cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

oom_kill.c (34267B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/mm/oom_kill.c
      4 * 
      5 *  Copyright (C)  1998,2000  Rik van Riel
      6 *	Thanks go out to Claus Fischer for some serious inspiration and
      7 *	for goading me into coding this file...
      8 *  Copyright (C)  2010  Google, Inc.
      9 *	Rewritten by David Rientjes
     10 *
     11 *  The routines in this file are used to kill a process when
     12 *  we're seriously out of memory. This gets called from __alloc_pages()
     13 *  in mm/page_alloc.c when we really run out of memory.
     14 *
     15 *  Since we won't call these routines often (on a well-configured
     16 *  machine) this file will double as a 'coding guide' and a signpost
     17 *  for newbie kernel hackers. It features several pointers to major
     18 *  kernel subsystems and hints as to where to find out what things do.
     19 */
     20
     21#include <linux/oom.h>
     22#include <linux/mm.h>
     23#include <linux/err.h>
     24#include <linux/gfp.h>
     25#include <linux/sched.h>
     26#include <linux/sched/mm.h>
     27#include <linux/sched/coredump.h>
     28#include <linux/sched/task.h>
     29#include <linux/sched/debug.h>
     30#include <linux/swap.h>
     31#include <linux/syscalls.h>
     32#include <linux/timex.h>
     33#include <linux/jiffies.h>
     34#include <linux/cpuset.h>
     35#include <linux/export.h>
     36#include <linux/notifier.h>
     37#include <linux/memcontrol.h>
     38#include <linux/mempolicy.h>
     39#include <linux/security.h>
     40#include <linux/ptrace.h>
     41#include <linux/freezer.h>
     42#include <linux/ftrace.h>
     43#include <linux/ratelimit.h>
     44#include <linux/kthread.h>
     45#include <linux/init.h>
     46#include <linux/mmu_notifier.h>
     47
     48#include <asm/tlb.h>
     49#include "internal.h"
     50#include "slab.h"
     51
     52#define CREATE_TRACE_POINTS
     53#include <trace/events/oom.h>
     54
     55static int sysctl_panic_on_oom;
     56static int sysctl_oom_kill_allocating_task;
     57static int sysctl_oom_dump_tasks = 1;
     58
     59/*
     60 * Serializes oom killer invocations (out_of_memory()) from all contexts to
     61 * prevent from over eager oom killing (e.g. when the oom killer is invoked
     62 * from different domains).
     63 *
     64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
     65 * and mark_oom_victim
     66 */
     67DEFINE_MUTEX(oom_lock);
     68/* Serializes oom_score_adj and oom_score_adj_min updates */
     69DEFINE_MUTEX(oom_adj_mutex);
     70
     71static inline bool is_memcg_oom(struct oom_control *oc)
     72{
     73	return oc->memcg != NULL;
     74}
     75
     76#ifdef CONFIG_NUMA
     77/**
     78 * oom_cpuset_eligible() - check task eligibility for kill
     79 * @start: task struct of which task to consider
     80 * @oc: pointer to struct oom_control
     81 *
     82 * Task eligibility is determined by whether or not a candidate task, @tsk,
     83 * shares the same mempolicy nodes as current if it is bound by such a policy
     84 * and whether or not it has the same set of allowed cpuset nodes.
     85 *
     86 * This function is assuming oom-killer context and 'current' has triggered
     87 * the oom-killer.
     88 */
     89static bool oom_cpuset_eligible(struct task_struct *start,
     90				struct oom_control *oc)
     91{
     92	struct task_struct *tsk;
     93	bool ret = false;
     94	const nodemask_t *mask = oc->nodemask;
     95
     96	rcu_read_lock();
     97	for_each_thread(start, tsk) {
     98		if (mask) {
     99			/*
    100			 * If this is a mempolicy constrained oom, tsk's
    101			 * cpuset is irrelevant.  Only return true if its
    102			 * mempolicy intersects current, otherwise it may be
    103			 * needlessly killed.
    104			 */
    105			ret = mempolicy_in_oom_domain(tsk, mask);
    106		} else {
    107			/*
    108			 * This is not a mempolicy constrained oom, so only
    109			 * check the mems of tsk's cpuset.
    110			 */
    111			ret = cpuset_mems_allowed_intersects(current, tsk);
    112		}
    113		if (ret)
    114			break;
    115	}
    116	rcu_read_unlock();
    117
    118	return ret;
    119}
    120#else
    121static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
    122{
    123	return true;
    124}
    125#endif /* CONFIG_NUMA */
    126
    127/*
    128 * The process p may have detached its own ->mm while exiting or through
    129 * kthread_use_mm(), but one or more of its subthreads may still have a valid
    130 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
    131 * task_lock() held.
    132 */
    133struct task_struct *find_lock_task_mm(struct task_struct *p)
    134{
    135	struct task_struct *t;
    136
    137	rcu_read_lock();
    138
    139	for_each_thread(p, t) {
    140		task_lock(t);
    141		if (likely(t->mm))
    142			goto found;
    143		task_unlock(t);
    144	}
    145	t = NULL;
    146found:
    147	rcu_read_unlock();
    148
    149	return t;
    150}
    151
    152/*
    153 * order == -1 means the oom kill is required by sysrq, otherwise only
    154 * for display purposes.
    155 */
    156static inline bool is_sysrq_oom(struct oom_control *oc)
    157{
    158	return oc->order == -1;
    159}
    160
    161/* return true if the task is not adequate as candidate victim task. */
    162static bool oom_unkillable_task(struct task_struct *p)
    163{
    164	if (is_global_init(p))
    165		return true;
    166	if (p->flags & PF_KTHREAD)
    167		return true;
    168	return false;
    169}
    170
    171/*
    172 * Check whether unreclaimable slab amount is greater than
    173 * all user memory(LRU pages).
    174 * dump_unreclaimable_slab() could help in the case that
    175 * oom due to too much unreclaimable slab used by kernel.
    176*/
    177static bool should_dump_unreclaim_slab(void)
    178{
    179	unsigned long nr_lru;
    180
    181	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
    182		 global_node_page_state(NR_INACTIVE_ANON) +
    183		 global_node_page_state(NR_ACTIVE_FILE) +
    184		 global_node_page_state(NR_INACTIVE_FILE) +
    185		 global_node_page_state(NR_ISOLATED_ANON) +
    186		 global_node_page_state(NR_ISOLATED_FILE) +
    187		 global_node_page_state(NR_UNEVICTABLE);
    188
    189	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
    190}
    191
    192/**
    193 * oom_badness - heuristic function to determine which candidate task to kill
    194 * @p: task struct of which task we should calculate
    195 * @totalpages: total present RAM allowed for page allocation
    196 *
    197 * The heuristic for determining which task to kill is made to be as simple and
    198 * predictable as possible.  The goal is to return the highest value for the
    199 * task consuming the most memory to avoid subsequent oom failures.
    200 */
    201long oom_badness(struct task_struct *p, unsigned long totalpages)
    202{
    203	long points;
    204	long adj;
    205
    206	if (oom_unkillable_task(p))
    207		return LONG_MIN;
    208
    209	p = find_lock_task_mm(p);
    210	if (!p)
    211		return LONG_MIN;
    212
    213	/*
    214	 * Do not even consider tasks which are explicitly marked oom
    215	 * unkillable or have been already oom reaped or the are in
    216	 * the middle of vfork
    217	 */
    218	adj = (long)p->signal->oom_score_adj;
    219	if (adj == OOM_SCORE_ADJ_MIN ||
    220			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
    221			in_vfork(p)) {
    222		task_unlock(p);
    223		return LONG_MIN;
    224	}
    225
    226	/*
    227	 * The baseline for the badness score is the proportion of RAM that each
    228	 * task's rss, pagetable and swap space use.
    229	 */
    230	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
    231		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
    232	task_unlock(p);
    233
    234	/* Normalize to oom_score_adj units */
    235	adj *= totalpages / 1000;
    236	points += adj;
    237
    238	return points;
    239}
    240
    241static const char * const oom_constraint_text[] = {
    242	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
    243	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
    244	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
    245	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
    246};
    247
    248/*
    249 * Determine the type of allocation constraint.
    250 */
    251static enum oom_constraint constrained_alloc(struct oom_control *oc)
    252{
    253	struct zone *zone;
    254	struct zoneref *z;
    255	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
    256	bool cpuset_limited = false;
    257	int nid;
    258
    259	if (is_memcg_oom(oc)) {
    260		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
    261		return CONSTRAINT_MEMCG;
    262	}
    263
    264	/* Default to all available memory */
    265	oc->totalpages = totalram_pages() + total_swap_pages;
    266
    267	if (!IS_ENABLED(CONFIG_NUMA))
    268		return CONSTRAINT_NONE;
    269
    270	if (!oc->zonelist)
    271		return CONSTRAINT_NONE;
    272	/*
    273	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
    274	 * to kill current.We have to random task kill in this case.
    275	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
    276	 */
    277	if (oc->gfp_mask & __GFP_THISNODE)
    278		return CONSTRAINT_NONE;
    279
    280	/*
    281	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
    282	 * the page allocator means a mempolicy is in effect.  Cpuset policy
    283	 * is enforced in get_page_from_freelist().
    284	 */
    285	if (oc->nodemask &&
    286	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
    287		oc->totalpages = total_swap_pages;
    288		for_each_node_mask(nid, *oc->nodemask)
    289			oc->totalpages += node_present_pages(nid);
    290		return CONSTRAINT_MEMORY_POLICY;
    291	}
    292
    293	/* Check this allocation failure is caused by cpuset's wall function */
    294	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
    295			highest_zoneidx, oc->nodemask)
    296		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
    297			cpuset_limited = true;
    298
    299	if (cpuset_limited) {
    300		oc->totalpages = total_swap_pages;
    301		for_each_node_mask(nid, cpuset_current_mems_allowed)
    302			oc->totalpages += node_present_pages(nid);
    303		return CONSTRAINT_CPUSET;
    304	}
    305	return CONSTRAINT_NONE;
    306}
    307
    308static int oom_evaluate_task(struct task_struct *task, void *arg)
    309{
    310	struct oom_control *oc = arg;
    311	long points;
    312
    313	if (oom_unkillable_task(task))
    314		goto next;
    315
    316	/* p may not have freeable memory in nodemask */
    317	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
    318		goto next;
    319
    320	/*
    321	 * This task already has access to memory reserves and is being killed.
    322	 * Don't allow any other task to have access to the reserves unless
    323	 * the task has MMF_OOM_SKIP because chances that it would release
    324	 * any memory is quite low.
    325	 */
    326	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
    327		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
    328			goto next;
    329		goto abort;
    330	}
    331
    332	/*
    333	 * If task is allocating a lot of memory and has been marked to be
    334	 * killed first if it triggers an oom, then select it.
    335	 */
    336	if (oom_task_origin(task)) {
    337		points = LONG_MAX;
    338		goto select;
    339	}
    340
    341	points = oom_badness(task, oc->totalpages);
    342	if (points == LONG_MIN || points < oc->chosen_points)
    343		goto next;
    344
    345select:
    346	if (oc->chosen)
    347		put_task_struct(oc->chosen);
    348	get_task_struct(task);
    349	oc->chosen = task;
    350	oc->chosen_points = points;
    351next:
    352	return 0;
    353abort:
    354	if (oc->chosen)
    355		put_task_struct(oc->chosen);
    356	oc->chosen = (void *)-1UL;
    357	return 1;
    358}
    359
    360/*
    361 * Simple selection loop. We choose the process with the highest number of
    362 * 'points'. In case scan was aborted, oc->chosen is set to -1.
    363 */
    364static void select_bad_process(struct oom_control *oc)
    365{
    366	oc->chosen_points = LONG_MIN;
    367
    368	if (is_memcg_oom(oc))
    369		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
    370	else {
    371		struct task_struct *p;
    372
    373		rcu_read_lock();
    374		for_each_process(p)
    375			if (oom_evaluate_task(p, oc))
    376				break;
    377		rcu_read_unlock();
    378	}
    379}
    380
    381static int dump_task(struct task_struct *p, void *arg)
    382{
    383	struct oom_control *oc = arg;
    384	struct task_struct *task;
    385
    386	if (oom_unkillable_task(p))
    387		return 0;
    388
    389	/* p may not have freeable memory in nodemask */
    390	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
    391		return 0;
    392
    393	task = find_lock_task_mm(p);
    394	if (!task) {
    395		/*
    396		 * All of p's threads have already detached their mm's. There's
    397		 * no need to report them; they can't be oom killed anyway.
    398		 */
    399		return 0;
    400	}
    401
    402	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
    403		task->pid, from_kuid(&init_user_ns, task_uid(task)),
    404		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
    405		mm_pgtables_bytes(task->mm),
    406		get_mm_counter(task->mm, MM_SWAPENTS),
    407		task->signal->oom_score_adj, task->comm);
    408	task_unlock(task);
    409
    410	return 0;
    411}
    412
    413/**
    414 * dump_tasks - dump current memory state of all system tasks
    415 * @oc: pointer to struct oom_control
    416 *
    417 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
    418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
    419 * are not shown.
    420 * State information includes task's pid, uid, tgid, vm size, rss,
    421 * pgtables_bytes, swapents, oom_score_adj value, and name.
    422 */
    423static void dump_tasks(struct oom_control *oc)
    424{
    425	pr_info("Tasks state (memory values in pages):\n");
    426	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
    427
    428	if (is_memcg_oom(oc))
    429		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
    430	else {
    431		struct task_struct *p;
    432
    433		rcu_read_lock();
    434		for_each_process(p)
    435			dump_task(p, oc);
    436		rcu_read_unlock();
    437	}
    438}
    439
    440static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
    441{
    442	/* one line summary of the oom killer context. */
    443	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
    444			oom_constraint_text[oc->constraint],
    445			nodemask_pr_args(oc->nodemask));
    446	cpuset_print_current_mems_allowed();
    447	mem_cgroup_print_oom_context(oc->memcg, victim);
    448	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
    449		from_kuid(&init_user_ns, task_uid(victim)));
    450}
    451
    452static void dump_header(struct oom_control *oc, struct task_struct *p)
    453{
    454	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
    455		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
    456			current->signal->oom_score_adj);
    457	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
    458		pr_warn("COMPACTION is disabled!!!\n");
    459
    460	dump_stack();
    461	if (is_memcg_oom(oc))
    462		mem_cgroup_print_oom_meminfo(oc->memcg);
    463	else {
    464		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
    465		if (should_dump_unreclaim_slab())
    466			dump_unreclaimable_slab();
    467	}
    468	if (sysctl_oom_dump_tasks)
    469		dump_tasks(oc);
    470	if (p)
    471		dump_oom_summary(oc, p);
    472}
    473
    474/*
    475 * Number of OOM victims in flight
    476 */
    477static atomic_t oom_victims = ATOMIC_INIT(0);
    478static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
    479
    480static bool oom_killer_disabled __read_mostly;
    481
    482#define K(x) ((x) << (PAGE_SHIFT-10))
    483
    484/*
    485 * task->mm can be NULL if the task is the exited group leader.  So to
    486 * determine whether the task is using a particular mm, we examine all the
    487 * task's threads: if one of those is using this mm then this task was also
    488 * using it.
    489 */
    490bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
    491{
    492	struct task_struct *t;
    493
    494	for_each_thread(p, t) {
    495		struct mm_struct *t_mm = READ_ONCE(t->mm);
    496		if (t_mm)
    497			return t_mm == mm;
    498	}
    499	return false;
    500}
    501
    502#ifdef CONFIG_MMU
    503/*
    504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
    505 * victim (if that is possible) to help the OOM killer to move on.
    506 */
    507static struct task_struct *oom_reaper_th;
    508static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
    509static struct task_struct *oom_reaper_list;
    510static DEFINE_SPINLOCK(oom_reaper_lock);
    511
    512bool __oom_reap_task_mm(struct mm_struct *mm)
    513{
    514	struct vm_area_struct *vma;
    515	bool ret = true;
    516
    517	/*
    518	 * Tell all users of get_user/copy_from_user etc... that the content
    519	 * is no longer stable. No barriers really needed because unmapping
    520	 * should imply barriers already and the reader would hit a page fault
    521	 * if it stumbled over a reaped memory.
    522	 */
    523	set_bit(MMF_UNSTABLE, &mm->flags);
    524
    525	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
    526		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
    527			continue;
    528
    529		/*
    530		 * Only anonymous pages have a good chance to be dropped
    531		 * without additional steps which we cannot afford as we
    532		 * are OOM already.
    533		 *
    534		 * We do not even care about fs backed pages because all
    535		 * which are reclaimable have already been reclaimed and
    536		 * we do not want to block exit_mmap by keeping mm ref
    537		 * count elevated without a good reason.
    538		 */
    539		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
    540			struct mmu_notifier_range range;
    541			struct mmu_gather tlb;
    542
    543			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
    544						vma, mm, vma->vm_start,
    545						vma->vm_end);
    546			tlb_gather_mmu(&tlb, mm);
    547			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
    548				tlb_finish_mmu(&tlb);
    549				ret = false;
    550				continue;
    551			}
    552			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
    553			mmu_notifier_invalidate_range_end(&range);
    554			tlb_finish_mmu(&tlb);
    555		}
    556	}
    557
    558	return ret;
    559}
    560
    561/*
    562 * Reaps the address space of the give task.
    563 *
    564 * Returns true on success and false if none or part of the address space
    565 * has been reclaimed and the caller should retry later.
    566 */
    567static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
    568{
    569	bool ret = true;
    570
    571	if (!mmap_read_trylock(mm)) {
    572		trace_skip_task_reaping(tsk->pid);
    573		return false;
    574	}
    575
    576	/*
    577	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
    578	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
    579	 * under mmap_lock for reading because it serializes against the
    580	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
    581	 */
    582	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
    583		trace_skip_task_reaping(tsk->pid);
    584		goto out_unlock;
    585	}
    586
    587	trace_start_task_reaping(tsk->pid);
    588
    589	/* failed to reap part of the address space. Try again later */
    590	ret = __oom_reap_task_mm(mm);
    591	if (!ret)
    592		goto out_finish;
    593
    594	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
    595			task_pid_nr(tsk), tsk->comm,
    596			K(get_mm_counter(mm, MM_ANONPAGES)),
    597			K(get_mm_counter(mm, MM_FILEPAGES)),
    598			K(get_mm_counter(mm, MM_SHMEMPAGES)));
    599out_finish:
    600	trace_finish_task_reaping(tsk->pid);
    601out_unlock:
    602	mmap_read_unlock(mm);
    603
    604	return ret;
    605}
    606
    607#define MAX_OOM_REAP_RETRIES 10
    608static void oom_reap_task(struct task_struct *tsk)
    609{
    610	int attempts = 0;
    611	struct mm_struct *mm = tsk->signal->oom_mm;
    612
    613	/* Retry the mmap_read_trylock(mm) a few times */
    614	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
    615		schedule_timeout_idle(HZ/10);
    616
    617	if (attempts <= MAX_OOM_REAP_RETRIES ||
    618	    test_bit(MMF_OOM_SKIP, &mm->flags))
    619		goto done;
    620
    621	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
    622		task_pid_nr(tsk), tsk->comm);
    623	sched_show_task(tsk);
    624	debug_show_all_locks();
    625
    626done:
    627	tsk->oom_reaper_list = NULL;
    628
    629	/*
    630	 * Hide this mm from OOM killer because it has been either reaped or
    631	 * somebody can't call mmap_write_unlock(mm).
    632	 */
    633	set_bit(MMF_OOM_SKIP, &mm->flags);
    634
    635	/* Drop a reference taken by queue_oom_reaper */
    636	put_task_struct(tsk);
    637}
    638
    639static int oom_reaper(void *unused)
    640{
    641	set_freezable();
    642
    643	while (true) {
    644		struct task_struct *tsk = NULL;
    645
    646		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
    647		spin_lock_irq(&oom_reaper_lock);
    648		if (oom_reaper_list != NULL) {
    649			tsk = oom_reaper_list;
    650			oom_reaper_list = tsk->oom_reaper_list;
    651		}
    652		spin_unlock_irq(&oom_reaper_lock);
    653
    654		if (tsk)
    655			oom_reap_task(tsk);
    656	}
    657
    658	return 0;
    659}
    660
    661static void wake_oom_reaper(struct timer_list *timer)
    662{
    663	struct task_struct *tsk = container_of(timer, struct task_struct,
    664			oom_reaper_timer);
    665	struct mm_struct *mm = tsk->signal->oom_mm;
    666	unsigned long flags;
    667
    668	/* The victim managed to terminate on its own - see exit_mmap */
    669	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
    670		put_task_struct(tsk);
    671		return;
    672	}
    673
    674	spin_lock_irqsave(&oom_reaper_lock, flags);
    675	tsk->oom_reaper_list = oom_reaper_list;
    676	oom_reaper_list = tsk;
    677	spin_unlock_irqrestore(&oom_reaper_lock, flags);
    678	trace_wake_reaper(tsk->pid);
    679	wake_up(&oom_reaper_wait);
    680}
    681
    682/*
    683 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
    684 * The timers timeout is arbitrary... the longer it is, the longer the worst
    685 * case scenario for the OOM can take. If it is too small, the oom_reaper can
    686 * get in the way and release resources needed by the process exit path.
    687 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
    688 * before the exit path is able to wake the futex waiters.
    689 */
    690#define OOM_REAPER_DELAY (2*HZ)
    691static void queue_oom_reaper(struct task_struct *tsk)
    692{
    693	/* mm is already queued? */
    694	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
    695		return;
    696
    697	get_task_struct(tsk);
    698	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
    699	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
    700	add_timer(&tsk->oom_reaper_timer);
    701}
    702
    703#ifdef CONFIG_SYSCTL
    704static struct ctl_table vm_oom_kill_table[] = {
    705	{
    706		.procname	= "panic_on_oom",
    707		.data		= &sysctl_panic_on_oom,
    708		.maxlen		= sizeof(sysctl_panic_on_oom),
    709		.mode		= 0644,
    710		.proc_handler	= proc_dointvec_minmax,
    711		.extra1		= SYSCTL_ZERO,
    712		.extra2		= SYSCTL_TWO,
    713	},
    714	{
    715		.procname	= "oom_kill_allocating_task",
    716		.data		= &sysctl_oom_kill_allocating_task,
    717		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
    718		.mode		= 0644,
    719		.proc_handler	= proc_dointvec,
    720	},
    721	{
    722		.procname	= "oom_dump_tasks",
    723		.data		= &sysctl_oom_dump_tasks,
    724		.maxlen		= sizeof(sysctl_oom_dump_tasks),
    725		.mode		= 0644,
    726		.proc_handler	= proc_dointvec,
    727	},
    728	{}
    729};
    730#endif
    731
    732static int __init oom_init(void)
    733{
    734	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
    735#ifdef CONFIG_SYSCTL
    736	register_sysctl_init("vm", vm_oom_kill_table);
    737#endif
    738	return 0;
    739}
    740subsys_initcall(oom_init)
    741#else
    742static inline void queue_oom_reaper(struct task_struct *tsk)
    743{
    744}
    745#endif /* CONFIG_MMU */
    746
    747/**
    748 * mark_oom_victim - mark the given task as OOM victim
    749 * @tsk: task to mark
    750 *
    751 * Has to be called with oom_lock held and never after
    752 * oom has been disabled already.
    753 *
    754 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
    755 * under task_lock or operate on the current).
    756 */
    757static void mark_oom_victim(struct task_struct *tsk)
    758{
    759	struct mm_struct *mm = tsk->mm;
    760
    761	WARN_ON(oom_killer_disabled);
    762	/* OOM killer might race with memcg OOM */
    763	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
    764		return;
    765
    766	/* oom_mm is bound to the signal struct life time. */
    767	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
    768		mmgrab(tsk->signal->oom_mm);
    769		set_bit(MMF_OOM_VICTIM, &mm->flags);
    770	}
    771
    772	/*
    773	 * Make sure that the task is woken up from uninterruptible sleep
    774	 * if it is frozen because OOM killer wouldn't be able to free
    775	 * any memory and livelock. freezing_slow_path will tell the freezer
    776	 * that TIF_MEMDIE tasks should be ignored.
    777	 */
    778	__thaw_task(tsk);
    779	atomic_inc(&oom_victims);
    780	trace_mark_victim(tsk->pid);
    781}
    782
    783/**
    784 * exit_oom_victim - note the exit of an OOM victim
    785 */
    786void exit_oom_victim(void)
    787{
    788	clear_thread_flag(TIF_MEMDIE);
    789
    790	if (!atomic_dec_return(&oom_victims))
    791		wake_up_all(&oom_victims_wait);
    792}
    793
    794/**
    795 * oom_killer_enable - enable OOM killer
    796 */
    797void oom_killer_enable(void)
    798{
    799	oom_killer_disabled = false;
    800	pr_info("OOM killer enabled.\n");
    801}
    802
    803/**
    804 * oom_killer_disable - disable OOM killer
    805 * @timeout: maximum timeout to wait for oom victims in jiffies
    806 *
    807 * Forces all page allocations to fail rather than trigger OOM killer.
    808 * Will block and wait until all OOM victims are killed or the given
    809 * timeout expires.
    810 *
    811 * The function cannot be called when there are runnable user tasks because
    812 * the userspace would see unexpected allocation failures as a result. Any
    813 * new usage of this function should be consulted with MM people.
    814 *
    815 * Returns true if successful and false if the OOM killer cannot be
    816 * disabled.
    817 */
    818bool oom_killer_disable(signed long timeout)
    819{
    820	signed long ret;
    821
    822	/*
    823	 * Make sure to not race with an ongoing OOM killer. Check that the
    824	 * current is not killed (possibly due to sharing the victim's memory).
    825	 */
    826	if (mutex_lock_killable(&oom_lock))
    827		return false;
    828	oom_killer_disabled = true;
    829	mutex_unlock(&oom_lock);
    830
    831	ret = wait_event_interruptible_timeout(oom_victims_wait,
    832			!atomic_read(&oom_victims), timeout);
    833	if (ret <= 0) {
    834		oom_killer_enable();
    835		return false;
    836	}
    837	pr_info("OOM killer disabled.\n");
    838
    839	return true;
    840}
    841
    842static inline bool __task_will_free_mem(struct task_struct *task)
    843{
    844	struct signal_struct *sig = task->signal;
    845
    846	/*
    847	 * A coredumping process may sleep for an extended period in
    848	 * coredump_task_exit(), so the oom killer cannot assume that
    849	 * the process will promptly exit and release memory.
    850	 */
    851	if (sig->core_state)
    852		return false;
    853
    854	if (sig->flags & SIGNAL_GROUP_EXIT)
    855		return true;
    856
    857	if (thread_group_empty(task) && (task->flags & PF_EXITING))
    858		return true;
    859
    860	return false;
    861}
    862
    863/*
    864 * Checks whether the given task is dying or exiting and likely to
    865 * release its address space. This means that all threads and processes
    866 * sharing the same mm have to be killed or exiting.
    867 * Caller has to make sure that task->mm is stable (hold task_lock or
    868 * it operates on the current).
    869 */
    870static bool task_will_free_mem(struct task_struct *task)
    871{
    872	struct mm_struct *mm = task->mm;
    873	struct task_struct *p;
    874	bool ret = true;
    875
    876	/*
    877	 * Skip tasks without mm because it might have passed its exit_mm and
    878	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
    879	 * on that for now. We can consider find_lock_task_mm in future.
    880	 */
    881	if (!mm)
    882		return false;
    883
    884	if (!__task_will_free_mem(task))
    885		return false;
    886
    887	/*
    888	 * This task has already been drained by the oom reaper so there are
    889	 * only small chances it will free some more
    890	 */
    891	if (test_bit(MMF_OOM_SKIP, &mm->flags))
    892		return false;
    893
    894	if (atomic_read(&mm->mm_users) <= 1)
    895		return true;
    896
    897	/*
    898	 * Make sure that all tasks which share the mm with the given tasks
    899	 * are dying as well to make sure that a) nobody pins its mm and
    900	 * b) the task is also reapable by the oom reaper.
    901	 */
    902	rcu_read_lock();
    903	for_each_process(p) {
    904		if (!process_shares_mm(p, mm))
    905			continue;
    906		if (same_thread_group(task, p))
    907			continue;
    908		ret = __task_will_free_mem(p);
    909		if (!ret)
    910			break;
    911	}
    912	rcu_read_unlock();
    913
    914	return ret;
    915}
    916
    917static void __oom_kill_process(struct task_struct *victim, const char *message)
    918{
    919	struct task_struct *p;
    920	struct mm_struct *mm;
    921	bool can_oom_reap = true;
    922
    923	p = find_lock_task_mm(victim);
    924	if (!p) {
    925		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
    926			message, task_pid_nr(victim), victim->comm);
    927		put_task_struct(victim);
    928		return;
    929	} else if (victim != p) {
    930		get_task_struct(p);
    931		put_task_struct(victim);
    932		victim = p;
    933	}
    934
    935	/* Get a reference to safely compare mm after task_unlock(victim) */
    936	mm = victim->mm;
    937	mmgrab(mm);
    938
    939	/* Raise event before sending signal: task reaper must see this */
    940	count_vm_event(OOM_KILL);
    941	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
    942
    943	/*
    944	 * We should send SIGKILL before granting access to memory reserves
    945	 * in order to prevent the OOM victim from depleting the memory
    946	 * reserves from the user space under its control.
    947	 */
    948	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
    949	mark_oom_victim(victim);
    950	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
    951		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
    952		K(get_mm_counter(mm, MM_ANONPAGES)),
    953		K(get_mm_counter(mm, MM_FILEPAGES)),
    954		K(get_mm_counter(mm, MM_SHMEMPAGES)),
    955		from_kuid(&init_user_ns, task_uid(victim)),
    956		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
    957	task_unlock(victim);
    958
    959	/*
    960	 * Kill all user processes sharing victim->mm in other thread groups, if
    961	 * any.  They don't get access to memory reserves, though, to avoid
    962	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
    963	 * oom killed thread cannot exit because it requires the semaphore and
    964	 * its contended by another thread trying to allocate memory itself.
    965	 * That thread will now get access to memory reserves since it has a
    966	 * pending fatal signal.
    967	 */
    968	rcu_read_lock();
    969	for_each_process(p) {
    970		if (!process_shares_mm(p, mm))
    971			continue;
    972		if (same_thread_group(p, victim))
    973			continue;
    974		if (is_global_init(p)) {
    975			can_oom_reap = false;
    976			set_bit(MMF_OOM_SKIP, &mm->flags);
    977			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
    978					task_pid_nr(victim), victim->comm,
    979					task_pid_nr(p), p->comm);
    980			continue;
    981		}
    982		/*
    983		 * No kthread_use_mm() user needs to read from the userspace so
    984		 * we are ok to reap it.
    985		 */
    986		if (unlikely(p->flags & PF_KTHREAD))
    987			continue;
    988		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
    989	}
    990	rcu_read_unlock();
    991
    992	if (can_oom_reap)
    993		queue_oom_reaper(victim);
    994
    995	mmdrop(mm);
    996	put_task_struct(victim);
    997}
    998#undef K
    999
   1000/*
   1001 * Kill provided task unless it's secured by setting
   1002 * oom_score_adj to OOM_SCORE_ADJ_MIN.
   1003 */
   1004static int oom_kill_memcg_member(struct task_struct *task, void *message)
   1005{
   1006	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
   1007	    !is_global_init(task)) {
   1008		get_task_struct(task);
   1009		__oom_kill_process(task, message);
   1010	}
   1011	return 0;
   1012}
   1013
   1014static void oom_kill_process(struct oom_control *oc, const char *message)
   1015{
   1016	struct task_struct *victim = oc->chosen;
   1017	struct mem_cgroup *oom_group;
   1018	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
   1019					      DEFAULT_RATELIMIT_BURST);
   1020
   1021	/*
   1022	 * If the task is already exiting, don't alarm the sysadmin or kill
   1023	 * its children or threads, just give it access to memory reserves
   1024	 * so it can die quickly
   1025	 */
   1026	task_lock(victim);
   1027	if (task_will_free_mem(victim)) {
   1028		mark_oom_victim(victim);
   1029		queue_oom_reaper(victim);
   1030		task_unlock(victim);
   1031		put_task_struct(victim);
   1032		return;
   1033	}
   1034	task_unlock(victim);
   1035
   1036	if (__ratelimit(&oom_rs))
   1037		dump_header(oc, victim);
   1038
   1039	/*
   1040	 * Do we need to kill the entire memory cgroup?
   1041	 * Or even one of the ancestor memory cgroups?
   1042	 * Check this out before killing the victim task.
   1043	 */
   1044	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
   1045
   1046	__oom_kill_process(victim, message);
   1047
   1048	/*
   1049	 * If necessary, kill all tasks in the selected memory cgroup.
   1050	 */
   1051	if (oom_group) {
   1052		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
   1053		mem_cgroup_print_oom_group(oom_group);
   1054		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
   1055				      (void *)message);
   1056		mem_cgroup_put(oom_group);
   1057	}
   1058}
   1059
   1060/*
   1061 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
   1062 */
   1063static void check_panic_on_oom(struct oom_control *oc)
   1064{
   1065	if (likely(!sysctl_panic_on_oom))
   1066		return;
   1067	if (sysctl_panic_on_oom != 2) {
   1068		/*
   1069		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
   1070		 * does not panic for cpuset, mempolicy, or memcg allocation
   1071		 * failures.
   1072		 */
   1073		if (oc->constraint != CONSTRAINT_NONE)
   1074			return;
   1075	}
   1076	/* Do not panic for oom kills triggered by sysrq */
   1077	if (is_sysrq_oom(oc))
   1078		return;
   1079	dump_header(oc, NULL);
   1080	panic("Out of memory: %s panic_on_oom is enabled\n",
   1081		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
   1082}
   1083
   1084static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
   1085
   1086int register_oom_notifier(struct notifier_block *nb)
   1087{
   1088	return blocking_notifier_chain_register(&oom_notify_list, nb);
   1089}
   1090EXPORT_SYMBOL_GPL(register_oom_notifier);
   1091
   1092int unregister_oom_notifier(struct notifier_block *nb)
   1093{
   1094	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
   1095}
   1096EXPORT_SYMBOL_GPL(unregister_oom_notifier);
   1097
   1098/**
   1099 * out_of_memory - kill the "best" process when we run out of memory
   1100 * @oc: pointer to struct oom_control
   1101 *
   1102 * If we run out of memory, we have the choice between either
   1103 * killing a random task (bad), letting the system crash (worse)
   1104 * OR try to be smart about which process to kill. Note that we
   1105 * don't have to be perfect here, we just have to be good.
   1106 */
   1107bool out_of_memory(struct oom_control *oc)
   1108{
   1109	unsigned long freed = 0;
   1110
   1111	if (oom_killer_disabled)
   1112		return false;
   1113
   1114	if (!is_memcg_oom(oc)) {
   1115		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
   1116		if (freed > 0 && !is_sysrq_oom(oc))
   1117			/* Got some memory back in the last second. */
   1118			return true;
   1119	}
   1120
   1121	/*
   1122	 * If current has a pending SIGKILL or is exiting, then automatically
   1123	 * select it.  The goal is to allow it to allocate so that it may
   1124	 * quickly exit and free its memory.
   1125	 */
   1126	if (task_will_free_mem(current)) {
   1127		mark_oom_victim(current);
   1128		queue_oom_reaper(current);
   1129		return true;
   1130	}
   1131
   1132	/*
   1133	 * The OOM killer does not compensate for IO-less reclaim.
   1134	 * pagefault_out_of_memory lost its gfp context so we have to
   1135	 * make sure exclude 0 mask - all other users should have at least
   1136	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
   1137	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
   1138	 */
   1139	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
   1140		return true;
   1141
   1142	/*
   1143	 * Check if there were limitations on the allocation (only relevant for
   1144	 * NUMA and memcg) that may require different handling.
   1145	 */
   1146	oc->constraint = constrained_alloc(oc);
   1147	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
   1148		oc->nodemask = NULL;
   1149	check_panic_on_oom(oc);
   1150
   1151	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
   1152	    current->mm && !oom_unkillable_task(current) &&
   1153	    oom_cpuset_eligible(current, oc) &&
   1154	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
   1155		get_task_struct(current);
   1156		oc->chosen = current;
   1157		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
   1158		return true;
   1159	}
   1160
   1161	select_bad_process(oc);
   1162	/* Found nothing?!?! */
   1163	if (!oc->chosen) {
   1164		dump_header(oc, NULL);
   1165		pr_warn("Out of memory and no killable processes...\n");
   1166		/*
   1167		 * If we got here due to an actual allocation at the
   1168		 * system level, we cannot survive this and will enter
   1169		 * an endless loop in the allocator. Bail out now.
   1170		 */
   1171		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
   1172			panic("System is deadlocked on memory\n");
   1173	}
   1174	if (oc->chosen && oc->chosen != (void *)-1UL)
   1175		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
   1176				 "Memory cgroup out of memory");
   1177	return !!oc->chosen;
   1178}
   1179
   1180/*
   1181 * The pagefault handler calls here because some allocation has failed. We have
   1182 * to take care of the memcg OOM here because this is the only safe context without
   1183 * any locks held but let the oom killer triggered from the allocation context care
   1184 * about the global OOM.
   1185 */
   1186void pagefault_out_of_memory(void)
   1187{
   1188	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
   1189				      DEFAULT_RATELIMIT_BURST);
   1190
   1191	if (mem_cgroup_oom_synchronize(true))
   1192		return;
   1193
   1194	if (fatal_signal_pending(current))
   1195		return;
   1196
   1197	if (__ratelimit(&pfoom_rs))
   1198		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
   1199}
   1200
   1201SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
   1202{
   1203#ifdef CONFIG_MMU
   1204	struct mm_struct *mm = NULL;
   1205	struct task_struct *task;
   1206	struct task_struct *p;
   1207	unsigned int f_flags;
   1208	bool reap = false;
   1209	long ret = 0;
   1210
   1211	if (flags)
   1212		return -EINVAL;
   1213
   1214	task = pidfd_get_task(pidfd, &f_flags);
   1215	if (IS_ERR(task))
   1216		return PTR_ERR(task);
   1217
   1218	/*
   1219	 * Make sure to choose a thread which still has a reference to mm
   1220	 * during the group exit
   1221	 */
   1222	p = find_lock_task_mm(task);
   1223	if (!p) {
   1224		ret = -ESRCH;
   1225		goto put_task;
   1226	}
   1227
   1228	mm = p->mm;
   1229	mmgrab(mm);
   1230
   1231	if (task_will_free_mem(p))
   1232		reap = true;
   1233	else {
   1234		/* Error only if the work has not been done already */
   1235		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
   1236			ret = -EINVAL;
   1237	}
   1238	task_unlock(p);
   1239
   1240	if (!reap)
   1241		goto drop_mm;
   1242
   1243	if (mmap_read_lock_killable(mm)) {
   1244		ret = -EINTR;
   1245		goto drop_mm;
   1246	}
   1247	/*
   1248	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
   1249	 * possible change in exit_mmap is seen
   1250	 */
   1251	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
   1252		ret = -EAGAIN;
   1253	mmap_read_unlock(mm);
   1254
   1255drop_mm:
   1256	mmdrop(mm);
   1257put_task:
   1258	put_task_struct(task);
   1259	return ret;
   1260#else
   1261	return -ENOSYS;
   1262#endif /* CONFIG_MMU */
   1263}