mmu_notifier.c (36125B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/mmu_notifier.c 4 * 5 * Copyright (C) 2008 Qumranet, Inc. 6 * Copyright (C) 2008 SGI 7 * Christoph Lameter <cl@linux.com> 8 */ 9 10#include <linux/rculist.h> 11#include <linux/mmu_notifier.h> 12#include <linux/export.h> 13#include <linux/mm.h> 14#include <linux/err.h> 15#include <linux/interval_tree.h> 16#include <linux/srcu.h> 17#include <linux/rcupdate.h> 18#include <linux/sched.h> 19#include <linux/sched/mm.h> 20#include <linux/slab.h> 21 22/* global SRCU for all MMs */ 23DEFINE_STATIC_SRCU(srcu); 24 25#ifdef CONFIG_LOCKDEP 26struct lockdep_map __mmu_notifier_invalidate_range_start_map = { 27 .name = "mmu_notifier_invalidate_range_start" 28}; 29#endif 30 31/* 32 * The mmu_notifier_subscriptions structure is allocated and installed in 33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected 34 * critical section and it's released only when mm_count reaches zero 35 * in mmdrop(). 36 */ 37struct mmu_notifier_subscriptions { 38 /* all mmu notifiers registered in this mm are queued in this list */ 39 struct hlist_head list; 40 bool has_itree; 41 /* to serialize the list modifications and hlist_unhashed */ 42 spinlock_t lock; 43 unsigned long invalidate_seq; 44 unsigned long active_invalidate_ranges; 45 struct rb_root_cached itree; 46 wait_queue_head_t wq; 47 struct hlist_head deferred_list; 48}; 49 50/* 51 * This is a collision-retry read-side/write-side 'lock', a lot like a 52 * seqcount, however this allows multiple write-sides to hold it at 53 * once. Conceptually the write side is protecting the values of the PTEs in 54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any 55 * writer exists. 56 * 57 * Note that the core mm creates nested invalidate_range_start()/end() regions 58 * within the same thread, and runs invalidate_range_start()/end() in parallel 59 * on multiple CPUs. This is designed to not reduce concurrency or block 60 * progress on the mm side. 61 * 62 * As a secondary function, holding the full write side also serves to prevent 63 * writers for the itree, this is an optimization to avoid extra locking 64 * during invalidate_range_start/end notifiers. 65 * 66 * The write side has two states, fully excluded: 67 * - mm->active_invalidate_ranges != 0 68 * - subscriptions->invalidate_seq & 1 == True (odd) 69 * - some range on the mm_struct is being invalidated 70 * - the itree is not allowed to change 71 * 72 * And partially excluded: 73 * - mm->active_invalidate_ranges != 0 74 * - subscriptions->invalidate_seq & 1 == False (even) 75 * - some range on the mm_struct is being invalidated 76 * - the itree is allowed to change 77 * 78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock): 79 * seq |= 1 # Begin writing 80 * seq++ # Release the writing state 81 * seq & 1 # True if a writer exists 82 * 83 * The later state avoids some expensive work on inv_end in the common case of 84 * no mmu_interval_notifier monitoring the VA. 85 */ 86static bool 87mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions) 88{ 89 lockdep_assert_held(&subscriptions->lock); 90 return subscriptions->invalidate_seq & 1; 91} 92 93static struct mmu_interval_notifier * 94mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions, 95 const struct mmu_notifier_range *range, 96 unsigned long *seq) 97{ 98 struct interval_tree_node *node; 99 struct mmu_interval_notifier *res = NULL; 100 101 spin_lock(&subscriptions->lock); 102 subscriptions->active_invalidate_ranges++; 103 node = interval_tree_iter_first(&subscriptions->itree, range->start, 104 range->end - 1); 105 if (node) { 106 subscriptions->invalidate_seq |= 1; 107 res = container_of(node, struct mmu_interval_notifier, 108 interval_tree); 109 } 110 111 *seq = subscriptions->invalidate_seq; 112 spin_unlock(&subscriptions->lock); 113 return res; 114} 115 116static struct mmu_interval_notifier * 117mn_itree_inv_next(struct mmu_interval_notifier *interval_sub, 118 const struct mmu_notifier_range *range) 119{ 120 struct interval_tree_node *node; 121 122 node = interval_tree_iter_next(&interval_sub->interval_tree, 123 range->start, range->end - 1); 124 if (!node) 125 return NULL; 126 return container_of(node, struct mmu_interval_notifier, interval_tree); 127} 128 129static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions) 130{ 131 struct mmu_interval_notifier *interval_sub; 132 struct hlist_node *next; 133 134 spin_lock(&subscriptions->lock); 135 if (--subscriptions->active_invalidate_ranges || 136 !mn_itree_is_invalidating(subscriptions)) { 137 spin_unlock(&subscriptions->lock); 138 return; 139 } 140 141 /* Make invalidate_seq even */ 142 subscriptions->invalidate_seq++; 143 144 /* 145 * The inv_end incorporates a deferred mechanism like rtnl_unlock(). 146 * Adds and removes are queued until the final inv_end happens then 147 * they are progressed. This arrangement for tree updates is used to 148 * avoid using a blocking lock during invalidate_range_start. 149 */ 150 hlist_for_each_entry_safe(interval_sub, next, 151 &subscriptions->deferred_list, 152 deferred_item) { 153 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) 154 interval_tree_insert(&interval_sub->interval_tree, 155 &subscriptions->itree); 156 else 157 interval_tree_remove(&interval_sub->interval_tree, 158 &subscriptions->itree); 159 hlist_del(&interval_sub->deferred_item); 160 } 161 spin_unlock(&subscriptions->lock); 162 163 wake_up_all(&subscriptions->wq); 164} 165 166/** 167 * mmu_interval_read_begin - Begin a read side critical section against a VA 168 * range 169 * @interval_sub: The interval subscription 170 * 171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a 172 * collision-retry scheme similar to seqcount for the VA range under 173 * subscription. If the mm invokes invalidation during the critical section 174 * then mmu_interval_read_retry() will return true. 175 * 176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs 177 * require a blocking context. The critical region formed by this can sleep, 178 * and the required 'user_lock' can also be a sleeping lock. 179 * 180 * The caller is required to provide a 'user_lock' to serialize both teardown 181 * and setup. 182 * 183 * The return value should be passed to mmu_interval_read_retry(). 184 */ 185unsigned long 186mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub) 187{ 188 struct mmu_notifier_subscriptions *subscriptions = 189 interval_sub->mm->notifier_subscriptions; 190 unsigned long seq; 191 bool is_invalidating; 192 193 /* 194 * If the subscription has a different seq value under the user_lock 195 * than we started with then it has collided. 196 * 197 * If the subscription currently has the same seq value as the 198 * subscriptions seq, then it is currently between 199 * invalidate_start/end and is colliding. 200 * 201 * The locking looks broadly like this: 202 * mn_tree_invalidate_start(): mmu_interval_read_begin(): 203 * spin_lock 204 * seq = READ_ONCE(interval_sub->invalidate_seq); 205 * seq == subs->invalidate_seq 206 * spin_unlock 207 * spin_lock 208 * seq = ++subscriptions->invalidate_seq 209 * spin_unlock 210 * op->invalidate_range(): 211 * user_lock 212 * mmu_interval_set_seq() 213 * interval_sub->invalidate_seq = seq 214 * user_unlock 215 * 216 * [Required: mmu_interval_read_retry() == true] 217 * 218 * mn_itree_inv_end(): 219 * spin_lock 220 * seq = ++subscriptions->invalidate_seq 221 * spin_unlock 222 * 223 * user_lock 224 * mmu_interval_read_retry(): 225 * interval_sub->invalidate_seq != seq 226 * user_unlock 227 * 228 * Barriers are not needed here as any races here are closed by an 229 * eventual mmu_interval_read_retry(), which provides a barrier via the 230 * user_lock. 231 */ 232 spin_lock(&subscriptions->lock); 233 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 234 seq = READ_ONCE(interval_sub->invalidate_seq); 235 is_invalidating = seq == subscriptions->invalidate_seq; 236 spin_unlock(&subscriptions->lock); 237 238 /* 239 * interval_sub->invalidate_seq must always be set to an odd value via 240 * mmu_interval_set_seq() using the provided cur_seq from 241 * mn_itree_inv_start_range(). This ensures that if seq does wrap we 242 * will always clear the below sleep in some reasonable time as 243 * subscriptions->invalidate_seq is even in the idle state. 244 */ 245 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 246 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 247 if (is_invalidating) 248 wait_event(subscriptions->wq, 249 READ_ONCE(subscriptions->invalidate_seq) != seq); 250 251 /* 252 * Notice that mmu_interval_read_retry() can already be true at this 253 * point, avoiding loops here allows the caller to provide a global 254 * time bound. 255 */ 256 257 return seq; 258} 259EXPORT_SYMBOL_GPL(mmu_interval_read_begin); 260 261static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions, 262 struct mm_struct *mm) 263{ 264 struct mmu_notifier_range range = { 265 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE, 266 .event = MMU_NOTIFY_RELEASE, 267 .mm = mm, 268 .start = 0, 269 .end = ULONG_MAX, 270 }; 271 struct mmu_interval_notifier *interval_sub; 272 unsigned long cur_seq; 273 bool ret; 274 275 for (interval_sub = 276 mn_itree_inv_start_range(subscriptions, &range, &cur_seq); 277 interval_sub; 278 interval_sub = mn_itree_inv_next(interval_sub, &range)) { 279 ret = interval_sub->ops->invalidate(interval_sub, &range, 280 cur_seq); 281 WARN_ON(!ret); 282 } 283 284 mn_itree_inv_end(subscriptions); 285} 286 287/* 288 * This function can't run concurrently against mmu_notifier_register 289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap 290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers 291 * in parallel despite there being no task using this mm any more, 292 * through the vmas outside of the exit_mmap context, such as with 293 * vmtruncate. This serializes against mmu_notifier_unregister with 294 * the notifier_subscriptions->lock in addition to SRCU and it serializes 295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions 296 * can't go away from under us as exit_mmap holds an mm_count pin 297 * itself. 298 */ 299static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions, 300 struct mm_struct *mm) 301{ 302 struct mmu_notifier *subscription; 303 int id; 304 305 /* 306 * SRCU here will block mmu_notifier_unregister until 307 * ->release returns. 308 */ 309 id = srcu_read_lock(&srcu); 310 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 311 srcu_read_lock_held(&srcu)) 312 /* 313 * If ->release runs before mmu_notifier_unregister it must be 314 * handled, as it's the only way for the driver to flush all 315 * existing sptes and stop the driver from establishing any more 316 * sptes before all the pages in the mm are freed. 317 */ 318 if (subscription->ops->release) 319 subscription->ops->release(subscription, mm); 320 321 spin_lock(&subscriptions->lock); 322 while (unlikely(!hlist_empty(&subscriptions->list))) { 323 subscription = hlist_entry(subscriptions->list.first, 324 struct mmu_notifier, hlist); 325 /* 326 * We arrived before mmu_notifier_unregister so 327 * mmu_notifier_unregister will do nothing other than to wait 328 * for ->release to finish and for mmu_notifier_unregister to 329 * return. 330 */ 331 hlist_del_init_rcu(&subscription->hlist); 332 } 333 spin_unlock(&subscriptions->lock); 334 srcu_read_unlock(&srcu, id); 335 336 /* 337 * synchronize_srcu here prevents mmu_notifier_release from returning to 338 * exit_mmap (which would proceed with freeing all pages in the mm) 339 * until the ->release method returns, if it was invoked by 340 * mmu_notifier_unregister. 341 * 342 * The notifier_subscriptions can't go away from under us because 343 * one mm_count is held by exit_mmap. 344 */ 345 synchronize_srcu(&srcu); 346} 347 348void __mmu_notifier_release(struct mm_struct *mm) 349{ 350 struct mmu_notifier_subscriptions *subscriptions = 351 mm->notifier_subscriptions; 352 353 if (subscriptions->has_itree) 354 mn_itree_release(subscriptions, mm); 355 356 if (!hlist_empty(&subscriptions->list)) 357 mn_hlist_release(subscriptions, mm); 358} 359 360/* 361 * If no young bitflag is supported by the hardware, ->clear_flush_young can 362 * unmap the address and return 1 or 0 depending if the mapping previously 363 * existed or not. 364 */ 365int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 366 unsigned long start, 367 unsigned long end) 368{ 369 struct mmu_notifier *subscription; 370 int young = 0, id; 371 372 id = srcu_read_lock(&srcu); 373 hlist_for_each_entry_rcu(subscription, 374 &mm->notifier_subscriptions->list, hlist, 375 srcu_read_lock_held(&srcu)) { 376 if (subscription->ops->clear_flush_young) 377 young |= subscription->ops->clear_flush_young( 378 subscription, mm, start, end); 379 } 380 srcu_read_unlock(&srcu, id); 381 382 return young; 383} 384 385int __mmu_notifier_clear_young(struct mm_struct *mm, 386 unsigned long start, 387 unsigned long end) 388{ 389 struct mmu_notifier *subscription; 390 int young = 0, id; 391 392 id = srcu_read_lock(&srcu); 393 hlist_for_each_entry_rcu(subscription, 394 &mm->notifier_subscriptions->list, hlist, 395 srcu_read_lock_held(&srcu)) { 396 if (subscription->ops->clear_young) 397 young |= subscription->ops->clear_young(subscription, 398 mm, start, end); 399 } 400 srcu_read_unlock(&srcu, id); 401 402 return young; 403} 404 405int __mmu_notifier_test_young(struct mm_struct *mm, 406 unsigned long address) 407{ 408 struct mmu_notifier *subscription; 409 int young = 0, id; 410 411 id = srcu_read_lock(&srcu); 412 hlist_for_each_entry_rcu(subscription, 413 &mm->notifier_subscriptions->list, hlist, 414 srcu_read_lock_held(&srcu)) { 415 if (subscription->ops->test_young) { 416 young = subscription->ops->test_young(subscription, mm, 417 address); 418 if (young) 419 break; 420 } 421 } 422 srcu_read_unlock(&srcu, id); 423 424 return young; 425} 426 427void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address, 428 pte_t pte) 429{ 430 struct mmu_notifier *subscription; 431 int id; 432 433 id = srcu_read_lock(&srcu); 434 hlist_for_each_entry_rcu(subscription, 435 &mm->notifier_subscriptions->list, hlist, 436 srcu_read_lock_held(&srcu)) { 437 if (subscription->ops->change_pte) 438 subscription->ops->change_pte(subscription, mm, address, 439 pte); 440 } 441 srcu_read_unlock(&srcu, id); 442} 443 444static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions, 445 const struct mmu_notifier_range *range) 446{ 447 struct mmu_interval_notifier *interval_sub; 448 unsigned long cur_seq; 449 450 for (interval_sub = 451 mn_itree_inv_start_range(subscriptions, range, &cur_seq); 452 interval_sub; 453 interval_sub = mn_itree_inv_next(interval_sub, range)) { 454 bool ret; 455 456 ret = interval_sub->ops->invalidate(interval_sub, range, 457 cur_seq); 458 if (!ret) { 459 if (WARN_ON(mmu_notifier_range_blockable(range))) 460 continue; 461 goto out_would_block; 462 } 463 } 464 return 0; 465 466out_would_block: 467 /* 468 * On -EAGAIN the non-blocking caller is not allowed to call 469 * invalidate_range_end() 470 */ 471 mn_itree_inv_end(subscriptions); 472 return -EAGAIN; 473} 474 475static int mn_hlist_invalidate_range_start( 476 struct mmu_notifier_subscriptions *subscriptions, 477 struct mmu_notifier_range *range) 478{ 479 struct mmu_notifier *subscription; 480 int ret = 0; 481 int id; 482 483 id = srcu_read_lock(&srcu); 484 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 485 srcu_read_lock_held(&srcu)) { 486 const struct mmu_notifier_ops *ops = subscription->ops; 487 488 if (ops->invalidate_range_start) { 489 int _ret; 490 491 if (!mmu_notifier_range_blockable(range)) 492 non_block_start(); 493 _ret = ops->invalidate_range_start(subscription, range); 494 if (!mmu_notifier_range_blockable(range)) 495 non_block_end(); 496 if (_ret) { 497 pr_info("%pS callback failed with %d in %sblockable context.\n", 498 ops->invalidate_range_start, _ret, 499 !mmu_notifier_range_blockable(range) ? 500 "non-" : 501 ""); 502 WARN_ON(mmu_notifier_range_blockable(range) || 503 _ret != -EAGAIN); 504 /* 505 * We call all the notifiers on any EAGAIN, 506 * there is no way for a notifier to know if 507 * its start method failed, thus a start that 508 * does EAGAIN can't also do end. 509 */ 510 WARN_ON(ops->invalidate_range_end); 511 ret = _ret; 512 } 513 } 514 } 515 516 if (ret) { 517 /* 518 * Must be non-blocking to get here. If there are multiple 519 * notifiers and one or more failed start, any that succeeded 520 * start are expecting their end to be called. Do so now. 521 */ 522 hlist_for_each_entry_rcu(subscription, &subscriptions->list, 523 hlist, srcu_read_lock_held(&srcu)) { 524 if (!subscription->ops->invalidate_range_end) 525 continue; 526 527 subscription->ops->invalidate_range_end(subscription, 528 range); 529 } 530 } 531 srcu_read_unlock(&srcu, id); 532 533 return ret; 534} 535 536int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 537{ 538 struct mmu_notifier_subscriptions *subscriptions = 539 range->mm->notifier_subscriptions; 540 int ret; 541 542 if (subscriptions->has_itree) { 543 ret = mn_itree_invalidate(subscriptions, range); 544 if (ret) 545 return ret; 546 } 547 if (!hlist_empty(&subscriptions->list)) 548 return mn_hlist_invalidate_range_start(subscriptions, range); 549 return 0; 550} 551 552static void 553mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions, 554 struct mmu_notifier_range *range, bool only_end) 555{ 556 struct mmu_notifier *subscription; 557 int id; 558 559 id = srcu_read_lock(&srcu); 560 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist, 561 srcu_read_lock_held(&srcu)) { 562 /* 563 * Call invalidate_range here too to avoid the need for the 564 * subsystem of having to register an invalidate_range_end 565 * call-back when there is invalidate_range already. Usually a 566 * subsystem registers either invalidate_range_start()/end() or 567 * invalidate_range(), so this will be no additional overhead 568 * (besides the pointer check). 569 * 570 * We skip call to invalidate_range() if we know it is safe ie 571 * call site use mmu_notifier_invalidate_range_only_end() which 572 * is safe to do when we know that a call to invalidate_range() 573 * already happen under page table lock. 574 */ 575 if (!only_end && subscription->ops->invalidate_range) 576 subscription->ops->invalidate_range(subscription, 577 range->mm, 578 range->start, 579 range->end); 580 if (subscription->ops->invalidate_range_end) { 581 if (!mmu_notifier_range_blockable(range)) 582 non_block_start(); 583 subscription->ops->invalidate_range_end(subscription, 584 range); 585 if (!mmu_notifier_range_blockable(range)) 586 non_block_end(); 587 } 588 } 589 srcu_read_unlock(&srcu, id); 590} 591 592void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range, 593 bool only_end) 594{ 595 struct mmu_notifier_subscriptions *subscriptions = 596 range->mm->notifier_subscriptions; 597 598 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 599 if (subscriptions->has_itree) 600 mn_itree_inv_end(subscriptions); 601 602 if (!hlist_empty(&subscriptions->list)) 603 mn_hlist_invalidate_end(subscriptions, range, only_end); 604 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 605} 606 607void __mmu_notifier_invalidate_range(struct mm_struct *mm, 608 unsigned long start, unsigned long end) 609{ 610 struct mmu_notifier *subscription; 611 int id; 612 613 id = srcu_read_lock(&srcu); 614 hlist_for_each_entry_rcu(subscription, 615 &mm->notifier_subscriptions->list, hlist, 616 srcu_read_lock_held(&srcu)) { 617 if (subscription->ops->invalidate_range) 618 subscription->ops->invalidate_range(subscription, mm, 619 start, end); 620 } 621 srcu_read_unlock(&srcu, id); 622} 623 624/* 625 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in 626 * write mode. A NULL mn signals the notifier is being registered for itree 627 * mode. 628 */ 629int __mmu_notifier_register(struct mmu_notifier *subscription, 630 struct mm_struct *mm) 631{ 632 struct mmu_notifier_subscriptions *subscriptions = NULL; 633 int ret; 634 635 mmap_assert_write_locked(mm); 636 BUG_ON(atomic_read(&mm->mm_users) <= 0); 637 638 if (!mm->notifier_subscriptions) { 639 /* 640 * kmalloc cannot be called under mm_take_all_locks(), but we 641 * know that mm->notifier_subscriptions can't change while we 642 * hold the write side of the mmap_lock. 643 */ 644 subscriptions = kzalloc( 645 sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL); 646 if (!subscriptions) 647 return -ENOMEM; 648 649 INIT_HLIST_HEAD(&subscriptions->list); 650 spin_lock_init(&subscriptions->lock); 651 subscriptions->invalidate_seq = 2; 652 subscriptions->itree = RB_ROOT_CACHED; 653 init_waitqueue_head(&subscriptions->wq); 654 INIT_HLIST_HEAD(&subscriptions->deferred_list); 655 } 656 657 ret = mm_take_all_locks(mm); 658 if (unlikely(ret)) 659 goto out_clean; 660 661 /* 662 * Serialize the update against mmu_notifier_unregister. A 663 * side note: mmu_notifier_release can't run concurrently with 664 * us because we hold the mm_users pin (either implicitly as 665 * current->mm or explicitly with get_task_mm() or similar). 666 * We can't race against any other mmu notifier method either 667 * thanks to mm_take_all_locks(). 668 * 669 * release semantics on the initialization of the 670 * mmu_notifier_subscriptions's contents are provided for unlocked 671 * readers. acquire can only be used while holding the mmgrab or 672 * mmget, and is safe because once created the 673 * mmu_notifier_subscriptions is not freed until the mm is destroyed. 674 * As above, users holding the mmap_lock or one of the 675 * mm_take_all_locks() do not need to use acquire semantics. 676 */ 677 if (subscriptions) 678 smp_store_release(&mm->notifier_subscriptions, subscriptions); 679 680 if (subscription) { 681 /* Pairs with the mmdrop in mmu_notifier_unregister_* */ 682 mmgrab(mm); 683 subscription->mm = mm; 684 subscription->users = 1; 685 686 spin_lock(&mm->notifier_subscriptions->lock); 687 hlist_add_head_rcu(&subscription->hlist, 688 &mm->notifier_subscriptions->list); 689 spin_unlock(&mm->notifier_subscriptions->lock); 690 } else 691 mm->notifier_subscriptions->has_itree = true; 692 693 mm_drop_all_locks(mm); 694 BUG_ON(atomic_read(&mm->mm_users) <= 0); 695 return 0; 696 697out_clean: 698 kfree(subscriptions); 699 return ret; 700} 701EXPORT_SYMBOL_GPL(__mmu_notifier_register); 702 703/** 704 * mmu_notifier_register - Register a notifier on a mm 705 * @subscription: The notifier to attach 706 * @mm: The mm to attach the notifier to 707 * 708 * Must not hold mmap_lock nor any other VM related lock when calling 709 * this registration function. Must also ensure mm_users can't go down 710 * to zero while this runs to avoid races with mmu_notifier_release, 711 * so mm has to be current->mm or the mm should be pinned safely such 712 * as with get_task_mm(). If the mm is not current->mm, the mm_users 713 * pin should be released by calling mmput after mmu_notifier_register 714 * returns. 715 * 716 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to 717 * unregister the notifier. 718 * 719 * While the caller has a mmu_notifier get the subscription->mm pointer will remain 720 * valid, and can be converted to an active mm pointer via mmget_not_zero(). 721 */ 722int mmu_notifier_register(struct mmu_notifier *subscription, 723 struct mm_struct *mm) 724{ 725 int ret; 726 727 mmap_write_lock(mm); 728 ret = __mmu_notifier_register(subscription, mm); 729 mmap_write_unlock(mm); 730 return ret; 731} 732EXPORT_SYMBOL_GPL(mmu_notifier_register); 733 734static struct mmu_notifier * 735find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops) 736{ 737 struct mmu_notifier *subscription; 738 739 spin_lock(&mm->notifier_subscriptions->lock); 740 hlist_for_each_entry_rcu(subscription, 741 &mm->notifier_subscriptions->list, hlist, 742 lockdep_is_held(&mm->notifier_subscriptions->lock)) { 743 if (subscription->ops != ops) 744 continue; 745 746 if (likely(subscription->users != UINT_MAX)) 747 subscription->users++; 748 else 749 subscription = ERR_PTR(-EOVERFLOW); 750 spin_unlock(&mm->notifier_subscriptions->lock); 751 return subscription; 752 } 753 spin_unlock(&mm->notifier_subscriptions->lock); 754 return NULL; 755} 756 757/** 758 * mmu_notifier_get_locked - Return the single struct mmu_notifier for 759 * the mm & ops 760 * @ops: The operations struct being subscribe with 761 * @mm : The mm to attach notifiers too 762 * 763 * This function either allocates a new mmu_notifier via 764 * ops->alloc_notifier(), or returns an already existing notifier on the 765 * list. The value of the ops pointer is used to determine when two notifiers 766 * are the same. 767 * 768 * Each call to mmu_notifier_get() must be paired with a call to 769 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock. 770 * 771 * While the caller has a mmu_notifier get the mm pointer will remain valid, 772 * and can be converted to an active mm pointer via mmget_not_zero(). 773 */ 774struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 775 struct mm_struct *mm) 776{ 777 struct mmu_notifier *subscription; 778 int ret; 779 780 mmap_assert_write_locked(mm); 781 782 if (mm->notifier_subscriptions) { 783 subscription = find_get_mmu_notifier(mm, ops); 784 if (subscription) 785 return subscription; 786 } 787 788 subscription = ops->alloc_notifier(mm); 789 if (IS_ERR(subscription)) 790 return subscription; 791 subscription->ops = ops; 792 ret = __mmu_notifier_register(subscription, mm); 793 if (ret) 794 goto out_free; 795 return subscription; 796out_free: 797 subscription->ops->free_notifier(subscription); 798 return ERR_PTR(ret); 799} 800EXPORT_SYMBOL_GPL(mmu_notifier_get_locked); 801 802/* this is called after the last mmu_notifier_unregister() returned */ 803void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 804{ 805 BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list)); 806 kfree(mm->notifier_subscriptions); 807 mm->notifier_subscriptions = LIST_POISON1; /* debug */ 808} 809 810/* 811 * This releases the mm_count pin automatically and frees the mm 812 * structure if it was the last user of it. It serializes against 813 * running mmu notifiers with SRCU and against mmu_notifier_unregister 814 * with the unregister lock + SRCU. All sptes must be dropped before 815 * calling mmu_notifier_unregister. ->release or any other notifier 816 * method may be invoked concurrently with mmu_notifier_unregister, 817 * and only after mmu_notifier_unregister returned we're guaranteed 818 * that ->release or any other method can't run anymore. 819 */ 820void mmu_notifier_unregister(struct mmu_notifier *subscription, 821 struct mm_struct *mm) 822{ 823 BUG_ON(atomic_read(&mm->mm_count) <= 0); 824 825 if (!hlist_unhashed(&subscription->hlist)) { 826 /* 827 * SRCU here will force exit_mmap to wait for ->release to 828 * finish before freeing the pages. 829 */ 830 int id; 831 832 id = srcu_read_lock(&srcu); 833 /* 834 * exit_mmap will block in mmu_notifier_release to guarantee 835 * that ->release is called before freeing the pages. 836 */ 837 if (subscription->ops->release) 838 subscription->ops->release(subscription, mm); 839 srcu_read_unlock(&srcu, id); 840 841 spin_lock(&mm->notifier_subscriptions->lock); 842 /* 843 * Can not use list_del_rcu() since __mmu_notifier_release 844 * can delete it before we hold the lock. 845 */ 846 hlist_del_init_rcu(&subscription->hlist); 847 spin_unlock(&mm->notifier_subscriptions->lock); 848 } 849 850 /* 851 * Wait for any running method to finish, of course including 852 * ->release if it was run by mmu_notifier_release instead of us. 853 */ 854 synchronize_srcu(&srcu); 855 856 BUG_ON(atomic_read(&mm->mm_count) <= 0); 857 858 mmdrop(mm); 859} 860EXPORT_SYMBOL_GPL(mmu_notifier_unregister); 861 862static void mmu_notifier_free_rcu(struct rcu_head *rcu) 863{ 864 struct mmu_notifier *subscription = 865 container_of(rcu, struct mmu_notifier, rcu); 866 struct mm_struct *mm = subscription->mm; 867 868 subscription->ops->free_notifier(subscription); 869 /* Pairs with the get in __mmu_notifier_register() */ 870 mmdrop(mm); 871} 872 873/** 874 * mmu_notifier_put - Release the reference on the notifier 875 * @subscription: The notifier to act on 876 * 877 * This function must be paired with each mmu_notifier_get(), it releases the 878 * reference obtained by the get. If this is the last reference then process 879 * to free the notifier will be run asynchronously. 880 * 881 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release 882 * when the mm_struct is destroyed. Instead free_notifier is always called to 883 * release any resources held by the user. 884 * 885 * As ops->release is not guaranteed to be called, the user must ensure that 886 * all sptes are dropped, and no new sptes can be established before 887 * mmu_notifier_put() is called. 888 * 889 * This function can be called from the ops->release callback, however the 890 * caller must still ensure it is called pairwise with mmu_notifier_get(). 891 * 892 * Modules calling this function must call mmu_notifier_synchronize() in 893 * their __exit functions to ensure the async work is completed. 894 */ 895void mmu_notifier_put(struct mmu_notifier *subscription) 896{ 897 struct mm_struct *mm = subscription->mm; 898 899 spin_lock(&mm->notifier_subscriptions->lock); 900 if (WARN_ON(!subscription->users) || --subscription->users) 901 goto out_unlock; 902 hlist_del_init_rcu(&subscription->hlist); 903 spin_unlock(&mm->notifier_subscriptions->lock); 904 905 call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu); 906 return; 907 908out_unlock: 909 spin_unlock(&mm->notifier_subscriptions->lock); 910} 911EXPORT_SYMBOL_GPL(mmu_notifier_put); 912 913static int __mmu_interval_notifier_insert( 914 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 915 struct mmu_notifier_subscriptions *subscriptions, unsigned long start, 916 unsigned long length, const struct mmu_interval_notifier_ops *ops) 917{ 918 interval_sub->mm = mm; 919 interval_sub->ops = ops; 920 RB_CLEAR_NODE(&interval_sub->interval_tree.rb); 921 interval_sub->interval_tree.start = start; 922 /* 923 * Note that the representation of the intervals in the interval tree 924 * considers the ending point as contained in the interval. 925 */ 926 if (length == 0 || 927 check_add_overflow(start, length - 1, 928 &interval_sub->interval_tree.last)) 929 return -EOVERFLOW; 930 931 /* Must call with a mmget() held */ 932 if (WARN_ON(atomic_read(&mm->mm_users) <= 0)) 933 return -EINVAL; 934 935 /* pairs with mmdrop in mmu_interval_notifier_remove() */ 936 mmgrab(mm); 937 938 /* 939 * If some invalidate_range_start/end region is going on in parallel 940 * we don't know what VA ranges are affected, so we must assume this 941 * new range is included. 942 * 943 * If the itree is invalidating then we are not allowed to change 944 * it. Retrying until invalidation is done is tricky due to the 945 * possibility for live lock, instead defer the add to 946 * mn_itree_inv_end() so this algorithm is deterministic. 947 * 948 * In all cases the value for the interval_sub->invalidate_seq should be 949 * odd, see mmu_interval_read_begin() 950 */ 951 spin_lock(&subscriptions->lock); 952 if (subscriptions->active_invalidate_ranges) { 953 if (mn_itree_is_invalidating(subscriptions)) 954 hlist_add_head(&interval_sub->deferred_item, 955 &subscriptions->deferred_list); 956 else { 957 subscriptions->invalidate_seq |= 1; 958 interval_tree_insert(&interval_sub->interval_tree, 959 &subscriptions->itree); 960 } 961 interval_sub->invalidate_seq = subscriptions->invalidate_seq; 962 } else { 963 WARN_ON(mn_itree_is_invalidating(subscriptions)); 964 /* 965 * The starting seq for a subscription not under invalidation 966 * should be odd, not equal to the current invalidate_seq and 967 * invalidate_seq should not 'wrap' to the new seq any time 968 * soon. 969 */ 970 interval_sub->invalidate_seq = 971 subscriptions->invalidate_seq - 1; 972 interval_tree_insert(&interval_sub->interval_tree, 973 &subscriptions->itree); 974 } 975 spin_unlock(&subscriptions->lock); 976 return 0; 977} 978 979/** 980 * mmu_interval_notifier_insert - Insert an interval notifier 981 * @interval_sub: Interval subscription to register 982 * @start: Starting virtual address to monitor 983 * @length: Length of the range to monitor 984 * @mm: mm_struct to attach to 985 * @ops: Interval notifier operations to be called on matching events 986 * 987 * This function subscribes the interval notifier for notifications from the 988 * mm. Upon return the ops related to mmu_interval_notifier will be called 989 * whenever an event that intersects with the given range occurs. 990 * 991 * Upon return the range_notifier may not be present in the interval tree yet. 992 * The caller must use the normal interval notifier read flow via 993 * mmu_interval_read_begin() to establish SPTEs for this range. 994 */ 995int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, 996 struct mm_struct *mm, unsigned long start, 997 unsigned long length, 998 const struct mmu_interval_notifier_ops *ops) 999{ 1000 struct mmu_notifier_subscriptions *subscriptions; 1001 int ret; 1002 1003 might_lock(&mm->mmap_lock); 1004 1005 subscriptions = smp_load_acquire(&mm->notifier_subscriptions); 1006 if (!subscriptions || !subscriptions->has_itree) { 1007 ret = mmu_notifier_register(NULL, mm); 1008 if (ret) 1009 return ret; 1010 subscriptions = mm->notifier_subscriptions; 1011 } 1012 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions, 1013 start, length, ops); 1014} 1015EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert); 1016 1017int mmu_interval_notifier_insert_locked( 1018 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 1019 unsigned long start, unsigned long length, 1020 const struct mmu_interval_notifier_ops *ops) 1021{ 1022 struct mmu_notifier_subscriptions *subscriptions = 1023 mm->notifier_subscriptions; 1024 int ret; 1025 1026 mmap_assert_write_locked(mm); 1027 1028 if (!subscriptions || !subscriptions->has_itree) { 1029 ret = __mmu_notifier_register(NULL, mm); 1030 if (ret) 1031 return ret; 1032 subscriptions = mm->notifier_subscriptions; 1033 } 1034 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions, 1035 start, length, ops); 1036} 1037EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked); 1038 1039static bool 1040mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions, 1041 unsigned long seq) 1042{ 1043 bool ret; 1044 1045 spin_lock(&subscriptions->lock); 1046 ret = subscriptions->invalidate_seq != seq; 1047 spin_unlock(&subscriptions->lock); 1048 return ret; 1049} 1050 1051/** 1052 * mmu_interval_notifier_remove - Remove a interval notifier 1053 * @interval_sub: Interval subscription to unregister 1054 * 1055 * This function must be paired with mmu_interval_notifier_insert(). It cannot 1056 * be called from any ops callback. 1057 * 1058 * Once this returns ops callbacks are no longer running on other CPUs and 1059 * will not be called in future. 1060 */ 1061void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub) 1062{ 1063 struct mm_struct *mm = interval_sub->mm; 1064 struct mmu_notifier_subscriptions *subscriptions = 1065 mm->notifier_subscriptions; 1066 unsigned long seq = 0; 1067 1068 might_sleep(); 1069 1070 spin_lock(&subscriptions->lock); 1071 if (mn_itree_is_invalidating(subscriptions)) { 1072 /* 1073 * remove is being called after insert put this on the 1074 * deferred list, but before the deferred list was processed. 1075 */ 1076 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) { 1077 hlist_del(&interval_sub->deferred_item); 1078 } else { 1079 hlist_add_head(&interval_sub->deferred_item, 1080 &subscriptions->deferred_list); 1081 seq = subscriptions->invalidate_seq; 1082 } 1083 } else { 1084 WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb)); 1085 interval_tree_remove(&interval_sub->interval_tree, 1086 &subscriptions->itree); 1087 } 1088 spin_unlock(&subscriptions->lock); 1089 1090 /* 1091 * The possible sleep on progress in the invalidation requires the 1092 * caller not hold any locks held by invalidation callbacks. 1093 */ 1094 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 1095 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 1096 if (seq) 1097 wait_event(subscriptions->wq, 1098 mmu_interval_seq_released(subscriptions, seq)); 1099 1100 /* pairs with mmgrab in mmu_interval_notifier_insert() */ 1101 mmdrop(mm); 1102} 1103EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove); 1104 1105/** 1106 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed 1107 * 1108 * This function ensures that all outstanding async SRU work from 1109 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops 1110 * associated with an unused mmu_notifier will no longer be called. 1111 * 1112 * Before using the caller must ensure that all of its mmu_notifiers have been 1113 * fully released via mmu_notifier_put(). 1114 * 1115 * Modules using the mmu_notifier_put() API should call this in their __exit 1116 * function to avoid module unloading races. 1117 */ 1118void mmu_notifier_synchronize(void) 1119{ 1120 synchronize_srcu(&srcu); 1121} 1122EXPORT_SYMBOL_GPL(mmu_notifier_synchronize); 1123 1124bool 1125mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range) 1126{ 1127 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA) 1128 return false; 1129 /* Return true if the vma still have the read flag set. */ 1130 return range->vma->vm_flags & VM_READ; 1131} 1132EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);