry_safe(interval_sub, next,
    151				  &subscriptions->deferred_list,
    152				  deferred_item) {
    153		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
    154			interval_tree_insert(&interval_sub->interval_tree,
    155					     &subscriptions->itree);
    156		else
    157			interval_tree_remove(&interval_sub->interval_tree,
    158					     &subscriptions->itree);
    159		hlist_del(&interval_sub->deferred_item);
    160	}
    161	spin_unlock(&subscriptions->lock);
    162
    163	wake_up_all(&subscriptions->wq);
    164}
    165
    166/**
    167 * mmu_interval_read_begin - Begin a read side critical section against a VA
    168 *                           range
    169 * @interval_sub: The interval subscription
    170 *
    171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
    172 * collision-retry scheme similar to seqcount for the VA range under
    173 * subscription. If the mm invokes invalidation during the critical section
    174 * then mmu_interval_read_retry() will return true.
    175 *
    176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
    177 * require a blocking context.  The critical region formed by this can sleep,
    178 * and the required 'user_lock' can also be a sleeping lock.
    179 *
    180 * The caller is required to provide a 'user_lock' to serialize both teardown
    181 * and setup.
    182 *
    183 * The return value should be passed to mmu_interval_read_retry().
    184 */
    185unsigned long
    186mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
    187{
    188	struct mmu_notifier_subscriptions *subscriptions =
    189		interval_sub->mm->notifier_subscriptions;
    190	unsigned long seq;
    191	bool is_invalidating;
    192
    193	/*
    194	 * If the subscription has a different seq value under the user_lock
    195	 * than we started with then it has collided.
    196	 *
    197	 * If the subscription currently has the same seq value as the
    198	 * subscriptions seq, then it is currently between
    199	 * invalidate_start/end and is colliding.
    200	 *
    201	 * The locking looks broadly like this:
    202	 *   mn_tree_invalidate_start():          mmu_interval_read_begin():
    203	 *                                         spin_lock
    204	 *                                          seq = READ_ONCE(interval_sub->invalidate_seq);
    205	 *                                          seq == subs->invalidate_seq
    206	 *                                         spin_unlock
    207	 *    spin_lock
    208	 *     seq = ++subscriptions->invalidate_seq
    209	 *    spin_unlock
    210	 *     op->invalidate_range():
    211	 *       user_lock
    212	 *        mmu_interval_set_seq()
    213	 *         interval_sub->invalidate_seq = seq
    214	 *       user_unlock
    215	 *
    216	 *                          [Required: mmu_interval_read_retry() == true]
    217	 *
    218	 *   mn_itree_inv_end():
    219	 *    spin_lock
    220	 *     seq = ++subscriptions->invalidate_seq
    221	 *    spin_unlock
    222	 *
    223	 *                                        user_lock
    224	 *                                         mmu_interval_read_retry():
    225	 *                                          interval_sub->invalidate_seq != seq
    226	 *                                        user_unlock
    227	 *
    228	 * Barriers are not needed here as any races here are closed by an
    229	 * eventual mmu_interval_read_retry(), which provides a barrier via the
    230	 * user_lock.
    231	 */
    232	spin_lock(&subscriptions->lock);
    233	/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
    234	seq = READ_ONCE(interval_sub->invalidate_seq);
    235	is_invalidating = seq == subscriptions->invalidate_seq;
    236	spin_unlock(&subscriptions->lock);
    237
    238	/*
    239	 * interval_sub->invalidate_seq must always be set to an odd value via
    240	 * mmu_interval_set_seq() using the provided cur_seq from
    241	 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
    242	 * will always clear the below sleep in some reasonable time as
    243	 * subscriptions->invalidate_seq is even in the idle state.
    244	 */
    245	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
    246	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
    247	if (is_invalidating)
    248		wait_event(subscriptions->wq,
    249			   READ_ONCE(subscriptions->invalidate_seq) != seq);
    250
    251	/*
    252	 * Notice that mmu_interval_read_retry() can already be true at this
    253	 * point, avoiding loops here allows the caller to provide a global
    254	 * time bound.
    255	 */
    256
    257	return seq;
    258}
    259EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
    260
    261static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
    262			     struct mm_struct *mm)
    263{
    264	struct mmu_notifier_range range = {
    265		.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
    266		.event = MMU_NOTIFY_RELEASE,
    267		.mm = mm,
    268		.start = 0,
    269		.end = ULONG_MAX,
    270	};
    271	struct mmu_interval_notifier *interval_sub;
    272	unsigned long cur_seq;
    273	bool ret;
    274
    275	for (interval_sub =
    276		     mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
    277	     interval_sub;
    278	     interval_sub = mn_itree_inv_next(interval_sub, &range)) {
    279		ret = interval_sub->ops->invalidate(interval_sub, &range,
    280						    cur_seq);
    281		WARN_ON(!ret);
    282	}
    283
    284	mn_itree_inv_end(subscriptions);
    285}
    286
    287/*
    288 * This function can't run concurrently against mmu_notifier_register
    289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
    290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
    291 * in parallel despite there being no task using this mm any more,
    292 * through the vmas outside of the exit_mmap context, such as with
    293 * vmtruncate. This serializes against mmu_notifier_unregister with
    294 * the notifier_subscriptions->lock in addition to SRCU and it serializes
    295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
    296 * can't go away from under us as exit_mmap holds an mm_count pin
    297 * itself.
    298 */
    299static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
    300			     struct mm_struct *mm)
    301{
    302	struct mmu_notifier *subscription;
    303	int id;
    304
    305	/*
    306	 * SRCU here will block mmu_notifier_unregister until
    307	 * ->release returns.
    308	 */
    309	id = srcu_read_lock(&srcu);
    310	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
    311				 srcu_read_lock_held(&srcu))
    312		/*
    313		 * If ->release runs before mmu_notifier_unregister it must be
    314		 * handled, as it's the only way for the driver to flush all
    315		 * existing sptes and stop the driver from establishing any more
    316		 * sptes before all the pages in the mm are freed.
    317		 */
    318		if (subscription->ops->release)
    319			subscription->ops->release(subscription, mm);
    320
    321	spin_lock(&subscriptions->lock);
    322	while (unlikely(!hlist_empty(&subscriptions->list))) {
    323		subscription = hlist_entry(subscriptions->list.first,
    324					   struct mmu_notifier, hlist);
    325		/*
    326		 * We arrived before mmu_notifier_unregister so
    327		 * mmu_notifier_unregister will do nothing other than to wait
    328		 * for ->release to finish and for mmu_notifier_unregister to
    329		 * return.
    330		 */
    331		hlist_del_init_rcu(&subscription->hlist);
    332	}
    333	spin_unlock(&subscriptions->lock);
    334	srcu_read_unlock(&srcu, id);
    335
    336	/*
    337	 * synchronize_srcu here prevents mmu_notifier_release from returning to
    338	 * exit_mmap (which would proceed with freeing all pages in the mm)
    339	 * until the ->release method returns, if it was invoked by
    340	 * mmu_notifier_unregister.
    341	 *
    342	 * The notifier_subscriptions can't go away from under us because
    343	 * one mm_count is held by exit_mmap.
    344	 */
    345	synchronize_srcu(&srcu);
    346}
    347
    348void __mmu_notifier_release(struct mm_struct *mm)
    349{
    350	struct mmu_notifier_subscriptions *subscriptions =
    351		mm->notifier_subscriptions;
    352
    353	if (subscriptions->has_itree)
    354		mn_itree_release(subscriptions, mm);
    355
    356	if (!hlist_empty(&subscriptions->list))
    357		mn_hlist_release(subscriptions, mm);
    358}
    359
    360/*
    361 * If no young bitflag is supported by the hardware, ->clear_flush_young can
    362 * unmap the address and return 1 or 0 depending if the mapping previously
    363 * existed or not.
    364 */
    365int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
    366					unsigned long start,
    367					unsigned long end)
    368{
    369	struct mmu_notifier *subscription;
    370	int young = 0, id;
    371
    372	id = srcu_read_lock(&srcu);
    373	hlist_for_each_entry_rcu(subscription,
    374				 &mm->notifier_subscriptions->list, hlist,
    375				 srcu_read_lock_held(&srcu)) {
    376		if (subscription->ops->clear_flush_young)
    377			young |= subscription->ops->clear_flush_young(
    378				subscription, mm, start, end);
    379	}
    380	srcu_read_unlock(&srcu, id);
    381
    382	return young;
    383}
    384
    385int __mmu_notifier_clear_young(struct mm_struct *mm,
    386			       unsigned long start,
    387			       unsigned long end)
    388{
    389	struct mmu_notifier *subscription;
    390	int young = 0, id;
    391
    392	id = srcu_read_lock(&srcu);
    393	hlist_for_each_entry_rcu(subscription,
    394				 &mm->notifier_subscriptions->list, hlist,
    395				 srcu_read_lock_held(&srcu)) {
    396		if (subscription->ops->clear_young)
    397			young |= subscription->ops->clear_young(subscription,
    398								mm, start, end);
    399	}
    400	srcu_read_unlock(&srcu, id);
    401
    402	return young;
    403}
    404
    405int __mmu_notifier_test_young(struct mm_struct *mm,
    406			      unsigned long address)
    407{
    408	struct mmu_notifier *subscription;
    409	int young = 0, id;
    410
    411	id = srcu_read_lock(&srcu);
    412	hlist_for_each_entry_rcu(subscription,
    413				 &mm->notifier_subscriptions->list, hlist,
    414				 srcu_read_lock_held(&srcu)) {
    415		if (subscription->ops->test_young) {
    416			young = subscription->ops->test_young(subscription, mm,
    417							      address);
    418			if (young)
    419				break;
    420		}
    421	}
    422	srcu_read_unlock(&srcu, id);
    423
    424	return young;
    425}
    426
    427void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
    428			       pte_t pte)
    429{
    430	struct mmu_notifier *subscription;
    431	int id;
    432
    433	id = srcu_read_lock(&srcu);
    434	hlist_for_each_entry_rcu(subscription,
    435				 &mm->notifier_subscriptions->list, hlist,
    436				 srcu_read_lock_held(&srcu)) {
    437		if (subscription->ops->change_pte)
    438			subscription->ops->change_pte(subscription, mm, address,
    439						      pte);
    440	}
    441	srcu_read_unlock(&srcu, id);
    442}
    443
    444static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
    445			       const struct mmu_notifier_range *range)
    446{
    447	struct mmu_interval_notifier *interval_sub;
    448	unsigned long cur_seq;
    449
    450	for (interval_sub =
    451		     mn_itree_inv_start_range(subscriptions, range, &cur_seq);
    452	     interval_sub;
    453	     interval_sub = mn_itree_inv_next(interval_sub, range)) {
    454		bool ret;
    455
    456		ret = interval_sub->ops->invalidate(interval_sub, range,
    457						    cur_seq);
    458		if (!ret) {
    459			if (WARN_ON(mmu_notifier_range_blockable(range)))
    460				continue;
    461			goto out_would_block;
    462		}
    463	}
    464	return 0;
    465
    466out_would_block:
    467	/*
    468	 * On -EAGAIN the non-blocking caller is not allowed to call
    469	 * invalidate_range_end()
    470	 */
    471	mn_itree_inv_end(subscriptions);
    472	return -EAGAIN;
    473}
    474
    475static int mn_hlist_invalidate_range_start(
    476	struct mmu_notifier_subscriptions *subscriptions,
    477	struct mmu_notifier_range *range)
    478{
    479	struct mmu_notifier *subscription;
    480	int ret = 0;
    481	int id;
    482
    483	id = srcu_read_lock(&srcu);
    484	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
    485				 srcu_read_lock_held(&srcu)) {
    486		const struct mmu_notifier_ops *ops = subscription->ops;
    487
    488		if (ops->invalidate_range_start) {
    489			int _ret;
    490
    491			if (!mmu_notifier_range_blockable(range))
    492				non_block_start();
    493			_ret = ops->invalidate_range_start(subscription, range);
    494			if (!mmu_notifier_range_blockable(range))
    495				non_block_end();
    496			if (_ret) {
    497				pr_info("%pS callback failed with %d in %sblockable context.\n",
    498					ops->invalidate_range_start, _ret,
    499					!mmu_notifier_range_blockable(range) ?
    500						"non-" :
    501						"");
    502				WARN_ON(mmu_notifier_range_blockable(range) ||
    503					_ret != -EAGAIN);
    504				/*
    505				 * We call all the notifiers on any EAGAIN,
    506				 * there is no way for a notifier to know if
    507				 * its start method failed, thus a start that
    508				 * does EAGAIN can't also do end.
    509				 */
    510				WARN_ON(ops->invalidate_range_end);
    511				ret = _ret;
    512			}
    513		}
    514	}
    515
    516	if (ret) {
    517		/*
    518		 * Must be non-blocking to get here.  If there are multiple
    519		 * notifiers and one or more failed start, any that succeeded
    520		 * start are expecting their end to be called.  Do so now.
    521		 */
    522		hlist_for_each_entry_rcu(subscription, &subscriptions->list,
    523					 hlist, srcu_read_lock_held(&srcu)) {
    524			if (!subscription->ops->invalidate_range_end)
    525				continue;
    526
    527			subscription->ops->invalidate_range_end(subscription,
    528								range);
    529		}
    530	}
    531	srcu_read_unlock(&srcu, id);
    532
    533	return ret;
    534}
    535
    536int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
    537{
    538	struct mmu_notifier_subscriptions *subscriptions =
    539		range->mm->notifier_subscriptions;
    540	int ret;
    541
    542	if (subscriptions->has_itree) {
    543		ret = mn_itree_invalidate(subscriptions, range);
    544		if (ret)
    545			return ret;
    546	}
    547	if (!hlist_empty(&subscriptions->list))
    548		return mn_hlist_invalidate_range_start(subscriptions, range);
    549	return 0;
    550}
    551
    552static void
    553mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
    554			struct mmu_notifier_range *range, bool only_end)
    555{
    556	struct mmu_notifier *subscription;
    557	int id;
    558
    559	id = srcu_read_lock(&srcu);
    560	hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
    561				 srcu_read_lock_held(&srcu)) {
    562		/*
    563		 * Call invalidate_range here too to avoid the need for the
    564		 * subsystem of having to register an invalidate_range_end
    565		 * call-back when there is invalidate_range already. Usually a
    566		 * subsystem registers either invalidate_range_start()/end() or
    567		 * invalidate_range(), so this will be no additional overhead
    568		 * (besides the pointer check).
    569		 *
    570		 * We skip call to invalidate_range() if we know it is safe ie
    571		 * call site use mmu_notifier_invalidate_range_only_end() which
    572		 * is safe to do when we know that a call to invalidate_range()
    573		 * already happen under page table lock.
    574		 */
    575		if (!only_end && subscription->ops->invalidate_range)
    576			subscription->ops->invalidate_range(subscription,
    577							    range->mm,
    578							    range->start,
    579							    range->end);
    580		if (subscription->ops->invalidate_range_end) {
    581			if (!mmu_notifier_range_blockable(range))
    582				non_block_start();
    583			subscription->ops->invalidate_range_end(subscription,
    584								range);
    585			if (!mmu_notifier_range_blockable(range))
    586				non_block_end();
    587		}
    588	}
    589	srcu_read_unlock(&srcu, id);
    590}
    591
    592void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
    593					 bool only_end)
    594{
    595	struct mmu_notifier_subscriptions *subscriptions =
    596		range->mm->notifier_subscriptions;
    597
    598	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
    599	if (subscriptions->has_itree)
    600		mn_itree_inv_end(subscriptions);
    601
    602	if (!hlist_empty(&subscriptions->list))
    603		mn_hlist_invalidate_end(subscriptions, range, only_end);
    604	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
    605}
    606
    607void __mmu_notifier_invalidate_range(struct mm_struct *mm,
    608				  unsigned long start, unsigned long end)
    609{
    610	struct mmu_notifier *subscription;
    611	int id;
    612
    613	id = srcu_read_lock(&srcu);
    614	hlist_for_each_entry_rcu(subscription,
    615				 &mm->notifier_subscriptions->list, hlist,
    616				 srcu_read_lock_held(&srcu)) {
    617		if (subscription->ops->invalidate_range)
    618			subscription->ops->invalidate_range(subscription, mm,
    619							    start, end);
    620	}
    621	srcu_read_unlock(&srcu, id);
    622}
    623
    624/*
    625 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
    626 * write mode. A NULL mn signals the notifier is being registered for itree
    627 * mode.
    628 */
    629int __mmu_notifier_register(struct mmu_notifier *subscription,
    630			    struct mm_struct *mm)
    631{
    632	struct mmu_notifier_subscriptions *subscriptions = NULL;
    633	int ret;
    634
    635	mmap_assert_write_locked(mm);
    636	BUG_ON(atomic_read(&mm->mm_users) <= 0);
    637
    638	if (!mm->notifier_subscriptions) {
    639		/*
    640		 * kmalloc cannot be called under mm_take_all_locks(), but we
    641		 * know that mm->notifier_subscriptions can't change while we
    642		 * hold the write side of the mmap_lock.
    643		 */
    644		subscriptions = kzalloc(
    645			sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
    646		if (!subscriptions)
    647			return -ENOMEM;
    648
    649		INIT_HLIST_HEAD(&subscriptions->list);
    650		spin_lock_init(&subscriptions->lock);
    651		subscriptions->invalidate_seq = 2;
    652		subscriptions->itree = RB_ROOT_CACHED;
    653		init_waitqueue_head(&subscriptions->wq);
    654		INIT_HLIST_HEAD(&subscriptions->deferred_list);
    655	}
    656
    657	ret = mm_take_all_locks(mm);
    658	if (unlikely(ret))
    659		goto out_clean;
    660
    661	/*
    662	 * Serialize the update against mmu_notifier_unregister. A
    663	 * side note: mmu_notifier_release can't run concurrently with
    664	 * us because we hold the mm_users pin (either implicitly as
    665	 * current->mm or explicitly with get_task_mm() or similar).
    666	 * We can't race against any other mmu notifier method either
    667	 * thanks to mm_take_all_locks().
    668	 *
    669	 * release semantics on the initialization of the
    670	 * mmu_notifier_subscriptions's contents are provided for unlocked
    671	 * readers.  acquire can only be used while holding the mmgrab or
    672	 * mmget, and is safe because once created the
    673	 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
    674	 * As above, users holding the mmap_lock or one of the
    675	 * mm_take_all_locks() do not need to use acquire semantics.
    676	 */
    677	if (subscriptions)
    678		smp_store_release(&mm->notifier_subscriptions, subscriptions);
    679
    680	if (subscription) {
    681		/* Pairs with the mmdrop in mmu_notifier_unregister_* */
    682		mmgrab(mm);
    683		subscription->mm = mm;
    684		subscription->users = 1;
    685
    686		spin_lock(&mm->notifier_subscriptions->lock);
    687		hlist_add_head_rcu(&subscription->hlist,
    688				   &mm->notifier_subscriptions->list);
    689		spin_unlock(&mm->notifier_subscriptions->lock);
    690	} else
    691		mm->notifier_subscriptions->has_itree = true;
    692
    693	mm_drop_all_locks(mm);
    694	BUG_ON(atomic_read(&mm->mm_users) <= 0);
    695	return 0;
    696
    697out_clean:
    698	kfree(subscriptions);
    699	return ret;
    700}
    701EXPORT_SYMBOL_GPL(__mmu_notifier_register);
    702
    703/**
    704 * mmu_notifier_register - Register a notifier on a mm
    705 * @subscription: The notifier to attach
    706 * @mm: The mm to attach the notifier to
    707 *
    708 * Must not hold mmap_lock nor any other VM related lock when calling
    709 * this registration function. Must also ensure mm_users can't go down
    710 * to zero while this runs to avoid races with mmu_notifier_release,
    711 * so mm has to be current->mm or the mm should be pinned safely such
    712 * as with get_task_mm(). If the mm is not current->mm, the mm_users
    713 * pin should be released by calling mmput after mmu_notifier_register
    714 * returns.
    715 *
    716 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
    717 * unregister the notifier.
    718 *
    719 * While the caller has a mmu_notifier get the subscription->mm pointer will remain
    720 * valid, and can be converted to an active mm pointer via mmget_not_zero().
    721 */
    722int mmu_notifier_register(struct mmu_notifier *subscription,
    723			  struct mm_struct *mm)
    724{
    725	int ret;
    726
    727	mmap_write_lock(mm);
    728	ret = __mmu_notifier_register(subscription, mm);
    729	mmap_write_unlock(mm);
    730	return ret;
    731}
    732EXPORT_SYMBOL_GPL(mmu_notifier_register);
    733
    734static struct mmu_notifier *
    735find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
    736{
    737	struct mmu_notifier *subscription;
    738
    739	spin_lock(&mm->notifier_subscriptions->lock);
    740	hlist_for_each_entry_rcu(subscription,
    741				 &mm->notifier_subscriptions->list, hlist,
    742				 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
    743		if (subscription->ops != ops)
    744			continue;
    745
    746		if (likely(subscription->users != UINT_MAX))
    747			subscription->users++;
    748		else
    749			subscription = ERR_PTR(-EOVERFLOW);
    750		spin_unlock(&mm->notifier_subscriptions->lock);
    751		return subscription;
    752	}
    753	spin_unlock(&mm->notifier_subscriptions->lock);
    754	return NULL;
    755}
    756
    757/**
    758 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
    759 *                           the mm & ops
    760 * @ops: The operations struct being subscribe with
    761 * @mm : The mm to attach notifiers too
    762 *
    763 * This function either allocates a new mmu_notifier via
    764 * ops->alloc_notifier(), or returns an already existing notifier on the
    765 * list. The value of the ops pointer is used to determine when two notifiers
    766 * are the same.
    767 *
    768 * Each call to mmu_notifier_get() must be paired with a call to
    769 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
    770 *
    771 * While the caller has a mmu_notifier get the mm pointer will remain valid,
    772 * and can be converted to an active mm pointer via mmget_not_zero().
    773 */
    774struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
    775					     struct mm_struct *mm)
    776{
    777	struct mmu_notifier *subscription;
    778	int ret;
    779
    780	mmap_assert_write_locked(mm);
    781
    782	if (mm->notifier_subscriptions) {
    783		subscription = find_get_mmu_notifier(mm, ops);
    784		if (subscription)
    785			return subscription;
    786	}
    787
    788	subscription = ops->alloc_notifier(mm);
    789	if (IS_ERR(subscription))
    790		return subscription;
    791	subscription->ops = ops;
    792	ret = __mmu_notifier_register(subscription, mm);
    793	if (ret)
    794		goto out_free;
    795	return subscription;
    796out_free:
    797	subscription->ops->free_notifier(subscription);
    798	return ERR_PTR(ret);
    799}
    800EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
    801
    802/* this is called after the last mmu_notifier_unregister() returned */
    803void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
    804{
    805	BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
    806	kfree(mm->notifier_subscriptions);
    807	mm->notifier_subscriptions = LIST_POISON1; /* debug */
    808}
    809
    810/*
    811 * This releases the mm_count pin automatically and frees the mm
    812 * structure if it was the last user of it. It serializes against
    813 * running mmu notifiers with SRCU and against mmu_notifier_unregister
    814 * with the unregister lock + SRCU. All sptes must be dropped before
    815 * calling mmu_notifier_unregister. ->release or any other notifier
    816 * method may be invoked concurrently with mmu_notifier_unregister,
    817 * and only after mmu_notifier_unregister returned we're guaranteed
    818 * that ->release or any other method can't run anymore.
    819 */
    820void mmu_notifier_unregister(struct mmu_notifier *subscription,
    821			     struct mm_struct *mm)
    822{
    823	BUG_ON(atomic_read(&mm->mm_count) <= 0);
    824
    825	if (!hlist_unhashed(&subscription->hlist)) {
    826		/*
    827		 * SRCU here will force exit_mmap to wait for ->release to
    828		 * finish before freeing the pages.
    829		 */
    830		int id;
    831
    832		id = srcu_read_lock(&srcu);
    833		/*
    834		 * exit_mmap will block in mmu_notifier_release to guarantee
    835		 * that ->release is called before freeing the pages.
    836		 */
    837		if (subscription->ops->release)
    838			subscription->ops->release(subscription, mm);
    839		srcu_read_unlock(&srcu, id);
    840
    841		spin_lock(&mm->notifier_subscriptions->lock);
    842		/*
    843		 * Can not use list_del_rcu() since __mmu_notifier_release
    844		 * can delete it before we hold the lock.
    845		 */
    846		hlist_del_init_rcu(&subscription->hlist);
    847		spin_unlock(&mm->notifier_subscriptions->lock);
    848	}
    849
    850	/*
    851	 * Wait for any running method to finish, of course including
    852	 * ->release if it was run by mmu_notifier_release instead of us.
    853	 */
    854	synchronize_srcu(&srcu);
    855
    856	BUG_ON(atomic_read(&mm->mm_count) <= 0);
    857
    858	mmdrop(mm);
    859}
    860EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
    861
    862static void mmu_notifier_free_rcu(struct rcu_head *rcu)
    863{
    864	struct mmu_notifier *subscription =
    865		container_of(rcu, struct mmu_notifier, rcu);
    866	struct mm_struct *mm = subscription->mm;
    867
    868	subscription->ops->free_notifier(subscription);
    869	/* Pairs with the get in __mmu_notifier_register() */
    870	mmdrop(mm);
    871}
    872
    873/**
    874 * mmu_notifier_put - Release the reference on the notifier
    875 * @subscription: The notifier to act on
    876 *
    877 * This function must be paired with each mmu_notifier_get(), it releases the
    878 * reference obtained by the get. If this is the last reference then process
    879 * to free the notifier will be run asynchronously.
    880 *
    881 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
    882 * when the mm_struct is destroyed. Instead free_notifier is always called to
    883 * release any resources held by the user.
    884 *
    885 * As ops->release is not guaranteed to be called, the user must ensure that
    886 * all sptes are dropped, and no new sptes can be established before
    887 * mmu_notifier_put() is called.
    888 *
    889 * This function can be called from the ops->release callback, however the
    890 * caller must still ensure it is called pairwise with mmu_notifier_get().
    891 *
    892 * Modules calling this function must call mmu_notifier_synchronize() in
    893 * their __exit functions to ensure the async work is completed.
    894 */
    895void mmu_notifier_put(struct mmu_notifier *subscription)
    896{
    897	struct mm_struct *mm = subscription->mm;
    898
    899	spin_lock(&mm->notifier_subscriptions->lock);
    900	if (WARN_ON(!subscription->users) || --subscription->users)
    901		goto out_unlock;
    902	hlist_del_init_rcu(&subscription->hlist);
    903	spin_unlock(&mm->notifier_subscriptions->lock);
    904
    905	call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
    906	return;
    907
    908out_unlock:
    909	spin_unlock(&mm->notifier_subscriptions->lock);
    910}
    911EXPORT_SYMBOL_GPL(mmu_notifier_put);
    912
    913static int __mmu_interval_notifier_insert(
    914	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
    915	struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
    916	unsigned long length, const struct mmu_interval_notifier_ops *ops)
    917{
    918	interval_sub->mm = mm;
    919	interval_sub->ops = ops;
    920	RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
    921	interval_sub->interval_tree.start = start;
    922	/*
    923	 * Note that the representation of the intervals in the interval tree
    924	 * considers the ending point as contained in the interval.
    925	 */
    926	if (length == 0 ||
    927	    check_add_overflow(start, length - 1,
    928			       &interval_sub->interval_tree.last))
    929		return -EOVERFLOW;
    930
    931	/* Must call with a mmget() held */
    932	if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
    933		return -EINVAL;
    934
    935	/* pairs with mmdrop in mmu_interval_notifier_remove() */
    936	mmgrab(mm);
    937
    938	/*
    939	 * If some invalidate_range_start/end region is going on in parallel
    940	 * we don't know what VA ranges are affected, so we must assume this
    941	 * new range is included.
    942	 *
    943	 * If the itree is invalidating then we are not allowed to change
    944	 * it. Retrying until invalidation is done is tricky due to the
    945	 * possibility for live lock, instead defer the add to
    946	 * mn_itree_inv_end() so this algorithm is deterministic.
    947	 *
    948	 * In all cases the value for the interval_sub->invalidate_seq should be
    949	 * odd, see mmu_interval_read_begin()
    950	 */
    951	spin_lock(&subscriptions->lock);
    952	if (subscriptions->active_invalidate_ranges) {
    953		if (mn_itree_is_invalidating(subscriptions))
    954			hlist_add_head(&interval_sub->deferred_item,
    955				       &subscriptions->deferred_list);
    956		else {
    957			subscriptions->invalidate_seq |= 1;
    958			interval_tree_insert(&interval_sub->interval_tree,
    959					     &subscriptions->itree);
    960		}
    961		interval_sub->invalidate_seq = subscriptions->invalidate_seq;
    962	} else {
    963		WARN_ON(mn_itree_is_invalidating(subscriptions));
    964		/*
    965		 * The starting seq for a subscription not under invalidation
    966		 * should be odd, not equal to the current invalidate_seq and
    967		 * invalidate_seq should not 'wrap' to the new seq any time
    968		 * soon.
    969		 */
    970		interval_sub->invalidate_seq =
    971			subscriptions->invalidate_seq - 1;
    972		interval_tree_insert(&interval_sub->interval_tree,
    973				     &subscriptions->itree);
    974	}
    975	spin_unlock(&subscriptions->lock);
    976	return 0;
    977}
    978
    979/**
    980 * mmu_interval_notifier_insert - Insert an interval notifier
    981 * @interval_sub: Interval subscription to register
    982 * @start: Starting virtual address to monitor
    983 * @length: Length of the range to monitor
    984 * @mm: mm_struct to attach to
    985 * @ops: Interval notifier operations to be called on matching events
    986 *
    987 * This function subscribes the interval notifier for notifications from the
    988 * mm.  Upon return the ops related to mmu_interval_notifier will be called
    989 * whenever an event that intersects with the given range occurs.
    990 *
    991 * Upon return the range_notifier may not be present in the interval tree yet.
    992 * The caller must use the normal interval notifier read flow via
    993 * mmu_interval_read_begin() to establish SPTEs for this range.
    994 */
    995int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
    996				 struct mm_struct *mm, unsigned long start,
    997				 unsigned long length,
    998				 const struct mmu_interval_notifier_ops *ops)
    999{
   1000	struct mmu_notifier_subscriptions *subscriptions;
   1001	int ret;
   1002
   1003	might_lock(&mm->mmap_lock);
   1004
   1005	subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
   1006	if (!subscriptions || !subscriptions->has_itree) {
   1007		ret = mmu_notifier_register(NULL, mm);
   1008		if (ret)
   1009			return ret;
   1010		subscriptions = mm->notifier_subscriptions;
   1011	}
   1012	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
   1013					      start, length, ops);
   1014}
   1015EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
   1016
   1017int mmu_interval_notifier_insert_locked(
   1018	struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
   1019	unsigned long start, unsigned long length,
   1020	const struct mmu_interval_notifier_ops *ops)
   1021{
   1022	struct mmu_notifier_subscriptions *subscriptions =
   1023		mm->notifier_subscriptions;
   1024	int ret;
   1025
   1026	mmap_assert_write_locked(mm);
   1027
   1028	if (!subscriptions || !subscriptions->has_itree) {
   1029		ret = __mmu_notifier_register(NULL, mm);
   1030		if (ret)
   1031			return ret;
   1032		subscriptions = mm->notifier_subscriptions;
   1033	}
   1034	return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
   1035					      start, length, ops);
   1036}
   1037EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
   1038
   1039static bool
   1040mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
   1041			  unsigned long seq)
   1042{
   1043	bool ret;
   1044
   1045	spin_lock(&subscriptions->lock);
   1046	ret = subscriptions->invalidate_seq != seq;
   1047	spin_unlock(&subscriptions->lock);
   1048	return ret;
   1049}
   1050
   1051/**
   1052 * mmu_interval_notifier_remove - Remove a interval notifier
   1053 * @interval_sub: Interval subscription to unregister
   1054 *
   1055 * This function must be paired with mmu_interval_notifier_insert(). It cannot
   1056 * be called from any ops callback.
   1057 *
   1058 * Once this returns ops callbacks are no longer running on other CPUs and
   1059 * will not be called in future.
   1060 */
   1061void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
   1062{
   1063	struct mm_struct *mm = interval_sub->mm;
   1064	struct mmu_notifier_subscriptions *subscriptions =
   1065		mm->notifier_subscriptions;
   1066	unsigned long seq = 0;
   1067
   1068	might_sleep();
   1069
   1070	spin_lock(&subscriptions->lock);
   1071	if (mn_itree_is_invalidating(subscriptions)) {
   1072		/*
   1073		 * remove is being called after insert put this on the
   1074		 * deferred list, but before the deferred list was processed.
   1075		 */
   1076		if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
   1077			hlist_del(&interval_sub->deferred_item);
   1078		} else {
   1079			hlist_add_head(&interval_sub->deferred_item,
   1080				       &subscriptions->deferred_list);
   1081			seq = subscriptions->invalidate_seq;
   1082		}
   1083	} else {
   1084		WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
   1085		interval_tree_remove(&interval_sub->interval_tree,
   1086				     &subscriptions->itree);
   1087	}
   1088	spin_unlock(&subscriptions->lock);
   1089
   1090	/*
   1091	 * The possible sleep on progress in the invalidation requires the
   1092	 * caller not hold any locks held by invalidation callbacks.
   1093	 */
   1094	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
   1095	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
   1096	if (seq)
   1097		wait_event(subscriptions->wq,
   1098			   mmu_interval_seq_released(subscriptions, seq));
   1099
   1100	/* pairs with mmgrab in mmu_interval_notifier_insert() */
   1101	mmdrop(mm);
   1102}
   1103EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
   1104
   1105/**
   1106 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
   1107 *
   1108 * This function ensures that all outstanding async SRU work from
   1109 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
   1110 * associated with an unused mmu_notifier will no longer be called.
   1111 *
   1112 * Before using the caller must ensure that all of its mmu_notifiers have been
   1113 * fully released via mmu_notifier_put().
   1114 *
   1115 * Modules using the mmu_notifier_put() API should call this in their __exit
   1116 * function to avoid module unloading races.
   1117 */
   1118void mmu_notifier_synchronize(void)
   1119{
   1120	synchronize_srcu(&srcu);
   1121}
   1122EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
   1123
   1124bool
   1125mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
   1126{
   1127	if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
   1128		return false;
   1129	/* Return true if the vma still have the read flag set. */
   1130	return range->vma->vm_flags & VM_READ;
   1131}
   1132EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);