cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

page_alloc.c (271449B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/mm/page_alloc.c
      4 *
      5 *  Manages the free list, the system allocates free pages here.
      6 *  Note that kmalloc() lives in slab.c
      7 *
      8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
      9 *  Swap reorganised 29.12.95, Stephen Tweedie
     10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
     11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
     12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
     13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
     14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
     15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
     16 */
     17
     18#include <linux/stddef.h>
     19#include <linux/mm.h>
     20#include <linux/highmem.h>
     21#include <linux/swap.h>
     22#include <linux/swapops.h>
     23#include <linux/interrupt.h>
     24#include <linux/pagemap.h>
     25#include <linux/jiffies.h>
     26#include <linux/memblock.h>
     27#include <linux/compiler.h>
     28#include <linux/kernel.h>
     29#include <linux/kasan.h>
     30#include <linux/module.h>
     31#include <linux/suspend.h>
     32#include <linux/pagevec.h>
     33#include <linux/blkdev.h>
     34#include <linux/slab.h>
     35#include <linux/ratelimit.h>
     36#include <linux/oom.h>
     37#include <linux/topology.h>
     38#include <linux/sysctl.h>
     39#include <linux/cpu.h>
     40#include <linux/cpuset.h>
     41#include <linux/memory_hotplug.h>
     42#include <linux/nodemask.h>
     43#include <linux/vmalloc.h>
     44#include <linux/vmstat.h>
     45#include <linux/mempolicy.h>
     46#include <linux/memremap.h>
     47#include <linux/stop_machine.h>
     48#include <linux/random.h>
     49#include <linux/sort.h>
     50#include <linux/pfn.h>
     51#include <linux/backing-dev.h>
     52#include <linux/fault-inject.h>
     53#include <linux/page-isolation.h>
     54#include <linux/debugobjects.h>
     55#include <linux/kmemleak.h>
     56#include <linux/compaction.h>
     57#include <trace/events/kmem.h>
     58#include <trace/events/oom.h>
     59#include <linux/prefetch.h>
     60#include <linux/mm_inline.h>
     61#include <linux/mmu_notifier.h>
     62#include <linux/migrate.h>
     63#include <linux/hugetlb.h>
     64#include <linux/sched/rt.h>
     65#include <linux/sched/mm.h>
     66#include <linux/page_owner.h>
     67#include <linux/page_table_check.h>
     68#include <linux/kthread.h>
     69#include <linux/memcontrol.h>
     70#include <linux/ftrace.h>
     71#include <linux/lockdep.h>
     72#include <linux/nmi.h>
     73#include <linux/psi.h>
     74#include <linux/padata.h>
     75#include <linux/khugepaged.h>
     76#include <linux/buffer_head.h>
     77#include <linux/delayacct.h>
     78#include <asm/sections.h>
     79#include <asm/tlbflush.h>
     80#include <asm/div64.h>
     81#include "internal.h"
     82#include "shuffle.h"
     83#include "page_reporting.h"
     84#include "swap.h"
     85
     86/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
     87typedef int __bitwise fpi_t;
     88
     89/* No special request */
     90#define FPI_NONE		((__force fpi_t)0)
     91
     92/*
     93 * Skip free page reporting notification for the (possibly merged) page.
     94 * This does not hinder free page reporting from grabbing the page,
     95 * reporting it and marking it "reported" -  it only skips notifying
     96 * the free page reporting infrastructure about a newly freed page. For
     97 * example, used when temporarily pulling a page from a freelist and
     98 * putting it back unmodified.
     99 */
    100#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
    101
    102/*
    103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
    104 * page shuffling (relevant code - e.g., memory onlining - is expected to
    105 * shuffle the whole zone).
    106 *
    107 * Note: No code should rely on this flag for correctness - it's purely
    108 *       to allow for optimizations when handing back either fresh pages
    109 *       (memory onlining) or untouched pages (page isolation, free page
    110 *       reporting).
    111 */
    112#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
    113
    114/*
    115 * Don't poison memory with KASAN (only for the tag-based modes).
    116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
    117 * Poisoning all that memory lengthens boot time, especially on systems with
    118 * large amount of RAM. This flag is used to skip that poisoning.
    119 * This is only done for the tag-based KASAN modes, as those are able to
    120 * detect memory corruptions with the memory tags assigned by default.
    121 * All memory allocated normally after boot gets poisoned as usual.
    122 */
    123#define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
    124
    125/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
    126static DEFINE_MUTEX(pcp_batch_high_lock);
    127#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
    128
    129struct pagesets {
    130	local_lock_t lock;
    131};
    132static DEFINE_PER_CPU(struct pagesets, pagesets) = {
    133	.lock = INIT_LOCAL_LOCK(lock),
    134};
    135
    136#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
    137DEFINE_PER_CPU(int, numa_node);
    138EXPORT_PER_CPU_SYMBOL(numa_node);
    139#endif
    140
    141DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
    142
    143#ifdef CONFIG_HAVE_MEMORYLESS_NODES
    144/*
    145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
    146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
    147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
    148 * defined in <linux/topology.h>.
    149 */
    150DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
    151EXPORT_PER_CPU_SYMBOL(_numa_mem_);
    152#endif
    153
    154/* work_structs for global per-cpu drains */
    155struct pcpu_drain {
    156	struct zone *zone;
    157	struct work_struct work;
    158};
    159static DEFINE_MUTEX(pcpu_drain_mutex);
    160static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
    161
    162#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
    163volatile unsigned long latent_entropy __latent_entropy;
    164EXPORT_SYMBOL(latent_entropy);
    165#endif
    166
    167/*
    168 * Array of node states.
    169 */
    170nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
    171	[N_POSSIBLE] = NODE_MASK_ALL,
    172	[N_ONLINE] = { { [0] = 1UL } },
    173#ifndef CONFIG_NUMA
    174	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
    175#ifdef CONFIG_HIGHMEM
    176	[N_HIGH_MEMORY] = { { [0] = 1UL } },
    177#endif
    178	[N_MEMORY] = { { [0] = 1UL } },
    179	[N_CPU] = { { [0] = 1UL } },
    180#endif	/* NUMA */
    181};
    182EXPORT_SYMBOL(node_states);
    183
    184atomic_long_t _totalram_pages __read_mostly;
    185EXPORT_SYMBOL(_totalram_pages);
    186unsigned long totalreserve_pages __read_mostly;
    187unsigned long totalcma_pages __read_mostly;
    188
    189int percpu_pagelist_high_fraction;
    190gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
    191DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
    192EXPORT_SYMBOL(init_on_alloc);
    193
    194DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
    195EXPORT_SYMBOL(init_on_free);
    196
    197static bool _init_on_alloc_enabled_early __read_mostly
    198				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
    199static int __init early_init_on_alloc(char *buf)
    200{
    201
    202	return kstrtobool(buf, &_init_on_alloc_enabled_early);
    203}
    204early_param("init_on_alloc", early_init_on_alloc);
    205
    206static bool _init_on_free_enabled_early __read_mostly
    207				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
    208static int __init early_init_on_free(char *buf)
    209{
    210	return kstrtobool(buf, &_init_on_free_enabled_early);
    211}
    212early_param("init_on_free", early_init_on_free);
    213
    214/*
    215 * A cached value of the page's pageblock's migratetype, used when the page is
    216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
    217 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
    218 * Also the migratetype set in the page does not necessarily match the pcplist
    219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
    220 * other index - this ensures that it will be put on the correct CMA freelist.
    221 */
    222static inline int get_pcppage_migratetype(struct page *page)
    223{
    224	return page->index;
    225}
    226
    227static inline void set_pcppage_migratetype(struct page *page, int migratetype)
    228{
    229	page->index = migratetype;
    230}
    231
    232#ifdef CONFIG_PM_SLEEP
    233/*
    234 * The following functions are used by the suspend/hibernate code to temporarily
    235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
    236 * while devices are suspended.  To avoid races with the suspend/hibernate code,
    237 * they should always be called with system_transition_mutex held
    238 * (gfp_allowed_mask also should only be modified with system_transition_mutex
    239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
    240 * with that modification).
    241 */
    242
    243static gfp_t saved_gfp_mask;
    244
    245void pm_restore_gfp_mask(void)
    246{
    247	WARN_ON(!mutex_is_locked(&system_transition_mutex));
    248	if (saved_gfp_mask) {
    249		gfp_allowed_mask = saved_gfp_mask;
    250		saved_gfp_mask = 0;
    251	}
    252}
    253
    254void pm_restrict_gfp_mask(void)
    255{
    256	WARN_ON(!mutex_is_locked(&system_transition_mutex));
    257	WARN_ON(saved_gfp_mask);
    258	saved_gfp_mask = gfp_allowed_mask;
    259	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
    260}
    261
    262bool pm_suspended_storage(void)
    263{
    264	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
    265		return false;
    266	return true;
    267}
    268#endif /* CONFIG_PM_SLEEP */
    269
    270#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
    271unsigned int pageblock_order __read_mostly;
    272#endif
    273
    274static void __free_pages_ok(struct page *page, unsigned int order,
    275			    fpi_t fpi_flags);
    276
    277/*
    278 * results with 256, 32 in the lowmem_reserve sysctl:
    279 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
    280 *	1G machine -> (16M dma, 784M normal, 224M high)
    281 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
    282 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
    283 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
    284 *
    285 * TBD: should special case ZONE_DMA32 machines here - in those we normally
    286 * don't need any ZONE_NORMAL reservation
    287 */
    288int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
    289#ifdef CONFIG_ZONE_DMA
    290	[ZONE_DMA] = 256,
    291#endif
    292#ifdef CONFIG_ZONE_DMA32
    293	[ZONE_DMA32] = 256,
    294#endif
    295	[ZONE_NORMAL] = 32,
    296#ifdef CONFIG_HIGHMEM
    297	[ZONE_HIGHMEM] = 0,
    298#endif
    299	[ZONE_MOVABLE] = 0,
    300};
    301
    302static char * const zone_names[MAX_NR_ZONES] = {
    303#ifdef CONFIG_ZONE_DMA
    304	 "DMA",
    305#endif
    306#ifdef CONFIG_ZONE_DMA32
    307	 "DMA32",
    308#endif
    309	 "Normal",
    310#ifdef CONFIG_HIGHMEM
    311	 "HighMem",
    312#endif
    313	 "Movable",
    314#ifdef CONFIG_ZONE_DEVICE
    315	 "Device",
    316#endif
    317};
    318
    319const char * const migratetype_names[MIGRATE_TYPES] = {
    320	"Unmovable",
    321	"Movable",
    322	"Reclaimable",
    323	"HighAtomic",
    324#ifdef CONFIG_CMA
    325	"CMA",
    326#endif
    327#ifdef CONFIG_MEMORY_ISOLATION
    328	"Isolate",
    329#endif
    330};
    331
    332compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
    333	[NULL_COMPOUND_DTOR] = NULL,
    334	[COMPOUND_PAGE_DTOR] = free_compound_page,
    335#ifdef CONFIG_HUGETLB_PAGE
    336	[HUGETLB_PAGE_DTOR] = free_huge_page,
    337#endif
    338#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    339	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
    340#endif
    341};
    342
    343int min_free_kbytes = 1024;
    344int user_min_free_kbytes = -1;
    345int watermark_boost_factor __read_mostly = 15000;
    346int watermark_scale_factor = 10;
    347
    348static unsigned long nr_kernel_pages __initdata;
    349static unsigned long nr_all_pages __initdata;
    350static unsigned long dma_reserve __initdata;
    351
    352static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
    353static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
    354static unsigned long required_kernelcore __initdata;
    355static unsigned long required_kernelcore_percent __initdata;
    356static unsigned long required_movablecore __initdata;
    357static unsigned long required_movablecore_percent __initdata;
    358static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
    359static bool mirrored_kernelcore __meminitdata;
    360
    361/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
    362int movable_zone;
    363EXPORT_SYMBOL(movable_zone);
    364
    365#if MAX_NUMNODES > 1
    366unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
    367unsigned int nr_online_nodes __read_mostly = 1;
    368EXPORT_SYMBOL(nr_node_ids);
    369EXPORT_SYMBOL(nr_online_nodes);
    370#endif
    371
    372int page_group_by_mobility_disabled __read_mostly;
    373
    374#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    375/*
    376 * During boot we initialize deferred pages on-demand, as needed, but once
    377 * page_alloc_init_late() has finished, the deferred pages are all initialized,
    378 * and we can permanently disable that path.
    379 */
    380static DEFINE_STATIC_KEY_TRUE(deferred_pages);
    381
    382static inline bool deferred_pages_enabled(void)
    383{
    384	return static_branch_unlikely(&deferred_pages);
    385}
    386
    387/* Returns true if the struct page for the pfn is uninitialised */
    388static inline bool __meminit early_page_uninitialised(unsigned long pfn)
    389{
    390	int nid = early_pfn_to_nid(pfn);
    391
    392	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
    393		return true;
    394
    395	return false;
    396}
    397
    398/*
    399 * Returns true when the remaining initialisation should be deferred until
    400 * later in the boot cycle when it can be parallelised.
    401 */
    402static bool __meminit
    403defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
    404{
    405	static unsigned long prev_end_pfn, nr_initialised;
    406
    407	/*
    408	 * prev_end_pfn static that contains the end of previous zone
    409	 * No need to protect because called very early in boot before smp_init.
    410	 */
    411	if (prev_end_pfn != end_pfn) {
    412		prev_end_pfn = end_pfn;
    413		nr_initialised = 0;
    414	}
    415
    416	/* Always populate low zones for address-constrained allocations */
    417	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
    418		return false;
    419
    420	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
    421		return true;
    422	/*
    423	 * We start only with one section of pages, more pages are added as
    424	 * needed until the rest of deferred pages are initialized.
    425	 */
    426	nr_initialised++;
    427	if ((nr_initialised > PAGES_PER_SECTION) &&
    428	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
    429		NODE_DATA(nid)->first_deferred_pfn = pfn;
    430		return true;
    431	}
    432	return false;
    433}
    434#else
    435static inline bool deferred_pages_enabled(void)
    436{
    437	return false;
    438}
    439
    440static inline bool early_page_uninitialised(unsigned long pfn)
    441{
    442	return false;
    443}
    444
    445static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
    446{
    447	return false;
    448}
    449#endif
    450
    451/* Return a pointer to the bitmap storing bits affecting a block of pages */
    452static inline unsigned long *get_pageblock_bitmap(const struct page *page,
    453							unsigned long pfn)
    454{
    455#ifdef CONFIG_SPARSEMEM
    456	return section_to_usemap(__pfn_to_section(pfn));
    457#else
    458	return page_zone(page)->pageblock_flags;
    459#endif /* CONFIG_SPARSEMEM */
    460}
    461
    462static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
    463{
    464#ifdef CONFIG_SPARSEMEM
    465	pfn &= (PAGES_PER_SECTION-1);
    466#else
    467	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
    468#endif /* CONFIG_SPARSEMEM */
    469	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
    470}
    471
    472static __always_inline
    473unsigned long __get_pfnblock_flags_mask(const struct page *page,
    474					unsigned long pfn,
    475					unsigned long mask)
    476{
    477	unsigned long *bitmap;
    478	unsigned long bitidx, word_bitidx;
    479	unsigned long word;
    480
    481	bitmap = get_pageblock_bitmap(page, pfn);
    482	bitidx = pfn_to_bitidx(page, pfn);
    483	word_bitidx = bitidx / BITS_PER_LONG;
    484	bitidx &= (BITS_PER_LONG-1);
    485	/*
    486	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
    487	 * a consistent read of the memory array, so that results, even though
    488	 * racy, are not corrupted.
    489	 */
    490	word = READ_ONCE(bitmap[word_bitidx]);
    491	return (word >> bitidx) & mask;
    492}
    493
    494/**
    495 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
    496 * @page: The page within the block of interest
    497 * @pfn: The target page frame number
    498 * @mask: mask of bits that the caller is interested in
    499 *
    500 * Return: pageblock_bits flags
    501 */
    502unsigned long get_pfnblock_flags_mask(const struct page *page,
    503					unsigned long pfn, unsigned long mask)
    504{
    505	return __get_pfnblock_flags_mask(page, pfn, mask);
    506}
    507
    508static __always_inline int get_pfnblock_migratetype(const struct page *page,
    509					unsigned long pfn)
    510{
    511	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
    512}
    513
    514/**
    515 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
    516 * @page: The page within the block of interest
    517 * @flags: The flags to set
    518 * @pfn: The target page frame number
    519 * @mask: mask of bits that the caller is interested in
    520 */
    521void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
    522					unsigned long pfn,
    523					unsigned long mask)
    524{
    525	unsigned long *bitmap;
    526	unsigned long bitidx, word_bitidx;
    527	unsigned long old_word, word;
    528
    529	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
    530	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
    531
    532	bitmap = get_pageblock_bitmap(page, pfn);
    533	bitidx = pfn_to_bitidx(page, pfn);
    534	word_bitidx = bitidx / BITS_PER_LONG;
    535	bitidx &= (BITS_PER_LONG-1);
    536
    537	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
    538
    539	mask <<= bitidx;
    540	flags <<= bitidx;
    541
    542	word = READ_ONCE(bitmap[word_bitidx]);
    543	for (;;) {
    544		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
    545		if (word == old_word)
    546			break;
    547		word = old_word;
    548	}
    549}
    550
    551void set_pageblock_migratetype(struct page *page, int migratetype)
    552{
    553	if (unlikely(page_group_by_mobility_disabled &&
    554		     migratetype < MIGRATE_PCPTYPES))
    555		migratetype = MIGRATE_UNMOVABLE;
    556
    557	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
    558				page_to_pfn(page), MIGRATETYPE_MASK);
    559}
    560
    561#ifdef CONFIG_DEBUG_VM
    562static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
    563{
    564	int ret = 0;
    565	unsigned seq;
    566	unsigned long pfn = page_to_pfn(page);
    567	unsigned long sp, start_pfn;
    568
    569	do {
    570		seq = zone_span_seqbegin(zone);
    571		start_pfn = zone->zone_start_pfn;
    572		sp = zone->spanned_pages;
    573		if (!zone_spans_pfn(zone, pfn))
    574			ret = 1;
    575	} while (zone_span_seqretry(zone, seq));
    576
    577	if (ret)
    578		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
    579			pfn, zone_to_nid(zone), zone->name,
    580			start_pfn, start_pfn + sp);
    581
    582	return ret;
    583}
    584
    585static int page_is_consistent(struct zone *zone, struct page *page)
    586{
    587	if (zone != page_zone(page))
    588		return 0;
    589
    590	return 1;
    591}
    592/*
    593 * Temporary debugging check for pages not lying within a given zone.
    594 */
    595static int __maybe_unused bad_range(struct zone *zone, struct page *page)
    596{
    597	if (page_outside_zone_boundaries(zone, page))
    598		return 1;
    599	if (!page_is_consistent(zone, page))
    600		return 1;
    601
    602	return 0;
    603}
    604#else
    605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
    606{
    607	return 0;
    608}
    609#endif
    610
    611static void bad_page(struct page *page, const char *reason)
    612{
    613	static unsigned long resume;
    614	static unsigned long nr_shown;
    615	static unsigned long nr_unshown;
    616
    617	/*
    618	 * Allow a burst of 60 reports, then keep quiet for that minute;
    619	 * or allow a steady drip of one report per second.
    620	 */
    621	if (nr_shown == 60) {
    622		if (time_before(jiffies, resume)) {
    623			nr_unshown++;
    624			goto out;
    625		}
    626		if (nr_unshown) {
    627			pr_alert(
    628			      "BUG: Bad page state: %lu messages suppressed\n",
    629				nr_unshown);
    630			nr_unshown = 0;
    631		}
    632		nr_shown = 0;
    633	}
    634	if (nr_shown++ == 0)
    635		resume = jiffies + 60 * HZ;
    636
    637	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
    638		current->comm, page_to_pfn(page));
    639	dump_page(page, reason);
    640
    641	print_modules();
    642	dump_stack();
    643out:
    644	/* Leave bad fields for debug, except PageBuddy could make trouble */
    645	page_mapcount_reset(page); /* remove PageBuddy */
    646	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
    647}
    648
    649static inline unsigned int order_to_pindex(int migratetype, int order)
    650{
    651	int base = order;
    652
    653#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    654	if (order > PAGE_ALLOC_COSTLY_ORDER) {
    655		VM_BUG_ON(order != pageblock_order);
    656		base = PAGE_ALLOC_COSTLY_ORDER + 1;
    657	}
    658#else
    659	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
    660#endif
    661
    662	return (MIGRATE_PCPTYPES * base) + migratetype;
    663}
    664
    665static inline int pindex_to_order(unsigned int pindex)
    666{
    667	int order = pindex / MIGRATE_PCPTYPES;
    668
    669#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    670	if (order > PAGE_ALLOC_COSTLY_ORDER)
    671		order = pageblock_order;
    672#else
    673	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
    674#endif
    675
    676	return order;
    677}
    678
    679static inline bool pcp_allowed_order(unsigned int order)
    680{
    681	if (order <= PAGE_ALLOC_COSTLY_ORDER)
    682		return true;
    683#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    684	if (order == pageblock_order)
    685		return true;
    686#endif
    687	return false;
    688}
    689
    690static inline void free_the_page(struct page *page, unsigned int order)
    691{
    692	if (pcp_allowed_order(order))		/* Via pcp? */
    693		free_unref_page(page, order);
    694	else
    695		__free_pages_ok(page, order, FPI_NONE);
    696}
    697
    698/*
    699 * Higher-order pages are called "compound pages".  They are structured thusly:
    700 *
    701 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
    702 *
    703 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
    704 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
    705 *
    706 * The first tail page's ->compound_dtor holds the offset in array of compound
    707 * page destructors. See compound_page_dtors.
    708 *
    709 * The first tail page's ->compound_order holds the order of allocation.
    710 * This usage means that zero-order pages may not be compound.
    711 */
    712
    713void free_compound_page(struct page *page)
    714{
    715	mem_cgroup_uncharge(page_folio(page));
    716	free_the_page(page, compound_order(page));
    717}
    718
    719static void prep_compound_head(struct page *page, unsigned int order)
    720{
    721	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
    722	set_compound_order(page, order);
    723	atomic_set(compound_mapcount_ptr(page), -1);
    724	atomic_set(compound_pincount_ptr(page), 0);
    725}
    726
    727static void prep_compound_tail(struct page *head, int tail_idx)
    728{
    729	struct page *p = head + tail_idx;
    730
    731	p->mapping = TAIL_MAPPING;
    732	set_compound_head(p, head);
    733}
    734
    735void prep_compound_page(struct page *page, unsigned int order)
    736{
    737	int i;
    738	int nr_pages = 1 << order;
    739
    740	__SetPageHead(page);
    741	for (i = 1; i < nr_pages; i++)
    742		prep_compound_tail(page, i);
    743
    744	prep_compound_head(page, order);
    745}
    746
    747#ifdef CONFIG_DEBUG_PAGEALLOC
    748unsigned int _debug_guardpage_minorder;
    749
    750bool _debug_pagealloc_enabled_early __read_mostly
    751			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
    752EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
    753DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
    754EXPORT_SYMBOL(_debug_pagealloc_enabled);
    755
    756DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
    757
    758static int __init early_debug_pagealloc(char *buf)
    759{
    760	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
    761}
    762early_param("debug_pagealloc", early_debug_pagealloc);
    763
    764static int __init debug_guardpage_minorder_setup(char *buf)
    765{
    766	unsigned long res;
    767
    768	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
    769		pr_err("Bad debug_guardpage_minorder value\n");
    770		return 0;
    771	}
    772	_debug_guardpage_minorder = res;
    773	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
    774	return 0;
    775}
    776early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
    777
    778static inline bool set_page_guard(struct zone *zone, struct page *page,
    779				unsigned int order, int migratetype)
    780{
    781	if (!debug_guardpage_enabled())
    782		return false;
    783
    784	if (order >= debug_guardpage_minorder())
    785		return false;
    786
    787	__SetPageGuard(page);
    788	INIT_LIST_HEAD(&page->lru);
    789	set_page_private(page, order);
    790	/* Guard pages are not available for any usage */
    791	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
    792
    793	return true;
    794}
    795
    796static inline void clear_page_guard(struct zone *zone, struct page *page,
    797				unsigned int order, int migratetype)
    798{
    799	if (!debug_guardpage_enabled())
    800		return;
    801
    802	__ClearPageGuard(page);
    803
    804	set_page_private(page, 0);
    805	if (!is_migrate_isolate(migratetype))
    806		__mod_zone_freepage_state(zone, (1 << order), migratetype);
    807}
    808#else
    809static inline bool set_page_guard(struct zone *zone, struct page *page,
    810			unsigned int order, int migratetype) { return false; }
    811static inline void clear_page_guard(struct zone *zone, struct page *page,
    812				unsigned int order, int migratetype) {}
    813#endif
    814
    815/*
    816 * Enable static keys related to various memory debugging and hardening options.
    817 * Some override others, and depend on early params that are evaluated in the
    818 * order of appearance. So we need to first gather the full picture of what was
    819 * enabled, and then make decisions.
    820 */
    821void init_mem_debugging_and_hardening(void)
    822{
    823	bool page_poisoning_requested = false;
    824
    825#ifdef CONFIG_PAGE_POISONING
    826	/*
    827	 * Page poisoning is debug page alloc for some arches. If
    828	 * either of those options are enabled, enable poisoning.
    829	 */
    830	if (page_poisoning_enabled() ||
    831	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
    832	      debug_pagealloc_enabled())) {
    833		static_branch_enable(&_page_poisoning_enabled);
    834		page_poisoning_requested = true;
    835	}
    836#endif
    837
    838	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
    839	    page_poisoning_requested) {
    840		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
    841			"will take precedence over init_on_alloc and init_on_free\n");
    842		_init_on_alloc_enabled_early = false;
    843		_init_on_free_enabled_early = false;
    844	}
    845
    846	if (_init_on_alloc_enabled_early)
    847		static_branch_enable(&init_on_alloc);
    848	else
    849		static_branch_disable(&init_on_alloc);
    850
    851	if (_init_on_free_enabled_early)
    852		static_branch_enable(&init_on_free);
    853	else
    854		static_branch_disable(&init_on_free);
    855
    856#ifdef CONFIG_DEBUG_PAGEALLOC
    857	if (!debug_pagealloc_enabled())
    858		return;
    859
    860	static_branch_enable(&_debug_pagealloc_enabled);
    861
    862	if (!debug_guardpage_minorder())
    863		return;
    864
    865	static_branch_enable(&_debug_guardpage_enabled);
    866#endif
    867}
    868
    869static inline void set_buddy_order(struct page *page, unsigned int order)
    870{
    871	set_page_private(page, order);
    872	__SetPageBuddy(page);
    873}
    874
    875#ifdef CONFIG_COMPACTION
    876static inline struct capture_control *task_capc(struct zone *zone)
    877{
    878	struct capture_control *capc = current->capture_control;
    879
    880	return unlikely(capc) &&
    881		!(current->flags & PF_KTHREAD) &&
    882		!capc->page &&
    883		capc->cc->zone == zone ? capc : NULL;
    884}
    885
    886static inline bool
    887compaction_capture(struct capture_control *capc, struct page *page,
    888		   int order, int migratetype)
    889{
    890	if (!capc || order != capc->cc->order)
    891		return false;
    892
    893	/* Do not accidentally pollute CMA or isolated regions*/
    894	if (is_migrate_cma(migratetype) ||
    895	    is_migrate_isolate(migratetype))
    896		return false;
    897
    898	/*
    899	 * Do not let lower order allocations pollute a movable pageblock.
    900	 * This might let an unmovable request use a reclaimable pageblock
    901	 * and vice-versa but no more than normal fallback logic which can
    902	 * have trouble finding a high-order free page.
    903	 */
    904	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
    905		return false;
    906
    907	capc->page = page;
    908	return true;
    909}
    910
    911#else
    912static inline struct capture_control *task_capc(struct zone *zone)
    913{
    914	return NULL;
    915}
    916
    917static inline bool
    918compaction_capture(struct capture_control *capc, struct page *page,
    919		   int order, int migratetype)
    920{
    921	return false;
    922}
    923#endif /* CONFIG_COMPACTION */
    924
    925/* Used for pages not on another list */
    926static inline void add_to_free_list(struct page *page, struct zone *zone,
    927				    unsigned int order, int migratetype)
    928{
    929	struct free_area *area = &zone->free_area[order];
    930
    931	list_add(&page->lru, &area->free_list[migratetype]);
    932	area->nr_free++;
    933}
    934
    935/* Used for pages not on another list */
    936static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
    937					 unsigned int order, int migratetype)
    938{
    939	struct free_area *area = &zone->free_area[order];
    940
    941	list_add_tail(&page->lru, &area->free_list[migratetype]);
    942	area->nr_free++;
    943}
    944
    945/*
    946 * Used for pages which are on another list. Move the pages to the tail
    947 * of the list - so the moved pages won't immediately be considered for
    948 * allocation again (e.g., optimization for memory onlining).
    949 */
    950static inline void move_to_free_list(struct page *page, struct zone *zone,
    951				     unsigned int order, int migratetype)
    952{
    953	struct free_area *area = &zone->free_area[order];
    954
    955	list_move_tail(&page->lru, &area->free_list[migratetype]);
    956}
    957
    958static inline void del_page_from_free_list(struct page *page, struct zone *zone,
    959					   unsigned int order)
    960{
    961	/* clear reported state and update reported page count */
    962	if (page_reported(page))
    963		__ClearPageReported(page);
    964
    965	list_del(&page->lru);
    966	__ClearPageBuddy(page);
    967	set_page_private(page, 0);
    968	zone->free_area[order].nr_free--;
    969}
    970
    971/*
    972 * If this is not the largest possible page, check if the buddy
    973 * of the next-highest order is free. If it is, it's possible
    974 * that pages are being freed that will coalesce soon. In case,
    975 * that is happening, add the free page to the tail of the list
    976 * so it's less likely to be used soon and more likely to be merged
    977 * as a higher order page
    978 */
    979static inline bool
    980buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
    981		   struct page *page, unsigned int order)
    982{
    983	unsigned long higher_page_pfn;
    984	struct page *higher_page;
    985
    986	if (order >= MAX_ORDER - 2)
    987		return false;
    988
    989	higher_page_pfn = buddy_pfn & pfn;
    990	higher_page = page + (higher_page_pfn - pfn);
    991
    992	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
    993			NULL) != NULL;
    994}
    995
    996/*
    997 * Freeing function for a buddy system allocator.
    998 *
    999 * The concept of a buddy system is to maintain direct-mapped table
   1000 * (containing bit values) for memory blocks of various "orders".
   1001 * The bottom level table contains the map for the smallest allocatable
   1002 * units of memory (here, pages), and each level above it describes
   1003 * pairs of units from the levels below, hence, "buddies".
   1004 * At a high level, all that happens here is marking the table entry
   1005 * at the bottom level available, and propagating the changes upward
   1006 * as necessary, plus some accounting needed to play nicely with other
   1007 * parts of the VM system.
   1008 * At each level, we keep a list of pages, which are heads of continuous
   1009 * free pages of length of (1 << order) and marked with PageBuddy.
   1010 * Page's order is recorded in page_private(page) field.
   1011 * So when we are allocating or freeing one, we can derive the state of the
   1012 * other.  That is, if we allocate a small block, and both were
   1013 * free, the remainder of the region must be split into blocks.
   1014 * If a block is freed, and its buddy is also free, then this
   1015 * triggers coalescing into a block of larger size.
   1016 *
   1017 * -- nyc
   1018 */
   1019
   1020static inline void __free_one_page(struct page *page,
   1021		unsigned long pfn,
   1022		struct zone *zone, unsigned int order,
   1023		int migratetype, fpi_t fpi_flags)
   1024{
   1025	struct capture_control *capc = task_capc(zone);
   1026	unsigned long buddy_pfn;
   1027	unsigned long combined_pfn;
   1028	struct page *buddy;
   1029	bool to_tail;
   1030
   1031	VM_BUG_ON(!zone_is_initialized(zone));
   1032	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
   1033
   1034	VM_BUG_ON(migratetype == -1);
   1035	if (likely(!is_migrate_isolate(migratetype)))
   1036		__mod_zone_freepage_state(zone, 1 << order, migratetype);
   1037
   1038	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
   1039	VM_BUG_ON_PAGE(bad_range(zone, page), page);
   1040
   1041	while (order < MAX_ORDER - 1) {
   1042		if (compaction_capture(capc, page, order, migratetype)) {
   1043			__mod_zone_freepage_state(zone, -(1 << order),
   1044								migratetype);
   1045			return;
   1046		}
   1047
   1048		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
   1049		if (!buddy)
   1050			goto done_merging;
   1051
   1052		if (unlikely(order >= pageblock_order)) {
   1053			/*
   1054			 * We want to prevent merge between freepages on pageblock
   1055			 * without fallbacks and normal pageblock. Without this,
   1056			 * pageblock isolation could cause incorrect freepage or CMA
   1057			 * accounting or HIGHATOMIC accounting.
   1058			 */
   1059			int buddy_mt = get_pageblock_migratetype(buddy);
   1060
   1061			if (migratetype != buddy_mt
   1062					&& (!migratetype_is_mergeable(migratetype) ||
   1063						!migratetype_is_mergeable(buddy_mt)))
   1064				goto done_merging;
   1065		}
   1066
   1067		/*
   1068		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
   1069		 * merge with it and move up one order.
   1070		 */
   1071		if (page_is_guard(buddy))
   1072			clear_page_guard(zone, buddy, order, migratetype);
   1073		else
   1074			del_page_from_free_list(buddy, zone, order);
   1075		combined_pfn = buddy_pfn & pfn;
   1076		page = page + (combined_pfn - pfn);
   1077		pfn = combined_pfn;
   1078		order++;
   1079	}
   1080
   1081done_merging:
   1082	set_buddy_order(page, order);
   1083
   1084	if (fpi_flags & FPI_TO_TAIL)
   1085		to_tail = true;
   1086	else if (is_shuffle_order(order))
   1087		to_tail = shuffle_pick_tail();
   1088	else
   1089		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
   1090
   1091	if (to_tail)
   1092		add_to_free_list_tail(page, zone, order, migratetype);
   1093	else
   1094		add_to_free_list(page, zone, order, migratetype);
   1095
   1096	/* Notify page reporting subsystem of freed page */
   1097	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
   1098		page_reporting_notify_free(order);
   1099}
   1100
   1101/**
   1102 * split_free_page() -- split a free page at split_pfn_offset
   1103 * @free_page:		the original free page
   1104 * @order:		the order of the page
   1105 * @split_pfn_offset:	split offset within the page
   1106 *
   1107 * Return -ENOENT if the free page is changed, otherwise 0
   1108 *
   1109 * It is used when the free page crosses two pageblocks with different migratetypes
   1110 * at split_pfn_offset within the page. The split free page will be put into
   1111 * separate migratetype lists afterwards. Otherwise, the function achieves
   1112 * nothing.
   1113 */
   1114int split_free_page(struct page *free_page,
   1115			unsigned int order, unsigned long split_pfn_offset)
   1116{
   1117	struct zone *zone = page_zone(free_page);
   1118	unsigned long free_page_pfn = page_to_pfn(free_page);
   1119	unsigned long pfn;
   1120	unsigned long flags;
   1121	int free_page_order;
   1122	int mt;
   1123	int ret = 0;
   1124
   1125	if (split_pfn_offset == 0)
   1126		return ret;
   1127
   1128	spin_lock_irqsave(&zone->lock, flags);
   1129
   1130	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
   1131		ret = -ENOENT;
   1132		goto out;
   1133	}
   1134
   1135	mt = get_pageblock_migratetype(free_page);
   1136	if (likely(!is_migrate_isolate(mt)))
   1137		__mod_zone_freepage_state(zone, -(1UL << order), mt);
   1138
   1139	del_page_from_free_list(free_page, zone, order);
   1140	for (pfn = free_page_pfn;
   1141	     pfn < free_page_pfn + (1UL << order);) {
   1142		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
   1143
   1144		free_page_order = min_t(unsigned int,
   1145					pfn ? __ffs(pfn) : order,
   1146					__fls(split_pfn_offset));
   1147		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
   1148				mt, FPI_NONE);
   1149		pfn += 1UL << free_page_order;
   1150		split_pfn_offset -= (1UL << free_page_order);
   1151		/* we have done the first part, now switch to second part */
   1152		if (split_pfn_offset == 0)
   1153			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
   1154	}
   1155out:
   1156	spin_unlock_irqrestore(&zone->lock, flags);
   1157	return ret;
   1158}
   1159/*
   1160 * A bad page could be due to a number of fields. Instead of multiple branches,
   1161 * try and check multiple fields with one check. The caller must do a detailed
   1162 * check if necessary.
   1163 */
   1164static inline bool page_expected_state(struct page *page,
   1165					unsigned long check_flags)
   1166{
   1167	if (unlikely(atomic_read(&page->_mapcount) != -1))
   1168		return false;
   1169
   1170	if (unlikely((unsigned long)page->mapping |
   1171			page_ref_count(page) |
   1172#ifdef CONFIG_MEMCG
   1173			page->memcg_data |
   1174#endif
   1175			(page->flags & check_flags)))
   1176		return false;
   1177
   1178	return true;
   1179}
   1180
   1181static const char *page_bad_reason(struct page *page, unsigned long flags)
   1182{
   1183	const char *bad_reason = NULL;
   1184
   1185	if (unlikely(atomic_read(&page->_mapcount) != -1))
   1186		bad_reason = "nonzero mapcount";
   1187	if (unlikely(page->mapping != NULL))
   1188		bad_reason = "non-NULL mapping";
   1189	if (unlikely(page_ref_count(page) != 0))
   1190		bad_reason = "nonzero _refcount";
   1191	if (unlikely(page->flags & flags)) {
   1192		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
   1193			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
   1194		else
   1195			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
   1196	}
   1197#ifdef CONFIG_MEMCG
   1198	if (unlikely(page->memcg_data))
   1199		bad_reason = "page still charged to cgroup";
   1200#endif
   1201	return bad_reason;
   1202}
   1203
   1204static void check_free_page_bad(struct page *page)
   1205{
   1206	bad_page(page,
   1207		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
   1208}
   1209
   1210static inline int check_free_page(struct page *page)
   1211{
   1212	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
   1213		return 0;
   1214
   1215	/* Something has gone sideways, find it */
   1216	check_free_page_bad(page);
   1217	return 1;
   1218}
   1219
   1220static int free_tail_pages_check(struct page *head_page, struct page *page)
   1221{
   1222	int ret = 1;
   1223
   1224	/*
   1225	 * We rely page->lru.next never has bit 0 set, unless the page
   1226	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
   1227	 */
   1228	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
   1229
   1230	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
   1231		ret = 0;
   1232		goto out;
   1233	}
   1234	switch (page - head_page) {
   1235	case 1:
   1236		/* the first tail page: ->mapping may be compound_mapcount() */
   1237		if (unlikely(compound_mapcount(page))) {
   1238			bad_page(page, "nonzero compound_mapcount");
   1239			goto out;
   1240		}
   1241		break;
   1242	case 2:
   1243		/*
   1244		 * the second tail page: ->mapping is
   1245		 * deferred_list.next -- ignore value.
   1246		 */
   1247		break;
   1248	default:
   1249		if (page->mapping != TAIL_MAPPING) {
   1250			bad_page(page, "corrupted mapping in tail page");
   1251			goto out;
   1252		}
   1253		break;
   1254	}
   1255	if (unlikely(!PageTail(page))) {
   1256		bad_page(page, "PageTail not set");
   1257		goto out;
   1258	}
   1259	if (unlikely(compound_head(page) != head_page)) {
   1260		bad_page(page, "compound_head not consistent");
   1261		goto out;
   1262	}
   1263	ret = 0;
   1264out:
   1265	page->mapping = NULL;
   1266	clear_compound_head(page);
   1267	return ret;
   1268}
   1269
   1270/*
   1271 * Skip KASAN memory poisoning when either:
   1272 *
   1273 * 1. Deferred memory initialization has not yet completed,
   1274 *    see the explanation below.
   1275 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
   1276 *    see the comment next to it.
   1277 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
   1278 *    see the comment next to it.
   1279 *
   1280 * Poisoning pages during deferred memory init will greatly lengthen the
   1281 * process and cause problem in large memory systems as the deferred pages
   1282 * initialization is done with interrupt disabled.
   1283 *
   1284 * Assuming that there will be no reference to those newly initialized
   1285 * pages before they are ever allocated, this should have no effect on
   1286 * KASAN memory tracking as the poison will be properly inserted at page
   1287 * allocation time. The only corner case is when pages are allocated by
   1288 * on-demand allocation and then freed again before the deferred pages
   1289 * initialization is done, but this is not likely to happen.
   1290 */
   1291static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
   1292{
   1293	return deferred_pages_enabled() ||
   1294	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
   1295		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
   1296	       PageSkipKASanPoison(page);
   1297}
   1298
   1299static void kernel_init_free_pages(struct page *page, int numpages)
   1300{
   1301	int i;
   1302
   1303	/* s390's use of memset() could override KASAN redzones. */
   1304	kasan_disable_current();
   1305	for (i = 0; i < numpages; i++) {
   1306		u8 tag = page_kasan_tag(page + i);
   1307		page_kasan_tag_reset(page + i);
   1308		clear_highpage(page + i);
   1309		page_kasan_tag_set(page + i, tag);
   1310	}
   1311	kasan_enable_current();
   1312}
   1313
   1314static __always_inline bool free_pages_prepare(struct page *page,
   1315			unsigned int order, bool check_free, fpi_t fpi_flags)
   1316{
   1317	int bad = 0;
   1318	bool init = want_init_on_free();
   1319
   1320	VM_BUG_ON_PAGE(PageTail(page), page);
   1321
   1322	trace_mm_page_free(page, order);
   1323
   1324	if (unlikely(PageHWPoison(page)) && !order) {
   1325		/*
   1326		 * Do not let hwpoison pages hit pcplists/buddy
   1327		 * Untie memcg state and reset page's owner
   1328		 */
   1329		if (memcg_kmem_enabled() && PageMemcgKmem(page))
   1330			__memcg_kmem_uncharge_page(page, order);
   1331		reset_page_owner(page, order);
   1332		page_table_check_free(page, order);
   1333		return false;
   1334	}
   1335
   1336	/*
   1337	 * Check tail pages before head page information is cleared to
   1338	 * avoid checking PageCompound for order-0 pages.
   1339	 */
   1340	if (unlikely(order)) {
   1341		bool compound = PageCompound(page);
   1342		int i;
   1343
   1344		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
   1345
   1346		if (compound) {
   1347			ClearPageDoubleMap(page);
   1348			ClearPageHasHWPoisoned(page);
   1349		}
   1350		for (i = 1; i < (1 << order); i++) {
   1351			if (compound)
   1352				bad += free_tail_pages_check(page, page + i);
   1353			if (unlikely(check_free_page(page + i))) {
   1354				bad++;
   1355				continue;
   1356			}
   1357			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
   1358		}
   1359	}
   1360	if (PageMappingFlags(page))
   1361		page->mapping = NULL;
   1362	if (memcg_kmem_enabled() && PageMemcgKmem(page))
   1363		__memcg_kmem_uncharge_page(page, order);
   1364	if (check_free)
   1365		bad += check_free_page(page);
   1366	if (bad)
   1367		return false;
   1368
   1369	page_cpupid_reset_last(page);
   1370	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
   1371	reset_page_owner(page, order);
   1372	page_table_check_free(page, order);
   1373
   1374	if (!PageHighMem(page)) {
   1375		debug_check_no_locks_freed(page_address(page),
   1376					   PAGE_SIZE << order);
   1377		debug_check_no_obj_freed(page_address(page),
   1378					   PAGE_SIZE << order);
   1379	}
   1380
   1381	kernel_poison_pages(page, 1 << order);
   1382
   1383	/*
   1384	 * As memory initialization might be integrated into KASAN,
   1385	 * KASAN poisoning and memory initialization code must be
   1386	 * kept together to avoid discrepancies in behavior.
   1387	 *
   1388	 * With hardware tag-based KASAN, memory tags must be set before the
   1389	 * page becomes unavailable via debug_pagealloc or arch_free_page.
   1390	 */
   1391	if (!should_skip_kasan_poison(page, fpi_flags)) {
   1392		kasan_poison_pages(page, order, init);
   1393
   1394		/* Memory is already initialized if KASAN did it internally. */
   1395		if (kasan_has_integrated_init())
   1396			init = false;
   1397	}
   1398	if (init)
   1399		kernel_init_free_pages(page, 1 << order);
   1400
   1401	/*
   1402	 * arch_free_page() can make the page's contents inaccessible.  s390
   1403	 * does this.  So nothing which can access the page's contents should
   1404	 * happen after this.
   1405	 */
   1406	arch_free_page(page, order);
   1407
   1408	debug_pagealloc_unmap_pages(page, 1 << order);
   1409
   1410	return true;
   1411}
   1412
   1413#ifdef CONFIG_DEBUG_VM
   1414/*
   1415 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
   1416 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
   1417 * moved from pcp lists to free lists.
   1418 */
   1419static bool free_pcp_prepare(struct page *page, unsigned int order)
   1420{
   1421	return free_pages_prepare(page, order, true, FPI_NONE);
   1422}
   1423
   1424static bool bulkfree_pcp_prepare(struct page *page)
   1425{
   1426	if (debug_pagealloc_enabled_static())
   1427		return check_free_page(page);
   1428	else
   1429		return false;
   1430}
   1431#else
   1432/*
   1433 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
   1434 * moving from pcp lists to free list in order to reduce overhead. With
   1435 * debug_pagealloc enabled, they are checked also immediately when being freed
   1436 * to the pcp lists.
   1437 */
   1438static bool free_pcp_prepare(struct page *page, unsigned int order)
   1439{
   1440	if (debug_pagealloc_enabled_static())
   1441		return free_pages_prepare(page, order, true, FPI_NONE);
   1442	else
   1443		return free_pages_prepare(page, order, false, FPI_NONE);
   1444}
   1445
   1446static bool bulkfree_pcp_prepare(struct page *page)
   1447{
   1448	return check_free_page(page);
   1449}
   1450#endif /* CONFIG_DEBUG_VM */
   1451
   1452/*
   1453 * Frees a number of pages from the PCP lists
   1454 * Assumes all pages on list are in same zone.
   1455 * count is the number of pages to free.
   1456 */
   1457static void free_pcppages_bulk(struct zone *zone, int count,
   1458					struct per_cpu_pages *pcp,
   1459					int pindex)
   1460{
   1461	int min_pindex = 0;
   1462	int max_pindex = NR_PCP_LISTS - 1;
   1463	unsigned int order;
   1464	bool isolated_pageblocks;
   1465	struct page *page;
   1466
   1467	/*
   1468	 * Ensure proper count is passed which otherwise would stuck in the
   1469	 * below while (list_empty(list)) loop.
   1470	 */
   1471	count = min(pcp->count, count);
   1472
   1473	/* Ensure requested pindex is drained first. */
   1474	pindex = pindex - 1;
   1475
   1476	/*
   1477	 * local_lock_irq held so equivalent to spin_lock_irqsave for
   1478	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
   1479	 */
   1480	spin_lock(&zone->lock);
   1481	isolated_pageblocks = has_isolate_pageblock(zone);
   1482
   1483	while (count > 0) {
   1484		struct list_head *list;
   1485		int nr_pages;
   1486
   1487		/* Remove pages from lists in a round-robin fashion. */
   1488		do {
   1489			if (++pindex > max_pindex)
   1490				pindex = min_pindex;
   1491			list = &pcp->lists[pindex];
   1492			if (!list_empty(list))
   1493				break;
   1494
   1495			if (pindex == max_pindex)
   1496				max_pindex--;
   1497			if (pindex == min_pindex)
   1498				min_pindex++;
   1499		} while (1);
   1500
   1501		order = pindex_to_order(pindex);
   1502		nr_pages = 1 << order;
   1503		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
   1504		do {
   1505			int mt;
   1506
   1507			page = list_last_entry(list, struct page, lru);
   1508			mt = get_pcppage_migratetype(page);
   1509
   1510			/* must delete to avoid corrupting pcp list */
   1511			list_del(&page->lru);
   1512			count -= nr_pages;
   1513			pcp->count -= nr_pages;
   1514
   1515			if (bulkfree_pcp_prepare(page))
   1516				continue;
   1517
   1518			/* MIGRATE_ISOLATE page should not go to pcplists */
   1519			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
   1520			/* Pageblock could have been isolated meanwhile */
   1521			if (unlikely(isolated_pageblocks))
   1522				mt = get_pageblock_migratetype(page);
   1523
   1524			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
   1525			trace_mm_page_pcpu_drain(page, order, mt);
   1526		} while (count > 0 && !list_empty(list));
   1527	}
   1528
   1529	spin_unlock(&zone->lock);
   1530}
   1531
   1532static void free_one_page(struct zone *zone,
   1533				struct page *page, unsigned long pfn,
   1534				unsigned int order,
   1535				int migratetype, fpi_t fpi_flags)
   1536{
   1537	unsigned long flags;
   1538
   1539	spin_lock_irqsave(&zone->lock, flags);
   1540	if (unlikely(has_isolate_pageblock(zone) ||
   1541		is_migrate_isolate(migratetype))) {
   1542		migratetype = get_pfnblock_migratetype(page, pfn);
   1543	}
   1544	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
   1545	spin_unlock_irqrestore(&zone->lock, flags);
   1546}
   1547
   1548static void __meminit __init_single_page(struct page *page, unsigned long pfn,
   1549				unsigned long zone, int nid)
   1550{
   1551	mm_zero_struct_page(page);
   1552	set_page_links(page, zone, nid, pfn);
   1553	init_page_count(page);
   1554	page_mapcount_reset(page);
   1555	page_cpupid_reset_last(page);
   1556	page_kasan_tag_reset(page);
   1557
   1558	INIT_LIST_HEAD(&page->lru);
   1559#ifdef WANT_PAGE_VIRTUAL
   1560	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
   1561	if (!is_highmem_idx(zone))
   1562		set_page_address(page, __va(pfn << PAGE_SHIFT));
   1563#endif
   1564}
   1565
   1566#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
   1567static void __meminit init_reserved_page(unsigned long pfn)
   1568{
   1569	pg_data_t *pgdat;
   1570	int nid, zid;
   1571
   1572	if (!early_page_uninitialised(pfn))
   1573		return;
   1574
   1575	nid = early_pfn_to_nid(pfn);
   1576	pgdat = NODE_DATA(nid);
   1577
   1578	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
   1579		struct zone *zone = &pgdat->node_zones[zid];
   1580
   1581		if (zone_spans_pfn(zone, pfn))
   1582			break;
   1583	}
   1584	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
   1585}
   1586#else
   1587static inline void init_reserved_page(unsigned long pfn)
   1588{
   1589}
   1590#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
   1591
   1592/*
   1593 * Initialised pages do not have PageReserved set. This function is
   1594 * called for each range allocated by the bootmem allocator and
   1595 * marks the pages PageReserved. The remaining valid pages are later
   1596 * sent to the buddy page allocator.
   1597 */
   1598void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
   1599{
   1600	unsigned long start_pfn = PFN_DOWN(start);
   1601	unsigned long end_pfn = PFN_UP(end);
   1602
   1603	for (; start_pfn < end_pfn; start_pfn++) {
   1604		if (pfn_valid(start_pfn)) {
   1605			struct page *page = pfn_to_page(start_pfn);
   1606
   1607			init_reserved_page(start_pfn);
   1608
   1609			/* Avoid false-positive PageTail() */
   1610			INIT_LIST_HEAD(&page->lru);
   1611
   1612			/*
   1613			 * no need for atomic set_bit because the struct
   1614			 * page is not visible yet so nobody should
   1615			 * access it yet.
   1616			 */
   1617			__SetPageReserved(page);
   1618		}
   1619	}
   1620}
   1621
   1622static void __free_pages_ok(struct page *page, unsigned int order,
   1623			    fpi_t fpi_flags)
   1624{
   1625	unsigned long flags;
   1626	int migratetype;
   1627	unsigned long pfn = page_to_pfn(page);
   1628	struct zone *zone = page_zone(page);
   1629
   1630	if (!free_pages_prepare(page, order, true, fpi_flags))
   1631		return;
   1632
   1633	migratetype = get_pfnblock_migratetype(page, pfn);
   1634
   1635	spin_lock_irqsave(&zone->lock, flags);
   1636	if (unlikely(has_isolate_pageblock(zone) ||
   1637		is_migrate_isolate(migratetype))) {
   1638		migratetype = get_pfnblock_migratetype(page, pfn);
   1639	}
   1640	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
   1641	spin_unlock_irqrestore(&zone->lock, flags);
   1642
   1643	__count_vm_events(PGFREE, 1 << order);
   1644}
   1645
   1646void __free_pages_core(struct page *page, unsigned int order)
   1647{
   1648	unsigned int nr_pages = 1 << order;
   1649	struct page *p = page;
   1650	unsigned int loop;
   1651
   1652	/*
   1653	 * When initializing the memmap, __init_single_page() sets the refcount
   1654	 * of all pages to 1 ("allocated"/"not free"). We have to set the
   1655	 * refcount of all involved pages to 0.
   1656	 */
   1657	prefetchw(p);
   1658	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
   1659		prefetchw(p + 1);
   1660		__ClearPageReserved(p);
   1661		set_page_count(p, 0);
   1662	}
   1663	__ClearPageReserved(p);
   1664	set_page_count(p, 0);
   1665
   1666	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
   1667
   1668	/*
   1669	 * Bypass PCP and place fresh pages right to the tail, primarily
   1670	 * relevant for memory onlining.
   1671	 */
   1672	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
   1673}
   1674
   1675#ifdef CONFIG_NUMA
   1676
   1677/*
   1678 * During memory init memblocks map pfns to nids. The search is expensive and
   1679 * this caches recent lookups. The implementation of __early_pfn_to_nid
   1680 * treats start/end as pfns.
   1681 */
   1682struct mminit_pfnnid_cache {
   1683	unsigned long last_start;
   1684	unsigned long last_end;
   1685	int last_nid;
   1686};
   1687
   1688static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
   1689
   1690/*
   1691 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
   1692 */
   1693static int __meminit __early_pfn_to_nid(unsigned long pfn,
   1694					struct mminit_pfnnid_cache *state)
   1695{
   1696	unsigned long start_pfn, end_pfn;
   1697	int nid;
   1698
   1699	if (state->last_start <= pfn && pfn < state->last_end)
   1700		return state->last_nid;
   1701
   1702	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
   1703	if (nid != NUMA_NO_NODE) {
   1704		state->last_start = start_pfn;
   1705		state->last_end = end_pfn;
   1706		state->last_nid = nid;
   1707	}
   1708
   1709	return nid;
   1710}
   1711
   1712int __meminit early_pfn_to_nid(unsigned long pfn)
   1713{
   1714	static DEFINE_SPINLOCK(early_pfn_lock);
   1715	int nid;
   1716
   1717	spin_lock(&early_pfn_lock);
   1718	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
   1719	if (nid < 0)
   1720		nid = first_online_node;
   1721	spin_unlock(&early_pfn_lock);
   1722
   1723	return nid;
   1724}
   1725#endif /* CONFIG_NUMA */
   1726
   1727void __init memblock_free_pages(struct page *page, unsigned long pfn,
   1728							unsigned int order)
   1729{
   1730	if (early_page_uninitialised(pfn))
   1731		return;
   1732	__free_pages_core(page, order);
   1733}
   1734
   1735/*
   1736 * Check that the whole (or subset of) a pageblock given by the interval of
   1737 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
   1738 * with the migration of free compaction scanner.
   1739 *
   1740 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
   1741 *
   1742 * It's possible on some configurations to have a setup like node0 node1 node0
   1743 * i.e. it's possible that all pages within a zones range of pages do not
   1744 * belong to a single zone. We assume that a border between node0 and node1
   1745 * can occur within a single pageblock, but not a node0 node1 node0
   1746 * interleaving within a single pageblock. It is therefore sufficient to check
   1747 * the first and last page of a pageblock and avoid checking each individual
   1748 * page in a pageblock.
   1749 */
   1750struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
   1751				     unsigned long end_pfn, struct zone *zone)
   1752{
   1753	struct page *start_page;
   1754	struct page *end_page;
   1755
   1756	/* end_pfn is one past the range we are checking */
   1757	end_pfn--;
   1758
   1759	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
   1760		return NULL;
   1761
   1762	start_page = pfn_to_online_page(start_pfn);
   1763	if (!start_page)
   1764		return NULL;
   1765
   1766	if (page_zone(start_page) != zone)
   1767		return NULL;
   1768
   1769	end_page = pfn_to_page(end_pfn);
   1770
   1771	/* This gives a shorter code than deriving page_zone(end_page) */
   1772	if (page_zone_id(start_page) != page_zone_id(end_page))
   1773		return NULL;
   1774
   1775	return start_page;
   1776}
   1777
   1778void set_zone_contiguous(struct zone *zone)
   1779{
   1780	unsigned long block_start_pfn = zone->zone_start_pfn;
   1781	unsigned long block_end_pfn;
   1782
   1783	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
   1784	for (; block_start_pfn < zone_end_pfn(zone);
   1785			block_start_pfn = block_end_pfn,
   1786			 block_end_pfn += pageblock_nr_pages) {
   1787
   1788		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
   1789
   1790		if (!__pageblock_pfn_to_page(block_start_pfn,
   1791					     block_end_pfn, zone))
   1792			return;
   1793		cond_resched();
   1794	}
   1795
   1796	/* We confirm that there is no hole */
   1797	zone->contiguous = true;
   1798}
   1799
   1800void clear_zone_contiguous(struct zone *zone)
   1801{
   1802	zone->contiguous = false;
   1803}
   1804
   1805#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
   1806static void __init deferred_free_range(unsigned long pfn,
   1807				       unsigned long nr_pages)
   1808{
   1809	struct page *page;
   1810	unsigned long i;
   1811
   1812	if (!nr_pages)
   1813		return;
   1814
   1815	page = pfn_to_page(pfn);
   1816
   1817	/* Free a large naturally-aligned chunk if possible */
   1818	if (nr_pages == pageblock_nr_pages &&
   1819	    (pfn & (pageblock_nr_pages - 1)) == 0) {
   1820		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
   1821		__free_pages_core(page, pageblock_order);
   1822		return;
   1823	}
   1824
   1825	for (i = 0; i < nr_pages; i++, page++, pfn++) {
   1826		if ((pfn & (pageblock_nr_pages - 1)) == 0)
   1827			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
   1828		__free_pages_core(page, 0);
   1829	}
   1830}
   1831
   1832/* Completion tracking for deferred_init_memmap() threads */
   1833static atomic_t pgdat_init_n_undone __initdata;
   1834static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
   1835
   1836static inline void __init pgdat_init_report_one_done(void)
   1837{
   1838	if (atomic_dec_and_test(&pgdat_init_n_undone))
   1839		complete(&pgdat_init_all_done_comp);
   1840}
   1841
   1842/*
   1843 * Returns true if page needs to be initialized or freed to buddy allocator.
   1844 *
   1845 * First we check if pfn is valid on architectures where it is possible to have
   1846 * holes within pageblock_nr_pages. On systems where it is not possible, this
   1847 * function is optimized out.
   1848 *
   1849 * Then, we check if a current large page is valid by only checking the validity
   1850 * of the head pfn.
   1851 */
   1852static inline bool __init deferred_pfn_valid(unsigned long pfn)
   1853{
   1854	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
   1855		return false;
   1856	return true;
   1857}
   1858
   1859/*
   1860 * Free pages to buddy allocator. Try to free aligned pages in
   1861 * pageblock_nr_pages sizes.
   1862 */
   1863static void __init deferred_free_pages(unsigned long pfn,
   1864				       unsigned long end_pfn)
   1865{
   1866	unsigned long nr_pgmask = pageblock_nr_pages - 1;
   1867	unsigned long nr_free = 0;
   1868
   1869	for (; pfn < end_pfn; pfn++) {
   1870		if (!deferred_pfn_valid(pfn)) {
   1871			deferred_free_range(pfn - nr_free, nr_free);
   1872			nr_free = 0;
   1873		} else if (!(pfn & nr_pgmask)) {
   1874			deferred_free_range(pfn - nr_free, nr_free);
   1875			nr_free = 1;
   1876		} else {
   1877			nr_free++;
   1878		}
   1879	}
   1880	/* Free the last block of pages to allocator */
   1881	deferred_free_range(pfn - nr_free, nr_free);
   1882}
   1883
   1884/*
   1885 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
   1886 * by performing it only once every pageblock_nr_pages.
   1887 * Return number of pages initialized.
   1888 */
   1889static unsigned long  __init deferred_init_pages(struct zone *zone,
   1890						 unsigned long pfn,
   1891						 unsigned long end_pfn)
   1892{
   1893	unsigned long nr_pgmask = pageblock_nr_pages - 1;
   1894	int nid = zone_to_nid(zone);
   1895	unsigned long nr_pages = 0;
   1896	int zid = zone_idx(zone);
   1897	struct page *page = NULL;
   1898
   1899	for (; pfn < end_pfn; pfn++) {
   1900		if (!deferred_pfn_valid(pfn)) {
   1901			page = NULL;
   1902			continue;
   1903		} else if (!page || !(pfn & nr_pgmask)) {
   1904			page = pfn_to_page(pfn);
   1905		} else {
   1906			page++;
   1907		}
   1908		__init_single_page(page, pfn, zid, nid);
   1909		nr_pages++;
   1910	}
   1911	return (nr_pages);
   1912}
   1913
   1914/*
   1915 * This function is meant to pre-load the iterator for the zone init.
   1916 * Specifically it walks through the ranges until we are caught up to the
   1917 * first_init_pfn value and exits there. If we never encounter the value we
   1918 * return false indicating there are no valid ranges left.
   1919 */
   1920static bool __init
   1921deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
   1922				    unsigned long *spfn, unsigned long *epfn,
   1923				    unsigned long first_init_pfn)
   1924{
   1925	u64 j;
   1926
   1927	/*
   1928	 * Start out by walking through the ranges in this zone that have
   1929	 * already been initialized. We don't need to do anything with them
   1930	 * so we just need to flush them out of the system.
   1931	 */
   1932	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
   1933		if (*epfn <= first_init_pfn)
   1934			continue;
   1935		if (*spfn < first_init_pfn)
   1936			*spfn = first_init_pfn;
   1937		*i = j;
   1938		return true;
   1939	}
   1940
   1941	return false;
   1942}
   1943
   1944/*
   1945 * Initialize and free pages. We do it in two loops: first we initialize
   1946 * struct page, then free to buddy allocator, because while we are
   1947 * freeing pages we can access pages that are ahead (computing buddy
   1948 * page in __free_one_page()).
   1949 *
   1950 * In order to try and keep some memory in the cache we have the loop
   1951 * broken along max page order boundaries. This way we will not cause
   1952 * any issues with the buddy page computation.
   1953 */
   1954static unsigned long __init
   1955deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
   1956		       unsigned long *end_pfn)
   1957{
   1958	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
   1959	unsigned long spfn = *start_pfn, epfn = *end_pfn;
   1960	unsigned long nr_pages = 0;
   1961	u64 j = *i;
   1962
   1963	/* First we loop through and initialize the page values */
   1964	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
   1965		unsigned long t;
   1966
   1967		if (mo_pfn <= *start_pfn)
   1968			break;
   1969
   1970		t = min(mo_pfn, *end_pfn);
   1971		nr_pages += deferred_init_pages(zone, *start_pfn, t);
   1972
   1973		if (mo_pfn < *end_pfn) {
   1974			*start_pfn = mo_pfn;
   1975			break;
   1976		}
   1977	}
   1978
   1979	/* Reset values and now loop through freeing pages as needed */
   1980	swap(j, *i);
   1981
   1982	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
   1983		unsigned long t;
   1984
   1985		if (mo_pfn <= spfn)
   1986			break;
   1987
   1988		t = min(mo_pfn, epfn);
   1989		deferred_free_pages(spfn, t);
   1990
   1991		if (mo_pfn <= epfn)
   1992			break;
   1993	}
   1994
   1995	return nr_pages;
   1996}
   1997
   1998static void __init
   1999deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
   2000			   void *arg)
   2001{
   2002	unsigned long spfn, epfn;
   2003	struct zone *zone = arg;
   2004	u64 i;
   2005
   2006	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
   2007
   2008	/*
   2009	 * Initialize and free pages in MAX_ORDER sized increments so that we
   2010	 * can avoid introducing any issues with the buddy allocator.
   2011	 */
   2012	while (spfn < end_pfn) {
   2013		deferred_init_maxorder(&i, zone, &spfn, &epfn);
   2014		cond_resched();
   2015	}
   2016}
   2017
   2018/* An arch may override for more concurrency. */
   2019__weak int __init
   2020deferred_page_init_max_threads(const struct cpumask *node_cpumask)
   2021{
   2022	return 1;
   2023}
   2024
   2025/* Initialise remaining memory on a node */
   2026static int __init deferred_init_memmap(void *data)
   2027{
   2028	pg_data_t *pgdat = data;
   2029	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
   2030	unsigned long spfn = 0, epfn = 0;
   2031	unsigned long first_init_pfn, flags;
   2032	unsigned long start = jiffies;
   2033	struct zone *zone;
   2034	int zid, max_threads;
   2035	u64 i;
   2036
   2037	/* Bind memory initialisation thread to a local node if possible */
   2038	if (!cpumask_empty(cpumask))
   2039		set_cpus_allowed_ptr(current, cpumask);
   2040
   2041	pgdat_resize_lock(pgdat, &flags);
   2042	first_init_pfn = pgdat->first_deferred_pfn;
   2043	if (first_init_pfn == ULONG_MAX) {
   2044		pgdat_resize_unlock(pgdat, &flags);
   2045		pgdat_init_report_one_done();
   2046		return 0;
   2047	}
   2048
   2049	/* Sanity check boundaries */
   2050	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
   2051	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
   2052	pgdat->first_deferred_pfn = ULONG_MAX;
   2053
   2054	/*
   2055	 * Once we unlock here, the zone cannot be grown anymore, thus if an
   2056	 * interrupt thread must allocate this early in boot, zone must be
   2057	 * pre-grown prior to start of deferred page initialization.
   2058	 */
   2059	pgdat_resize_unlock(pgdat, &flags);
   2060
   2061	/* Only the highest zone is deferred so find it */
   2062	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
   2063		zone = pgdat->node_zones + zid;
   2064		if (first_init_pfn < zone_end_pfn(zone))
   2065			break;
   2066	}
   2067
   2068	/* If the zone is empty somebody else may have cleared out the zone */
   2069	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
   2070						 first_init_pfn))
   2071		goto zone_empty;
   2072
   2073	max_threads = deferred_page_init_max_threads(cpumask);
   2074
   2075	while (spfn < epfn) {
   2076		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
   2077		struct padata_mt_job job = {
   2078			.thread_fn   = deferred_init_memmap_chunk,
   2079			.fn_arg      = zone,
   2080			.start       = spfn,
   2081			.size        = epfn_align - spfn,
   2082			.align       = PAGES_PER_SECTION,
   2083			.min_chunk   = PAGES_PER_SECTION,
   2084			.max_threads = max_threads,
   2085		};
   2086
   2087		padata_do_multithreaded(&job);
   2088		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
   2089						    epfn_align);
   2090	}
   2091zone_empty:
   2092	/* Sanity check that the next zone really is unpopulated */
   2093	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
   2094
   2095	pr_info("node %d deferred pages initialised in %ums\n",
   2096		pgdat->node_id, jiffies_to_msecs(jiffies - start));
   2097
   2098	pgdat_init_report_one_done();
   2099	return 0;
   2100}
   2101
   2102/*
   2103 * If this zone has deferred pages, try to grow it by initializing enough
   2104 * deferred pages to satisfy the allocation specified by order, rounded up to
   2105 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
   2106 * of SECTION_SIZE bytes by initializing struct pages in increments of
   2107 * PAGES_PER_SECTION * sizeof(struct page) bytes.
   2108 *
   2109 * Return true when zone was grown, otherwise return false. We return true even
   2110 * when we grow less than requested, to let the caller decide if there are
   2111 * enough pages to satisfy the allocation.
   2112 *
   2113 * Note: We use noinline because this function is needed only during boot, and
   2114 * it is called from a __ref function _deferred_grow_zone. This way we are
   2115 * making sure that it is not inlined into permanent text section.
   2116 */
   2117static noinline bool __init
   2118deferred_grow_zone(struct zone *zone, unsigned int order)
   2119{
   2120	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
   2121	pg_data_t *pgdat = zone->zone_pgdat;
   2122	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
   2123	unsigned long spfn, epfn, flags;
   2124	unsigned long nr_pages = 0;
   2125	u64 i;
   2126
   2127	/* Only the last zone may have deferred pages */
   2128	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
   2129		return false;
   2130
   2131	pgdat_resize_lock(pgdat, &flags);
   2132
   2133	/*
   2134	 * If someone grew this zone while we were waiting for spinlock, return
   2135	 * true, as there might be enough pages already.
   2136	 */
   2137	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
   2138		pgdat_resize_unlock(pgdat, &flags);
   2139		return true;
   2140	}
   2141
   2142	/* If the zone is empty somebody else may have cleared out the zone */
   2143	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
   2144						 first_deferred_pfn)) {
   2145		pgdat->first_deferred_pfn = ULONG_MAX;
   2146		pgdat_resize_unlock(pgdat, &flags);
   2147		/* Retry only once. */
   2148		return first_deferred_pfn != ULONG_MAX;
   2149	}
   2150
   2151	/*
   2152	 * Initialize and free pages in MAX_ORDER sized increments so
   2153	 * that we can avoid introducing any issues with the buddy
   2154	 * allocator.
   2155	 */
   2156	while (spfn < epfn) {
   2157		/* update our first deferred PFN for this section */
   2158		first_deferred_pfn = spfn;
   2159
   2160		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
   2161		touch_nmi_watchdog();
   2162
   2163		/* We should only stop along section boundaries */
   2164		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
   2165			continue;
   2166
   2167		/* If our quota has been met we can stop here */
   2168		if (nr_pages >= nr_pages_needed)
   2169			break;
   2170	}
   2171
   2172	pgdat->first_deferred_pfn = spfn;
   2173	pgdat_resize_unlock(pgdat, &flags);
   2174
   2175	return nr_pages > 0;
   2176}
   2177
   2178/*
   2179 * deferred_grow_zone() is __init, but it is called from
   2180 * get_page_from_freelist() during early boot until deferred_pages permanently
   2181 * disables this call. This is why we have refdata wrapper to avoid warning,
   2182 * and to ensure that the function body gets unloaded.
   2183 */
   2184static bool __ref
   2185_deferred_grow_zone(struct zone *zone, unsigned int order)
   2186{
   2187	return deferred_grow_zone(zone, order);
   2188}
   2189
   2190#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
   2191
   2192void __init page_alloc_init_late(void)
   2193{
   2194	struct zone *zone;
   2195	int nid;
   2196
   2197#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
   2198
   2199	/* There will be num_node_state(N_MEMORY) threads */
   2200	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
   2201	for_each_node_state(nid, N_MEMORY) {
   2202		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
   2203	}
   2204
   2205	/* Block until all are initialised */
   2206	wait_for_completion(&pgdat_init_all_done_comp);
   2207
   2208	/*
   2209	 * We initialized the rest of the deferred pages.  Permanently disable
   2210	 * on-demand struct page initialization.
   2211	 */
   2212	static_branch_disable(&deferred_pages);
   2213
   2214	/* Reinit limits that are based on free pages after the kernel is up */
   2215	files_maxfiles_init();
   2216#endif
   2217
   2218	buffer_init();
   2219
   2220	/* Discard memblock private memory */
   2221	memblock_discard();
   2222
   2223	for_each_node_state(nid, N_MEMORY)
   2224		shuffle_free_memory(NODE_DATA(nid));
   2225
   2226	for_each_populated_zone(zone)
   2227		set_zone_contiguous(zone);
   2228}
   2229
   2230#ifdef CONFIG_CMA
   2231/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
   2232void __init init_cma_reserved_pageblock(struct page *page)
   2233{
   2234	unsigned i = pageblock_nr_pages;
   2235	struct page *p = page;
   2236
   2237	do {
   2238		__ClearPageReserved(p);
   2239		set_page_count(p, 0);
   2240	} while (++p, --i);
   2241
   2242	set_pageblock_migratetype(page, MIGRATE_CMA);
   2243	set_page_refcounted(page);
   2244	__free_pages(page, pageblock_order);
   2245
   2246	adjust_managed_page_count(page, pageblock_nr_pages);
   2247	page_zone(page)->cma_pages += pageblock_nr_pages;
   2248}
   2249#endif
   2250
   2251/*
   2252 * The order of subdivision here is critical for the IO subsystem.
   2253 * Please do not alter this order without good reasons and regression
   2254 * testing. Specifically, as large blocks of memory are subdivided,
   2255 * the order in which smaller blocks are delivered depends on the order
   2256 * they're subdivided in this function. This is the primary factor
   2257 * influencing the order in which pages are delivered to the IO
   2258 * subsystem according to empirical testing, and this is also justified
   2259 * by considering the behavior of a buddy system containing a single
   2260 * large block of memory acted on by a series of small allocations.
   2261 * This behavior is a critical factor in sglist merging's success.
   2262 *
   2263 * -- nyc
   2264 */
   2265static inline void expand(struct zone *zone, struct page *page,
   2266	int low, int high, int migratetype)
   2267{
   2268	unsigned long size = 1 << high;
   2269
   2270	while (high > low) {
   2271		high--;
   2272		size >>= 1;
   2273		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
   2274
   2275		/*
   2276		 * Mark as guard pages (or page), that will allow to
   2277		 * merge back to allocator when buddy will be freed.
   2278		 * Corresponding page table entries will not be touched,
   2279		 * pages will stay not present in virtual address space
   2280		 */
   2281		if (set_page_guard(zone, &page[size], high, migratetype))
   2282			continue;
   2283
   2284		add_to_free_list(&page[size], zone, high, migratetype);
   2285		set_buddy_order(&page[size], high);
   2286	}
   2287}
   2288
   2289static void check_new_page_bad(struct page *page)
   2290{
   2291	if (unlikely(page->flags & __PG_HWPOISON)) {
   2292		/* Don't complain about hwpoisoned pages */
   2293		page_mapcount_reset(page); /* remove PageBuddy */
   2294		return;
   2295	}
   2296
   2297	bad_page(page,
   2298		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
   2299}
   2300
   2301/*
   2302 * This page is about to be returned from the page allocator
   2303 */
   2304static inline int check_new_page(struct page *page)
   2305{
   2306	if (likely(page_expected_state(page,
   2307				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
   2308		return 0;
   2309
   2310	check_new_page_bad(page);
   2311	return 1;
   2312}
   2313
   2314static bool check_new_pages(struct page *page, unsigned int order)
   2315{
   2316	int i;
   2317	for (i = 0; i < (1 << order); i++) {
   2318		struct page *p = page + i;
   2319
   2320		if (unlikely(check_new_page(p)))
   2321			return true;
   2322	}
   2323
   2324	return false;
   2325}
   2326
   2327#ifdef CONFIG_DEBUG_VM
   2328/*
   2329 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
   2330 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
   2331 * also checked when pcp lists are refilled from the free lists.
   2332 */
   2333static inline bool check_pcp_refill(struct page *page, unsigned int order)
   2334{
   2335	if (debug_pagealloc_enabled_static())
   2336		return check_new_pages(page, order);
   2337	else
   2338		return false;
   2339}
   2340
   2341static inline bool check_new_pcp(struct page *page, unsigned int order)
   2342{
   2343	return check_new_pages(page, order);
   2344}
   2345#else
   2346/*
   2347 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
   2348 * when pcp lists are being refilled from the free lists. With debug_pagealloc
   2349 * enabled, they are also checked when being allocated from the pcp lists.
   2350 */
   2351static inline bool check_pcp_refill(struct page *page, unsigned int order)
   2352{
   2353	return check_new_pages(page, order);
   2354}
   2355static inline bool check_new_pcp(struct page *page, unsigned int order)
   2356{
   2357	if (debug_pagealloc_enabled_static())
   2358		return check_new_pages(page, order);
   2359	else
   2360		return false;
   2361}
   2362#endif /* CONFIG_DEBUG_VM */
   2363
   2364static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
   2365{
   2366	/* Don't skip if a software KASAN mode is enabled. */
   2367	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
   2368	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
   2369		return false;
   2370
   2371	/* Skip, if hardware tag-based KASAN is not enabled. */
   2372	if (!kasan_hw_tags_enabled())
   2373		return true;
   2374
   2375	/*
   2376	 * With hardware tag-based KASAN enabled, skip if either:
   2377	 *
   2378	 * 1. Memory tags have already been cleared via tag_clear_highpage().
   2379	 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
   2380	 */
   2381	return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
   2382}
   2383
   2384static inline bool should_skip_init(gfp_t flags)
   2385{
   2386	/* Don't skip, if hardware tag-based KASAN is not enabled. */
   2387	if (!kasan_hw_tags_enabled())
   2388		return false;
   2389
   2390	/* For hardware tag-based KASAN, skip if requested. */
   2391	return (flags & __GFP_SKIP_ZERO);
   2392}
   2393
   2394inline void post_alloc_hook(struct page *page, unsigned int order,
   2395				gfp_t gfp_flags)
   2396{
   2397	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
   2398			!should_skip_init(gfp_flags);
   2399	bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
   2400
   2401	set_page_private(page, 0);
   2402	set_page_refcounted(page);
   2403
   2404	arch_alloc_page(page, order);
   2405	debug_pagealloc_map_pages(page, 1 << order);
   2406
   2407	/*
   2408	 * Page unpoisoning must happen before memory initialization.
   2409	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
   2410	 * allocations and the page unpoisoning code will complain.
   2411	 */
   2412	kernel_unpoison_pages(page, 1 << order);
   2413
   2414	/*
   2415	 * As memory initialization might be integrated into KASAN,
   2416	 * KASAN unpoisoning and memory initializion code must be
   2417	 * kept together to avoid discrepancies in behavior.
   2418	 */
   2419
   2420	/*
   2421	 * If memory tags should be zeroed (which happens only when memory
   2422	 * should be initialized as well).
   2423	 */
   2424	if (init_tags) {
   2425		int i;
   2426
   2427		/* Initialize both memory and tags. */
   2428		for (i = 0; i != 1 << order; ++i)
   2429			tag_clear_highpage(page + i);
   2430
   2431		/* Note that memory is already initialized by the loop above. */
   2432		init = false;
   2433	}
   2434	if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
   2435		/* Unpoison shadow memory or set memory tags. */
   2436		kasan_unpoison_pages(page, order, init);
   2437
   2438		/* Note that memory is already initialized by KASAN. */
   2439		if (kasan_has_integrated_init())
   2440			init = false;
   2441	}
   2442	/* If memory is still not initialized, do it now. */
   2443	if (init)
   2444		kernel_init_free_pages(page, 1 << order);
   2445	/* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
   2446	if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
   2447		SetPageSkipKASanPoison(page);
   2448
   2449	set_page_owner(page, order, gfp_flags);
   2450	page_table_check_alloc(page, order);
   2451}
   2452
   2453static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
   2454							unsigned int alloc_flags)
   2455{
   2456	post_alloc_hook(page, order, gfp_flags);
   2457
   2458	if (order && (gfp_flags & __GFP_COMP))
   2459		prep_compound_page(page, order);
   2460
   2461	/*
   2462	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
   2463	 * allocate the page. The expectation is that the caller is taking
   2464	 * steps that will free more memory. The caller should avoid the page
   2465	 * being used for !PFMEMALLOC purposes.
   2466	 */
   2467	if (alloc_flags & ALLOC_NO_WATERMARKS)
   2468		set_page_pfmemalloc(page);
   2469	else
   2470		clear_page_pfmemalloc(page);
   2471}
   2472
   2473/*
   2474 * Go through the free lists for the given migratetype and remove
   2475 * the smallest available page from the freelists
   2476 */
   2477static __always_inline
   2478struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
   2479						int migratetype)
   2480{
   2481	unsigned int current_order;
   2482	struct free_area *area;
   2483	struct page *page;
   2484
   2485	/* Find a page of the appropriate size in the preferred list */
   2486	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
   2487		area = &(zone->free_area[current_order]);
   2488		page = get_page_from_free_area(area, migratetype);
   2489		if (!page)
   2490			continue;
   2491		del_page_from_free_list(page, zone, current_order);
   2492		expand(zone, page, order, current_order, migratetype);
   2493		set_pcppage_migratetype(page, migratetype);
   2494		trace_mm_page_alloc_zone_locked(page, order, migratetype,
   2495				pcp_allowed_order(order) &&
   2496				migratetype < MIGRATE_PCPTYPES);
   2497		return page;
   2498	}
   2499
   2500	return NULL;
   2501}
   2502
   2503
   2504/*
   2505 * This array describes the order lists are fallen back to when
   2506 * the free lists for the desirable migrate type are depleted
   2507 *
   2508 * The other migratetypes do not have fallbacks.
   2509 */
   2510static int fallbacks[MIGRATE_TYPES][3] = {
   2511	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
   2512	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
   2513	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
   2514};
   2515
   2516#ifdef CONFIG_CMA
   2517static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
   2518					unsigned int order)
   2519{
   2520	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
   2521}
   2522#else
   2523static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
   2524					unsigned int order) { return NULL; }
   2525#endif
   2526
   2527/*
   2528 * Move the free pages in a range to the freelist tail of the requested type.
   2529 * Note that start_page and end_pages are not aligned on a pageblock
   2530 * boundary. If alignment is required, use move_freepages_block()
   2531 */
   2532static int move_freepages(struct zone *zone,
   2533			  unsigned long start_pfn, unsigned long end_pfn,
   2534			  int migratetype, int *num_movable)
   2535{
   2536	struct page *page;
   2537	unsigned long pfn;
   2538	unsigned int order;
   2539	int pages_moved = 0;
   2540
   2541	for (pfn = start_pfn; pfn <= end_pfn;) {
   2542		page = pfn_to_page(pfn);
   2543		if (!PageBuddy(page)) {
   2544			/*
   2545			 * We assume that pages that could be isolated for
   2546			 * migration are movable. But we don't actually try
   2547			 * isolating, as that would be expensive.
   2548			 */
   2549			if (num_movable &&
   2550					(PageLRU(page) || __PageMovable(page)))
   2551				(*num_movable)++;
   2552			pfn++;
   2553			continue;
   2554		}
   2555
   2556		/* Make sure we are not inadvertently changing nodes */
   2557		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
   2558		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
   2559
   2560		order = buddy_order(page);
   2561		move_to_free_list(page, zone, order, migratetype);
   2562		pfn += 1 << order;
   2563		pages_moved += 1 << order;
   2564	}
   2565
   2566	return pages_moved;
   2567}
   2568
   2569int move_freepages_block(struct zone *zone, struct page *page,
   2570				int migratetype, int *num_movable)
   2571{
   2572	unsigned long start_pfn, end_pfn, pfn;
   2573
   2574	if (num_movable)
   2575		*num_movable = 0;
   2576
   2577	pfn = page_to_pfn(page);
   2578	start_pfn = pfn & ~(pageblock_nr_pages - 1);
   2579	end_pfn = start_pfn + pageblock_nr_pages - 1;
   2580
   2581	/* Do not cross zone boundaries */
   2582	if (!zone_spans_pfn(zone, start_pfn))
   2583		start_pfn = pfn;
   2584	if (!zone_spans_pfn(zone, end_pfn))
   2585		return 0;
   2586
   2587	return move_freepages(zone, start_pfn, end_pfn, migratetype,
   2588								num_movable);
   2589}
   2590
   2591static void change_pageblock_range(struct page *pageblock_page,
   2592					int start_order, int migratetype)
   2593{
   2594	int nr_pageblocks = 1 << (start_order - pageblock_order);
   2595
   2596	while (nr_pageblocks--) {
   2597		set_pageblock_migratetype(pageblock_page, migratetype);
   2598		pageblock_page += pageblock_nr_pages;
   2599	}
   2600}
   2601
   2602/*
   2603 * When we are falling back to another migratetype during allocation, try to
   2604 * steal extra free pages from the same pageblocks to satisfy further
   2605 * allocations, instead of polluting multiple pageblocks.
   2606 *
   2607 * If we are stealing a relatively large buddy page, it is likely there will
   2608 * be more free pages in the pageblock, so try to steal them all. For
   2609 * reclaimable and unmovable allocations, we steal regardless of page size,
   2610 * as fragmentation caused by those allocations polluting movable pageblocks
   2611 * is worse than movable allocations stealing from unmovable and reclaimable
   2612 * pageblocks.
   2613 */
   2614static bool can_steal_fallback(unsigned int order, int start_mt)
   2615{
   2616	/*
   2617	 * Leaving this order check is intended, although there is
   2618	 * relaxed order check in next check. The reason is that
   2619	 * we can actually steal whole pageblock if this condition met,
   2620	 * but, below check doesn't guarantee it and that is just heuristic
   2621	 * so could be changed anytime.
   2622	 */
   2623	if (order >= pageblock_order)
   2624		return true;
   2625
   2626	if (order >= pageblock_order / 2 ||
   2627		start_mt == MIGRATE_RECLAIMABLE ||
   2628		start_mt == MIGRATE_UNMOVABLE ||
   2629		page_group_by_mobility_disabled)
   2630		return true;
   2631
   2632	return false;
   2633}
   2634
   2635static inline bool boost_watermark(struct zone *zone)
   2636{
   2637	unsigned long max_boost;
   2638
   2639	if (!watermark_boost_factor)
   2640		return false;
   2641	/*
   2642	 * Don't bother in zones that are unlikely to produce results.
   2643	 * On small machines, including kdump capture kernels running
   2644	 * in a small area, boosting the watermark can cause an out of
   2645	 * memory situation immediately.
   2646	 */
   2647	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
   2648		return false;
   2649
   2650	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
   2651			watermark_boost_factor, 10000);
   2652
   2653	/*
   2654	 * high watermark may be uninitialised if fragmentation occurs
   2655	 * very early in boot so do not boost. We do not fall
   2656	 * through and boost by pageblock_nr_pages as failing
   2657	 * allocations that early means that reclaim is not going
   2658	 * to help and it may even be impossible to reclaim the
   2659	 * boosted watermark resulting in a hang.
   2660	 */
   2661	if (!max_boost)
   2662		return false;
   2663
   2664	max_boost = max(pageblock_nr_pages, max_boost);
   2665
   2666	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
   2667		max_boost);
   2668
   2669	return true;
   2670}
   2671
   2672/*
   2673 * This function implements actual steal behaviour. If order is large enough,
   2674 * we can steal whole pageblock. If not, we first move freepages in this
   2675 * pageblock to our migratetype and determine how many already-allocated pages
   2676 * are there in the pageblock with a compatible migratetype. If at least half
   2677 * of pages are free or compatible, we can change migratetype of the pageblock
   2678 * itself, so pages freed in the future will be put on the correct free list.
   2679 */
   2680static void steal_suitable_fallback(struct zone *zone, struct page *page,
   2681		unsigned int alloc_flags, int start_type, bool whole_block)
   2682{
   2683	unsigned int current_order = buddy_order(page);
   2684	int free_pages, movable_pages, alike_pages;
   2685	int old_block_type;
   2686
   2687	old_block_type = get_pageblock_migratetype(page);
   2688
   2689	/*
   2690	 * This can happen due to races and we want to prevent broken
   2691	 * highatomic accounting.
   2692	 */
   2693	if (is_migrate_highatomic(old_block_type))
   2694		goto single_page;
   2695
   2696	/* Take ownership for orders >= pageblock_order */
   2697	if (current_order >= pageblock_order) {
   2698		change_pageblock_range(page, current_order, start_type);
   2699		goto single_page;
   2700	}
   2701
   2702	/*
   2703	 * Boost watermarks to increase reclaim pressure to reduce the
   2704	 * likelihood of future fallbacks. Wake kswapd now as the node
   2705	 * may be balanced overall and kswapd will not wake naturally.
   2706	 */
   2707	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
   2708		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
   2709
   2710	/* We are not allowed to try stealing from the whole block */
   2711	if (!whole_block)
   2712		goto single_page;
   2713
   2714	free_pages = move_freepages_block(zone, page, start_type,
   2715						&movable_pages);
   2716	/*
   2717	 * Determine how many pages are compatible with our allocation.
   2718	 * For movable allocation, it's the number of movable pages which
   2719	 * we just obtained. For other types it's a bit more tricky.
   2720	 */
   2721	if (start_type == MIGRATE_MOVABLE) {
   2722		alike_pages = movable_pages;
   2723	} else {
   2724		/*
   2725		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
   2726		 * to MOVABLE pageblock, consider all non-movable pages as
   2727		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
   2728		 * vice versa, be conservative since we can't distinguish the
   2729		 * exact migratetype of non-movable pages.
   2730		 */
   2731		if (old_block_type == MIGRATE_MOVABLE)
   2732			alike_pages = pageblock_nr_pages
   2733						- (free_pages + movable_pages);
   2734		else
   2735			alike_pages = 0;
   2736	}
   2737
   2738	/* moving whole block can fail due to zone boundary conditions */
   2739	if (!free_pages)
   2740		goto single_page;
   2741
   2742	/*
   2743	 * If a sufficient number of pages in the block are either free or of
   2744	 * comparable migratability as our allocation, claim the whole block.
   2745	 */
   2746	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
   2747			page_group_by_mobility_disabled)
   2748		set_pageblock_migratetype(page, start_type);
   2749
   2750	return;
   2751
   2752single_page:
   2753	move_to_free_list(page, zone, current_order, start_type);
   2754}
   2755
   2756/*
   2757 * Check whether there is a suitable fallback freepage with requested order.
   2758 * If only_stealable is true, this function returns fallback_mt only if
   2759 * we can steal other freepages all together. This would help to reduce
   2760 * fragmentation due to mixed migratetype pages in one pageblock.
   2761 */
   2762int find_suitable_fallback(struct free_area *area, unsigned int order,
   2763			int migratetype, bool only_stealable, bool *can_steal)
   2764{
   2765	int i;
   2766	int fallback_mt;
   2767
   2768	if (area->nr_free == 0)
   2769		return -1;
   2770
   2771	*can_steal = false;
   2772	for (i = 0;; i++) {
   2773		fallback_mt = fallbacks[migratetype][i];
   2774		if (fallback_mt == MIGRATE_TYPES)
   2775			break;
   2776
   2777		if (free_area_empty(area, fallback_mt))
   2778			continue;
   2779
   2780		if (can_steal_fallback(order, migratetype))
   2781			*can_steal = true;
   2782
   2783		if (!only_stealable)
   2784			return fallback_mt;
   2785
   2786		if (*can_steal)
   2787			return fallback_mt;
   2788	}
   2789
   2790	return -1;
   2791}
   2792
   2793/*
   2794 * Reserve a pageblock for exclusive use of high-order atomic allocations if
   2795 * there are no empty page blocks that contain a page with a suitable order
   2796 */
   2797static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
   2798				unsigned int alloc_order)
   2799{
   2800	int mt;
   2801	unsigned long max_managed, flags;
   2802
   2803	/*
   2804	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
   2805	 * Check is race-prone but harmless.
   2806	 */
   2807	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
   2808	if (zone->nr_reserved_highatomic >= max_managed)
   2809		return;
   2810
   2811	spin_lock_irqsave(&zone->lock, flags);
   2812
   2813	/* Recheck the nr_reserved_highatomic limit under the lock */
   2814	if (zone->nr_reserved_highatomic >= max_managed)
   2815		goto out_unlock;
   2816
   2817	/* Yoink! */
   2818	mt = get_pageblock_migratetype(page);
   2819	/* Only reserve normal pageblocks (i.e., they can merge with others) */
   2820	if (migratetype_is_mergeable(mt)) {
   2821		zone->nr_reserved_highatomic += pageblock_nr_pages;
   2822		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
   2823		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
   2824	}
   2825
   2826out_unlock:
   2827	spin_unlock_irqrestore(&zone->lock, flags);
   2828}
   2829
   2830/*
   2831 * Used when an allocation is about to fail under memory pressure. This
   2832 * potentially hurts the reliability of high-order allocations when under
   2833 * intense memory pressure but failed atomic allocations should be easier
   2834 * to recover from than an OOM.
   2835 *
   2836 * If @force is true, try to unreserve a pageblock even though highatomic
   2837 * pageblock is exhausted.
   2838 */
   2839static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
   2840						bool force)
   2841{
   2842	struct zonelist *zonelist = ac->zonelist;
   2843	unsigned long flags;
   2844	struct zoneref *z;
   2845	struct zone *zone;
   2846	struct page *page;
   2847	int order;
   2848	bool ret;
   2849
   2850	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
   2851								ac->nodemask) {
   2852		/*
   2853		 * Preserve at least one pageblock unless memory pressure
   2854		 * is really high.
   2855		 */
   2856		if (!force && zone->nr_reserved_highatomic <=
   2857					pageblock_nr_pages)
   2858			continue;
   2859
   2860		spin_lock_irqsave(&zone->lock, flags);
   2861		for (order = 0; order < MAX_ORDER; order++) {
   2862			struct free_area *area = &(zone->free_area[order]);
   2863
   2864			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
   2865			if (!page)
   2866				continue;
   2867
   2868			/*
   2869			 * In page freeing path, migratetype change is racy so
   2870			 * we can counter several free pages in a pageblock
   2871			 * in this loop although we changed the pageblock type
   2872			 * from highatomic to ac->migratetype. So we should
   2873			 * adjust the count once.
   2874			 */
   2875			if (is_migrate_highatomic_page(page)) {
   2876				/*
   2877				 * It should never happen but changes to
   2878				 * locking could inadvertently allow a per-cpu
   2879				 * drain to add pages to MIGRATE_HIGHATOMIC
   2880				 * while unreserving so be safe and watch for
   2881				 * underflows.
   2882				 */
   2883				zone->nr_reserved_highatomic -= min(
   2884						pageblock_nr_pages,
   2885						zone->nr_reserved_highatomic);
   2886			}
   2887
   2888			/*
   2889			 * Convert to ac->migratetype and avoid the normal
   2890			 * pageblock stealing heuristics. Minimally, the caller
   2891			 * is doing the work and needs the pages. More
   2892			 * importantly, if the block was always converted to
   2893			 * MIGRATE_UNMOVABLE or another type then the number
   2894			 * of pageblocks that cannot be completely freed
   2895			 * may increase.
   2896			 */
   2897			set_pageblock_migratetype(page, ac->migratetype);
   2898			ret = move_freepages_block(zone, page, ac->migratetype,
   2899									NULL);
   2900			if (ret) {
   2901				spin_unlock_irqrestore(&zone->lock, flags);
   2902				return ret;
   2903			}
   2904		}
   2905		spin_unlock_irqrestore(&zone->lock, flags);
   2906	}
   2907
   2908	return false;
   2909}
   2910
   2911/*
   2912 * Try finding a free buddy page on the fallback list and put it on the free
   2913 * list of requested migratetype, possibly along with other pages from the same
   2914 * block, depending on fragmentation avoidance heuristics. Returns true if
   2915 * fallback was found so that __rmqueue_smallest() can grab it.
   2916 *
   2917 * The use of signed ints for order and current_order is a deliberate
   2918 * deviation from the rest of this file, to make the for loop
   2919 * condition simpler.
   2920 */
   2921static __always_inline bool
   2922__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
   2923						unsigned int alloc_flags)
   2924{
   2925	struct free_area *area;
   2926	int current_order;
   2927	int min_order = order;
   2928	struct page *page;
   2929	int fallback_mt;
   2930	bool can_steal;
   2931
   2932	/*
   2933	 * Do not steal pages from freelists belonging to other pageblocks
   2934	 * i.e. orders < pageblock_order. If there are no local zones free,
   2935	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
   2936	 */
   2937	if (alloc_flags & ALLOC_NOFRAGMENT)
   2938		min_order = pageblock_order;
   2939
   2940	/*
   2941	 * Find the largest available free page in the other list. This roughly
   2942	 * approximates finding the pageblock with the most free pages, which
   2943	 * would be too costly to do exactly.
   2944	 */
   2945	for (current_order = MAX_ORDER - 1; current_order >= min_order;
   2946				--current_order) {
   2947		area = &(zone->free_area[current_order]);
   2948		fallback_mt = find_suitable_fallback(area, current_order,
   2949				start_migratetype, false, &can_steal);
   2950		if (fallback_mt == -1)
   2951			continue;
   2952
   2953		/*
   2954		 * We cannot steal all free pages from the pageblock and the
   2955		 * requested migratetype is movable. In that case it's better to
   2956		 * steal and split the smallest available page instead of the
   2957		 * largest available page, because even if the next movable
   2958		 * allocation falls back into a different pageblock than this
   2959		 * one, it won't cause permanent fragmentation.
   2960		 */
   2961		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
   2962					&& current_order > order)
   2963			goto find_smallest;
   2964
   2965		goto do_steal;
   2966	}
   2967
   2968	return false;
   2969
   2970find_smallest:
   2971	for (current_order = order; current_order < MAX_ORDER;
   2972							current_order++) {
   2973		area = &(zone->free_area[current_order]);
   2974		fallback_mt = find_suitable_fallback(area, current_order,
   2975				start_migratetype, false, &can_steal);
   2976		if (fallback_mt != -1)
   2977			break;
   2978	}
   2979
   2980	/*
   2981	 * This should not happen - we already found a suitable fallback
   2982	 * when looking for the largest page.
   2983	 */
   2984	VM_BUG_ON(current_order == MAX_ORDER);
   2985
   2986do_steal:
   2987	page = get_page_from_free_area(area, fallback_mt);
   2988
   2989	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
   2990								can_steal);
   2991
   2992	trace_mm_page_alloc_extfrag(page, order, current_order,
   2993		start_migratetype, fallback_mt);
   2994
   2995	return true;
   2996
   2997}
   2998
   2999/*
   3000 * Do the hard work of removing an element from the buddy allocator.
   3001 * Call me with the zone->lock already held.
   3002 */
   3003static __always_inline struct page *
   3004__rmqueue(struct zone *zone, unsigned int order, int migratetype,
   3005						unsigned int alloc_flags)
   3006{
   3007	struct page *page;
   3008
   3009	if (IS_ENABLED(CONFIG_CMA)) {
   3010		/*
   3011		 * Balance movable allocations between regular and CMA areas by
   3012		 * allocating from CMA when over half of the zone's free memory
   3013		 * is in the CMA area.
   3014		 */
   3015		if (alloc_flags & ALLOC_CMA &&
   3016		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
   3017		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
   3018			page = __rmqueue_cma_fallback(zone, order);
   3019			if (page)
   3020				return page;
   3021		}
   3022	}
   3023retry:
   3024	page = __rmqueue_smallest(zone, order, migratetype);
   3025	if (unlikely(!page)) {
   3026		if (alloc_flags & ALLOC_CMA)
   3027			page = __rmqueue_cma_fallback(zone, order);
   3028
   3029		if (!page && __rmqueue_fallback(zone, order, migratetype,
   3030								alloc_flags))
   3031			goto retry;
   3032	}
   3033	return page;
   3034}
   3035
   3036/*
   3037 * Obtain a specified number of elements from the buddy allocator, all under
   3038 * a single hold of the lock, for efficiency.  Add them to the supplied list.
   3039 * Returns the number of new pages which were placed at *list.
   3040 */
   3041static int rmqueue_bulk(struct zone *zone, unsigned int order,
   3042			unsigned long count, struct list_head *list,
   3043			int migratetype, unsigned int alloc_flags)
   3044{
   3045	int i, allocated = 0;
   3046
   3047	/*
   3048	 * local_lock_irq held so equivalent to spin_lock_irqsave for
   3049	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
   3050	 */
   3051	spin_lock(&zone->lock);
   3052	for (i = 0; i < count; ++i) {
   3053		struct page *page = __rmqueue(zone, order, migratetype,
   3054								alloc_flags);
   3055		if (unlikely(page == NULL))
   3056			break;
   3057
   3058		if (unlikely(check_pcp_refill(page, order)))
   3059			continue;
   3060
   3061		/*
   3062		 * Split buddy pages returned by expand() are received here in
   3063		 * physical page order. The page is added to the tail of
   3064		 * caller's list. From the callers perspective, the linked list
   3065		 * is ordered by page number under some conditions. This is
   3066		 * useful for IO devices that can forward direction from the
   3067		 * head, thus also in the physical page order. This is useful
   3068		 * for IO devices that can merge IO requests if the physical
   3069		 * pages are ordered properly.
   3070		 */
   3071		list_add_tail(&page->lru, list);
   3072		allocated++;
   3073		if (is_migrate_cma(get_pcppage_migratetype(page)))
   3074			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
   3075					      -(1 << order));
   3076	}
   3077
   3078	/*
   3079	 * i pages were removed from the buddy list even if some leak due
   3080	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
   3081	 * on i. Do not confuse with 'allocated' which is the number of
   3082	 * pages added to the pcp list.
   3083	 */
   3084	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
   3085	spin_unlock(&zone->lock);
   3086	return allocated;
   3087}
   3088
   3089#ifdef CONFIG_NUMA
   3090/*
   3091 * Called from the vmstat counter updater to drain pagesets of this
   3092 * currently executing processor on remote nodes after they have
   3093 * expired.
   3094 *
   3095 * Note that this function must be called with the thread pinned to
   3096 * a single processor.
   3097 */
   3098void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
   3099{
   3100	unsigned long flags;
   3101	int to_drain, batch;
   3102
   3103	local_lock_irqsave(&pagesets.lock, flags);
   3104	batch = READ_ONCE(pcp->batch);
   3105	to_drain = min(pcp->count, batch);
   3106	if (to_drain > 0)
   3107		free_pcppages_bulk(zone, to_drain, pcp, 0);
   3108	local_unlock_irqrestore(&pagesets.lock, flags);
   3109}
   3110#endif
   3111
   3112/*
   3113 * Drain pcplists of the indicated processor and zone.
   3114 *
   3115 * The processor must either be the current processor and the
   3116 * thread pinned to the current processor or a processor that
   3117 * is not online.
   3118 */
   3119static void drain_pages_zone(unsigned int cpu, struct zone *zone)
   3120{
   3121	unsigned long flags;
   3122	struct per_cpu_pages *pcp;
   3123
   3124	local_lock_irqsave(&pagesets.lock, flags);
   3125
   3126	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
   3127	if (pcp->count)
   3128		free_pcppages_bulk(zone, pcp->count, pcp, 0);
   3129
   3130	local_unlock_irqrestore(&pagesets.lock, flags);
   3131}
   3132
   3133/*
   3134 * Drain pcplists of all zones on the indicated processor.
   3135 *
   3136 * The processor must either be the current processor and the
   3137 * thread pinned to the current processor or a processor that
   3138 * is not online.
   3139 */
   3140static void drain_pages(unsigned int cpu)
   3141{
   3142	struct zone *zone;
   3143
   3144	for_each_populated_zone(zone) {
   3145		drain_pages_zone(cpu, zone);
   3146	}
   3147}
   3148
   3149/*
   3150 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
   3151 *
   3152 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
   3153 * the single zone's pages.
   3154 */
   3155void drain_local_pages(struct zone *zone)
   3156{
   3157	int cpu = smp_processor_id();
   3158
   3159	if (zone)
   3160		drain_pages_zone(cpu, zone);
   3161	else
   3162		drain_pages(cpu);
   3163}
   3164
   3165static void drain_local_pages_wq(struct work_struct *work)
   3166{
   3167	struct pcpu_drain *drain;
   3168
   3169	drain = container_of(work, struct pcpu_drain, work);
   3170
   3171	/*
   3172	 * drain_all_pages doesn't use proper cpu hotplug protection so
   3173	 * we can race with cpu offline when the WQ can move this from
   3174	 * a cpu pinned worker to an unbound one. We can operate on a different
   3175	 * cpu which is alright but we also have to make sure to not move to
   3176	 * a different one.
   3177	 */
   3178	migrate_disable();
   3179	drain_local_pages(drain->zone);
   3180	migrate_enable();
   3181}
   3182
   3183/*
   3184 * The implementation of drain_all_pages(), exposing an extra parameter to
   3185 * drain on all cpus.
   3186 *
   3187 * drain_all_pages() is optimized to only execute on cpus where pcplists are
   3188 * not empty. The check for non-emptiness can however race with a free to
   3189 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
   3190 * that need the guarantee that every CPU has drained can disable the
   3191 * optimizing racy check.
   3192 */
   3193static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
   3194{
   3195	int cpu;
   3196
   3197	/*
   3198	 * Allocate in the BSS so we won't require allocation in
   3199	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
   3200	 */
   3201	static cpumask_t cpus_with_pcps;
   3202
   3203	/*
   3204	 * Make sure nobody triggers this path before mm_percpu_wq is fully
   3205	 * initialized.
   3206	 */
   3207	if (WARN_ON_ONCE(!mm_percpu_wq))
   3208		return;
   3209
   3210	/*
   3211	 * Do not drain if one is already in progress unless it's specific to
   3212	 * a zone. Such callers are primarily CMA and memory hotplug and need
   3213	 * the drain to be complete when the call returns.
   3214	 */
   3215	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
   3216		if (!zone)
   3217			return;
   3218		mutex_lock(&pcpu_drain_mutex);
   3219	}
   3220
   3221	/*
   3222	 * We don't care about racing with CPU hotplug event
   3223	 * as offline notification will cause the notified
   3224	 * cpu to drain that CPU pcps and on_each_cpu_mask
   3225	 * disables preemption as part of its processing
   3226	 */
   3227	for_each_online_cpu(cpu) {
   3228		struct per_cpu_pages *pcp;
   3229		struct zone *z;
   3230		bool has_pcps = false;
   3231
   3232		if (force_all_cpus) {
   3233			/*
   3234			 * The pcp.count check is racy, some callers need a
   3235			 * guarantee that no cpu is missed.
   3236			 */
   3237			has_pcps = true;
   3238		} else if (zone) {
   3239			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
   3240			if (pcp->count)
   3241				has_pcps = true;
   3242		} else {
   3243			for_each_populated_zone(z) {
   3244				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
   3245				if (pcp->count) {
   3246					has_pcps = true;
   3247					break;
   3248				}
   3249			}
   3250		}
   3251
   3252		if (has_pcps)
   3253			cpumask_set_cpu(cpu, &cpus_with_pcps);
   3254		else
   3255			cpumask_clear_cpu(cpu, &cpus_with_pcps);
   3256	}
   3257
   3258	for_each_cpu(cpu, &cpus_with_pcps) {
   3259		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
   3260
   3261		drain->zone = zone;
   3262		INIT_WORK(&drain->work, drain_local_pages_wq);
   3263		queue_work_on(cpu, mm_percpu_wq, &drain->work);
   3264	}
   3265	for_each_cpu(cpu, &cpus_with_pcps)
   3266		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
   3267
   3268	mutex_unlock(&pcpu_drain_mutex);
   3269}
   3270
   3271/*
   3272 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
   3273 *
   3274 * When zone parameter is non-NULL, spill just the single zone's pages.
   3275 *
   3276 * Note that this can be extremely slow as the draining happens in a workqueue.
   3277 */
   3278void drain_all_pages(struct zone *zone)
   3279{
   3280	__drain_all_pages(zone, false);
   3281}
   3282
   3283#ifdef CONFIG_HIBERNATION
   3284
   3285/*
   3286 * Touch the watchdog for every WD_PAGE_COUNT pages.
   3287 */
   3288#define WD_PAGE_COUNT	(128*1024)
   3289
   3290void mark_free_pages(struct zone *zone)
   3291{
   3292	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
   3293	unsigned long flags;
   3294	unsigned int order, t;
   3295	struct page *page;
   3296
   3297	if (zone_is_empty(zone))
   3298		return;
   3299
   3300	spin_lock_irqsave(&zone->lock, flags);
   3301
   3302	max_zone_pfn = zone_end_pfn(zone);
   3303	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
   3304		if (pfn_valid(pfn)) {
   3305			page = pfn_to_page(pfn);
   3306
   3307			if (!--page_count) {
   3308				touch_nmi_watchdog();
   3309				page_count = WD_PAGE_COUNT;
   3310			}
   3311
   3312			if (page_zone(page) != zone)
   3313				continue;
   3314
   3315			if (!swsusp_page_is_forbidden(page))
   3316				swsusp_unset_page_free(page);
   3317		}
   3318
   3319	for_each_migratetype_order(order, t) {
   3320		list_for_each_entry(page,
   3321				&zone->free_area[order].free_list[t], lru) {
   3322			unsigned long i;
   3323
   3324			pfn = page_to_pfn(page);
   3325			for (i = 0; i < (1UL << order); i++) {
   3326				if (!--page_count) {
   3327					touch_nmi_watchdog();
   3328					page_count = WD_PAGE_COUNT;
   3329				}
   3330				swsusp_set_page_free(pfn_to_page(pfn + i));
   3331			}
   3332		}
   3333	}
   3334	spin_unlock_irqrestore(&zone->lock, flags);
   3335}
   3336#endif /* CONFIG_PM */
   3337
   3338static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
   3339							unsigned int order)
   3340{
   3341	int migratetype;
   3342
   3343	if (!free_pcp_prepare(page, order))
   3344		return false;
   3345
   3346	migratetype = get_pfnblock_migratetype(page, pfn);
   3347	set_pcppage_migratetype(page, migratetype);
   3348	return true;
   3349}
   3350
   3351static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
   3352		       bool free_high)
   3353{
   3354	int min_nr_free, max_nr_free;
   3355
   3356	/* Free everything if batch freeing high-order pages. */
   3357	if (unlikely(free_high))
   3358		return pcp->count;
   3359
   3360	/* Check for PCP disabled or boot pageset */
   3361	if (unlikely(high < batch))
   3362		return 1;
   3363
   3364	/* Leave at least pcp->batch pages on the list */
   3365	min_nr_free = batch;
   3366	max_nr_free = high - batch;
   3367
   3368	/*
   3369	 * Double the number of pages freed each time there is subsequent
   3370	 * freeing of pages without any allocation.
   3371	 */
   3372	batch <<= pcp->free_factor;
   3373	if (batch < max_nr_free)
   3374		pcp->free_factor++;
   3375	batch = clamp(batch, min_nr_free, max_nr_free);
   3376
   3377	return batch;
   3378}
   3379
   3380static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
   3381		       bool free_high)
   3382{
   3383	int high = READ_ONCE(pcp->high);
   3384
   3385	if (unlikely(!high || free_high))
   3386		return 0;
   3387
   3388	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
   3389		return high;
   3390
   3391	/*
   3392	 * If reclaim is active, limit the number of pages that can be
   3393	 * stored on pcp lists
   3394	 */
   3395	return min(READ_ONCE(pcp->batch) << 2, high);
   3396}
   3397
   3398static void free_unref_page_commit(struct page *page, int migratetype,
   3399				   unsigned int order)
   3400{
   3401	struct zone *zone = page_zone(page);
   3402	struct per_cpu_pages *pcp;
   3403	int high;
   3404	int pindex;
   3405	bool free_high;
   3406
   3407	__count_vm_event(PGFREE);
   3408	pcp = this_cpu_ptr(zone->per_cpu_pageset);
   3409	pindex = order_to_pindex(migratetype, order);
   3410	list_add(&page->lru, &pcp->lists[pindex]);
   3411	pcp->count += 1 << order;
   3412
   3413	/*
   3414	 * As high-order pages other than THP's stored on PCP can contribute
   3415	 * to fragmentation, limit the number stored when PCP is heavily
   3416	 * freeing without allocation. The remainder after bulk freeing
   3417	 * stops will be drained from vmstat refresh context.
   3418	 */
   3419	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
   3420
   3421	high = nr_pcp_high(pcp, zone, free_high);
   3422	if (pcp->count >= high) {
   3423		int batch = READ_ONCE(pcp->batch);
   3424
   3425		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
   3426	}
   3427}
   3428
   3429/*
   3430 * Free a pcp page
   3431 */
   3432void free_unref_page(struct page *page, unsigned int order)
   3433{
   3434	unsigned long flags;
   3435	unsigned long pfn = page_to_pfn(page);
   3436	int migratetype;
   3437
   3438	if (!free_unref_page_prepare(page, pfn, order))
   3439		return;
   3440
   3441	/*
   3442	 * We only track unmovable, reclaimable and movable on pcp lists.
   3443	 * Place ISOLATE pages on the isolated list because they are being
   3444	 * offlined but treat HIGHATOMIC as movable pages so we can get those
   3445	 * areas back if necessary. Otherwise, we may have to free
   3446	 * excessively into the page allocator
   3447	 */
   3448	migratetype = get_pcppage_migratetype(page);
   3449	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
   3450		if (unlikely(is_migrate_isolate(migratetype))) {
   3451			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
   3452			return;
   3453		}
   3454		migratetype = MIGRATE_MOVABLE;
   3455	}
   3456
   3457	local_lock_irqsave(&pagesets.lock, flags);
   3458	free_unref_page_commit(page, migratetype, order);
   3459	local_unlock_irqrestore(&pagesets.lock, flags);
   3460}
   3461
   3462/*
   3463 * Free a list of 0-order pages
   3464 */
   3465void free_unref_page_list(struct list_head *list)
   3466{
   3467	struct page *page, *next;
   3468	unsigned long flags;
   3469	int batch_count = 0;
   3470	int migratetype;
   3471
   3472	/* Prepare pages for freeing */
   3473	list_for_each_entry_safe(page, next, list, lru) {
   3474		unsigned long pfn = page_to_pfn(page);
   3475		if (!free_unref_page_prepare(page, pfn, 0)) {
   3476			list_del(&page->lru);
   3477			continue;
   3478		}
   3479
   3480		/*
   3481		 * Free isolated pages directly to the allocator, see
   3482		 * comment in free_unref_page.
   3483		 */
   3484		migratetype = get_pcppage_migratetype(page);
   3485		if (unlikely(is_migrate_isolate(migratetype))) {
   3486			list_del(&page->lru);
   3487			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
   3488			continue;
   3489		}
   3490	}
   3491
   3492	local_lock_irqsave(&pagesets.lock, flags);
   3493	list_for_each_entry_safe(page, next, list, lru) {
   3494		/*
   3495		 * Non-isolated types over MIGRATE_PCPTYPES get added
   3496		 * to the MIGRATE_MOVABLE pcp list.
   3497		 */
   3498		migratetype = get_pcppage_migratetype(page);
   3499		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
   3500			migratetype = MIGRATE_MOVABLE;
   3501
   3502		trace_mm_page_free_batched(page);
   3503		free_unref_page_commit(page, migratetype, 0);
   3504
   3505		/*
   3506		 * Guard against excessive IRQ disabled times when we get
   3507		 * a large list of pages to free.
   3508		 */
   3509		if (++batch_count == SWAP_CLUSTER_MAX) {
   3510			local_unlock_irqrestore(&pagesets.lock, flags);
   3511			batch_count = 0;
   3512			local_lock_irqsave(&pagesets.lock, flags);
   3513		}
   3514	}
   3515	local_unlock_irqrestore(&pagesets.lock, flags);
   3516}
   3517
   3518/*
   3519 * split_page takes a non-compound higher-order page, and splits it into
   3520 * n (1<<order) sub-pages: page[0..n]
   3521 * Each sub-page must be freed individually.
   3522 *
   3523 * Note: this is probably too low level an operation for use in drivers.
   3524 * Please consult with lkml before using this in your driver.
   3525 */
   3526void split_page(struct page *page, unsigned int order)
   3527{
   3528	int i;
   3529
   3530	VM_BUG_ON_PAGE(PageCompound(page), page);
   3531	VM_BUG_ON_PAGE(!page_count(page), page);
   3532
   3533	for (i = 1; i < (1 << order); i++)
   3534		set_page_refcounted(page + i);
   3535	split_page_owner(page, 1 << order);
   3536	split_page_memcg(page, 1 << order);
   3537}
   3538EXPORT_SYMBOL_GPL(split_page);
   3539
   3540int __isolate_free_page(struct page *page, unsigned int order)
   3541{
   3542	unsigned long watermark;
   3543	struct zone *zone;
   3544	int mt;
   3545
   3546	BUG_ON(!PageBuddy(page));
   3547
   3548	zone = page_zone(page);
   3549	mt = get_pageblock_migratetype(page);
   3550
   3551	if (!is_migrate_isolate(mt)) {
   3552		/*
   3553		 * Obey watermarks as if the page was being allocated. We can
   3554		 * emulate a high-order watermark check with a raised order-0
   3555		 * watermark, because we already know our high-order page
   3556		 * exists.
   3557		 */
   3558		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
   3559		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
   3560			return 0;
   3561
   3562		__mod_zone_freepage_state(zone, -(1UL << order), mt);
   3563	}
   3564
   3565	/* Remove page from free list */
   3566
   3567	del_page_from_free_list(page, zone, order);
   3568
   3569	/*
   3570	 * Set the pageblock if the isolated page is at least half of a
   3571	 * pageblock
   3572	 */
   3573	if (order >= pageblock_order - 1) {
   3574		struct page *endpage = page + (1 << order) - 1;
   3575		for (; page < endpage; page += pageblock_nr_pages) {
   3576			int mt = get_pageblock_migratetype(page);
   3577			/*
   3578			 * Only change normal pageblocks (i.e., they can merge
   3579			 * with others)
   3580			 */
   3581			if (migratetype_is_mergeable(mt))
   3582				set_pageblock_migratetype(page,
   3583							  MIGRATE_MOVABLE);
   3584		}
   3585	}
   3586
   3587
   3588	return 1UL << order;
   3589}
   3590
   3591/**
   3592 * __putback_isolated_page - Return a now-isolated page back where we got it
   3593 * @page: Page that was isolated
   3594 * @order: Order of the isolated page
   3595 * @mt: The page's pageblock's migratetype
   3596 *
   3597 * This function is meant to return a page pulled from the free lists via
   3598 * __isolate_free_page back to the free lists they were pulled from.
   3599 */
   3600void __putback_isolated_page(struct page *page, unsigned int order, int mt)
   3601{
   3602	struct zone *zone = page_zone(page);
   3603
   3604	/* zone lock should be held when this function is called */
   3605	lockdep_assert_held(&zone->lock);
   3606
   3607	/* Return isolated page to tail of freelist. */
   3608	__free_one_page(page, page_to_pfn(page), zone, order, mt,
   3609			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
   3610}
   3611
   3612/*
   3613 * Update NUMA hit/miss statistics
   3614 *
   3615 * Must be called with interrupts disabled.
   3616 */
   3617static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
   3618				   long nr_account)
   3619{
   3620#ifdef CONFIG_NUMA
   3621	enum numa_stat_item local_stat = NUMA_LOCAL;
   3622
   3623	/* skip numa counters update if numa stats is disabled */
   3624	if (!static_branch_likely(&vm_numa_stat_key))
   3625		return;
   3626
   3627	if (zone_to_nid(z) != numa_node_id())
   3628		local_stat = NUMA_OTHER;
   3629
   3630	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
   3631		__count_numa_events(z, NUMA_HIT, nr_account);
   3632	else {
   3633		__count_numa_events(z, NUMA_MISS, nr_account);
   3634		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
   3635	}
   3636	__count_numa_events(z, local_stat, nr_account);
   3637#endif
   3638}
   3639
   3640/* Remove page from the per-cpu list, caller must protect the list */
   3641static inline
   3642struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
   3643			int migratetype,
   3644			unsigned int alloc_flags,
   3645			struct per_cpu_pages *pcp,
   3646			struct list_head *list)
   3647{
   3648	struct page *page;
   3649
   3650	do {
   3651		if (list_empty(list)) {
   3652			int batch = READ_ONCE(pcp->batch);
   3653			int alloced;
   3654
   3655			/*
   3656			 * Scale batch relative to order if batch implies
   3657			 * free pages can be stored on the PCP. Batch can
   3658			 * be 1 for small zones or for boot pagesets which
   3659			 * should never store free pages as the pages may
   3660			 * belong to arbitrary zones.
   3661			 */
   3662			if (batch > 1)
   3663				batch = max(batch >> order, 2);
   3664			alloced = rmqueue_bulk(zone, order,
   3665					batch, list,
   3666					migratetype, alloc_flags);
   3667
   3668			pcp->count += alloced << order;
   3669			if (unlikely(list_empty(list)))
   3670				return NULL;
   3671		}
   3672
   3673		page = list_first_entry(list, struct page, lru);
   3674		list_del(&page->lru);
   3675		pcp->count -= 1 << order;
   3676	} while (check_new_pcp(page, order));
   3677
   3678	return page;
   3679}
   3680
   3681/* Lock and remove page from the per-cpu list */
   3682static struct page *rmqueue_pcplist(struct zone *preferred_zone,
   3683			struct zone *zone, unsigned int order,
   3684			gfp_t gfp_flags, int migratetype,
   3685			unsigned int alloc_flags)
   3686{
   3687	struct per_cpu_pages *pcp;
   3688	struct list_head *list;
   3689	struct page *page;
   3690	unsigned long flags;
   3691
   3692	local_lock_irqsave(&pagesets.lock, flags);
   3693
   3694	/*
   3695	 * On allocation, reduce the number of pages that are batch freed.
   3696	 * See nr_pcp_free() where free_factor is increased for subsequent
   3697	 * frees.
   3698	 */
   3699	pcp = this_cpu_ptr(zone->per_cpu_pageset);
   3700	pcp->free_factor >>= 1;
   3701	list = &pcp->lists[order_to_pindex(migratetype, order)];
   3702	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
   3703	local_unlock_irqrestore(&pagesets.lock, flags);
   3704	if (page) {
   3705		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
   3706		zone_statistics(preferred_zone, zone, 1);
   3707	}
   3708	return page;
   3709}
   3710
   3711/*
   3712 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
   3713 */
   3714static inline
   3715struct page *rmqueue(struct zone *preferred_zone,
   3716			struct zone *zone, unsigned int order,
   3717			gfp_t gfp_flags, unsigned int alloc_flags,
   3718			int migratetype)
   3719{
   3720	unsigned long flags;
   3721	struct page *page;
   3722
   3723	if (likely(pcp_allowed_order(order))) {
   3724		/*
   3725		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
   3726		 * we need to skip it when CMA area isn't allowed.
   3727		 */
   3728		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
   3729				migratetype != MIGRATE_MOVABLE) {
   3730			page = rmqueue_pcplist(preferred_zone, zone, order,
   3731					gfp_flags, migratetype, alloc_flags);
   3732			goto out;
   3733		}
   3734	}
   3735
   3736	/*
   3737	 * We most definitely don't want callers attempting to
   3738	 * allocate greater than order-1 page units with __GFP_NOFAIL.
   3739	 */
   3740	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
   3741
   3742	do {
   3743		page = NULL;
   3744		spin_lock_irqsave(&zone->lock, flags);
   3745		/*
   3746		 * order-0 request can reach here when the pcplist is skipped
   3747		 * due to non-CMA allocation context. HIGHATOMIC area is
   3748		 * reserved for high-order atomic allocation, so order-0
   3749		 * request should skip it.
   3750		 */
   3751		if (order > 0 && alloc_flags & ALLOC_HARDER)
   3752			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
   3753		if (!page) {
   3754			page = __rmqueue(zone, order, migratetype, alloc_flags);
   3755			if (!page)
   3756				goto failed;
   3757		}
   3758		__mod_zone_freepage_state(zone, -(1 << order),
   3759					  get_pcppage_migratetype(page));
   3760		spin_unlock_irqrestore(&zone->lock, flags);
   3761	} while (check_new_pages(page, order));
   3762
   3763	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
   3764	zone_statistics(preferred_zone, zone, 1);
   3765
   3766out:
   3767	/* Separate test+clear to avoid unnecessary atomics */
   3768	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
   3769		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
   3770		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
   3771	}
   3772
   3773	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
   3774	return page;
   3775
   3776failed:
   3777	spin_unlock_irqrestore(&zone->lock, flags);
   3778	return NULL;
   3779}
   3780
   3781#ifdef CONFIG_FAIL_PAGE_ALLOC
   3782
   3783static struct {
   3784	struct fault_attr attr;
   3785
   3786	bool ignore_gfp_highmem;
   3787	bool ignore_gfp_reclaim;
   3788	u32 min_order;
   3789} fail_page_alloc = {
   3790	.attr = FAULT_ATTR_INITIALIZER,
   3791	.ignore_gfp_reclaim = true,
   3792	.ignore_gfp_highmem = true,
   3793	.min_order = 1,
   3794};
   3795
   3796static int __init setup_fail_page_alloc(char *str)
   3797{
   3798	return setup_fault_attr(&fail_page_alloc.attr, str);
   3799}
   3800__setup("fail_page_alloc=", setup_fail_page_alloc);
   3801
   3802static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
   3803{
   3804	if (order < fail_page_alloc.min_order)
   3805		return false;
   3806	if (gfp_mask & __GFP_NOFAIL)
   3807		return false;
   3808	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
   3809		return false;
   3810	if (fail_page_alloc.ignore_gfp_reclaim &&
   3811			(gfp_mask & __GFP_DIRECT_RECLAIM))
   3812		return false;
   3813
   3814	if (gfp_mask & __GFP_NOWARN)
   3815		fail_page_alloc.attr.no_warn = true;
   3816
   3817	return should_fail(&fail_page_alloc.attr, 1 << order);
   3818}
   3819
   3820#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
   3821
   3822static int __init fail_page_alloc_debugfs(void)
   3823{
   3824	umode_t mode = S_IFREG | 0600;
   3825	struct dentry *dir;
   3826
   3827	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
   3828					&fail_page_alloc.attr);
   3829
   3830	debugfs_create_bool("ignore-gfp-wait", mode, dir,
   3831			    &fail_page_alloc.ignore_gfp_reclaim);
   3832	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
   3833			    &fail_page_alloc.ignore_gfp_highmem);
   3834	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
   3835
   3836	return 0;
   3837}
   3838
   3839late_initcall(fail_page_alloc_debugfs);
   3840
   3841#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
   3842
   3843#else /* CONFIG_FAIL_PAGE_ALLOC */
   3844
   3845static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
   3846{
   3847	return false;
   3848}
   3849
   3850#endif /* CONFIG_FAIL_PAGE_ALLOC */
   3851
   3852noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
   3853{
   3854	return __should_fail_alloc_page(gfp_mask, order);
   3855}
   3856ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
   3857
   3858static inline long __zone_watermark_unusable_free(struct zone *z,
   3859				unsigned int order, unsigned int alloc_flags)
   3860{
   3861	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
   3862	long unusable_free = (1 << order) - 1;
   3863
   3864	/*
   3865	 * If the caller does not have rights to ALLOC_HARDER then subtract
   3866	 * the high-atomic reserves. This will over-estimate the size of the
   3867	 * atomic reserve but it avoids a search.
   3868	 */
   3869	if (likely(!alloc_harder))
   3870		unusable_free += z->nr_reserved_highatomic;
   3871
   3872#ifdef CONFIG_CMA
   3873	/* If allocation can't use CMA areas don't use free CMA pages */
   3874	if (!(alloc_flags & ALLOC_CMA))
   3875		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
   3876#endif
   3877
   3878	return unusable_free;
   3879}
   3880
   3881/*
   3882 * Return true if free base pages are above 'mark'. For high-order checks it
   3883 * will return true of the order-0 watermark is reached and there is at least
   3884 * one free page of a suitable size. Checking now avoids taking the zone lock
   3885 * to check in the allocation paths if no pages are free.
   3886 */
   3887bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
   3888			 int highest_zoneidx, unsigned int alloc_flags,
   3889			 long free_pages)
   3890{
   3891	long min = mark;
   3892	int o;
   3893	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
   3894
   3895	/* free_pages may go negative - that's OK */
   3896	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
   3897
   3898	if (alloc_flags & ALLOC_HIGH)
   3899		min -= min / 2;
   3900
   3901	if (unlikely(alloc_harder)) {
   3902		/*
   3903		 * OOM victims can try even harder than normal ALLOC_HARDER
   3904		 * users on the grounds that it's definitely going to be in
   3905		 * the exit path shortly and free memory. Any allocation it
   3906		 * makes during the free path will be small and short-lived.
   3907		 */
   3908		if (alloc_flags & ALLOC_OOM)
   3909			min -= min / 2;
   3910		else
   3911			min -= min / 4;
   3912	}
   3913
   3914	/*
   3915	 * Check watermarks for an order-0 allocation request. If these
   3916	 * are not met, then a high-order request also cannot go ahead
   3917	 * even if a suitable page happened to be free.
   3918	 */
   3919	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
   3920		return false;
   3921
   3922	/* If this is an order-0 request then the watermark is fine */
   3923	if (!order)
   3924		return true;
   3925
   3926	/* For a high-order request, check at least one suitable page is free */
   3927	for (o = order; o < MAX_ORDER; o++) {
   3928		struct free_area *area = &z->free_area[o];
   3929		int mt;
   3930
   3931		if (!area->nr_free)
   3932			continue;
   3933
   3934		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
   3935			if (!free_area_empty(area, mt))
   3936				return true;
   3937		}
   3938
   3939#ifdef CONFIG_CMA
   3940		if ((alloc_flags & ALLOC_CMA) &&
   3941		    !free_area_empty(area, MIGRATE_CMA)) {
   3942			return true;
   3943		}
   3944#endif
   3945		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
   3946			return true;
   3947	}
   3948	return false;
   3949}
   3950
   3951bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
   3952		      int highest_zoneidx, unsigned int alloc_flags)
   3953{
   3954	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
   3955					zone_page_state(z, NR_FREE_PAGES));
   3956}
   3957
   3958static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
   3959				unsigned long mark, int highest_zoneidx,
   3960				unsigned int alloc_flags, gfp_t gfp_mask)
   3961{
   3962	long free_pages;
   3963
   3964	free_pages = zone_page_state(z, NR_FREE_PAGES);
   3965
   3966	/*
   3967	 * Fast check for order-0 only. If this fails then the reserves
   3968	 * need to be calculated.
   3969	 */
   3970	if (!order) {
   3971		long fast_free;
   3972
   3973		fast_free = free_pages;
   3974		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
   3975		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
   3976			return true;
   3977	}
   3978
   3979	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
   3980					free_pages))
   3981		return true;
   3982	/*
   3983	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
   3984	 * when checking the min watermark. The min watermark is the
   3985	 * point where boosting is ignored so that kswapd is woken up
   3986	 * when below the low watermark.
   3987	 */
   3988	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
   3989		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
   3990		mark = z->_watermark[WMARK_MIN];
   3991		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
   3992					alloc_flags, free_pages);
   3993	}
   3994
   3995	return false;
   3996}
   3997
   3998bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
   3999			unsigned long mark, int highest_zoneidx)
   4000{
   4001	long free_pages = zone_page_state(z, NR_FREE_PAGES);
   4002
   4003	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
   4004		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
   4005
   4006	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
   4007								free_pages);
   4008}
   4009
   4010#ifdef CONFIG_NUMA
   4011int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
   4012
   4013static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
   4014{
   4015	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
   4016				node_reclaim_distance;
   4017}
   4018#else	/* CONFIG_NUMA */
   4019static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
   4020{
   4021	return true;
   4022}
   4023#endif	/* CONFIG_NUMA */
   4024
   4025/*
   4026 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
   4027 * fragmentation is subtle. If the preferred zone was HIGHMEM then
   4028 * premature use of a lower zone may cause lowmem pressure problems that
   4029 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
   4030 * probably too small. It only makes sense to spread allocations to avoid
   4031 * fragmentation between the Normal and DMA32 zones.
   4032 */
   4033static inline unsigned int
   4034alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
   4035{
   4036	unsigned int alloc_flags;
   4037
   4038	/*
   4039	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
   4040	 * to save a branch.
   4041	 */
   4042	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
   4043
   4044#ifdef CONFIG_ZONE_DMA32
   4045	if (!zone)
   4046		return alloc_flags;
   4047
   4048	if (zone_idx(zone) != ZONE_NORMAL)
   4049		return alloc_flags;
   4050
   4051	/*
   4052	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
   4053	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
   4054	 * on UMA that if Normal is populated then so is DMA32.
   4055	 */
   4056	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
   4057	if (nr_online_nodes > 1 && !populated_zone(--zone))
   4058		return alloc_flags;
   4059
   4060	alloc_flags |= ALLOC_NOFRAGMENT;
   4061#endif /* CONFIG_ZONE_DMA32 */
   4062	return alloc_flags;
   4063}
   4064
   4065/* Must be called after current_gfp_context() which can change gfp_mask */
   4066static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
   4067						  unsigned int alloc_flags)
   4068{
   4069#ifdef CONFIG_CMA
   4070	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
   4071		alloc_flags |= ALLOC_CMA;
   4072#endif
   4073	return alloc_flags;
   4074}
   4075
   4076/*
   4077 * get_page_from_freelist goes through the zonelist trying to allocate
   4078 * a page.
   4079 */
   4080static struct page *
   4081get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
   4082						const struct alloc_context *ac)
   4083{
   4084	struct zoneref *z;
   4085	struct zone *zone;
   4086	struct pglist_data *last_pgdat = NULL;
   4087	bool last_pgdat_dirty_ok = false;
   4088	bool no_fallback;
   4089
   4090retry:
   4091	/*
   4092	 * Scan zonelist, looking for a zone with enough free.
   4093	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
   4094	 */
   4095	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
   4096	z = ac->preferred_zoneref;
   4097	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
   4098					ac->nodemask) {
   4099		struct page *page;
   4100		unsigned long mark;
   4101
   4102		if (cpusets_enabled() &&
   4103			(alloc_flags & ALLOC_CPUSET) &&
   4104			!__cpuset_zone_allowed(zone, gfp_mask))
   4105				continue;
   4106		/*
   4107		 * When allocating a page cache page for writing, we
   4108		 * want to get it from a node that is within its dirty
   4109		 * limit, such that no single node holds more than its
   4110		 * proportional share of globally allowed dirty pages.
   4111		 * The dirty limits take into account the node's
   4112		 * lowmem reserves and high watermark so that kswapd
   4113		 * should be able to balance it without having to
   4114		 * write pages from its LRU list.
   4115		 *
   4116		 * XXX: For now, allow allocations to potentially
   4117		 * exceed the per-node dirty limit in the slowpath
   4118		 * (spread_dirty_pages unset) before going into reclaim,
   4119		 * which is important when on a NUMA setup the allowed
   4120		 * nodes are together not big enough to reach the
   4121		 * global limit.  The proper fix for these situations
   4122		 * will require awareness of nodes in the
   4123		 * dirty-throttling and the flusher threads.
   4124		 */
   4125		if (ac->spread_dirty_pages) {
   4126			if (last_pgdat != zone->zone_pgdat) {
   4127				last_pgdat = zone->zone_pgdat;
   4128				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
   4129			}
   4130
   4131			if (!last_pgdat_dirty_ok)
   4132				continue;
   4133		}
   4134
   4135		if (no_fallback && nr_online_nodes > 1 &&
   4136		    zone != ac->preferred_zoneref->zone) {
   4137			int local_nid;
   4138
   4139			/*
   4140			 * If moving to a remote node, retry but allow
   4141			 * fragmenting fallbacks. Locality is more important
   4142			 * than fragmentation avoidance.
   4143			 */
   4144			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
   4145			if (zone_to_nid(zone) != local_nid) {
   4146				alloc_flags &= ~ALLOC_NOFRAGMENT;
   4147				goto retry;
   4148			}
   4149		}
   4150
   4151		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
   4152		if (!zone_watermark_fast(zone, order, mark,
   4153				       ac->highest_zoneidx, alloc_flags,
   4154				       gfp_mask)) {
   4155			int ret;
   4156
   4157#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
   4158			/*
   4159			 * Watermark failed for this zone, but see if we can
   4160			 * grow this zone if it contains deferred pages.
   4161			 */
   4162			if (static_branch_unlikely(&deferred_pages)) {
   4163				if (_deferred_grow_zone(zone, order))
   4164					goto try_this_zone;
   4165			}
   4166#endif
   4167			/* Checked here to keep the fast path fast */
   4168			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
   4169			if (alloc_flags & ALLOC_NO_WATERMARKS)
   4170				goto try_this_zone;
   4171
   4172			if (!node_reclaim_enabled() ||
   4173			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
   4174				continue;
   4175
   4176			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
   4177			switch (ret) {
   4178			case NODE_RECLAIM_NOSCAN:
   4179				/* did not scan */
   4180				continue;
   4181			case NODE_RECLAIM_FULL:
   4182				/* scanned but unreclaimable */
   4183				continue;
   4184			default:
   4185				/* did we reclaim enough */
   4186				if (zone_watermark_ok(zone, order, mark,
   4187					ac->highest_zoneidx, alloc_flags))
   4188					goto try_this_zone;
   4189
   4190				continue;
   4191			}
   4192		}
   4193
   4194try_this_zone:
   4195		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
   4196				gfp_mask, alloc_flags, ac->migratetype);
   4197		if (page) {
   4198			prep_new_page(page, order, gfp_mask, alloc_flags);
   4199
   4200			/*
   4201			 * If this is a high-order atomic allocation then check
   4202			 * if the pageblock should be reserved for the future
   4203			 */
   4204			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
   4205				reserve_highatomic_pageblock(page, zone, order);
   4206
   4207			return page;
   4208		} else {
   4209#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
   4210			/* Try again if zone has deferred pages */
   4211			if (static_branch_unlikely(&deferred_pages)) {
   4212				if (_deferred_grow_zone(zone, order))
   4213					goto try_this_zone;
   4214			}
   4215#endif
   4216		}
   4217	}
   4218
   4219	/*
   4220	 * It's possible on a UMA machine to get through all zones that are
   4221	 * fragmented. If avoiding fragmentation, reset and try again.
   4222	 */
   4223	if (no_fallback) {
   4224		alloc_flags &= ~ALLOC_NOFRAGMENT;
   4225		goto retry;
   4226	}
   4227
   4228	return NULL;
   4229}
   4230
   4231static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
   4232{
   4233	unsigned int filter = SHOW_MEM_FILTER_NODES;
   4234
   4235	/*
   4236	 * This documents exceptions given to allocations in certain
   4237	 * contexts that are allowed to allocate outside current's set
   4238	 * of allowed nodes.
   4239	 */
   4240	if (!(gfp_mask & __GFP_NOMEMALLOC))
   4241		if (tsk_is_oom_victim(current) ||
   4242		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
   4243			filter &= ~SHOW_MEM_FILTER_NODES;
   4244	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
   4245		filter &= ~SHOW_MEM_FILTER_NODES;
   4246
   4247	show_mem(filter, nodemask);
   4248}
   4249
   4250void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
   4251{
   4252	struct va_format vaf;
   4253	va_list args;
   4254	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
   4255
   4256	if ((gfp_mask & __GFP_NOWARN) ||
   4257	     !__ratelimit(&nopage_rs) ||
   4258	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
   4259		return;
   4260
   4261	va_start(args, fmt);
   4262	vaf.fmt = fmt;
   4263	vaf.va = &args;
   4264	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
   4265			current->comm, &vaf, gfp_mask, &gfp_mask,
   4266			nodemask_pr_args(nodemask));
   4267	va_end(args);
   4268
   4269	cpuset_print_current_mems_allowed();
   4270	pr_cont("\n");
   4271	dump_stack();
   4272	warn_alloc_show_mem(gfp_mask, nodemask);
   4273}
   4274
   4275static inline struct page *
   4276__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
   4277			      unsigned int alloc_flags,
   4278			      const struct alloc_context *ac)
   4279{
   4280	struct page *page;
   4281
   4282	page = get_page_from_freelist(gfp_mask, order,
   4283			alloc_flags|ALLOC_CPUSET, ac);
   4284	/*
   4285	 * fallback to ignore cpuset restriction if our nodes
   4286	 * are depleted
   4287	 */
   4288	if (!page)
   4289		page = get_page_from_freelist(gfp_mask, order,
   4290				alloc_flags, ac);
   4291
   4292	return page;
   4293}
   4294
   4295static inline struct page *
   4296__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
   4297	const struct alloc_context *ac, unsigned long *did_some_progress)
   4298{
   4299	struct oom_control oc = {
   4300		.zonelist = ac->zonelist,
   4301		.nodemask = ac->nodemask,
   4302		.memcg = NULL,
   4303		.gfp_mask = gfp_mask,
   4304		.order = order,
   4305	};
   4306	struct page *page;
   4307
   4308	*did_some_progress = 0;
   4309
   4310	/*
   4311	 * Acquire the oom lock.  If that fails, somebody else is
   4312	 * making progress for us.
   4313	 */
   4314	if (!mutex_trylock(&oom_lock)) {
   4315		*did_some_progress = 1;
   4316		schedule_timeout_uninterruptible(1);
   4317		return NULL;
   4318	}
   4319
   4320	/*
   4321	 * Go through the zonelist yet one more time, keep very high watermark
   4322	 * here, this is only to catch a parallel oom killing, we must fail if
   4323	 * we're still under heavy pressure. But make sure that this reclaim
   4324	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
   4325	 * allocation which will never fail due to oom_lock already held.
   4326	 */
   4327	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
   4328				      ~__GFP_DIRECT_RECLAIM, order,
   4329				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
   4330	if (page)
   4331		goto out;
   4332
   4333	/* Coredumps can quickly deplete all memory reserves */
   4334	if (current->flags & PF_DUMPCORE)
   4335		goto out;
   4336	/* The OOM killer will not help higher order allocs */
   4337	if (order > PAGE_ALLOC_COSTLY_ORDER)
   4338		goto out;
   4339	/*
   4340	 * We have already exhausted all our reclaim opportunities without any
   4341	 * success so it is time to admit defeat. We will skip the OOM killer
   4342	 * because it is very likely that the caller has a more reasonable
   4343	 * fallback than shooting a random task.
   4344	 *
   4345	 * The OOM killer may not free memory on a specific node.
   4346	 */
   4347	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
   4348		goto out;
   4349	/* The OOM killer does not needlessly kill tasks for lowmem */
   4350	if (ac->highest_zoneidx < ZONE_NORMAL)
   4351		goto out;
   4352	if (pm_suspended_storage())
   4353		goto out;
   4354	/*
   4355	 * XXX: GFP_NOFS allocations should rather fail than rely on
   4356	 * other request to make a forward progress.
   4357	 * We are in an unfortunate situation where out_of_memory cannot
   4358	 * do much for this context but let's try it to at least get
   4359	 * access to memory reserved if the current task is killed (see
   4360	 * out_of_memory). Once filesystems are ready to handle allocation
   4361	 * failures more gracefully we should just bail out here.
   4362	 */
   4363
   4364	/* Exhausted what can be done so it's blame time */
   4365	if (out_of_memory(&oc) ||
   4366	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
   4367		*did_some_progress = 1;
   4368
   4369		/*
   4370		 * Help non-failing allocations by giving them access to memory
   4371		 * reserves
   4372		 */
   4373		if (gfp_mask & __GFP_NOFAIL)
   4374			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
   4375					ALLOC_NO_WATERMARKS, ac);
   4376	}
   4377out:
   4378	mutex_unlock(&oom_lock);
   4379	return page;
   4380}
   4381
   4382/*
   4383 * Maximum number of compaction retries with a progress before OOM
   4384 * killer is consider as the only way to move forward.
   4385 */
   4386#define MAX_COMPACT_RETRIES 16
   4387
   4388#ifdef CONFIG_COMPACTION
   4389/* Try memory compaction for high-order allocations before reclaim */
   4390static struct page *
   4391__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
   4392		unsigned int alloc_flags, const struct alloc_context *ac,
   4393		enum compact_priority prio, enum compact_result *compact_result)
   4394{
   4395	struct page *page = NULL;
   4396	unsigned long pflags;
   4397	unsigned int noreclaim_flag;
   4398
   4399	if (!order)
   4400		return NULL;
   4401
   4402	psi_memstall_enter(&pflags);
   4403	delayacct_compact_start();
   4404	noreclaim_flag = memalloc_noreclaim_save();
   4405
   4406	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
   4407								prio, &page);
   4408
   4409	memalloc_noreclaim_restore(noreclaim_flag);
   4410	psi_memstall_leave(&pflags);
   4411	delayacct_compact_end();
   4412
   4413	if (*compact_result == COMPACT_SKIPPED)
   4414		return NULL;
   4415	/*
   4416	 * At least in one zone compaction wasn't deferred or skipped, so let's
   4417	 * count a compaction stall
   4418	 */
   4419	count_vm_event(COMPACTSTALL);
   4420
   4421	/* Prep a captured page if available */
   4422	if (page)
   4423		prep_new_page(page, order, gfp_mask, alloc_flags);
   4424
   4425	/* Try get a page from the freelist if available */
   4426	if (!page)
   4427		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
   4428
   4429	if (page) {
   4430		struct zone *zone = page_zone(page);
   4431
   4432		zone->compact_blockskip_flush = false;
   4433		compaction_defer_reset(zone, order, true);
   4434		count_vm_event(COMPACTSUCCESS);
   4435		return page;
   4436	}
   4437
   4438	/*
   4439	 * It's bad if compaction run occurs and fails. The most likely reason
   4440	 * is that pages exist, but not enough to satisfy watermarks.
   4441	 */
   4442	count_vm_event(COMPACTFAIL);
   4443
   4444	cond_resched();
   4445
   4446	return NULL;
   4447}
   4448
   4449static inline bool
   4450should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
   4451		     enum compact_result compact_result,
   4452		     enum compact_priority *compact_priority,
   4453		     int *compaction_retries)
   4454{
   4455	int max_retries = MAX_COMPACT_RETRIES;
   4456	int min_priority;
   4457	bool ret = false;
   4458	int retries = *compaction_retries;
   4459	enum compact_priority priority = *compact_priority;
   4460
   4461	if (!order)
   4462		return false;
   4463
   4464	if (fatal_signal_pending(current))
   4465		return false;
   4466
   4467	if (compaction_made_progress(compact_result))
   4468		(*compaction_retries)++;
   4469
   4470	/*
   4471	 * compaction considers all the zone as desperately out of memory
   4472	 * so it doesn't really make much sense to retry except when the
   4473	 * failure could be caused by insufficient priority
   4474	 */
   4475	if (compaction_failed(compact_result))
   4476		goto check_priority;
   4477
   4478	/*
   4479	 * compaction was skipped because there are not enough order-0 pages
   4480	 * to work with, so we retry only if it looks like reclaim can help.
   4481	 */
   4482	if (compaction_needs_reclaim(compact_result)) {
   4483		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
   4484		goto out;
   4485	}
   4486
   4487	/*
   4488	 * make sure the compaction wasn't deferred or didn't bail out early
   4489	 * due to locks contention before we declare that we should give up.
   4490	 * But the next retry should use a higher priority if allowed, so
   4491	 * we don't just keep bailing out endlessly.
   4492	 */
   4493	if (compaction_withdrawn(compact_result)) {
   4494		goto check_priority;
   4495	}
   4496
   4497	/*
   4498	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
   4499	 * costly ones because they are de facto nofail and invoke OOM
   4500	 * killer to move on while costly can fail and users are ready
   4501	 * to cope with that. 1/4 retries is rather arbitrary but we
   4502	 * would need much more detailed feedback from compaction to
   4503	 * make a better decision.
   4504	 */
   4505	if (order > PAGE_ALLOC_COSTLY_ORDER)
   4506		max_retries /= 4;
   4507	if (*compaction_retries <= max_retries) {
   4508		ret = true;
   4509		goto out;
   4510	}
   4511
   4512	/*
   4513	 * Make sure there are attempts at the highest priority if we exhausted
   4514	 * all retries or failed at the lower priorities.
   4515	 */
   4516check_priority:
   4517	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
   4518			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
   4519
   4520	if (*compact_priority > min_priority) {
   4521		(*compact_priority)--;
   4522		*compaction_retries = 0;
   4523		ret = true;
   4524	}
   4525out:
   4526	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
   4527	return ret;
   4528}
   4529#else
   4530static inline struct page *
   4531__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
   4532		unsigned int alloc_flags, const struct alloc_context *ac,
   4533		enum compact_priority prio, enum compact_result *compact_result)
   4534{
   4535	*compact_result = COMPACT_SKIPPED;
   4536	return NULL;
   4537}
   4538
   4539static inline bool
   4540should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
   4541		     enum compact_result compact_result,
   4542		     enum compact_priority *compact_priority,
   4543		     int *compaction_retries)
   4544{
   4545	struct zone *zone;
   4546	struct zoneref *z;
   4547
   4548	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
   4549		return false;
   4550
   4551	/*
   4552	 * There are setups with compaction disabled which would prefer to loop
   4553	 * inside the allocator rather than hit the oom killer prematurely.
   4554	 * Let's give them a good hope and keep retrying while the order-0
   4555	 * watermarks are OK.
   4556	 */
   4557	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
   4558				ac->highest_zoneidx, ac->nodemask) {
   4559		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
   4560					ac->highest_zoneidx, alloc_flags))
   4561			return true;
   4562	}
   4563	return false;
   4564}
   4565#endif /* CONFIG_COMPACTION */
   4566
   4567#ifdef CONFIG_LOCKDEP
   4568static struct lockdep_map __fs_reclaim_map =
   4569	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
   4570
   4571static bool __need_reclaim(gfp_t gfp_mask)
   4572{
   4573	/* no reclaim without waiting on it */
   4574	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
   4575		return false;
   4576
   4577	/* this guy won't enter reclaim */
   4578	if (current->flags & PF_MEMALLOC)
   4579		return false;
   4580
   4581	if (gfp_mask & __GFP_NOLOCKDEP)
   4582		return false;
   4583
   4584	return true;
   4585}
   4586
   4587void __fs_reclaim_acquire(unsigned long ip)
   4588{
   4589	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
   4590}
   4591
   4592void __fs_reclaim_release(unsigned long ip)
   4593{
   4594	lock_release(&__fs_reclaim_map, ip);
   4595}
   4596
   4597void fs_reclaim_acquire(gfp_t gfp_mask)
   4598{
   4599	gfp_mask = current_gfp_context(gfp_mask);
   4600
   4601	if (__need_reclaim(gfp_mask)) {
   4602		if (gfp_mask & __GFP_FS)
   4603			__fs_reclaim_acquire(_RET_IP_);
   4604
   4605#ifdef CONFIG_MMU_NOTIFIER
   4606		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
   4607		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
   4608#endif
   4609
   4610	}
   4611}
   4612EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
   4613
   4614void fs_reclaim_release(gfp_t gfp_mask)
   4615{
   4616	gfp_mask = current_gfp_context(gfp_mask);
   4617
   4618	if (__need_reclaim(gfp_mask)) {
   4619		if (gfp_mask & __GFP_FS)
   4620			__fs_reclaim_release(_RET_IP_);
   4621	}
   4622}
   4623EXPORT_SYMBOL_GPL(fs_reclaim_release);
   4624#endif
   4625
   4626/* Perform direct synchronous page reclaim */
   4627static unsigned long
   4628__perform_reclaim(gfp_t gfp_mask, unsigned int order,
   4629					const struct alloc_context *ac)
   4630{
   4631	unsigned int noreclaim_flag;
   4632	unsigned long progress;
   4633
   4634	cond_resched();
   4635
   4636	/* We now go into synchronous reclaim */
   4637	cpuset_memory_pressure_bump();
   4638	fs_reclaim_acquire(gfp_mask);
   4639	noreclaim_flag = memalloc_noreclaim_save();
   4640
   4641	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
   4642								ac->nodemask);
   4643
   4644	memalloc_noreclaim_restore(noreclaim_flag);
   4645	fs_reclaim_release(gfp_mask);
   4646
   4647	cond_resched();
   4648
   4649	return progress;
   4650}
   4651
   4652/* The really slow allocator path where we enter direct reclaim */
   4653static inline struct page *
   4654__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
   4655		unsigned int alloc_flags, const struct alloc_context *ac,
   4656		unsigned long *did_some_progress)
   4657{
   4658	struct page *page = NULL;
   4659	unsigned long pflags;
   4660	bool drained = false;
   4661
   4662	psi_memstall_enter(&pflags);
   4663	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
   4664	if (unlikely(!(*did_some_progress)))
   4665		goto out;
   4666
   4667retry:
   4668	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
   4669
   4670	/*
   4671	 * If an allocation failed after direct reclaim, it could be because
   4672	 * pages are pinned on the per-cpu lists or in high alloc reserves.
   4673	 * Shrink them and try again
   4674	 */
   4675	if (!page && !drained) {
   4676		unreserve_highatomic_pageblock(ac, false);
   4677		drain_all_pages(NULL);
   4678		drained = true;
   4679		goto retry;
   4680	}
   4681out:
   4682	psi_memstall_leave(&pflags);
   4683
   4684	return page;
   4685}
   4686
   4687static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
   4688			     const struct alloc_context *ac)
   4689{
   4690	struct zoneref *z;
   4691	struct zone *zone;
   4692	pg_data_t *last_pgdat = NULL;
   4693	enum zone_type highest_zoneidx = ac->highest_zoneidx;
   4694
   4695	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
   4696					ac->nodemask) {
   4697		if (!managed_zone(zone))
   4698			continue;
   4699		if (last_pgdat != zone->zone_pgdat) {
   4700			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
   4701			last_pgdat = zone->zone_pgdat;
   4702		}
   4703	}
   4704}
   4705
   4706static inline unsigned int
   4707gfp_to_alloc_flags(gfp_t gfp_mask)
   4708{
   4709	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
   4710
   4711	/*
   4712	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
   4713	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
   4714	 * to save two branches.
   4715	 */
   4716	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
   4717	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
   4718
   4719	/*
   4720	 * The caller may dip into page reserves a bit more if the caller
   4721	 * cannot run direct reclaim, or if the caller has realtime scheduling
   4722	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
   4723	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
   4724	 */
   4725	alloc_flags |= (__force int)
   4726		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
   4727
   4728	if (gfp_mask & __GFP_ATOMIC) {
   4729		/*
   4730		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
   4731		 * if it can't schedule.
   4732		 */
   4733		if (!(gfp_mask & __GFP_NOMEMALLOC))
   4734			alloc_flags |= ALLOC_HARDER;
   4735		/*
   4736		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
   4737		 * comment for __cpuset_node_allowed().
   4738		 */
   4739		alloc_flags &= ~ALLOC_CPUSET;
   4740	} else if (unlikely(rt_task(current)) && in_task())
   4741		alloc_flags |= ALLOC_HARDER;
   4742
   4743	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
   4744
   4745	return alloc_flags;
   4746}
   4747
   4748static bool oom_reserves_allowed(struct task_struct *tsk)
   4749{
   4750	if (!tsk_is_oom_victim(tsk))
   4751		return false;
   4752
   4753	/*
   4754	 * !MMU doesn't have oom reaper so give access to memory reserves
   4755	 * only to the thread with TIF_MEMDIE set
   4756	 */
   4757	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
   4758		return false;
   4759
   4760	return true;
   4761}
   4762
   4763/*
   4764 * Distinguish requests which really need access to full memory
   4765 * reserves from oom victims which can live with a portion of it
   4766 */
   4767static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
   4768{
   4769	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
   4770		return 0;
   4771	if (gfp_mask & __GFP_MEMALLOC)
   4772		return ALLOC_NO_WATERMARKS;
   4773	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
   4774		return ALLOC_NO_WATERMARKS;
   4775	if (!in_interrupt()) {
   4776		if (current->flags & PF_MEMALLOC)
   4777			return ALLOC_NO_WATERMARKS;
   4778		else if (oom_reserves_allowed(current))
   4779			return ALLOC_OOM;
   4780	}
   4781
   4782	return 0;
   4783}
   4784
   4785bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
   4786{
   4787	return !!__gfp_pfmemalloc_flags(gfp_mask);
   4788}
   4789
   4790/*
   4791 * Checks whether it makes sense to retry the reclaim to make a forward progress
   4792 * for the given allocation request.
   4793 *
   4794 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
   4795 * without success, or when we couldn't even meet the watermark if we
   4796 * reclaimed all remaining pages on the LRU lists.
   4797 *
   4798 * Returns true if a retry is viable or false to enter the oom path.
   4799 */
   4800static inline bool
   4801should_reclaim_retry(gfp_t gfp_mask, unsigned order,
   4802		     struct alloc_context *ac, int alloc_flags,
   4803		     bool did_some_progress, int *no_progress_loops)
   4804{
   4805	struct zone *zone;
   4806	struct zoneref *z;
   4807	bool ret = false;
   4808
   4809	/*
   4810	 * Costly allocations might have made a progress but this doesn't mean
   4811	 * their order will become available due to high fragmentation so
   4812	 * always increment the no progress counter for them
   4813	 */
   4814	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
   4815		*no_progress_loops = 0;
   4816	else
   4817		(*no_progress_loops)++;
   4818
   4819	/*
   4820	 * Make sure we converge to OOM if we cannot make any progress
   4821	 * several times in the row.
   4822	 */
   4823	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
   4824		/* Before OOM, exhaust highatomic_reserve */
   4825		return unreserve_highatomic_pageblock(ac, true);
   4826	}
   4827
   4828	/*
   4829	 * Keep reclaiming pages while there is a chance this will lead
   4830	 * somewhere.  If none of the target zones can satisfy our allocation
   4831	 * request even if all reclaimable pages are considered then we are
   4832	 * screwed and have to go OOM.
   4833	 */
   4834	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
   4835				ac->highest_zoneidx, ac->nodemask) {
   4836		unsigned long available;
   4837		unsigned long reclaimable;
   4838		unsigned long min_wmark = min_wmark_pages(zone);
   4839		bool wmark;
   4840
   4841		available = reclaimable = zone_reclaimable_pages(zone);
   4842		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
   4843
   4844		/*
   4845		 * Would the allocation succeed if we reclaimed all
   4846		 * reclaimable pages?
   4847		 */
   4848		wmark = __zone_watermark_ok(zone, order, min_wmark,
   4849				ac->highest_zoneidx, alloc_flags, available);
   4850		trace_reclaim_retry_zone(z, order, reclaimable,
   4851				available, min_wmark, *no_progress_loops, wmark);
   4852		if (wmark) {
   4853			ret = true;
   4854			break;
   4855		}
   4856	}
   4857
   4858	/*
   4859	 * Memory allocation/reclaim might be called from a WQ context and the
   4860	 * current implementation of the WQ concurrency control doesn't
   4861	 * recognize that a particular WQ is congested if the worker thread is
   4862	 * looping without ever sleeping. Therefore we have to do a short sleep
   4863	 * here rather than calling cond_resched().
   4864	 */
   4865	if (current->flags & PF_WQ_WORKER)
   4866		schedule_timeout_uninterruptible(1);
   4867	else
   4868		cond_resched();
   4869	return ret;
   4870}
   4871
   4872static inline bool
   4873check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
   4874{
   4875	/*
   4876	 * It's possible that cpuset's mems_allowed and the nodemask from
   4877	 * mempolicy don't intersect. This should be normally dealt with by
   4878	 * policy_nodemask(), but it's possible to race with cpuset update in
   4879	 * such a way the check therein was true, and then it became false
   4880	 * before we got our cpuset_mems_cookie here.
   4881	 * This assumes that for all allocations, ac->nodemask can come only
   4882	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
   4883	 * when it does not intersect with the cpuset restrictions) or the
   4884	 * caller can deal with a violated nodemask.
   4885	 */
   4886	if (cpusets_enabled() && ac->nodemask &&
   4887			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
   4888		ac->nodemask = NULL;
   4889		return true;
   4890	}
   4891
   4892	/*
   4893	 * When updating a task's mems_allowed or mempolicy nodemask, it is
   4894	 * possible to race with parallel threads in such a way that our
   4895	 * allocation can fail while the mask is being updated. If we are about
   4896	 * to fail, check if the cpuset changed during allocation and if so,
   4897	 * retry.
   4898	 */
   4899	if (read_mems_allowed_retry(cpuset_mems_cookie))
   4900		return true;
   4901
   4902	return false;
   4903}
   4904
   4905static inline struct page *
   4906__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
   4907						struct alloc_context *ac)
   4908{
   4909	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
   4910	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
   4911	struct page *page = NULL;
   4912	unsigned int alloc_flags;
   4913	unsigned long did_some_progress;
   4914	enum compact_priority compact_priority;
   4915	enum compact_result compact_result;
   4916	int compaction_retries;
   4917	int no_progress_loops;
   4918	unsigned int cpuset_mems_cookie;
   4919	int reserve_flags;
   4920
   4921	/*
   4922	 * We also sanity check to catch abuse of atomic reserves being used by
   4923	 * callers that are not in atomic context.
   4924	 */
   4925	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
   4926				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
   4927		gfp_mask &= ~__GFP_ATOMIC;
   4928
   4929retry_cpuset:
   4930	compaction_retries = 0;
   4931	no_progress_loops = 0;
   4932	compact_priority = DEF_COMPACT_PRIORITY;
   4933	cpuset_mems_cookie = read_mems_allowed_begin();
   4934
   4935	/*
   4936	 * The fast path uses conservative alloc_flags to succeed only until
   4937	 * kswapd needs to be woken up, and to avoid the cost of setting up
   4938	 * alloc_flags precisely. So we do that now.
   4939	 */
   4940	alloc_flags = gfp_to_alloc_flags(gfp_mask);
   4941
   4942	/*
   4943	 * We need to recalculate the starting point for the zonelist iterator
   4944	 * because we might have used different nodemask in the fast path, or
   4945	 * there was a cpuset modification and we are retrying - otherwise we
   4946	 * could end up iterating over non-eligible zones endlessly.
   4947	 */
   4948	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
   4949					ac->highest_zoneidx, ac->nodemask);
   4950	if (!ac->preferred_zoneref->zone)
   4951		goto nopage;
   4952
   4953	/*
   4954	 * Check for insane configurations where the cpuset doesn't contain
   4955	 * any suitable zone to satisfy the request - e.g. non-movable
   4956	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
   4957	 */
   4958	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
   4959		struct zoneref *z = first_zones_zonelist(ac->zonelist,
   4960					ac->highest_zoneidx,
   4961					&cpuset_current_mems_allowed);
   4962		if (!z->zone)
   4963			goto nopage;
   4964	}
   4965
   4966	if (alloc_flags & ALLOC_KSWAPD)
   4967		wake_all_kswapds(order, gfp_mask, ac);
   4968
   4969	/*
   4970	 * The adjusted alloc_flags might result in immediate success, so try
   4971	 * that first
   4972	 */
   4973	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
   4974	if (page)
   4975		goto got_pg;
   4976
   4977	/*
   4978	 * For costly allocations, try direct compaction first, as it's likely
   4979	 * that we have enough base pages and don't need to reclaim. For non-
   4980	 * movable high-order allocations, do that as well, as compaction will
   4981	 * try prevent permanent fragmentation by migrating from blocks of the
   4982	 * same migratetype.
   4983	 * Don't try this for allocations that are allowed to ignore
   4984	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
   4985	 */
   4986	if (can_direct_reclaim &&
   4987			(costly_order ||
   4988			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
   4989			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
   4990		page = __alloc_pages_direct_compact(gfp_mask, order,
   4991						alloc_flags, ac,
   4992						INIT_COMPACT_PRIORITY,
   4993						&compact_result);
   4994		if (page)
   4995			goto got_pg;
   4996
   4997		/*
   4998		 * Checks for costly allocations with __GFP_NORETRY, which
   4999		 * includes some THP page fault allocations
   5000		 */
   5001		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
   5002			/*
   5003			 * If allocating entire pageblock(s) and compaction
   5004			 * failed because all zones are below low watermarks
   5005			 * or is prohibited because it recently failed at this
   5006			 * order, fail immediately unless the allocator has
   5007			 * requested compaction and reclaim retry.
   5008			 *
   5009			 * Reclaim is
   5010			 *  - potentially very expensive because zones are far
   5011			 *    below their low watermarks or this is part of very
   5012			 *    bursty high order allocations,
   5013			 *  - not guaranteed to help because isolate_freepages()
   5014			 *    may not iterate over freed pages as part of its
   5015			 *    linear scan, and
   5016			 *  - unlikely to make entire pageblocks free on its
   5017			 *    own.
   5018			 */
   5019			if (compact_result == COMPACT_SKIPPED ||
   5020			    compact_result == COMPACT_DEFERRED)
   5021				goto nopage;
   5022
   5023			/*
   5024			 * Looks like reclaim/compaction is worth trying, but
   5025			 * sync compaction could be very expensive, so keep
   5026			 * using async compaction.
   5027			 */
   5028			compact_priority = INIT_COMPACT_PRIORITY;
   5029		}
   5030	}
   5031
   5032retry:
   5033	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
   5034	if (alloc_flags & ALLOC_KSWAPD)
   5035		wake_all_kswapds(order, gfp_mask, ac);
   5036
   5037	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
   5038	if (reserve_flags)
   5039		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
   5040
   5041	/*
   5042	 * Reset the nodemask and zonelist iterators if memory policies can be
   5043	 * ignored. These allocations are high priority and system rather than
   5044	 * user oriented.
   5045	 */
   5046	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
   5047		ac->nodemask = NULL;
   5048		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
   5049					ac->highest_zoneidx, ac->nodemask);
   5050	}
   5051
   5052	/* Attempt with potentially adjusted zonelist and alloc_flags */
   5053	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
   5054	if (page)
   5055		goto got_pg;
   5056
   5057	/* Caller is not willing to reclaim, we can't balance anything */
   5058	if (!can_direct_reclaim)
   5059		goto nopage;
   5060
   5061	/* Avoid recursion of direct reclaim */
   5062	if (current->flags & PF_MEMALLOC)
   5063		goto nopage;
   5064
   5065	/* Try direct reclaim and then allocating */
   5066	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
   5067							&did_some_progress);
   5068	if (page)
   5069		goto got_pg;
   5070
   5071	/* Try direct compaction and then allocating */
   5072	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
   5073					compact_priority, &compact_result);
   5074	if (page)
   5075		goto got_pg;
   5076
   5077	/* Do not loop if specifically requested */
   5078	if (gfp_mask & __GFP_NORETRY)
   5079		goto nopage;
   5080
   5081	/*
   5082	 * Do not retry costly high order allocations unless they are
   5083	 * __GFP_RETRY_MAYFAIL
   5084	 */
   5085	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
   5086		goto nopage;
   5087
   5088	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
   5089				 did_some_progress > 0, &no_progress_loops))
   5090		goto retry;
   5091
   5092	/*
   5093	 * It doesn't make any sense to retry for the compaction if the order-0
   5094	 * reclaim is not able to make any progress because the current
   5095	 * implementation of the compaction depends on the sufficient amount
   5096	 * of free memory (see __compaction_suitable)
   5097	 */
   5098	if (did_some_progress > 0 &&
   5099			should_compact_retry(ac, order, alloc_flags,
   5100				compact_result, &compact_priority,
   5101				&compaction_retries))
   5102		goto retry;
   5103
   5104
   5105	/* Deal with possible cpuset update races before we start OOM killing */
   5106	if (check_retry_cpuset(cpuset_mems_cookie, ac))
   5107		goto retry_cpuset;
   5108
   5109	/* Reclaim has failed us, start killing things */
   5110	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
   5111	if (page)
   5112		goto got_pg;
   5113
   5114	/* Avoid allocations with no watermarks from looping endlessly */
   5115	if (tsk_is_oom_victim(current) &&
   5116	    (alloc_flags & ALLOC_OOM ||
   5117	     (gfp_mask & __GFP_NOMEMALLOC)))
   5118		goto nopage;
   5119
   5120	/* Retry as long as the OOM killer is making progress */
   5121	if (did_some_progress) {
   5122		no_progress_loops = 0;
   5123		goto retry;
   5124	}
   5125
   5126nopage:
   5127	/* Deal with possible cpuset update races before we fail */
   5128	if (check_retry_cpuset(cpuset_mems_cookie, ac))
   5129		goto retry_cpuset;
   5130
   5131	/*
   5132	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
   5133	 * we always retry
   5134	 */
   5135	if (gfp_mask & __GFP_NOFAIL) {
   5136		/*
   5137		 * All existing users of the __GFP_NOFAIL are blockable, so warn
   5138		 * of any new users that actually require GFP_NOWAIT
   5139		 */
   5140		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
   5141			goto fail;
   5142
   5143		/*
   5144		 * PF_MEMALLOC request from this context is rather bizarre
   5145		 * because we cannot reclaim anything and only can loop waiting
   5146		 * for somebody to do a work for us
   5147		 */
   5148		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
   5149
   5150		/*
   5151		 * non failing costly orders are a hard requirement which we
   5152		 * are not prepared for much so let's warn about these users
   5153		 * so that we can identify them and convert them to something
   5154		 * else.
   5155		 */
   5156		WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
   5157
   5158		/*
   5159		 * Help non-failing allocations by giving them access to memory
   5160		 * reserves but do not use ALLOC_NO_WATERMARKS because this
   5161		 * could deplete whole memory reserves which would just make
   5162		 * the situation worse
   5163		 */
   5164		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
   5165		if (page)
   5166			goto got_pg;
   5167
   5168		cond_resched();
   5169		goto retry;
   5170	}
   5171fail:
   5172	warn_alloc(gfp_mask, ac->nodemask,
   5173			"page allocation failure: order:%u", order);
   5174got_pg:
   5175	return page;
   5176}
   5177
   5178static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
   5179		int preferred_nid, nodemask_t *nodemask,
   5180		struct alloc_context *ac, gfp_t *alloc_gfp,
   5181		unsigned int *alloc_flags)
   5182{
   5183	ac->highest_zoneidx = gfp_zone(gfp_mask);
   5184	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
   5185	ac->nodemask = nodemask;
   5186	ac->migratetype = gfp_migratetype(gfp_mask);
   5187
   5188	if (cpusets_enabled()) {
   5189		*alloc_gfp |= __GFP_HARDWALL;
   5190		/*
   5191		 * When we are in the interrupt context, it is irrelevant
   5192		 * to the current task context. It means that any node ok.
   5193		 */
   5194		if (in_task() && !ac->nodemask)
   5195			ac->nodemask = &cpuset_current_mems_allowed;
   5196		else
   5197			*alloc_flags |= ALLOC_CPUSET;
   5198	}
   5199
   5200	fs_reclaim_acquire(gfp_mask);
   5201	fs_reclaim_release(gfp_mask);
   5202
   5203	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
   5204
   5205	if (should_fail_alloc_page(gfp_mask, order))
   5206		return false;
   5207
   5208	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
   5209
   5210	/* Dirty zone balancing only done in the fast path */
   5211	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
   5212
   5213	/*
   5214	 * The preferred zone is used for statistics but crucially it is
   5215	 * also used as the starting point for the zonelist iterator. It
   5216	 * may get reset for allocations that ignore memory policies.
   5217	 */
   5218	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
   5219					ac->highest_zoneidx, ac->nodemask);
   5220
   5221	return true;
   5222}
   5223
   5224/*
   5225 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
   5226 * @gfp: GFP flags for the allocation
   5227 * @preferred_nid: The preferred NUMA node ID to allocate from
   5228 * @nodemask: Set of nodes to allocate from, may be NULL
   5229 * @nr_pages: The number of pages desired on the list or array
   5230 * @page_list: Optional list to store the allocated pages
   5231 * @page_array: Optional array to store the pages
   5232 *
   5233 * This is a batched version of the page allocator that attempts to
   5234 * allocate nr_pages quickly. Pages are added to page_list if page_list
   5235 * is not NULL, otherwise it is assumed that the page_array is valid.
   5236 *
   5237 * For lists, nr_pages is the number of pages that should be allocated.
   5238 *
   5239 * For arrays, only NULL elements are populated with pages and nr_pages
   5240 * is the maximum number of pages that will be stored in the array.
   5241 *
   5242 * Returns the number of pages on the list or array.
   5243 */
   5244unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
   5245			nodemask_t *nodemask, int nr_pages,
   5246			struct list_head *page_list,
   5247			struct page **page_array)
   5248{
   5249	struct page *page;
   5250	unsigned long flags;
   5251	struct zone *zone;
   5252	struct zoneref *z;
   5253	struct per_cpu_pages *pcp;
   5254	struct list_head *pcp_list;
   5255	struct alloc_context ac;
   5256	gfp_t alloc_gfp;
   5257	unsigned int alloc_flags = ALLOC_WMARK_LOW;
   5258	int nr_populated = 0, nr_account = 0;
   5259
   5260	/*
   5261	 * Skip populated array elements to determine if any pages need
   5262	 * to be allocated before disabling IRQs.
   5263	 */
   5264	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
   5265		nr_populated++;
   5266
   5267	/* No pages requested? */
   5268	if (unlikely(nr_pages <= 0))
   5269		goto out;
   5270
   5271	/* Already populated array? */
   5272	if (unlikely(page_array && nr_pages - nr_populated == 0))
   5273		goto out;
   5274
   5275	/* Bulk allocator does not support memcg accounting. */
   5276	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
   5277		goto failed;
   5278
   5279	/* Use the single page allocator for one page. */
   5280	if (nr_pages - nr_populated == 1)
   5281		goto failed;
   5282
   5283#ifdef CONFIG_PAGE_OWNER
   5284	/*
   5285	 * PAGE_OWNER may recurse into the allocator to allocate space to
   5286	 * save the stack with pagesets.lock held. Releasing/reacquiring
   5287	 * removes much of the performance benefit of bulk allocation so
   5288	 * force the caller to allocate one page at a time as it'll have
   5289	 * similar performance to added complexity to the bulk allocator.
   5290	 */
   5291	if (static_branch_unlikely(&page_owner_inited))
   5292		goto failed;
   5293#endif
   5294
   5295	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
   5296	gfp &= gfp_allowed_mask;
   5297	alloc_gfp = gfp;
   5298	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
   5299		goto out;
   5300	gfp = alloc_gfp;
   5301
   5302	/* Find an allowed local zone that meets the low watermark. */
   5303	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
   5304		unsigned long mark;
   5305
   5306		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
   5307		    !__cpuset_zone_allowed(zone, gfp)) {
   5308			continue;
   5309		}
   5310
   5311		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
   5312		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
   5313			goto failed;
   5314		}
   5315
   5316		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
   5317		if (zone_watermark_fast(zone, 0,  mark,
   5318				zonelist_zone_idx(ac.preferred_zoneref),
   5319				alloc_flags, gfp)) {
   5320			break;
   5321		}
   5322	}
   5323
   5324	/*
   5325	 * If there are no allowed local zones that meets the watermarks then
   5326	 * try to allocate a single page and reclaim if necessary.
   5327	 */
   5328	if (unlikely(!zone))
   5329		goto failed;
   5330
   5331	/* Attempt the batch allocation */
   5332	local_lock_irqsave(&pagesets.lock, flags);
   5333	pcp = this_cpu_ptr(zone->per_cpu_pageset);
   5334	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
   5335
   5336	while (nr_populated < nr_pages) {
   5337
   5338		/* Skip existing pages */
   5339		if (page_array && page_array[nr_populated]) {
   5340			nr_populated++;
   5341			continue;
   5342		}
   5343
   5344		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
   5345								pcp, pcp_list);
   5346		if (unlikely(!page)) {
   5347			/* Try and allocate at least one page */
   5348			if (!nr_account)
   5349				goto failed_irq;
   5350			break;
   5351		}
   5352		nr_account++;
   5353
   5354		prep_new_page(page, 0, gfp, 0);
   5355		if (page_list)
   5356			list_add(&page->lru, page_list);
   5357		else
   5358			page_array[nr_populated] = page;
   5359		nr_populated++;
   5360	}
   5361
   5362	local_unlock_irqrestore(&pagesets.lock, flags);
   5363
   5364	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
   5365	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
   5366
   5367out:
   5368	return nr_populated;
   5369
   5370failed_irq:
   5371	local_unlock_irqrestore(&pagesets.lock, flags);
   5372
   5373failed:
   5374	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
   5375	if (page) {
   5376		if (page_list)
   5377			list_add(&page->lru, page_list);
   5378		else
   5379			page_array[nr_populated] = page;
   5380		nr_populated++;
   5381	}
   5382
   5383	goto out;
   5384}
   5385EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
   5386
   5387/*
   5388 * This is the 'heart' of the zoned buddy allocator.
   5389 */
   5390struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
   5391							nodemask_t *nodemask)
   5392{
   5393	struct page *page;
   5394	unsigned int alloc_flags = ALLOC_WMARK_LOW;
   5395	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
   5396	struct alloc_context ac = { };
   5397
   5398	/*
   5399	 * There are several places where we assume that the order value is sane
   5400	 * so bail out early if the request is out of bound.
   5401	 */
   5402	if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
   5403		return NULL;
   5404
   5405	gfp &= gfp_allowed_mask;
   5406	/*
   5407	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
   5408	 * resp. GFP_NOIO which has to be inherited for all allocation requests
   5409	 * from a particular context which has been marked by
   5410	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
   5411	 * movable zones are not used during allocation.
   5412	 */
   5413	gfp = current_gfp_context(gfp);
   5414	alloc_gfp = gfp;
   5415	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
   5416			&alloc_gfp, &alloc_flags))
   5417		return NULL;
   5418
   5419	/*
   5420	 * Forbid the first pass from falling back to types that fragment
   5421	 * memory until all local zones are considered.
   5422	 */
   5423	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
   5424
   5425	/* First allocation attempt */
   5426	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
   5427	if (likely(page))
   5428		goto out;
   5429
   5430	alloc_gfp = gfp;
   5431	ac.spread_dirty_pages = false;
   5432
   5433	/*
   5434	 * Restore the original nodemask if it was potentially replaced with
   5435	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
   5436	 */
   5437	ac.nodemask = nodemask;
   5438
   5439	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
   5440
   5441out:
   5442	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
   5443	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
   5444		__free_pages(page, order);
   5445		page = NULL;
   5446	}
   5447
   5448	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
   5449
   5450	return page;
   5451}
   5452EXPORT_SYMBOL(__alloc_pages);
   5453
   5454struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
   5455		nodemask_t *nodemask)
   5456{
   5457	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
   5458			preferred_nid, nodemask);
   5459
   5460	if (page && order > 1)
   5461		prep_transhuge_page(page);
   5462	return (struct folio *)page;
   5463}
   5464EXPORT_SYMBOL(__folio_alloc);
   5465
   5466/*
   5467 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
   5468 * address cannot represent highmem pages. Use alloc_pages and then kmap if
   5469 * you need to access high mem.
   5470 */
   5471unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
   5472{
   5473	struct page *page;
   5474
   5475	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
   5476	if (!page)
   5477		return 0;
   5478	return (unsigned long) page_address(page);
   5479}
   5480EXPORT_SYMBOL(__get_free_pages);
   5481
   5482unsigned long get_zeroed_page(gfp_t gfp_mask)
   5483{
   5484	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
   5485}
   5486EXPORT_SYMBOL(get_zeroed_page);
   5487
   5488/**
   5489 * __free_pages - Free pages allocated with alloc_pages().
   5490 * @page: The page pointer returned from alloc_pages().
   5491 * @order: The order of the allocation.
   5492 *
   5493 * This function can free multi-page allocations that are not compound
   5494 * pages.  It does not check that the @order passed in matches that of
   5495 * the allocation, so it is easy to leak memory.  Freeing more memory
   5496 * than was allocated will probably emit a warning.
   5497 *
   5498 * If the last reference to this page is speculative, it will be released
   5499 * by put_page() which only frees the first page of a non-compound
   5500 * allocation.  To prevent the remaining pages from being leaked, we free
   5501 * the subsequent pages here.  If you want to use the page's reference
   5502 * count to decide when to free the allocation, you should allocate a
   5503 * compound page, and use put_page() instead of __free_pages().
   5504 *
   5505 * Context: May be called in interrupt context or while holding a normal
   5506 * spinlock, but not in NMI context or while holding a raw spinlock.
   5507 */
   5508void __free_pages(struct page *page, unsigned int order)
   5509{
   5510	if (put_page_testzero(page))
   5511		free_the_page(page, order);
   5512	else if (!PageHead(page))
   5513		while (order-- > 0)
   5514			free_the_page(page + (1 << order), order);
   5515}
   5516EXPORT_SYMBOL(__free_pages);
   5517
   5518void free_pages(unsigned long addr, unsigned int order)
   5519{
   5520	if (addr != 0) {
   5521		VM_BUG_ON(!virt_addr_valid((void *)addr));
   5522		__free_pages(virt_to_page((void *)addr), order);
   5523	}
   5524}
   5525
   5526EXPORT_SYMBOL(free_pages);
   5527
   5528/*
   5529 * Page Fragment:
   5530 *  An arbitrary-length arbitrary-offset area of memory which resides
   5531 *  within a 0 or higher order page.  Multiple fragments within that page
   5532 *  are individually refcounted, in the page's reference counter.
   5533 *
   5534 * The page_frag functions below provide a simple allocation framework for
   5535 * page fragments.  This is used by the network stack and network device
   5536 * drivers to provide a backing region of memory for use as either an
   5537 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
   5538 */
   5539static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
   5540					     gfp_t gfp_mask)
   5541{
   5542	struct page *page = NULL;
   5543	gfp_t gfp = gfp_mask;
   5544
   5545#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
   5546	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
   5547		    __GFP_NOMEMALLOC;
   5548	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
   5549				PAGE_FRAG_CACHE_MAX_ORDER);
   5550	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
   5551#endif
   5552	if (unlikely(!page))
   5553		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
   5554
   5555	nc->va = page ? page_address(page) : NULL;
   5556
   5557	return page;
   5558}
   5559
   5560void __page_frag_cache_drain(struct page *page, unsigned int count)
   5561{
   5562	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
   5563
   5564	if (page_ref_sub_and_test(page, count))
   5565		free_the_page(page, compound_order(page));
   5566}
   5567EXPORT_SYMBOL(__page_frag_cache_drain);
   5568
   5569void *page_frag_alloc_align(struct page_frag_cache *nc,
   5570		      unsigned int fragsz, gfp_t gfp_mask,
   5571		      unsigned int align_mask)
   5572{
   5573	unsigned int size = PAGE_SIZE;
   5574	struct page *page;
   5575	int offset;
   5576
   5577	if (unlikely(!nc->va)) {
   5578refill:
   5579		page = __page_frag_cache_refill(nc, gfp_mask);
   5580		if (!page)
   5581			return NULL;
   5582
   5583#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
   5584		/* if size can vary use size else just use PAGE_SIZE */
   5585		size = nc->size;
   5586#endif
   5587		/* Even if we own the page, we do not use atomic_set().
   5588		 * This would break get_page_unless_zero() users.
   5589		 */
   5590		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
   5591
   5592		/* reset page count bias and offset to start of new frag */
   5593		nc->pfmemalloc = page_is_pfmemalloc(page);
   5594		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
   5595		nc->offset = size;
   5596	}
   5597
   5598	offset = nc->offset - fragsz;
   5599	if (unlikely(offset < 0)) {
   5600		page = virt_to_page(nc->va);
   5601
   5602		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
   5603			goto refill;
   5604
   5605		if (unlikely(nc->pfmemalloc)) {
   5606			free_the_page(page, compound_order(page));
   5607			goto refill;
   5608		}
   5609
   5610#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
   5611		/* if size can vary use size else just use PAGE_SIZE */
   5612		size = nc->size;
   5613#endif
   5614		/* OK, page count is 0, we can safely set it */
   5615		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
   5616
   5617		/* reset page count bias and offset to start of new frag */
   5618		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
   5619		offset = size - fragsz;
   5620	}
   5621
   5622	nc->pagecnt_bias--;
   5623	offset &= align_mask;
   5624	nc->offset = offset;
   5625
   5626	return nc->va + offset;
   5627}
   5628EXPORT_SYMBOL(page_frag_alloc_align);
   5629
   5630/*
   5631 * Frees a page fragment allocated out of either a compound or order 0 page.
   5632 */
   5633void page_frag_free(void *addr)
   5634{
   5635	struct page *page = virt_to_head_page(addr);
   5636
   5637	if (unlikely(put_page_testzero(page)))
   5638		free_the_page(page, compound_order(page));
   5639}
   5640EXPORT_SYMBOL(page_frag_free);
   5641
   5642static void *make_alloc_exact(unsigned long addr, unsigned int order,
   5643		size_t size)
   5644{
   5645	if (addr) {
   5646		unsigned long alloc_end = addr + (PAGE_SIZE << order);
   5647		unsigned long used = addr + PAGE_ALIGN(size);
   5648
   5649		split_page(virt_to_page((void *)addr), order);
   5650		while (used < alloc_end) {
   5651			free_page(used);
   5652			used += PAGE_SIZE;
   5653		}
   5654	}
   5655	return (void *)addr;
   5656}
   5657
   5658/**
   5659 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
   5660 * @size: the number of bytes to allocate
   5661 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
   5662 *
   5663 * This function is similar to alloc_pages(), except that it allocates the
   5664 * minimum number of pages to satisfy the request.  alloc_pages() can only
   5665 * allocate memory in power-of-two pages.
   5666 *
   5667 * This function is also limited by MAX_ORDER.
   5668 *
   5669 * Memory allocated by this function must be released by free_pages_exact().
   5670 *
   5671 * Return: pointer to the allocated area or %NULL in case of error.
   5672 */
   5673void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
   5674{
   5675	unsigned int order = get_order(size);
   5676	unsigned long addr;
   5677
   5678	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
   5679		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
   5680
   5681	addr = __get_free_pages(gfp_mask, order);
   5682	return make_alloc_exact(addr, order, size);
   5683}
   5684EXPORT_SYMBOL(alloc_pages_exact);
   5685
   5686/**
   5687 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
   5688 *			   pages on a node.
   5689 * @nid: the preferred node ID where memory should be allocated
   5690 * @size: the number of bytes to allocate
   5691 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
   5692 *
   5693 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
   5694 * back.
   5695 *
   5696 * Return: pointer to the allocated area or %NULL in case of error.
   5697 */
   5698void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
   5699{
   5700	unsigned int order = get_order(size);
   5701	struct page *p;
   5702
   5703	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
   5704		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
   5705
   5706	p = alloc_pages_node(nid, gfp_mask, order);
   5707	if (!p)
   5708		return NULL;
   5709	return make_alloc_exact((unsigned long)page_address(p), order, size);
   5710}
   5711
   5712/**
   5713 * free_pages_exact - release memory allocated via alloc_pages_exact()
   5714 * @virt: the value returned by alloc_pages_exact.
   5715 * @size: size of allocation, same value as passed to alloc_pages_exact().
   5716 *
   5717 * Release the memory allocated by a previous call to alloc_pages_exact.
   5718 */
   5719void free_pages_exact(void *virt, size_t size)
   5720{
   5721	unsigned long addr = (unsigned long)virt;
   5722	unsigned long end = addr + PAGE_ALIGN(size);
   5723
   5724	while (addr < end) {
   5725		free_page(addr);
   5726		addr += PAGE_SIZE;
   5727	}
   5728}
   5729EXPORT_SYMBOL(free_pages_exact);
   5730
   5731/**
   5732 * nr_free_zone_pages - count number of pages beyond high watermark
   5733 * @offset: The zone index of the highest zone
   5734 *
   5735 * nr_free_zone_pages() counts the number of pages which are beyond the
   5736 * high watermark within all zones at or below a given zone index.  For each
   5737 * zone, the number of pages is calculated as:
   5738 *
   5739 *     nr_free_zone_pages = managed_pages - high_pages
   5740 *
   5741 * Return: number of pages beyond high watermark.
   5742 */
   5743static unsigned long nr_free_zone_pages(int offset)
   5744{
   5745	struct zoneref *z;
   5746	struct zone *zone;
   5747
   5748	/* Just pick one node, since fallback list is circular */
   5749	unsigned long sum = 0;
   5750
   5751	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
   5752
   5753	for_each_zone_zonelist(zone, z, zonelist, offset) {
   5754		unsigned long size = zone_managed_pages(zone);
   5755		unsigned long high = high_wmark_pages(zone);
   5756		if (size > high)
   5757			sum += size - high;
   5758	}
   5759
   5760	return sum;
   5761}
   5762
   5763/**
   5764 * nr_free_buffer_pages - count number of pages beyond high watermark
   5765 *
   5766 * nr_free_buffer_pages() counts the number of pages which are beyond the high
   5767 * watermark within ZONE_DMA and ZONE_NORMAL.
   5768 *
   5769 * Return: number of pages beyond high watermark within ZONE_DMA and
   5770 * ZONE_NORMAL.
   5771 */
   5772unsigned long nr_free_buffer_pages(void)
   5773{
   5774	return nr_free_zone_pages(gfp_zone(GFP_USER));
   5775}
   5776EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
   5777
   5778static inline void show_node(struct zone *zone)
   5779{
   5780	if (IS_ENABLED(CONFIG_NUMA))
   5781		printk("Node %d ", zone_to_nid(zone));
   5782}
   5783
   5784long si_mem_available(void)
   5785{
   5786	long available;
   5787	unsigned long pagecache;
   5788	unsigned long wmark_low = 0;
   5789	unsigned long pages[NR_LRU_LISTS];
   5790	unsigned long reclaimable;
   5791	struct zone *zone;
   5792	int lru;
   5793
   5794	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
   5795		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
   5796
   5797	for_each_zone(zone)
   5798		wmark_low += low_wmark_pages(zone);
   5799
   5800	/*
   5801	 * Estimate the amount of memory available for userspace allocations,
   5802	 * without causing swapping.
   5803	 */
   5804	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
   5805
   5806	/*
   5807	 * Not all the page cache can be freed, otherwise the system will
   5808	 * start swapping. Assume at least half of the page cache, or the
   5809	 * low watermark worth of cache, needs to stay.
   5810	 */
   5811	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
   5812	pagecache -= min(pagecache / 2, wmark_low);
   5813	available += pagecache;
   5814
   5815	/*
   5816	 * Part of the reclaimable slab and other kernel memory consists of
   5817	 * items that are in use, and cannot be freed. Cap this estimate at the
   5818	 * low watermark.
   5819	 */
   5820	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
   5821		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
   5822	available += reclaimable - min(reclaimable / 2, wmark_low);
   5823
   5824	if (available < 0)
   5825		available = 0;
   5826	return available;
   5827}
   5828EXPORT_SYMBOL_GPL(si_mem_available);
   5829
   5830void si_meminfo(struct sysinfo *val)
   5831{
   5832	val->totalram = totalram_pages();
   5833	val->sharedram = global_node_page_state(NR_SHMEM);
   5834	val->freeram = global_zone_page_state(NR_FREE_PAGES);
   5835	val->bufferram = nr_blockdev_pages();
   5836	val->totalhigh = totalhigh_pages();
   5837	val->freehigh = nr_free_highpages();
   5838	val->mem_unit = PAGE_SIZE;
   5839}
   5840
   5841EXPORT_SYMBOL(si_meminfo);
   5842
   5843#ifdef CONFIG_NUMA
   5844void si_meminfo_node(struct sysinfo *val, int nid)
   5845{
   5846	int zone_type;		/* needs to be signed */
   5847	unsigned long managed_pages = 0;
   5848	unsigned long managed_highpages = 0;
   5849	unsigned long free_highpages = 0;
   5850	pg_data_t *pgdat = NODE_DATA(nid);
   5851
   5852	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
   5853		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
   5854	val->totalram = managed_pages;
   5855	val->sharedram = node_page_state(pgdat, NR_SHMEM);
   5856	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
   5857#ifdef CONFIG_HIGHMEM
   5858	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
   5859		struct zone *zone = &pgdat->node_zones[zone_type];
   5860
   5861		if (is_highmem(zone)) {
   5862			managed_highpages += zone_managed_pages(zone);
   5863			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
   5864		}
   5865	}
   5866	val->totalhigh = managed_highpages;
   5867	val->freehigh = free_highpages;
   5868#else
   5869	val->totalhigh = managed_highpages;
   5870	val->freehigh = free_highpages;
   5871#endif
   5872	val->mem_unit = PAGE_SIZE;
   5873}
   5874#endif
   5875
   5876/*
   5877 * Determine whether the node should be displayed or not, depending on whether
   5878 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
   5879 */
   5880static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
   5881{
   5882	if (!(flags & SHOW_MEM_FILTER_NODES))
   5883		return false;
   5884
   5885	/*
   5886	 * no node mask - aka implicit memory numa policy. Do not bother with
   5887	 * the synchronization - read_mems_allowed_begin - because we do not
   5888	 * have to be precise here.
   5889	 */
   5890	if (!nodemask)
   5891		nodemask = &cpuset_current_mems_allowed;
   5892
   5893	return !node_isset(nid, *nodemask);
   5894}
   5895
   5896#define K(x) ((x) << (PAGE_SHIFT-10))
   5897
   5898static void show_migration_types(unsigned char type)
   5899{
   5900	static const char types[MIGRATE_TYPES] = {
   5901		[MIGRATE_UNMOVABLE]	= 'U',
   5902		[MIGRATE_MOVABLE]	= 'M',
   5903		[MIGRATE_RECLAIMABLE]	= 'E',
   5904		[MIGRATE_HIGHATOMIC]	= 'H',
   5905#ifdef CONFIG_CMA
   5906		[MIGRATE_CMA]		= 'C',
   5907#endif
   5908#ifdef CONFIG_MEMORY_ISOLATION
   5909		[MIGRATE_ISOLATE]	= 'I',
   5910#endif
   5911	};
   5912	char tmp[MIGRATE_TYPES + 1];
   5913	char *p = tmp;
   5914	int i;
   5915
   5916	for (i = 0; i < MIGRATE_TYPES; i++) {
   5917		if (type & (1 << i))
   5918			*p++ = types[i];
   5919	}
   5920
   5921	*p = '\0';
   5922	printk(KERN_CONT "(%s) ", tmp);
   5923}
   5924
   5925/*
   5926 * Show free area list (used inside shift_scroll-lock stuff)
   5927 * We also calculate the percentage fragmentation. We do this by counting the
   5928 * memory on each free list with the exception of the first item on the list.
   5929 *
   5930 * Bits in @filter:
   5931 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
   5932 *   cpuset.
   5933 */
   5934void show_free_areas(unsigned int filter, nodemask_t *nodemask)
   5935{
   5936	unsigned long free_pcp = 0;
   5937	int cpu;
   5938	struct zone *zone;
   5939	pg_data_t *pgdat;
   5940
   5941	for_each_populated_zone(zone) {
   5942		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
   5943			continue;
   5944
   5945		for_each_online_cpu(cpu)
   5946			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
   5947	}
   5948
   5949	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
   5950		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
   5951		" unevictable:%lu dirty:%lu writeback:%lu\n"
   5952		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
   5953		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
   5954		" kernel_misc_reclaimable:%lu\n"
   5955		" free:%lu free_pcp:%lu free_cma:%lu\n",
   5956		global_node_page_state(NR_ACTIVE_ANON),
   5957		global_node_page_state(NR_INACTIVE_ANON),
   5958		global_node_page_state(NR_ISOLATED_ANON),
   5959		global_node_page_state(NR_ACTIVE_FILE),
   5960		global_node_page_state(NR_INACTIVE_FILE),
   5961		global_node_page_state(NR_ISOLATED_FILE),
   5962		global_node_page_state(NR_UNEVICTABLE),
   5963		global_node_page_state(NR_FILE_DIRTY),
   5964		global_node_page_state(NR_WRITEBACK),
   5965		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
   5966		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
   5967		global_node_page_state(NR_FILE_MAPPED),
   5968		global_node_page_state(NR_SHMEM),
   5969		global_node_page_state(NR_PAGETABLE),
   5970		global_zone_page_state(NR_BOUNCE),
   5971		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
   5972		global_zone_page_state(NR_FREE_PAGES),
   5973		free_pcp,
   5974		global_zone_page_state(NR_FREE_CMA_PAGES));
   5975
   5976	for_each_online_pgdat(pgdat) {
   5977		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
   5978			continue;
   5979
   5980		printk("Node %d"
   5981			" active_anon:%lukB"
   5982			" inactive_anon:%lukB"
   5983			" active_file:%lukB"
   5984			" inactive_file:%lukB"
   5985			" unevictable:%lukB"
   5986			" isolated(anon):%lukB"
   5987			" isolated(file):%lukB"
   5988			" mapped:%lukB"
   5989			" dirty:%lukB"
   5990			" writeback:%lukB"
   5991			" shmem:%lukB"
   5992#ifdef CONFIG_TRANSPARENT_HUGEPAGE
   5993			" shmem_thp: %lukB"
   5994			" shmem_pmdmapped: %lukB"
   5995			" anon_thp: %lukB"
   5996#endif
   5997			" writeback_tmp:%lukB"
   5998			" kernel_stack:%lukB"
   5999#ifdef CONFIG_SHADOW_CALL_STACK
   6000			" shadow_call_stack:%lukB"
   6001#endif
   6002			" pagetables:%lukB"
   6003			" all_unreclaimable? %s"
   6004			"\n",
   6005			pgdat->node_id,
   6006			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
   6007			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
   6008			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
   6009			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
   6010			K(node_page_state(pgdat, NR_UNEVICTABLE)),
   6011			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
   6012			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
   6013			K(node_page_state(pgdat, NR_FILE_MAPPED)),
   6014			K(node_page_state(pgdat, NR_FILE_DIRTY)),
   6015			K(node_page_state(pgdat, NR_WRITEBACK)),
   6016			K(node_page_state(pgdat, NR_SHMEM)),
   6017#ifdef CONFIG_TRANSPARENT_HUGEPAGE
   6018			K(node_page_state(pgdat, NR_SHMEM_THPS)),
   6019			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
   6020			K(node_page_state(pgdat, NR_ANON_THPS)),
   6021#endif
   6022			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
   6023			node_page_state(pgdat, NR_KERNEL_STACK_KB),
   6024#ifdef CONFIG_SHADOW_CALL_STACK
   6025			node_page_state(pgdat, NR_KERNEL_SCS_KB),
   6026#endif
   6027			K(node_page_state(pgdat, NR_PAGETABLE)),
   6028			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
   6029				"yes" : "no");
   6030	}
   6031
   6032	for_each_populated_zone(zone) {
   6033		int i;
   6034
   6035		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
   6036			continue;
   6037
   6038		free_pcp = 0;
   6039		for_each_online_cpu(cpu)
   6040			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
   6041
   6042		show_node(zone);
   6043		printk(KERN_CONT
   6044			"%s"
   6045			" free:%lukB"
   6046			" boost:%lukB"
   6047			" min:%lukB"
   6048			" low:%lukB"
   6049			" high:%lukB"
   6050			" reserved_highatomic:%luKB"
   6051			" active_anon:%lukB"
   6052			" inactive_anon:%lukB"
   6053			" active_file:%lukB"
   6054			" inactive_file:%lukB"
   6055			" unevictable:%lukB"
   6056			" writepending:%lukB"
   6057			" present:%lukB"
   6058			" managed:%lukB"
   6059			" mlocked:%lukB"
   6060			" bounce:%lukB"
   6061			" free_pcp:%lukB"
   6062			" local_pcp:%ukB"
   6063			" free_cma:%lukB"
   6064			"\n",
   6065			zone->name,
   6066			K(zone_page_state(zone, NR_FREE_PAGES)),
   6067			K(zone->watermark_boost),
   6068			K(min_wmark_pages(zone)),
   6069			K(low_wmark_pages(zone)),
   6070			K(high_wmark_pages(zone)),
   6071			K(zone->nr_reserved_highatomic),
   6072			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
   6073			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
   6074			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
   6075			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
   6076			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
   6077			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
   6078			K(zone->present_pages),
   6079			K(zone_managed_pages(zone)),
   6080			K(zone_page_state(zone, NR_MLOCK)),
   6081			K(zone_page_state(zone, NR_BOUNCE)),
   6082			K(free_pcp),
   6083			K(this_cpu_read(zone->per_cpu_pageset->count)),
   6084			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
   6085		printk("lowmem_reserve[]:");
   6086		for (i = 0; i < MAX_NR_ZONES; i++)
   6087			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
   6088		printk(KERN_CONT "\n");
   6089	}
   6090
   6091	for_each_populated_zone(zone) {
   6092		unsigned int order;
   6093		unsigned long nr[MAX_ORDER], flags, total = 0;
   6094		unsigned char types[MAX_ORDER];
   6095
   6096		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
   6097			continue;
   6098		show_node(zone);
   6099		printk(KERN_CONT "%s: ", zone->name);
   6100
   6101		spin_lock_irqsave(&zone->lock, flags);
   6102		for (order = 0; order < MAX_ORDER; order++) {
   6103			struct free_area *area = &zone->free_area[order];
   6104			int type;
   6105
   6106			nr[order] = area->nr_free;
   6107			total += nr[order] << order;
   6108
   6109			types[order] = 0;
   6110			for (type = 0; type < MIGRATE_TYPES; type++) {
   6111				if (!free_area_empty(area, type))
   6112					types[order] |= 1 << type;
   6113			}
   6114		}
   6115		spin_unlock_irqrestore(&zone->lock, flags);
   6116		for (order = 0; order < MAX_ORDER; order++) {
   6117			printk(KERN_CONT "%lu*%lukB ",
   6118			       nr[order], K(1UL) << order);
   6119			if (nr[order])
   6120				show_migration_types(types[order]);
   6121		}
   6122		printk(KERN_CONT "= %lukB\n", K(total));
   6123	}
   6124
   6125	hugetlb_show_meminfo();
   6126
   6127	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
   6128
   6129	show_swap_cache_info();
   6130}
   6131
   6132static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
   6133{
   6134	zoneref->zone = zone;
   6135	zoneref->zone_idx = zone_idx(zone);
   6136}
   6137
   6138/*
   6139 * Builds allocation fallback zone lists.
   6140 *
   6141 * Add all populated zones of a node to the zonelist.
   6142 */
   6143static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
   6144{
   6145	struct zone *zone;
   6146	enum zone_type zone_type = MAX_NR_ZONES;
   6147	int nr_zones = 0;
   6148
   6149	do {
   6150		zone_type--;
   6151		zone = pgdat->node_zones + zone_type;
   6152		if (populated_zone(zone)) {
   6153			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
   6154			check_highest_zone(zone_type);
   6155		}
   6156	} while (zone_type);
   6157
   6158	return nr_zones;
   6159}
   6160
   6161#ifdef CONFIG_NUMA
   6162
   6163static int __parse_numa_zonelist_order(char *s)
   6164{
   6165	/*
   6166	 * We used to support different zonelists modes but they turned
   6167	 * out to be just not useful. Let's keep the warning in place
   6168	 * if somebody still use the cmd line parameter so that we do
   6169	 * not fail it silently
   6170	 */
   6171	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
   6172		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
   6173		return -EINVAL;
   6174	}
   6175	return 0;
   6176}
   6177
   6178char numa_zonelist_order[] = "Node";
   6179
   6180/*
   6181 * sysctl handler for numa_zonelist_order
   6182 */
   6183int numa_zonelist_order_handler(struct ctl_table *table, int write,
   6184		void *buffer, size_t *length, loff_t *ppos)
   6185{
   6186	if (write)
   6187		return __parse_numa_zonelist_order(buffer);
   6188	return proc_dostring(table, write, buffer, length, ppos);
   6189}
   6190
   6191
   6192static int node_load[MAX_NUMNODES];
   6193
   6194/**
   6195 * find_next_best_node - find the next node that should appear in a given node's fallback list
   6196 * @node: node whose fallback list we're appending
   6197 * @used_node_mask: nodemask_t of already used nodes
   6198 *
   6199 * We use a number of factors to determine which is the next node that should
   6200 * appear on a given node's fallback list.  The node should not have appeared
   6201 * already in @node's fallback list, and it should be the next closest node
   6202 * according to the distance array (which contains arbitrary distance values
   6203 * from each node to each node in the system), and should also prefer nodes
   6204 * with no CPUs, since presumably they'll have very little allocation pressure
   6205 * on them otherwise.
   6206 *
   6207 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
   6208 */
   6209int find_next_best_node(int node, nodemask_t *used_node_mask)
   6210{
   6211	int n, val;
   6212	int min_val = INT_MAX;
   6213	int best_node = NUMA_NO_NODE;
   6214
   6215	/* Use the local node if we haven't already */
   6216	if (!node_isset(node, *used_node_mask)) {
   6217		node_set(node, *used_node_mask);
   6218		return node;
   6219	}
   6220
   6221	for_each_node_state(n, N_MEMORY) {
   6222
   6223		/* Don't want a node to appear more than once */
   6224		if (node_isset(n, *used_node_mask))
   6225			continue;
   6226
   6227		/* Use the distance array to find the distance */
   6228		val = node_distance(node, n);
   6229
   6230		/* Penalize nodes under us ("prefer the next node") */
   6231		val += (n < node);
   6232
   6233		/* Give preference to headless and unused nodes */
   6234		if (!cpumask_empty(cpumask_of_node(n)))
   6235			val += PENALTY_FOR_NODE_WITH_CPUS;
   6236
   6237		/* Slight preference for less loaded node */
   6238		val *= MAX_NUMNODES;
   6239		val += node_load[n];
   6240
   6241		if (val < min_val) {
   6242			min_val = val;
   6243			best_node = n;
   6244		}
   6245	}
   6246
   6247	if (best_node >= 0)
   6248		node_set(best_node, *used_node_mask);
   6249
   6250	return best_node;
   6251}
   6252
   6253
   6254/*
   6255 * Build zonelists ordered by node and zones within node.
   6256 * This results in maximum locality--normal zone overflows into local
   6257 * DMA zone, if any--but risks exhausting DMA zone.
   6258 */
   6259static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
   6260		unsigned nr_nodes)
   6261{
   6262	struct zoneref *zonerefs;
   6263	int i;
   6264
   6265	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
   6266
   6267	for (i = 0; i < nr_nodes; i++) {
   6268		int nr_zones;
   6269
   6270		pg_data_t *node = NODE_DATA(node_order[i]);
   6271
   6272		nr_zones = build_zonerefs_node(node, zonerefs);
   6273		zonerefs += nr_zones;
   6274	}
   6275	zonerefs->zone = NULL;
   6276	zonerefs->zone_idx = 0;
   6277}
   6278
   6279/*
   6280 * Build gfp_thisnode zonelists
   6281 */
   6282static void build_thisnode_zonelists(pg_data_t *pgdat)
   6283{
   6284	struct zoneref *zonerefs;
   6285	int nr_zones;
   6286
   6287	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
   6288	nr_zones = build_zonerefs_node(pgdat, zonerefs);
   6289	zonerefs += nr_zones;
   6290	zonerefs->zone = NULL;
   6291	zonerefs->zone_idx = 0;
   6292}
   6293
   6294/*
   6295 * Build zonelists ordered by zone and nodes within zones.
   6296 * This results in conserving DMA zone[s] until all Normal memory is
   6297 * exhausted, but results in overflowing to remote node while memory
   6298 * may still exist in local DMA zone.
   6299 */
   6300
   6301static void build_zonelists(pg_data_t *pgdat)
   6302{
   6303	static int node_order[MAX_NUMNODES];
   6304	int node, nr_nodes = 0;
   6305	nodemask_t used_mask = NODE_MASK_NONE;
   6306	int local_node, prev_node;
   6307
   6308	/* NUMA-aware ordering of nodes */
   6309	local_node = pgdat->node_id;
   6310	prev_node = local_node;
   6311
   6312	memset(node_order, 0, sizeof(node_order));
   6313	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
   6314		/*
   6315		 * We don't want to pressure a particular node.
   6316		 * So adding penalty to the first node in same
   6317		 * distance group to make it round-robin.
   6318		 */
   6319		if (node_distance(local_node, node) !=
   6320		    node_distance(local_node, prev_node))
   6321			node_load[node] += 1;
   6322
   6323		node_order[nr_nodes++] = node;
   6324		prev_node = node;
   6325	}
   6326
   6327	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
   6328	build_thisnode_zonelists(pgdat);
   6329	pr_info("Fallback order for Node %d: ", local_node);
   6330	for (node = 0; node < nr_nodes; node++)
   6331		pr_cont("%d ", node_order[node]);
   6332	pr_cont("\n");
   6333}
   6334
   6335#ifdef CONFIG_HAVE_MEMORYLESS_NODES
   6336/*
   6337 * Return node id of node used for "local" allocations.
   6338 * I.e., first node id of first zone in arg node's generic zonelist.
   6339 * Used for initializing percpu 'numa_mem', which is used primarily
   6340 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
   6341 */
   6342int local_memory_node(int node)
   6343{
   6344	struct zoneref *z;
   6345
   6346	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
   6347				   gfp_zone(GFP_KERNEL),
   6348				   NULL);
   6349	return zone_to_nid(z->zone);
   6350}
   6351#endif
   6352
   6353static void setup_min_unmapped_ratio(void);
   6354static void setup_min_slab_ratio(void);
   6355#else	/* CONFIG_NUMA */
   6356
   6357static void build_zonelists(pg_data_t *pgdat)
   6358{
   6359	int node, local_node;
   6360	struct zoneref *zonerefs;
   6361	int nr_zones;
   6362
   6363	local_node = pgdat->node_id;
   6364
   6365	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
   6366	nr_zones = build_zonerefs_node(pgdat, zonerefs);
   6367	zonerefs += nr_zones;
   6368
   6369	/*
   6370	 * Now we build the zonelist so that it contains the zones
   6371	 * of all the other nodes.
   6372	 * We don't want to pressure a particular node, so when
   6373	 * building the zones for node N, we make sure that the
   6374	 * zones coming right after the local ones are those from
   6375	 * node N+1 (modulo N)
   6376	 */
   6377	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
   6378		if (!node_online(node))
   6379			continue;
   6380		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
   6381		zonerefs += nr_zones;
   6382	}
   6383	for (node = 0; node < local_node; node++) {
   6384		if (!node_online(node))
   6385			continue;
   6386		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
   6387		zonerefs += nr_zones;
   6388	}
   6389
   6390	zonerefs->zone = NULL;
   6391	zonerefs->zone_idx = 0;
   6392}
   6393
   6394#endif	/* CONFIG_NUMA */
   6395
   6396/*
   6397 * Boot pageset table. One per cpu which is going to be used for all
   6398 * zones and all nodes. The parameters will be set in such a way
   6399 * that an item put on a list will immediately be handed over to
   6400 * the buddy list. This is safe since pageset manipulation is done
   6401 * with interrupts disabled.
   6402 *
   6403 * The boot_pagesets must be kept even after bootup is complete for
   6404 * unused processors and/or zones. They do play a role for bootstrapping
   6405 * hotplugged processors.
   6406 *
   6407 * zoneinfo_show() and maybe other functions do
   6408 * not check if the processor is online before following the pageset pointer.
   6409 * Other parts of the kernel may not check if the zone is available.
   6410 */
   6411static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
   6412/* These effectively disable the pcplists in the boot pageset completely */
   6413#define BOOT_PAGESET_HIGH	0
   6414#define BOOT_PAGESET_BATCH	1
   6415static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
   6416static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
   6417DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
   6418
   6419static void __build_all_zonelists(void *data)
   6420{
   6421	int nid;
   6422	int __maybe_unused cpu;
   6423	pg_data_t *self = data;
   6424	static DEFINE_SPINLOCK(lock);
   6425
   6426	spin_lock(&lock);
   6427
   6428#ifdef CONFIG_NUMA
   6429	memset(node_load, 0, sizeof(node_load));
   6430#endif
   6431
   6432	/*
   6433	 * This node is hotadded and no memory is yet present.   So just
   6434	 * building zonelists is fine - no need to touch other nodes.
   6435	 */
   6436	if (self && !node_online(self->node_id)) {
   6437		build_zonelists(self);
   6438	} else {
   6439		/*
   6440		 * All possible nodes have pgdat preallocated
   6441		 * in free_area_init
   6442		 */
   6443		for_each_node(nid) {
   6444			pg_data_t *pgdat = NODE_DATA(nid);
   6445
   6446			build_zonelists(pgdat);
   6447		}
   6448
   6449#ifdef CONFIG_HAVE_MEMORYLESS_NODES
   6450		/*
   6451		 * We now know the "local memory node" for each node--
   6452		 * i.e., the node of the first zone in the generic zonelist.
   6453		 * Set up numa_mem percpu variable for on-line cpus.  During
   6454		 * boot, only the boot cpu should be on-line;  we'll init the
   6455		 * secondary cpus' numa_mem as they come on-line.  During
   6456		 * node/memory hotplug, we'll fixup all on-line cpus.
   6457		 */
   6458		for_each_online_cpu(cpu)
   6459			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
   6460#endif
   6461	}
   6462
   6463	spin_unlock(&lock);
   6464}
   6465
   6466static noinline void __init
   6467build_all_zonelists_init(void)
   6468{
   6469	int cpu;
   6470
   6471	__build_all_zonelists(NULL);
   6472
   6473	/*
   6474	 * Initialize the boot_pagesets that are going to be used
   6475	 * for bootstrapping processors. The real pagesets for
   6476	 * each zone will be allocated later when the per cpu
   6477	 * allocator is available.
   6478	 *
   6479	 * boot_pagesets are used also for bootstrapping offline
   6480	 * cpus if the system is already booted because the pagesets
   6481	 * are needed to initialize allocators on a specific cpu too.
   6482	 * F.e. the percpu allocator needs the page allocator which
   6483	 * needs the percpu allocator in order to allocate its pagesets
   6484	 * (a chicken-egg dilemma).
   6485	 */
   6486	for_each_possible_cpu(cpu)
   6487		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
   6488
   6489	mminit_verify_zonelist();
   6490	cpuset_init_current_mems_allowed();
   6491}
   6492
   6493/*
   6494 * unless system_state == SYSTEM_BOOTING.
   6495 *
   6496 * __ref due to call of __init annotated helper build_all_zonelists_init
   6497 * [protected by SYSTEM_BOOTING].
   6498 */
   6499void __ref build_all_zonelists(pg_data_t *pgdat)
   6500{
   6501	unsigned long vm_total_pages;
   6502
   6503	if (system_state == SYSTEM_BOOTING) {
   6504		build_all_zonelists_init();
   6505	} else {
   6506		__build_all_zonelists(pgdat);
   6507		/* cpuset refresh routine should be here */
   6508	}
   6509	/* Get the number of free pages beyond high watermark in all zones. */
   6510	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
   6511	/*
   6512	 * Disable grouping by mobility if the number of pages in the
   6513	 * system is too low to allow the mechanism to work. It would be
   6514	 * more accurate, but expensive to check per-zone. This check is
   6515	 * made on memory-hotadd so a system can start with mobility
   6516	 * disabled and enable it later
   6517	 */
   6518	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
   6519		page_group_by_mobility_disabled = 1;
   6520	else
   6521		page_group_by_mobility_disabled = 0;
   6522
   6523	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
   6524		nr_online_nodes,
   6525		page_group_by_mobility_disabled ? "off" : "on",
   6526		vm_total_pages);
   6527#ifdef CONFIG_NUMA
   6528	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
   6529#endif
   6530}
   6531
   6532/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
   6533static bool __meminit
   6534overlap_memmap_init(unsigned long zone, unsigned long *pfn)
   6535{
   6536	static struct memblock_region *r;
   6537
   6538	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
   6539		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
   6540			for_each_mem_region(r) {
   6541				if (*pfn < memblock_region_memory_end_pfn(r))
   6542					break;
   6543			}
   6544		}
   6545		if (*pfn >= memblock_region_memory_base_pfn(r) &&
   6546		    memblock_is_mirror(r)) {
   6547			*pfn = memblock_region_memory_end_pfn(r);
   6548			return true;
   6549		}
   6550	}
   6551	return false;
   6552}
   6553
   6554/*
   6555 * Initially all pages are reserved - free ones are freed
   6556 * up by memblock_free_all() once the early boot process is
   6557 * done. Non-atomic initialization, single-pass.
   6558 *
   6559 * All aligned pageblocks are initialized to the specified migratetype
   6560 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
   6561 * zone stats (e.g., nr_isolate_pageblock) are touched.
   6562 */
   6563void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
   6564		unsigned long start_pfn, unsigned long zone_end_pfn,
   6565		enum meminit_context context,
   6566		struct vmem_altmap *altmap, int migratetype)
   6567{
   6568	unsigned long pfn, end_pfn = start_pfn + size;
   6569	struct page *page;
   6570
   6571	if (highest_memmap_pfn < end_pfn - 1)
   6572		highest_memmap_pfn = end_pfn - 1;
   6573
   6574#ifdef CONFIG_ZONE_DEVICE
   6575	/*
   6576	 * Honor reservation requested by the driver for this ZONE_DEVICE
   6577	 * memory. We limit the total number of pages to initialize to just
   6578	 * those that might contain the memory mapping. We will defer the
   6579	 * ZONE_DEVICE page initialization until after we have released
   6580	 * the hotplug lock.
   6581	 */
   6582	if (zone == ZONE_DEVICE) {
   6583		if (!altmap)
   6584			return;
   6585
   6586		if (start_pfn == altmap->base_pfn)
   6587			start_pfn += altmap->reserve;
   6588		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
   6589	}
   6590#endif
   6591
   6592	for (pfn = start_pfn; pfn < end_pfn; ) {
   6593		/*
   6594		 * There can be holes in boot-time mem_map[]s handed to this
   6595		 * function.  They do not exist on hotplugged memory.
   6596		 */
   6597		if (context == MEMINIT_EARLY) {
   6598			if (overlap_memmap_init(zone, &pfn))
   6599				continue;
   6600			if (defer_init(nid, pfn, zone_end_pfn))
   6601				break;
   6602		}
   6603
   6604		page = pfn_to_page(pfn);
   6605		__init_single_page(page, pfn, zone, nid);
   6606		if (context == MEMINIT_HOTPLUG)
   6607			__SetPageReserved(page);
   6608
   6609		/*
   6610		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
   6611		 * such that unmovable allocations won't be scattered all
   6612		 * over the place during system boot.
   6613		 */
   6614		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
   6615			set_pageblock_migratetype(page, migratetype);
   6616			cond_resched();
   6617		}
   6618		pfn++;
   6619	}
   6620}
   6621
   6622#ifdef CONFIG_ZONE_DEVICE
   6623static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
   6624					  unsigned long zone_idx, int nid,
   6625					  struct dev_pagemap *pgmap)
   6626{
   6627
   6628	__init_single_page(page, pfn, zone_idx, nid);
   6629
   6630	/*
   6631	 * Mark page reserved as it will need to wait for onlining
   6632	 * phase for it to be fully associated with a zone.
   6633	 *
   6634	 * We can use the non-atomic __set_bit operation for setting
   6635	 * the flag as we are still initializing the pages.
   6636	 */
   6637	__SetPageReserved(page);
   6638
   6639	/*
   6640	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
   6641	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
   6642	 * ever freed or placed on a driver-private list.
   6643	 */
   6644	page->pgmap = pgmap;
   6645	page->zone_device_data = NULL;
   6646
   6647	/*
   6648	 * Mark the block movable so that blocks are reserved for
   6649	 * movable at startup. This will force kernel allocations
   6650	 * to reserve their blocks rather than leaking throughout
   6651	 * the address space during boot when many long-lived
   6652	 * kernel allocations are made.
   6653	 *
   6654	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
   6655	 * because this is done early in section_activate()
   6656	 */
   6657	if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
   6658		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
   6659		cond_resched();
   6660	}
   6661}
   6662
   6663/*
   6664 * With compound page geometry and when struct pages are stored in ram most
   6665 * tail pages are reused. Consequently, the amount of unique struct pages to
   6666 * initialize is a lot smaller that the total amount of struct pages being
   6667 * mapped. This is a paired / mild layering violation with explicit knowledge
   6668 * of how the sparse_vmemmap internals handle compound pages in the lack
   6669 * of an altmap. See vmemmap_populate_compound_pages().
   6670 */
   6671static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
   6672					      unsigned long nr_pages)
   6673{
   6674	return is_power_of_2(sizeof(struct page)) &&
   6675		!altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
   6676}
   6677
   6678static void __ref memmap_init_compound(struct page *head,
   6679				       unsigned long head_pfn,
   6680				       unsigned long zone_idx, int nid,
   6681				       struct dev_pagemap *pgmap,
   6682				       unsigned long nr_pages)
   6683{
   6684	unsigned long pfn, end_pfn = head_pfn + nr_pages;
   6685	unsigned int order = pgmap->vmemmap_shift;
   6686
   6687	__SetPageHead(head);
   6688	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
   6689		struct page *page = pfn_to_page(pfn);
   6690
   6691		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
   6692		prep_compound_tail(head, pfn - head_pfn);
   6693		set_page_count(page, 0);
   6694
   6695		/*
   6696		 * The first tail page stores compound_mapcount_ptr() and
   6697		 * compound_order() and the second tail page stores
   6698		 * compound_pincount_ptr(). Call prep_compound_head() after
   6699		 * the first and second tail pages have been initialized to
   6700		 * not have the data overwritten.
   6701		 */
   6702		if (pfn == head_pfn + 2)
   6703			prep_compound_head(head, order);
   6704	}
   6705}
   6706
   6707void __ref memmap_init_zone_device(struct zone *zone,
   6708				   unsigned long start_pfn,
   6709				   unsigned long nr_pages,
   6710				   struct dev_pagemap *pgmap)
   6711{
   6712	unsigned long pfn, end_pfn = start_pfn + nr_pages;
   6713	struct pglist_data *pgdat = zone->zone_pgdat;
   6714	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
   6715	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
   6716	unsigned long zone_idx = zone_idx(zone);
   6717	unsigned long start = jiffies;
   6718	int nid = pgdat->node_id;
   6719
   6720	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
   6721		return;
   6722
   6723	/*
   6724	 * The call to memmap_init should have already taken care
   6725	 * of the pages reserved for the memmap, so we can just jump to
   6726	 * the end of that region and start processing the device pages.
   6727	 */
   6728	if (altmap) {
   6729		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
   6730		nr_pages = end_pfn - start_pfn;
   6731	}
   6732
   6733	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
   6734		struct page *page = pfn_to_page(pfn);
   6735
   6736		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
   6737
   6738		if (pfns_per_compound == 1)
   6739			continue;
   6740
   6741		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
   6742				     compound_nr_pages(altmap, pfns_per_compound));
   6743	}
   6744
   6745	pr_info("%s initialised %lu pages in %ums\n", __func__,
   6746		nr_pages, jiffies_to_msecs(jiffies - start));
   6747}
   6748
   6749#endif
   6750static void __meminit zone_init_free_lists(struct zone *zone)
   6751{
   6752	unsigned int order, t;
   6753	for_each_migratetype_order(order, t) {
   6754		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
   6755		zone->free_area[order].nr_free = 0;
   6756	}
   6757}
   6758
   6759/*
   6760 * Only struct pages that correspond to ranges defined by memblock.memory
   6761 * are zeroed and initialized by going through __init_single_page() during
   6762 * memmap_init_zone_range().
   6763 *
   6764 * But, there could be struct pages that correspond to holes in
   6765 * memblock.memory. This can happen because of the following reasons:
   6766 * - physical memory bank size is not necessarily the exact multiple of the
   6767 *   arbitrary section size
   6768 * - early reserved memory may not be listed in memblock.memory
   6769 * - memory layouts defined with memmap= kernel parameter may not align
   6770 *   nicely with memmap sections
   6771 *
   6772 * Explicitly initialize those struct pages so that:
   6773 * - PG_Reserved is set
   6774 * - zone and node links point to zone and node that span the page if the
   6775 *   hole is in the middle of a zone
   6776 * - zone and node links point to adjacent zone/node if the hole falls on
   6777 *   the zone boundary; the pages in such holes will be prepended to the
   6778 *   zone/node above the hole except for the trailing pages in the last
   6779 *   section that will be appended to the zone/node below.
   6780 */
   6781static void __init init_unavailable_range(unsigned long spfn,
   6782					  unsigned long epfn,
   6783					  int zone, int node)
   6784{
   6785	unsigned long pfn;
   6786	u64 pgcnt = 0;
   6787
   6788	for (pfn = spfn; pfn < epfn; pfn++) {
   6789		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
   6790			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
   6791				+ pageblock_nr_pages - 1;
   6792			continue;
   6793		}
   6794		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
   6795		__SetPageReserved(pfn_to_page(pfn));
   6796		pgcnt++;
   6797	}
   6798
   6799	if (pgcnt)
   6800		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
   6801			node, zone_names[zone], pgcnt);
   6802}
   6803
   6804static void __init memmap_init_zone_range(struct zone *zone,
   6805					  unsigned long start_pfn,
   6806					  unsigned long end_pfn,
   6807					  unsigned long *hole_pfn)
   6808{
   6809	unsigned long zone_start_pfn = zone->zone_start_pfn;
   6810	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
   6811	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
   6812
   6813	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
   6814	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
   6815
   6816	if (start_pfn >= end_pfn)
   6817		return;
   6818
   6819	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
   6820			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
   6821
   6822	if (*hole_pfn < start_pfn)
   6823		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
   6824
   6825	*hole_pfn = end_pfn;
   6826}
   6827
   6828static void __init memmap_init(void)
   6829{
   6830	unsigned long start_pfn, end_pfn;
   6831	unsigned long hole_pfn = 0;
   6832	int i, j, zone_id = 0, nid;
   6833
   6834	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
   6835		struct pglist_data *node = NODE_DATA(nid);
   6836
   6837		for (j = 0; j < MAX_NR_ZONES; j++) {
   6838			struct zone *zone = node->node_zones + j;
   6839
   6840			if (!populated_zone(zone))
   6841				continue;
   6842
   6843			memmap_init_zone_range(zone, start_pfn, end_pfn,
   6844					       &hole_pfn);
   6845			zone_id = j;
   6846		}
   6847	}
   6848
   6849#ifdef CONFIG_SPARSEMEM
   6850	/*
   6851	 * Initialize the memory map for hole in the range [memory_end,
   6852	 * section_end].
   6853	 * Append the pages in this hole to the highest zone in the last
   6854	 * node.
   6855	 * The call to init_unavailable_range() is outside the ifdef to
   6856	 * silence the compiler warining about zone_id set but not used;
   6857	 * for FLATMEM it is a nop anyway
   6858	 */
   6859	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
   6860	if (hole_pfn < end_pfn)
   6861#endif
   6862		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
   6863}
   6864
   6865void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
   6866			  phys_addr_t min_addr, int nid, bool exact_nid)
   6867{
   6868	void *ptr;
   6869
   6870	if (exact_nid)
   6871		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
   6872						   MEMBLOCK_ALLOC_ACCESSIBLE,
   6873						   nid);
   6874	else
   6875		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
   6876						 MEMBLOCK_ALLOC_ACCESSIBLE,
   6877						 nid);
   6878
   6879	if (ptr && size > 0)
   6880		page_init_poison(ptr, size);
   6881
   6882	return ptr;
   6883}
   6884
   6885static int zone_batchsize(struct zone *zone)
   6886{
   6887#ifdef CONFIG_MMU
   6888	int batch;
   6889
   6890	/*
   6891	 * The number of pages to batch allocate is either ~0.1%
   6892	 * of the zone or 1MB, whichever is smaller. The batch
   6893	 * size is striking a balance between allocation latency
   6894	 * and zone lock contention.
   6895	 */
   6896	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
   6897	batch /= 4;		/* We effectively *= 4 below */
   6898	if (batch < 1)
   6899		batch = 1;
   6900
   6901	/*
   6902	 * Clamp the batch to a 2^n - 1 value. Having a power
   6903	 * of 2 value was found to be more likely to have
   6904	 * suboptimal cache aliasing properties in some cases.
   6905	 *
   6906	 * For example if 2 tasks are alternately allocating
   6907	 * batches of pages, one task can end up with a lot
   6908	 * of pages of one half of the possible page colors
   6909	 * and the other with pages of the other colors.
   6910	 */
   6911	batch = rounddown_pow_of_two(batch + batch/2) - 1;
   6912
   6913	return batch;
   6914
   6915#else
   6916	/* The deferral and batching of frees should be suppressed under NOMMU
   6917	 * conditions.
   6918	 *
   6919	 * The problem is that NOMMU needs to be able to allocate large chunks
   6920	 * of contiguous memory as there's no hardware page translation to
   6921	 * assemble apparent contiguous memory from discontiguous pages.
   6922	 *
   6923	 * Queueing large contiguous runs of pages for batching, however,
   6924	 * causes the pages to actually be freed in smaller chunks.  As there
   6925	 * can be a significant delay between the individual batches being
   6926	 * recycled, this leads to the once large chunks of space being
   6927	 * fragmented and becoming unavailable for high-order allocations.
   6928	 */
   6929	return 0;
   6930#endif
   6931}
   6932
   6933static int zone_highsize(struct zone *zone, int batch, int cpu_online)
   6934{
   6935#ifdef CONFIG_MMU
   6936	int high;
   6937	int nr_split_cpus;
   6938	unsigned long total_pages;
   6939
   6940	if (!percpu_pagelist_high_fraction) {
   6941		/*
   6942		 * By default, the high value of the pcp is based on the zone
   6943		 * low watermark so that if they are full then background
   6944		 * reclaim will not be started prematurely.
   6945		 */
   6946		total_pages = low_wmark_pages(zone);
   6947	} else {
   6948		/*
   6949		 * If percpu_pagelist_high_fraction is configured, the high
   6950		 * value is based on a fraction of the managed pages in the
   6951		 * zone.
   6952		 */
   6953		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
   6954	}
   6955
   6956	/*
   6957	 * Split the high value across all online CPUs local to the zone. Note
   6958	 * that early in boot that CPUs may not be online yet and that during
   6959	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
   6960	 * onlined. For memory nodes that have no CPUs, split pcp->high across
   6961	 * all online CPUs to mitigate the risk that reclaim is triggered
   6962	 * prematurely due to pages stored on pcp lists.
   6963	 */
   6964	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
   6965	if (!nr_split_cpus)
   6966		nr_split_cpus = num_online_cpus();
   6967	high = total_pages / nr_split_cpus;
   6968
   6969	/*
   6970	 * Ensure high is at least batch*4. The multiple is based on the
   6971	 * historical relationship between high and batch.
   6972	 */
   6973	high = max(high, batch << 2);
   6974
   6975	return high;
   6976#else
   6977	return 0;
   6978#endif
   6979}
   6980
   6981/*
   6982 * pcp->high and pcp->batch values are related and generally batch is lower
   6983 * than high. They are also related to pcp->count such that count is lower
   6984 * than high, and as soon as it reaches high, the pcplist is flushed.
   6985 *
   6986 * However, guaranteeing these relations at all times would require e.g. write
   6987 * barriers here but also careful usage of read barriers at the read side, and
   6988 * thus be prone to error and bad for performance. Thus the update only prevents
   6989 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
   6990 * can cope with those fields changing asynchronously, and fully trust only the
   6991 * pcp->count field on the local CPU with interrupts disabled.
   6992 *
   6993 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
   6994 * outside of boot time (or some other assurance that no concurrent updaters
   6995 * exist).
   6996 */
   6997static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
   6998		unsigned long batch)
   6999{
   7000	WRITE_ONCE(pcp->batch, batch);
   7001	WRITE_ONCE(pcp->high, high);
   7002}
   7003
   7004static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
   7005{
   7006	int pindex;
   7007
   7008	memset(pcp, 0, sizeof(*pcp));
   7009	memset(pzstats, 0, sizeof(*pzstats));
   7010
   7011	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
   7012		INIT_LIST_HEAD(&pcp->lists[pindex]);
   7013
   7014	/*
   7015	 * Set batch and high values safe for a boot pageset. A true percpu
   7016	 * pageset's initialization will update them subsequently. Here we don't
   7017	 * need to be as careful as pageset_update() as nobody can access the
   7018	 * pageset yet.
   7019	 */
   7020	pcp->high = BOOT_PAGESET_HIGH;
   7021	pcp->batch = BOOT_PAGESET_BATCH;
   7022	pcp->free_factor = 0;
   7023}
   7024
   7025static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
   7026		unsigned long batch)
   7027{
   7028	struct per_cpu_pages *pcp;
   7029	int cpu;
   7030
   7031	for_each_possible_cpu(cpu) {
   7032		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
   7033		pageset_update(pcp, high, batch);
   7034	}
   7035}
   7036
   7037/*
   7038 * Calculate and set new high and batch values for all per-cpu pagesets of a
   7039 * zone based on the zone's size.
   7040 */
   7041static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
   7042{
   7043	int new_high, new_batch;
   7044
   7045	new_batch = max(1, zone_batchsize(zone));
   7046	new_high = zone_highsize(zone, new_batch, cpu_online);
   7047
   7048	if (zone->pageset_high == new_high &&
   7049	    zone->pageset_batch == new_batch)
   7050		return;
   7051
   7052	zone->pageset_high = new_high;
   7053	zone->pageset_batch = new_batch;
   7054
   7055	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
   7056}
   7057
   7058void __meminit setup_zone_pageset(struct zone *zone)
   7059{
   7060	int cpu;
   7061
   7062	/* Size may be 0 on !SMP && !NUMA */
   7063	if (sizeof(struct per_cpu_zonestat) > 0)
   7064		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
   7065
   7066	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
   7067	for_each_possible_cpu(cpu) {
   7068		struct per_cpu_pages *pcp;
   7069		struct per_cpu_zonestat *pzstats;
   7070
   7071		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
   7072		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
   7073		per_cpu_pages_init(pcp, pzstats);
   7074	}
   7075
   7076	zone_set_pageset_high_and_batch(zone, 0);
   7077}
   7078
   7079/*
   7080 * Allocate per cpu pagesets and initialize them.
   7081 * Before this call only boot pagesets were available.
   7082 */
   7083void __init setup_per_cpu_pageset(void)
   7084{
   7085	struct pglist_data *pgdat;
   7086	struct zone *zone;
   7087	int __maybe_unused cpu;
   7088
   7089	for_each_populated_zone(zone)
   7090		setup_zone_pageset(zone);
   7091
   7092#ifdef CONFIG_NUMA
   7093	/*
   7094	 * Unpopulated zones continue using the boot pagesets.
   7095	 * The numa stats for these pagesets need to be reset.
   7096	 * Otherwise, they will end up skewing the stats of
   7097	 * the nodes these zones are associated with.
   7098	 */
   7099	for_each_possible_cpu(cpu) {
   7100		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
   7101		memset(pzstats->vm_numa_event, 0,
   7102		       sizeof(pzstats->vm_numa_event));
   7103	}
   7104#endif
   7105
   7106	for_each_online_pgdat(pgdat)
   7107		pgdat->per_cpu_nodestats =
   7108			alloc_percpu(struct per_cpu_nodestat);
   7109}
   7110
   7111static __meminit void zone_pcp_init(struct zone *zone)
   7112{
   7113	/*
   7114	 * per cpu subsystem is not up at this point. The following code
   7115	 * relies on the ability of the linker to provide the
   7116	 * offset of a (static) per cpu variable into the per cpu area.
   7117	 */
   7118	zone->per_cpu_pageset = &boot_pageset;
   7119	zone->per_cpu_zonestats = &boot_zonestats;
   7120	zone->pageset_high = BOOT_PAGESET_HIGH;
   7121	zone->pageset_batch = BOOT_PAGESET_BATCH;
   7122
   7123	if (populated_zone(zone))
   7124		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
   7125			 zone->present_pages, zone_batchsize(zone));
   7126}
   7127
   7128void __meminit init_currently_empty_zone(struct zone *zone,
   7129					unsigned long zone_start_pfn,
   7130					unsigned long size)
   7131{
   7132	struct pglist_data *pgdat = zone->zone_pgdat;
   7133	int zone_idx = zone_idx(zone) + 1;
   7134
   7135	if (zone_idx > pgdat->nr_zones)
   7136		pgdat->nr_zones = zone_idx;
   7137
   7138	zone->zone_start_pfn = zone_start_pfn;
   7139
   7140	mminit_dprintk(MMINIT_TRACE, "memmap_init",
   7141			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
   7142			pgdat->node_id,
   7143			(unsigned long)zone_idx(zone),
   7144			zone_start_pfn, (zone_start_pfn + size));
   7145
   7146	zone_init_free_lists(zone);
   7147	zone->initialized = 1;
   7148}
   7149
   7150/**
   7151 * get_pfn_range_for_nid - Return the start and end page frames for a node
   7152 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
   7153 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
   7154 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
   7155 *
   7156 * It returns the start and end page frame of a node based on information
   7157 * provided by memblock_set_node(). If called for a node
   7158 * with no available memory, a warning is printed and the start and end
   7159 * PFNs will be 0.
   7160 */
   7161void __init get_pfn_range_for_nid(unsigned int nid,
   7162			unsigned long *start_pfn, unsigned long *end_pfn)
   7163{
   7164	unsigned long this_start_pfn, this_end_pfn;
   7165	int i;
   7166
   7167	*start_pfn = -1UL;
   7168	*end_pfn = 0;
   7169
   7170	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
   7171		*start_pfn = min(*start_pfn, this_start_pfn);
   7172		*end_pfn = max(*end_pfn, this_end_pfn);
   7173	}
   7174
   7175	if (*start_pfn == -1UL)
   7176		*start_pfn = 0;
   7177}
   7178
   7179/*
   7180 * This finds a zone that can be used for ZONE_MOVABLE pages. The
   7181 * assumption is made that zones within a node are ordered in monotonic
   7182 * increasing memory addresses so that the "highest" populated zone is used
   7183 */
   7184static void __init find_usable_zone_for_movable(void)
   7185{
   7186	int zone_index;
   7187	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
   7188		if (zone_index == ZONE_MOVABLE)
   7189			continue;
   7190
   7191		if (arch_zone_highest_possible_pfn[zone_index] >
   7192				arch_zone_lowest_possible_pfn[zone_index])
   7193			break;
   7194	}
   7195
   7196	VM_BUG_ON(zone_index == -1);
   7197	movable_zone = zone_index;
   7198}
   7199
   7200/*
   7201 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
   7202 * because it is sized independent of architecture. Unlike the other zones,
   7203 * the starting point for ZONE_MOVABLE is not fixed. It may be different
   7204 * in each node depending on the size of each node and how evenly kernelcore
   7205 * is distributed. This helper function adjusts the zone ranges
   7206 * provided by the architecture for a given node by using the end of the
   7207 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
   7208 * zones within a node are in order of monotonic increases memory addresses
   7209 */
   7210static void __init adjust_zone_range_for_zone_movable(int nid,
   7211					unsigned long zone_type,
   7212					unsigned long node_start_pfn,
   7213					unsigned long node_end_pfn,
   7214					unsigned long *zone_start_pfn,
   7215					unsigned long *zone_end_pfn)
   7216{
   7217	/* Only adjust if ZONE_MOVABLE is on this node */
   7218	if (zone_movable_pfn[nid]) {
   7219		/* Size ZONE_MOVABLE */
   7220		if (zone_type == ZONE_MOVABLE) {
   7221			*zone_start_pfn = zone_movable_pfn[nid];
   7222			*zone_end_pfn = min(node_end_pfn,
   7223				arch_zone_highest_possible_pfn[movable_zone]);
   7224
   7225		/* Adjust for ZONE_MOVABLE starting within this range */
   7226		} else if (!mirrored_kernelcore &&
   7227			*zone_start_pfn < zone_movable_pfn[nid] &&
   7228			*zone_end_pfn > zone_movable_pfn[nid]) {
   7229			*zone_end_pfn = zone_movable_pfn[nid];
   7230
   7231		/* Check if this whole range is within ZONE_MOVABLE */
   7232		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
   7233			*zone_start_pfn = *zone_end_pfn;
   7234	}
   7235}
   7236
   7237/*
   7238 * Return the number of pages a zone spans in a node, including holes
   7239 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
   7240 */
   7241static unsigned long __init zone_spanned_pages_in_node(int nid,
   7242					unsigned long zone_type,
   7243					unsigned long node_start_pfn,
   7244					unsigned long node_end_pfn,
   7245					unsigned long *zone_start_pfn,
   7246					unsigned long *zone_end_pfn)
   7247{
   7248	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
   7249	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
   7250	/* When hotadd a new node from cpu_up(), the node should be empty */
   7251	if (!node_start_pfn && !node_end_pfn)
   7252		return 0;
   7253
   7254	/* Get the start and end of the zone */
   7255	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
   7256	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
   7257	adjust_zone_range_for_zone_movable(nid, zone_type,
   7258				node_start_pfn, node_end_pfn,
   7259				zone_start_pfn, zone_end_pfn);
   7260
   7261	/* Check that this node has pages within the zone's required range */
   7262	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
   7263		return 0;
   7264
   7265	/* Move the zone boundaries inside the node if necessary */
   7266	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
   7267	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
   7268
   7269	/* Return the spanned pages */
   7270	return *zone_end_pfn - *zone_start_pfn;
   7271}
   7272
   7273/*
   7274 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
   7275 * then all holes in the requested range will be accounted for.
   7276 */
   7277unsigned long __init __absent_pages_in_range(int nid,
   7278				unsigned long range_start_pfn,
   7279				unsigned long range_end_pfn)
   7280{
   7281	unsigned long nr_absent = range_end_pfn - range_start_pfn;
   7282	unsigned long start_pfn, end_pfn;
   7283	int i;
   7284
   7285	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
   7286		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
   7287		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
   7288		nr_absent -= end_pfn - start_pfn;
   7289	}
   7290	return nr_absent;
   7291}
   7292
   7293/**
   7294 * absent_pages_in_range - Return number of page frames in holes within a range
   7295 * @start_pfn: The start PFN to start searching for holes
   7296 * @end_pfn: The end PFN to stop searching for holes
   7297 *
   7298 * Return: the number of pages frames in memory holes within a range.
   7299 */
   7300unsigned long __init absent_pages_in_range(unsigned long start_pfn,
   7301							unsigned long end_pfn)
   7302{
   7303	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
   7304}
   7305
   7306/* Return the number of page frames in holes in a zone on a node */
   7307static unsigned long __init zone_absent_pages_in_node(int nid,
   7308					unsigned long zone_type,
   7309					unsigned long node_start_pfn,
   7310					unsigned long node_end_pfn)
   7311{
   7312	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
   7313	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
   7314	unsigned long zone_start_pfn, zone_end_pfn;
   7315	unsigned long nr_absent;
   7316
   7317	/* When hotadd a new node from cpu_up(), the node should be empty */
   7318	if (!node_start_pfn && !node_end_pfn)
   7319		return 0;
   7320
   7321	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
   7322	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
   7323
   7324	adjust_zone_range_for_zone_movable(nid, zone_type,
   7325			node_start_pfn, node_end_pfn,
   7326			&zone_start_pfn, &zone_end_pfn);
   7327	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
   7328
   7329	/*
   7330	 * ZONE_MOVABLE handling.
   7331	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
   7332	 * and vice versa.
   7333	 */
   7334	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
   7335		unsigned long start_pfn, end_pfn;
   7336		struct memblock_region *r;
   7337
   7338		for_each_mem_region(r) {
   7339			start_pfn = clamp(memblock_region_memory_base_pfn(r),
   7340					  zone_start_pfn, zone_end_pfn);
   7341			end_pfn = clamp(memblock_region_memory_end_pfn(r),
   7342					zone_start_pfn, zone_end_pfn);
   7343
   7344			if (zone_type == ZONE_MOVABLE &&
   7345			    memblock_is_mirror(r))
   7346				nr_absent += end_pfn - start_pfn;
   7347
   7348			if (zone_type == ZONE_NORMAL &&
   7349			    !memblock_is_mirror(r))
   7350				nr_absent += end_pfn - start_pfn;
   7351		}
   7352	}
   7353
   7354	return nr_absent;
   7355}
   7356
   7357static void __init calculate_node_totalpages(struct pglist_data *pgdat,
   7358						unsigned long node_start_pfn,
   7359						unsigned long node_end_pfn)
   7360{
   7361	unsigned long realtotalpages = 0, totalpages = 0;
   7362	enum zone_type i;
   7363
   7364	for (i = 0; i < MAX_NR_ZONES; i++) {
   7365		struct zone *zone = pgdat->node_zones + i;
   7366		unsigned long zone_start_pfn, zone_end_pfn;
   7367		unsigned long spanned, absent;
   7368		unsigned long size, real_size;
   7369
   7370		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
   7371						     node_start_pfn,
   7372						     node_end_pfn,
   7373						     &zone_start_pfn,
   7374						     &zone_end_pfn);
   7375		absent = zone_absent_pages_in_node(pgdat->node_id, i,
   7376						   node_start_pfn,
   7377						   node_end_pfn);
   7378
   7379		size = spanned;
   7380		real_size = size - absent;
   7381
   7382		if (size)
   7383			zone->zone_start_pfn = zone_start_pfn;
   7384		else
   7385			zone->zone_start_pfn = 0;
   7386		zone->spanned_pages = size;
   7387		zone->present_pages = real_size;
   7388#if defined(CONFIG_MEMORY_HOTPLUG)
   7389		zone->present_early_pages = real_size;
   7390#endif
   7391
   7392		totalpages += size;
   7393		realtotalpages += real_size;
   7394	}
   7395
   7396	pgdat->node_spanned_pages = totalpages;
   7397	pgdat->node_present_pages = realtotalpages;
   7398	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
   7399}
   7400
   7401#ifndef CONFIG_SPARSEMEM
   7402/*
   7403 * Calculate the size of the zone->blockflags rounded to an unsigned long
   7404 * Start by making sure zonesize is a multiple of pageblock_order by rounding
   7405 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
   7406 * round what is now in bits to nearest long in bits, then return it in
   7407 * bytes.
   7408 */
   7409static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
   7410{
   7411	unsigned long usemapsize;
   7412
   7413	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
   7414	usemapsize = roundup(zonesize, pageblock_nr_pages);
   7415	usemapsize = usemapsize >> pageblock_order;
   7416	usemapsize *= NR_PAGEBLOCK_BITS;
   7417	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
   7418
   7419	return usemapsize / 8;
   7420}
   7421
   7422static void __ref setup_usemap(struct zone *zone)
   7423{
   7424	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
   7425					       zone->spanned_pages);
   7426	zone->pageblock_flags = NULL;
   7427	if (usemapsize) {
   7428		zone->pageblock_flags =
   7429			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
   7430					    zone_to_nid(zone));
   7431		if (!zone->pageblock_flags)
   7432			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
   7433			      usemapsize, zone->name, zone_to_nid(zone));
   7434	}
   7435}
   7436#else
   7437static inline void setup_usemap(struct zone *zone) {}
   7438#endif /* CONFIG_SPARSEMEM */
   7439
   7440#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
   7441
   7442/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
   7443void __init set_pageblock_order(void)
   7444{
   7445	unsigned int order = MAX_ORDER - 1;
   7446
   7447	/* Check that pageblock_nr_pages has not already been setup */
   7448	if (pageblock_order)
   7449		return;
   7450
   7451	/* Don't let pageblocks exceed the maximum allocation granularity. */
   7452	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
   7453		order = HUGETLB_PAGE_ORDER;
   7454
   7455	/*
   7456	 * Assume the largest contiguous order of interest is a huge page.
   7457	 * This value may be variable depending on boot parameters on IA64 and
   7458	 * powerpc.
   7459	 */
   7460	pageblock_order = order;
   7461}
   7462#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
   7463
   7464/*
   7465 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
   7466 * is unused as pageblock_order is set at compile-time. See
   7467 * include/linux/pageblock-flags.h for the values of pageblock_order based on
   7468 * the kernel config
   7469 */
   7470void __init set_pageblock_order(void)
   7471{
   7472}
   7473
   7474#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
   7475
   7476static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
   7477						unsigned long present_pages)
   7478{
   7479	unsigned long pages = spanned_pages;
   7480
   7481	/*
   7482	 * Provide a more accurate estimation if there are holes within
   7483	 * the zone and SPARSEMEM is in use. If there are holes within the
   7484	 * zone, each populated memory region may cost us one or two extra
   7485	 * memmap pages due to alignment because memmap pages for each
   7486	 * populated regions may not be naturally aligned on page boundary.
   7487	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
   7488	 */
   7489	if (spanned_pages > present_pages + (present_pages >> 4) &&
   7490	    IS_ENABLED(CONFIG_SPARSEMEM))
   7491		pages = present_pages;
   7492
   7493	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
   7494}
   7495
   7496#ifdef CONFIG_TRANSPARENT_HUGEPAGE
   7497static void pgdat_init_split_queue(struct pglist_data *pgdat)
   7498{
   7499	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
   7500
   7501	spin_lock_init(&ds_queue->split_queue_lock);
   7502	INIT_LIST_HEAD(&ds_queue->split_queue);
   7503	ds_queue->split_queue_len = 0;
   7504}
   7505#else
   7506static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
   7507#endif
   7508
   7509#ifdef CONFIG_COMPACTION
   7510static void pgdat_init_kcompactd(struct pglist_data *pgdat)
   7511{
   7512	init_waitqueue_head(&pgdat->kcompactd_wait);
   7513}
   7514#else
   7515static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
   7516#endif
   7517
   7518static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
   7519{
   7520	int i;
   7521
   7522	pgdat_resize_init(pgdat);
   7523
   7524	pgdat_init_split_queue(pgdat);
   7525	pgdat_init_kcompactd(pgdat);
   7526
   7527	init_waitqueue_head(&pgdat->kswapd_wait);
   7528	init_waitqueue_head(&pgdat->pfmemalloc_wait);
   7529
   7530	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
   7531		init_waitqueue_head(&pgdat->reclaim_wait[i]);
   7532
   7533	pgdat_page_ext_init(pgdat);
   7534	lruvec_init(&pgdat->__lruvec);
   7535}
   7536
   7537static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
   7538							unsigned long remaining_pages)
   7539{
   7540	atomic_long_set(&zone->managed_pages, remaining_pages);
   7541	zone_set_nid(zone, nid);
   7542	zone->name = zone_names[idx];
   7543	zone->zone_pgdat = NODE_DATA(nid);
   7544	spin_lock_init(&zone->lock);
   7545	zone_seqlock_init(zone);
   7546	zone_pcp_init(zone);
   7547}
   7548
   7549/*
   7550 * Set up the zone data structures
   7551 * - init pgdat internals
   7552 * - init all zones belonging to this node
   7553 *
   7554 * NOTE: this function is only called during memory hotplug
   7555 */
   7556#ifdef CONFIG_MEMORY_HOTPLUG
   7557void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
   7558{
   7559	int nid = pgdat->node_id;
   7560	enum zone_type z;
   7561	int cpu;
   7562
   7563	pgdat_init_internals(pgdat);
   7564
   7565	if (pgdat->per_cpu_nodestats == &boot_nodestats)
   7566		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
   7567
   7568	/*
   7569	 * Reset the nr_zones, order and highest_zoneidx before reuse.
   7570	 * Note that kswapd will init kswapd_highest_zoneidx properly
   7571	 * when it starts in the near future.
   7572	 */
   7573	pgdat->nr_zones = 0;
   7574	pgdat->kswapd_order = 0;
   7575	pgdat->kswapd_highest_zoneidx = 0;
   7576	pgdat->node_start_pfn = 0;
   7577	for_each_online_cpu(cpu) {
   7578		struct per_cpu_nodestat *p;
   7579
   7580		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
   7581		memset(p, 0, sizeof(*p));
   7582	}
   7583
   7584	for (z = 0; z < MAX_NR_ZONES; z++)
   7585		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
   7586}
   7587#endif
   7588
   7589/*
   7590 * Set up the zone data structures:
   7591 *   - mark all pages reserved
   7592 *   - mark all memory queues empty
   7593 *   - clear the memory bitmaps
   7594 *
   7595 * NOTE: pgdat should get zeroed by caller.
   7596 * NOTE: this function is only called during early init.
   7597 */
   7598static void __init free_area_init_core(struct pglist_data *pgdat)
   7599{
   7600	enum zone_type j;
   7601	int nid = pgdat->node_id;
   7602
   7603	pgdat_init_internals(pgdat);
   7604	pgdat->per_cpu_nodestats = &boot_nodestats;
   7605
   7606	for (j = 0; j < MAX_NR_ZONES; j++) {
   7607		struct zone *zone = pgdat->node_zones + j;
   7608		unsigned long size, freesize, memmap_pages;
   7609
   7610		size = zone->spanned_pages;
   7611		freesize = zone->present_pages;
   7612
   7613		/*
   7614		 * Adjust freesize so that it accounts for how much memory
   7615		 * is used by this zone for memmap. This affects the watermark
   7616		 * and per-cpu initialisations
   7617		 */
   7618		memmap_pages = calc_memmap_size(size, freesize);
   7619		if (!is_highmem_idx(j)) {
   7620			if (freesize >= memmap_pages) {
   7621				freesize -= memmap_pages;
   7622				if (memmap_pages)
   7623					pr_debug("  %s zone: %lu pages used for memmap\n",
   7624						 zone_names[j], memmap_pages);
   7625			} else
   7626				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
   7627					zone_names[j], memmap_pages, freesize);
   7628		}
   7629
   7630		/* Account for reserved pages */
   7631		if (j == 0 && freesize > dma_reserve) {
   7632			freesize -= dma_reserve;
   7633			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
   7634		}
   7635
   7636		if (!is_highmem_idx(j))
   7637			nr_kernel_pages += freesize;
   7638		/* Charge for highmem memmap if there are enough kernel pages */
   7639		else if (nr_kernel_pages > memmap_pages * 2)
   7640			nr_kernel_pages -= memmap_pages;
   7641		nr_all_pages += freesize;
   7642
   7643		/*
   7644		 * Set an approximate value for lowmem here, it will be adjusted
   7645		 * when the bootmem allocator frees pages into the buddy system.
   7646		 * And all highmem pages will be managed by the buddy system.
   7647		 */
   7648		zone_init_internals(zone, j, nid, freesize);
   7649
   7650		if (!size)
   7651			continue;
   7652
   7653		set_pageblock_order();
   7654		setup_usemap(zone);
   7655		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
   7656	}
   7657}
   7658
   7659#ifdef CONFIG_FLATMEM
   7660static void __init alloc_node_mem_map(struct pglist_data *pgdat)
   7661{
   7662	unsigned long __maybe_unused start = 0;
   7663	unsigned long __maybe_unused offset = 0;
   7664
   7665	/* Skip empty nodes */
   7666	if (!pgdat->node_spanned_pages)
   7667		return;
   7668
   7669	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
   7670	offset = pgdat->node_start_pfn - start;
   7671	/* ia64 gets its own node_mem_map, before this, without bootmem */
   7672	if (!pgdat->node_mem_map) {
   7673		unsigned long size, end;
   7674		struct page *map;
   7675
   7676		/*
   7677		 * The zone's endpoints aren't required to be MAX_ORDER
   7678		 * aligned but the node_mem_map endpoints must be in order
   7679		 * for the buddy allocator to function correctly.
   7680		 */
   7681		end = pgdat_end_pfn(pgdat);
   7682		end = ALIGN(end, MAX_ORDER_NR_PAGES);
   7683		size =  (end - start) * sizeof(struct page);
   7684		map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
   7685				   pgdat->node_id, false);
   7686		if (!map)
   7687			panic("Failed to allocate %ld bytes for node %d memory map\n",
   7688			      size, pgdat->node_id);
   7689		pgdat->node_mem_map = map + offset;
   7690	}
   7691	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
   7692				__func__, pgdat->node_id, (unsigned long)pgdat,
   7693				(unsigned long)pgdat->node_mem_map);
   7694#ifndef CONFIG_NUMA
   7695	/*
   7696	 * With no DISCONTIG, the global mem_map is just set as node 0's
   7697	 */
   7698	if (pgdat == NODE_DATA(0)) {
   7699		mem_map = NODE_DATA(0)->node_mem_map;
   7700		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
   7701			mem_map -= offset;
   7702	}
   7703#endif
   7704}
   7705#else
   7706static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
   7707#endif /* CONFIG_FLATMEM */
   7708
   7709#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
   7710static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
   7711{
   7712	pgdat->first_deferred_pfn = ULONG_MAX;
   7713}
   7714#else
   7715static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
   7716#endif
   7717
   7718static void __init free_area_init_node(int nid)
   7719{
   7720	pg_data_t *pgdat = NODE_DATA(nid);
   7721	unsigned long start_pfn = 0;
   7722	unsigned long end_pfn = 0;
   7723
   7724	/* pg_data_t should be reset to zero when it's allocated */
   7725	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
   7726
   7727	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
   7728
   7729	pgdat->node_id = nid;
   7730	pgdat->node_start_pfn = start_pfn;
   7731	pgdat->per_cpu_nodestats = NULL;
   7732
   7733	if (start_pfn != end_pfn) {
   7734		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
   7735			(u64)start_pfn << PAGE_SHIFT,
   7736			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
   7737	} else {
   7738		pr_info("Initmem setup node %d as memoryless\n", nid);
   7739	}
   7740
   7741	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
   7742
   7743	alloc_node_mem_map(pgdat);
   7744	pgdat_set_deferred_range(pgdat);
   7745
   7746	free_area_init_core(pgdat);
   7747}
   7748
   7749static void __init free_area_init_memoryless_node(int nid)
   7750{
   7751	free_area_init_node(nid);
   7752}
   7753
   7754#if MAX_NUMNODES > 1
   7755/*
   7756 * Figure out the number of possible node ids.
   7757 */
   7758void __init setup_nr_node_ids(void)
   7759{
   7760	unsigned int highest;
   7761
   7762	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
   7763	nr_node_ids = highest + 1;
   7764}
   7765#endif
   7766
   7767/**
   7768 * node_map_pfn_alignment - determine the maximum internode alignment
   7769 *
   7770 * This function should be called after node map is populated and sorted.
   7771 * It calculates the maximum power of two alignment which can distinguish
   7772 * all the nodes.
   7773 *
   7774 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
   7775 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
   7776 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
   7777 * shifted, 1GiB is enough and this function will indicate so.
   7778 *
   7779 * This is used to test whether pfn -> nid mapping of the chosen memory
   7780 * model has fine enough granularity to avoid incorrect mapping for the
   7781 * populated node map.
   7782 *
   7783 * Return: the determined alignment in pfn's.  0 if there is no alignment
   7784 * requirement (single node).
   7785 */
   7786unsigned long __init node_map_pfn_alignment(void)
   7787{
   7788	unsigned long accl_mask = 0, last_end = 0;
   7789	unsigned long start, end, mask;
   7790	int last_nid = NUMA_NO_NODE;
   7791	int i, nid;
   7792
   7793	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
   7794		if (!start || last_nid < 0 || last_nid == nid) {
   7795			last_nid = nid;
   7796			last_end = end;
   7797			continue;
   7798		}
   7799
   7800		/*
   7801		 * Start with a mask granular enough to pin-point to the
   7802		 * start pfn and tick off bits one-by-one until it becomes
   7803		 * too coarse to separate the current node from the last.
   7804		 */
   7805		mask = ~((1 << __ffs(start)) - 1);
   7806		while (mask && last_end <= (start & (mask << 1)))
   7807			mask <<= 1;
   7808
   7809		/* accumulate all internode masks */
   7810		accl_mask |= mask;
   7811	}
   7812
   7813	/* convert mask to number of pages */
   7814	return ~accl_mask + 1;
   7815}
   7816
   7817/**
   7818 * find_min_pfn_with_active_regions - Find the minimum PFN registered
   7819 *
   7820 * Return: the minimum PFN based on information provided via
   7821 * memblock_set_node().
   7822 */
   7823unsigned long __init find_min_pfn_with_active_regions(void)
   7824{
   7825	return PHYS_PFN(memblock_start_of_DRAM());
   7826}
   7827
   7828/*
   7829 * early_calculate_totalpages()
   7830 * Sum pages in active regions for movable zone.
   7831 * Populate N_MEMORY for calculating usable_nodes.
   7832 */
   7833static unsigned long __init early_calculate_totalpages(void)
   7834{
   7835	unsigned long totalpages = 0;
   7836	unsigned long start_pfn, end_pfn;
   7837	int i, nid;
   7838
   7839	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
   7840		unsigned long pages = end_pfn - start_pfn;
   7841
   7842		totalpages += pages;
   7843		if (pages)
   7844			node_set_state(nid, N_MEMORY);
   7845	}
   7846	return totalpages;
   7847}
   7848
   7849/*
   7850 * Find the PFN the Movable zone begins in each node. Kernel memory
   7851 * is spread evenly between nodes as long as the nodes have enough
   7852 * memory. When they don't, some nodes will have more kernelcore than
   7853 * others
   7854 */
   7855static void __init find_zone_movable_pfns_for_nodes(void)
   7856{
   7857	int i, nid;
   7858	unsigned long usable_startpfn;
   7859	unsigned long kernelcore_node, kernelcore_remaining;
   7860	/* save the state before borrow the nodemask */
   7861	nodemask_t saved_node_state = node_states[N_MEMORY];
   7862	unsigned long totalpages = early_calculate_totalpages();
   7863	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
   7864	struct memblock_region *r;
   7865
   7866	/* Need to find movable_zone earlier when movable_node is specified. */
   7867	find_usable_zone_for_movable();
   7868
   7869	/*
   7870	 * If movable_node is specified, ignore kernelcore and movablecore
   7871	 * options.
   7872	 */
   7873	if (movable_node_is_enabled()) {
   7874		for_each_mem_region(r) {
   7875			if (!memblock_is_hotpluggable(r))
   7876				continue;
   7877
   7878			nid = memblock_get_region_node(r);
   7879
   7880			usable_startpfn = PFN_DOWN(r->base);
   7881			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
   7882				min(usable_startpfn, zone_movable_pfn[nid]) :
   7883				usable_startpfn;
   7884		}
   7885
   7886		goto out2;
   7887	}
   7888
   7889	/*
   7890	 * If kernelcore=mirror is specified, ignore movablecore option
   7891	 */
   7892	if (mirrored_kernelcore) {
   7893		bool mem_below_4gb_not_mirrored = false;
   7894
   7895		for_each_mem_region(r) {
   7896			if (memblock_is_mirror(r))
   7897				continue;
   7898
   7899			nid = memblock_get_region_node(r);
   7900
   7901			usable_startpfn = memblock_region_memory_base_pfn(r);
   7902
   7903			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
   7904				mem_below_4gb_not_mirrored = true;
   7905				continue;
   7906			}
   7907
   7908			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
   7909				min(usable_startpfn, zone_movable_pfn[nid]) :
   7910				usable_startpfn;
   7911		}
   7912
   7913		if (mem_below_4gb_not_mirrored)
   7914			pr_warn("This configuration results in unmirrored kernel memory.\n");
   7915
   7916		goto out2;
   7917	}
   7918
   7919	/*
   7920	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
   7921	 * amount of necessary memory.
   7922	 */
   7923	if (required_kernelcore_percent)
   7924		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
   7925				       10000UL;
   7926	if (required_movablecore_percent)
   7927		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
   7928					10000UL;
   7929
   7930	/*
   7931	 * If movablecore= was specified, calculate what size of
   7932	 * kernelcore that corresponds so that memory usable for
   7933	 * any allocation type is evenly spread. If both kernelcore
   7934	 * and movablecore are specified, then the value of kernelcore
   7935	 * will be used for required_kernelcore if it's greater than
   7936	 * what movablecore would have allowed.
   7937	 */
   7938	if (required_movablecore) {
   7939		unsigned long corepages;
   7940
   7941		/*
   7942		 * Round-up so that ZONE_MOVABLE is at least as large as what
   7943		 * was requested by the user
   7944		 */
   7945		required_movablecore =
   7946			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
   7947		required_movablecore = min(totalpages, required_movablecore);
   7948		corepages = totalpages - required_movablecore;
   7949
   7950		required_kernelcore = max(required_kernelcore, corepages);
   7951	}
   7952
   7953	/*
   7954	 * If kernelcore was not specified or kernelcore size is larger
   7955	 * than totalpages, there is no ZONE_MOVABLE.
   7956	 */
   7957	if (!required_kernelcore || required_kernelcore >= totalpages)
   7958		goto out;
   7959
   7960	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
   7961	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
   7962
   7963restart:
   7964	/* Spread kernelcore memory as evenly as possible throughout nodes */
   7965	kernelcore_node = required_kernelcore / usable_nodes;
   7966	for_each_node_state(nid, N_MEMORY) {
   7967		unsigned long start_pfn, end_pfn;
   7968
   7969		/*
   7970		 * Recalculate kernelcore_node if the division per node
   7971		 * now exceeds what is necessary to satisfy the requested
   7972		 * amount of memory for the kernel
   7973		 */
   7974		if (required_kernelcore < kernelcore_node)
   7975			kernelcore_node = required_kernelcore / usable_nodes;
   7976
   7977		/*
   7978		 * As the map is walked, we track how much memory is usable
   7979		 * by the kernel using kernelcore_remaining. When it is
   7980		 * 0, the rest of the node is usable by ZONE_MOVABLE
   7981		 */
   7982		kernelcore_remaining = kernelcore_node;
   7983
   7984		/* Go through each range of PFNs within this node */
   7985		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
   7986			unsigned long size_pages;
   7987
   7988			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
   7989			if (start_pfn >= end_pfn)
   7990				continue;
   7991
   7992			/* Account for what is only usable for kernelcore */
   7993			if (start_pfn < usable_startpfn) {
   7994				unsigned long kernel_pages;
   7995				kernel_pages = min(end_pfn, usable_startpfn)
   7996								- start_pfn;
   7997
   7998				kernelcore_remaining -= min(kernel_pages,
   7999							kernelcore_remaining);
   8000				required_kernelcore -= min(kernel_pages,
   8001							required_kernelcore);
   8002
   8003				/* Continue if range is now fully accounted */
   8004				if (end_pfn <= usable_startpfn) {
   8005
   8006					/*
   8007					 * Push zone_movable_pfn to the end so
   8008					 * that if we have to rebalance
   8009					 * kernelcore across nodes, we will
   8010					 * not double account here
   8011					 */
   8012					zone_movable_pfn[nid] = end_pfn;
   8013					continue;
   8014				}
   8015				start_pfn = usable_startpfn;
   8016			}
   8017
   8018			/*
   8019			 * The usable PFN range for ZONE_MOVABLE is from
   8020			 * start_pfn->end_pfn. Calculate size_pages as the
   8021			 * number of pages used as kernelcore
   8022			 */
   8023			size_pages = end_pfn - start_pfn;
   8024			if (size_pages > kernelcore_remaining)
   8025				size_pages = kernelcore_remaining;
   8026			zone_movable_pfn[nid] = start_pfn + size_pages;
   8027
   8028			/*
   8029			 * Some kernelcore has been met, update counts and
   8030			 * break if the kernelcore for this node has been
   8031			 * satisfied
   8032			 */
   8033			required_kernelcore -= min(required_kernelcore,
   8034								size_pages);
   8035			kernelcore_remaining -= size_pages;
   8036			if (!kernelcore_remaining)
   8037				break;
   8038		}
   8039	}
   8040
   8041	/*
   8042	 * If there is still required_kernelcore, we do another pass with one
   8043	 * less node in the count. This will push zone_movable_pfn[nid] further
   8044	 * along on the nodes that still have memory until kernelcore is
   8045	 * satisfied
   8046	 */
   8047	usable_nodes--;
   8048	if (usable_nodes && required_kernelcore > usable_nodes)
   8049		goto restart;
   8050
   8051out2:
   8052	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
   8053	for (nid = 0; nid < MAX_NUMNODES; nid++) {
   8054		unsigned long start_pfn, end_pfn;
   8055
   8056		zone_movable_pfn[nid] =
   8057			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
   8058
   8059		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
   8060		if (zone_movable_pfn[nid] >= end_pfn)
   8061			zone_movable_pfn[nid] = 0;
   8062	}
   8063
   8064out:
   8065	/* restore the node_state */
   8066	node_states[N_MEMORY] = saved_node_state;
   8067}
   8068
   8069/* Any regular or high memory on that node ? */
   8070static void check_for_memory(pg_data_t *pgdat, int nid)
   8071{
   8072	enum zone_type zone_type;
   8073
   8074	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
   8075		struct zone *zone = &pgdat->node_zones[zone_type];
   8076		if (populated_zone(zone)) {
   8077			if (IS_ENABLED(CONFIG_HIGHMEM))
   8078				node_set_state(nid, N_HIGH_MEMORY);
   8079			if (zone_type <= ZONE_NORMAL)
   8080				node_set_state(nid, N_NORMAL_MEMORY);
   8081			break;
   8082		}
   8083	}
   8084}
   8085
   8086/*
   8087 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
   8088 * such cases we allow max_zone_pfn sorted in the descending order
   8089 */
   8090bool __weak arch_has_descending_max_zone_pfns(void)
   8091{
   8092	return false;
   8093}
   8094
   8095/**
   8096 * free_area_init - Initialise all pg_data_t and zone data
   8097 * @max_zone_pfn: an array of max PFNs for each zone
   8098 *
   8099 * This will call free_area_init_node() for each active node in the system.
   8100 * Using the page ranges provided by memblock_set_node(), the size of each
   8101 * zone in each node and their holes is calculated. If the maximum PFN
   8102 * between two adjacent zones match, it is assumed that the zone is empty.
   8103 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
   8104 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
   8105 * starts where the previous one ended. For example, ZONE_DMA32 starts
   8106 * at arch_max_dma_pfn.
   8107 */
   8108void __init free_area_init(unsigned long *max_zone_pfn)
   8109{
   8110	unsigned long start_pfn, end_pfn;
   8111	int i, nid, zone;
   8112	bool descending;
   8113
   8114	/* Record where the zone boundaries are */
   8115	memset(arch_zone_lowest_possible_pfn, 0,
   8116				sizeof(arch_zone_lowest_possible_pfn));
   8117	memset(arch_zone_highest_possible_pfn, 0,
   8118				sizeof(arch_zone_highest_possible_pfn));
   8119
   8120	start_pfn = find_min_pfn_with_active_regions();
   8121	descending = arch_has_descending_max_zone_pfns();
   8122
   8123	for (i = 0; i < MAX_NR_ZONES; i++) {
   8124		if (descending)
   8125			zone = MAX_NR_ZONES - i - 1;
   8126		else
   8127			zone = i;
   8128
   8129		if (zone == ZONE_MOVABLE)
   8130			continue;
   8131
   8132		end_pfn = max(max_zone_pfn[zone], start_pfn);
   8133		arch_zone_lowest_possible_pfn[zone] = start_pfn;
   8134		arch_zone_highest_possible_pfn[zone] = end_pfn;
   8135
   8136		start_pfn = end_pfn;
   8137	}
   8138
   8139	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
   8140	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
   8141	find_zone_movable_pfns_for_nodes();
   8142
   8143	/* Print out the zone ranges */
   8144	pr_info("Zone ranges:\n");
   8145	for (i = 0; i < MAX_NR_ZONES; i++) {
   8146		if (i == ZONE_MOVABLE)
   8147			continue;
   8148		pr_info("  %-8s ", zone_names[i]);
   8149		if (arch_zone_lowest_possible_pfn[i] ==
   8150				arch_zone_highest_possible_pfn[i])
   8151			pr_cont("empty\n");
   8152		else
   8153			pr_cont("[mem %#018Lx-%#018Lx]\n",
   8154				(u64)arch_zone_lowest_possible_pfn[i]
   8155					<< PAGE_SHIFT,
   8156				((u64)arch_zone_highest_possible_pfn[i]
   8157					<< PAGE_SHIFT) - 1);
   8158	}
   8159
   8160	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
   8161	pr_info("Movable zone start for each node\n");
   8162	for (i = 0; i < MAX_NUMNODES; i++) {
   8163		if (zone_movable_pfn[i])
   8164			pr_info("  Node %d: %#018Lx\n", i,
   8165			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
   8166	}
   8167
   8168	/*
   8169	 * Print out the early node map, and initialize the
   8170	 * subsection-map relative to active online memory ranges to
   8171	 * enable future "sub-section" extensions of the memory map.
   8172	 */
   8173	pr_info("Early memory node ranges\n");
   8174	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
   8175		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
   8176			(u64)start_pfn << PAGE_SHIFT,
   8177			((u64)end_pfn << PAGE_SHIFT) - 1);
   8178		subsection_map_init(start_pfn, end_pfn - start_pfn);
   8179	}
   8180
   8181	/* Initialise every node */
   8182	mminit_verify_pageflags_layout();
   8183	setup_nr_node_ids();
   8184	for_each_node(nid) {
   8185		pg_data_t *pgdat;
   8186
   8187		if (!node_online(nid)) {
   8188			pr_info("Initializing node %d as memoryless\n", nid);
   8189
   8190			/* Allocator not initialized yet */
   8191			pgdat = arch_alloc_nodedata(nid);
   8192			if (!pgdat) {
   8193				pr_err("Cannot allocate %zuB for node %d.\n",
   8194						sizeof(*pgdat), nid);
   8195				continue;
   8196			}
   8197			arch_refresh_nodedata(nid, pgdat);
   8198			free_area_init_memoryless_node(nid);
   8199
   8200			/*
   8201			 * We do not want to confuse userspace by sysfs
   8202			 * files/directories for node without any memory
   8203			 * attached to it, so this node is not marked as
   8204			 * N_MEMORY and not marked online so that no sysfs
   8205			 * hierarchy will be created via register_one_node for
   8206			 * it. The pgdat will get fully initialized by
   8207			 * hotadd_init_pgdat() when memory is hotplugged into
   8208			 * this node.
   8209			 */
   8210			continue;
   8211		}
   8212
   8213		pgdat = NODE_DATA(nid);
   8214		free_area_init_node(nid);
   8215
   8216		/* Any memory on that node */
   8217		if (pgdat->node_present_pages)
   8218			node_set_state(nid, N_MEMORY);
   8219		check_for_memory(pgdat, nid);
   8220	}
   8221
   8222	memmap_init();
   8223}
   8224
   8225static int __init cmdline_parse_core(char *p, unsigned long *core,
   8226				     unsigned long *percent)
   8227{
   8228	unsigned long long coremem;
   8229	char *endptr;
   8230
   8231	if (!p)
   8232		return -EINVAL;
   8233
   8234	/* Value may be a percentage of total memory, otherwise bytes */
   8235	coremem = simple_strtoull(p, &endptr, 0);
   8236	if (*endptr == '%') {
   8237		/* Paranoid check for percent values greater than 100 */
   8238		WARN_ON(coremem > 100);
   8239
   8240		*percent = coremem;
   8241	} else {
   8242		coremem = memparse(p, &p);
   8243		/* Paranoid check that UL is enough for the coremem value */
   8244		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
   8245
   8246		*core = coremem >> PAGE_SHIFT;
   8247		*percent = 0UL;
   8248	}
   8249	return 0;
   8250}
   8251
   8252/*
   8253 * kernelcore=size sets the amount of memory for use for allocations that
   8254 * cannot be reclaimed or migrated.
   8255 */
   8256static int __init cmdline_parse_kernelcore(char *p)
   8257{
   8258	/* parse kernelcore=mirror */
   8259	if (parse_option_str(p, "mirror")) {
   8260		mirrored_kernelcore = true;
   8261		return 0;
   8262	}
   8263
   8264	return cmdline_parse_core(p, &required_kernelcore,
   8265				  &required_kernelcore_percent);
   8266}
   8267
   8268/*
   8269 * movablecore=size sets the amount of memory for use for allocations that
   8270 * can be reclaimed or migrated.
   8271 */
   8272static int __init cmdline_parse_movablecore(char *p)
   8273{
   8274	return cmdline_parse_core(p, &required_movablecore,
   8275				  &required_movablecore_percent);
   8276}
   8277
   8278early_param("kernelcore", cmdline_parse_kernelcore);
   8279early_param("movablecore", cmdline_parse_movablecore);
   8280
   8281void adjust_managed_page_count(struct page *page, long count)
   8282{
   8283	atomic_long_add(count, &page_zone(page)->managed_pages);
   8284	totalram_pages_add(count);
   8285#ifdef CONFIG_HIGHMEM
   8286	if (PageHighMem(page))
   8287		totalhigh_pages_add(count);
   8288#endif
   8289}
   8290EXPORT_SYMBOL(adjust_managed_page_count);
   8291
   8292unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
   8293{
   8294	void *pos;
   8295	unsigned long pages = 0;
   8296
   8297	start = (void *)PAGE_ALIGN((unsigned long)start);
   8298	end = (void *)((unsigned long)end & PAGE_MASK);
   8299	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
   8300		struct page *page = virt_to_page(pos);
   8301		void *direct_map_addr;
   8302
   8303		/*
   8304		 * 'direct_map_addr' might be different from 'pos'
   8305		 * because some architectures' virt_to_page()
   8306		 * work with aliases.  Getting the direct map
   8307		 * address ensures that we get a _writeable_
   8308		 * alias for the memset().
   8309		 */
   8310		direct_map_addr = page_address(page);
   8311		/*
   8312		 * Perform a kasan-unchecked memset() since this memory
   8313		 * has not been initialized.
   8314		 */
   8315		direct_map_addr = kasan_reset_tag(direct_map_addr);
   8316		if ((unsigned int)poison <= 0xFF)
   8317			memset(direct_map_addr, poison, PAGE_SIZE);
   8318
   8319		free_reserved_page(page);
   8320	}
   8321
   8322	if (pages && s)
   8323		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
   8324
   8325	return pages;
   8326}
   8327
   8328void __init mem_init_print_info(void)
   8329{
   8330	unsigned long physpages, codesize, datasize, rosize, bss_size;
   8331	unsigned long init_code_size, init_data_size;
   8332
   8333	physpages = get_num_physpages();
   8334	codesize = _etext - _stext;
   8335	datasize = _edata - _sdata;
   8336	rosize = __end_rodata - __start_rodata;
   8337	bss_size = __bss_stop - __bss_start;
   8338	init_data_size = __init_end - __init_begin;
   8339	init_code_size = _einittext - _sinittext;
   8340
   8341	/*
   8342	 * Detect special cases and adjust section sizes accordingly:
   8343	 * 1) .init.* may be embedded into .data sections
   8344	 * 2) .init.text.* may be out of [__init_begin, __init_end],
   8345	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
   8346	 * 3) .rodata.* may be embedded into .text or .data sections.
   8347	 */
   8348#define adj_init_size(start, end, size, pos, adj) \
   8349	do { \
   8350		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
   8351			size -= adj; \
   8352	} while (0)
   8353
   8354	adj_init_size(__init_begin, __init_end, init_data_size,
   8355		     _sinittext, init_code_size);
   8356	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
   8357	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
   8358	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
   8359	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
   8360
   8361#undef	adj_init_size
   8362
   8363	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
   8364#ifdef	CONFIG_HIGHMEM
   8365		", %luK highmem"
   8366#endif
   8367		")\n",
   8368		K(nr_free_pages()), K(physpages),
   8369		codesize >> 10, datasize >> 10, rosize >> 10,
   8370		(init_data_size + init_code_size) >> 10, bss_size >> 10,
   8371		K(physpages - totalram_pages() - totalcma_pages),
   8372		K(totalcma_pages)
   8373#ifdef	CONFIG_HIGHMEM
   8374		, K(totalhigh_pages())
   8375#endif
   8376		);
   8377}
   8378
   8379/**
   8380 * set_dma_reserve - set the specified number of pages reserved in the first zone
   8381 * @new_dma_reserve: The number of pages to mark reserved
   8382 *
   8383 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
   8384 * In the DMA zone, a significant percentage may be consumed by kernel image
   8385 * and other unfreeable allocations which can skew the watermarks badly. This
   8386 * function may optionally be used to account for unfreeable pages in the
   8387 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
   8388 * smaller per-cpu batchsize.
   8389 */
   8390void __init set_dma_reserve(unsigned long new_dma_reserve)
   8391{
   8392	dma_reserve = new_dma_reserve;
   8393}
   8394
   8395static int page_alloc_cpu_dead(unsigned int cpu)
   8396{
   8397	struct zone *zone;
   8398
   8399	lru_add_drain_cpu(cpu);
   8400	mlock_page_drain_remote(cpu);
   8401	drain_pages(cpu);
   8402
   8403	/*
   8404	 * Spill the event counters of the dead processor
   8405	 * into the current processors event counters.
   8406	 * This artificially elevates the count of the current
   8407	 * processor.
   8408	 */
   8409	vm_events_fold_cpu(cpu);
   8410
   8411	/*
   8412	 * Zero the differential counters of the dead processor
   8413	 * so that the vm statistics are consistent.
   8414	 *
   8415	 * This is only okay since the processor is dead and cannot
   8416	 * race with what we are doing.
   8417	 */
   8418	cpu_vm_stats_fold(cpu);
   8419
   8420	for_each_populated_zone(zone)
   8421		zone_pcp_update(zone, 0);
   8422
   8423	return 0;
   8424}
   8425
   8426static int page_alloc_cpu_online(unsigned int cpu)
   8427{
   8428	struct zone *zone;
   8429
   8430	for_each_populated_zone(zone)
   8431		zone_pcp_update(zone, 1);
   8432	return 0;
   8433}
   8434
   8435#ifdef CONFIG_NUMA
   8436int hashdist = HASHDIST_DEFAULT;
   8437
   8438static int __init set_hashdist(char *str)
   8439{
   8440	if (!str)
   8441		return 0;
   8442	hashdist = simple_strtoul(str, &str, 0);
   8443	return 1;
   8444}
   8445__setup("hashdist=", set_hashdist);
   8446#endif
   8447
   8448void __init page_alloc_init(void)
   8449{
   8450	int ret;
   8451
   8452#ifdef CONFIG_NUMA
   8453	if (num_node_state(N_MEMORY) == 1)
   8454		hashdist = 0;
   8455#endif
   8456
   8457	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
   8458					"mm/page_alloc:pcp",
   8459					page_alloc_cpu_online,
   8460					page_alloc_cpu_dead);
   8461	WARN_ON(ret < 0);
   8462}
   8463
   8464/*
   8465 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
   8466 *	or min_free_kbytes changes.
   8467 */
   8468static void calculate_totalreserve_pages(void)
   8469{
   8470	struct pglist_data *pgdat;
   8471	unsigned long reserve_pages = 0;
   8472	enum zone_type i, j;
   8473
   8474	for_each_online_pgdat(pgdat) {
   8475
   8476		pgdat->totalreserve_pages = 0;
   8477
   8478		for (i = 0; i < MAX_NR_ZONES; i++) {
   8479			struct zone *zone = pgdat->node_zones + i;
   8480			long max = 0;
   8481			unsigned long managed_pages = zone_managed_pages(zone);
   8482
   8483			/* Find valid and maximum lowmem_reserve in the zone */
   8484			for (j = i; j < MAX_NR_ZONES; j++) {
   8485				if (zone->lowmem_reserve[j] > max)
   8486					max = zone->lowmem_reserve[j];
   8487			}
   8488
   8489			/* we treat the high watermark as reserved pages. */
   8490			max += high_wmark_pages(zone);
   8491
   8492			if (max > managed_pages)
   8493				max = managed_pages;
   8494
   8495			pgdat->totalreserve_pages += max;
   8496
   8497			reserve_pages += max;
   8498		}
   8499	}
   8500	totalreserve_pages = reserve_pages;
   8501}
   8502
   8503/*
   8504 * setup_per_zone_lowmem_reserve - called whenever
   8505 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
   8506 *	has a correct pages reserved value, so an adequate number of
   8507 *	pages are left in the zone after a successful __alloc_pages().
   8508 */
   8509static void setup_per_zone_lowmem_reserve(void)
   8510{
   8511	struct pglist_data *pgdat;
   8512	enum zone_type i, j;
   8513
   8514	for_each_online_pgdat(pgdat) {
   8515		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
   8516			struct zone *zone = &pgdat->node_zones[i];
   8517			int ratio = sysctl_lowmem_reserve_ratio[i];
   8518			bool clear = !ratio || !zone_managed_pages(zone);
   8519			unsigned long managed_pages = 0;
   8520
   8521			for (j = i + 1; j < MAX_NR_ZONES; j++) {
   8522				struct zone *upper_zone = &pgdat->node_zones[j];
   8523
   8524				managed_pages += zone_managed_pages(upper_zone);
   8525
   8526				if (clear)
   8527					zone->lowmem_reserve[j] = 0;
   8528				else
   8529					zone->lowmem_reserve[j] = managed_pages / ratio;
   8530			}
   8531		}
   8532	}
   8533
   8534	/* update totalreserve_pages */
   8535	calculate_totalreserve_pages();
   8536}
   8537
   8538static void __setup_per_zone_wmarks(void)
   8539{
   8540	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
   8541	unsigned long lowmem_pages = 0;
   8542	struct zone *zone;
   8543	unsigned long flags;
   8544
   8545	/* Calculate total number of !ZONE_HIGHMEM pages */
   8546	for_each_zone(zone) {
   8547		if (!is_highmem(zone))
   8548			lowmem_pages += zone_managed_pages(zone);
   8549	}
   8550
   8551	for_each_zone(zone) {
   8552		u64 tmp;
   8553
   8554		spin_lock_irqsave(&zone->lock, flags);
   8555		tmp = (u64)pages_min * zone_managed_pages(zone);
   8556		do_div(tmp, lowmem_pages);
   8557		if (is_highmem(zone)) {
   8558			/*
   8559			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
   8560			 * need highmem pages, so cap pages_min to a small
   8561			 * value here.
   8562			 *
   8563			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
   8564			 * deltas control async page reclaim, and so should
   8565			 * not be capped for highmem.
   8566			 */
   8567			unsigned long min_pages;
   8568
   8569			min_pages = zone_managed_pages(zone) / 1024;
   8570			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
   8571			zone->_watermark[WMARK_MIN] = min_pages;
   8572		} else {
   8573			/*
   8574			 * If it's a lowmem zone, reserve a number of pages
   8575			 * proportionate to the zone's size.
   8576			 */
   8577			zone->_watermark[WMARK_MIN] = tmp;
   8578		}
   8579
   8580		/*
   8581		 * Set the kswapd watermarks distance according to the
   8582		 * scale factor in proportion to available memory, but
   8583		 * ensure a minimum size on small systems.
   8584		 */
   8585		tmp = max_t(u64, tmp >> 2,
   8586			    mult_frac(zone_managed_pages(zone),
   8587				      watermark_scale_factor, 10000));
   8588
   8589		zone->watermark_boost = 0;
   8590		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
   8591		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
   8592		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
   8593
   8594		spin_unlock_irqrestore(&zone->lock, flags);
   8595	}
   8596
   8597	/* update totalreserve_pages */
   8598	calculate_totalreserve_pages();
   8599}
   8600
   8601/**
   8602 * setup_per_zone_wmarks - called when min_free_kbytes changes
   8603 * or when memory is hot-{added|removed}
   8604 *
   8605 * Ensures that the watermark[min,low,high] values for each zone are set
   8606 * correctly with respect to min_free_kbytes.
   8607 */
   8608void setup_per_zone_wmarks(void)
   8609{
   8610	struct zone *zone;
   8611	static DEFINE_SPINLOCK(lock);
   8612
   8613	spin_lock(&lock);
   8614	__setup_per_zone_wmarks();
   8615	spin_unlock(&lock);
   8616
   8617	/*
   8618	 * The watermark size have changed so update the pcpu batch
   8619	 * and high limits or the limits may be inappropriate.
   8620	 */
   8621	for_each_zone(zone)
   8622		zone_pcp_update(zone, 0);
   8623}
   8624
   8625/*
   8626 * Initialise min_free_kbytes.
   8627 *
   8628 * For small machines we want it small (128k min).  For large machines
   8629 * we want it large (256MB max).  But it is not linear, because network
   8630 * bandwidth does not increase linearly with machine size.  We use
   8631 *
   8632 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
   8633 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
   8634 *
   8635 * which yields
   8636 *
   8637 * 16MB:	512k
   8638 * 32MB:	724k
   8639 * 64MB:	1024k
   8640 * 128MB:	1448k
   8641 * 256MB:	2048k
   8642 * 512MB:	2896k
   8643 * 1024MB:	4096k
   8644 * 2048MB:	5792k
   8645 * 4096MB:	8192k
   8646 * 8192MB:	11584k
   8647 * 16384MB:	16384k
   8648 */
   8649void calculate_min_free_kbytes(void)
   8650{
   8651	unsigned long lowmem_kbytes;
   8652	int new_min_free_kbytes;
   8653
   8654	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
   8655	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
   8656
   8657	if (new_min_free_kbytes > user_min_free_kbytes)
   8658		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
   8659	else
   8660		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
   8661				new_min_free_kbytes, user_min_free_kbytes);
   8662
   8663}
   8664
   8665int __meminit init_per_zone_wmark_min(void)
   8666{
   8667	calculate_min_free_kbytes();
   8668	setup_per_zone_wmarks();
   8669	refresh_zone_stat_thresholds();
   8670	setup_per_zone_lowmem_reserve();
   8671
   8672#ifdef CONFIG_NUMA
   8673	setup_min_unmapped_ratio();
   8674	setup_min_slab_ratio();
   8675#endif
   8676
   8677	khugepaged_min_free_kbytes_update();
   8678
   8679	return 0;
   8680}
   8681postcore_initcall(init_per_zone_wmark_min)
   8682
   8683/*
   8684 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
   8685 *	that we can call two helper functions whenever min_free_kbytes
   8686 *	changes.
   8687 */
   8688int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
   8689		void *buffer, size_t *length, loff_t *ppos)
   8690{
   8691	int rc;
   8692
   8693	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
   8694	if (rc)
   8695		return rc;
   8696
   8697	if (write) {
   8698		user_min_free_kbytes = min_free_kbytes;
   8699		setup_per_zone_wmarks();
   8700	}
   8701	return 0;
   8702}
   8703
   8704int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
   8705		void *buffer, size_t *length, loff_t *ppos)
   8706{
   8707	int rc;
   8708
   8709	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
   8710	if (rc)
   8711		return rc;
   8712
   8713	if (write)
   8714		setup_per_zone_wmarks();
   8715
   8716	return 0;
   8717}
   8718
   8719#ifdef CONFIG_NUMA
   8720static void setup_min_unmapped_ratio(void)
   8721{
   8722	pg_data_t *pgdat;
   8723	struct zone *zone;
   8724
   8725	for_each_online_pgdat(pgdat)
   8726		pgdat->min_unmapped_pages = 0;
   8727
   8728	for_each_zone(zone)
   8729		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
   8730						         sysctl_min_unmapped_ratio) / 100;
   8731}
   8732
   8733
   8734int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
   8735		void *buffer, size_t *length, loff_t *ppos)
   8736{
   8737	int rc;
   8738
   8739	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
   8740	if (rc)
   8741		return rc;
   8742
   8743	setup_min_unmapped_ratio();
   8744
   8745	return 0;
   8746}
   8747
   8748static void setup_min_slab_ratio(void)
   8749{
   8750	pg_data_t *pgdat;
   8751	struct zone *zone;
   8752
   8753	for_each_online_pgdat(pgdat)
   8754		pgdat->min_slab_pages = 0;
   8755
   8756	for_each_zone(zone)
   8757		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
   8758						     sysctl_min_slab_ratio) / 100;
   8759}
   8760
   8761int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
   8762		void *buffer, size_t *length, loff_t *ppos)
   8763{
   8764	int rc;
   8765
   8766	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
   8767	if (rc)
   8768		return rc;
   8769
   8770	setup_min_slab_ratio();
   8771
   8772	return 0;
   8773}
   8774#endif
   8775
   8776/*
   8777 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
   8778 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
   8779 *	whenever sysctl_lowmem_reserve_ratio changes.
   8780 *
   8781 * The reserve ratio obviously has absolutely no relation with the
   8782 * minimum watermarks. The lowmem reserve ratio can only make sense
   8783 * if in function of the boot time zone sizes.
   8784 */
   8785int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
   8786		void *buffer, size_t *length, loff_t *ppos)
   8787{
   8788	int i;
   8789
   8790	proc_dointvec_minmax(table, write, buffer, length, ppos);
   8791
   8792	for (i = 0; i < MAX_NR_ZONES; i++) {
   8793		if (sysctl_lowmem_reserve_ratio[i] < 1)
   8794			sysctl_lowmem_reserve_ratio[i] = 0;
   8795	}
   8796
   8797	setup_per_zone_lowmem_reserve();
   8798	return 0;
   8799}
   8800
   8801/*
   8802 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
   8803 * cpu. It is the fraction of total pages in each zone that a hot per cpu
   8804 * pagelist can have before it gets flushed back to buddy allocator.
   8805 */
   8806int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
   8807		int write, void *buffer, size_t *length, loff_t *ppos)
   8808{
   8809	struct zone *zone;
   8810	int old_percpu_pagelist_high_fraction;
   8811	int ret;
   8812
   8813	mutex_lock(&pcp_batch_high_lock);
   8814	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
   8815
   8816	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
   8817	if (!write || ret < 0)
   8818		goto out;
   8819
   8820	/* Sanity checking to avoid pcp imbalance */
   8821	if (percpu_pagelist_high_fraction &&
   8822	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
   8823		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
   8824		ret = -EINVAL;
   8825		goto out;
   8826	}
   8827
   8828	/* No change? */
   8829	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
   8830		goto out;
   8831
   8832	for_each_populated_zone(zone)
   8833		zone_set_pageset_high_and_batch(zone, 0);
   8834out:
   8835	mutex_unlock(&pcp_batch_high_lock);
   8836	return ret;
   8837}
   8838
   8839#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
   8840/*
   8841 * Returns the number of pages that arch has reserved but
   8842 * is not known to alloc_large_system_hash().
   8843 */
   8844static unsigned long __init arch_reserved_kernel_pages(void)
   8845{
   8846	return 0;
   8847}
   8848#endif
   8849
   8850/*
   8851 * Adaptive scale is meant to reduce sizes of hash tables on large memory
   8852 * machines. As memory size is increased the scale is also increased but at
   8853 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
   8854 * quadruples the scale is increased by one, which means the size of hash table
   8855 * only doubles, instead of quadrupling as well.
   8856 * Because 32-bit systems cannot have large physical memory, where this scaling
   8857 * makes sense, it is disabled on such platforms.
   8858 */
   8859#if __BITS_PER_LONG > 32
   8860#define ADAPT_SCALE_BASE	(64ul << 30)
   8861#define ADAPT_SCALE_SHIFT	2
   8862#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
   8863#endif
   8864
   8865/*
   8866 * allocate a large system hash table from bootmem
   8867 * - it is assumed that the hash table must contain an exact power-of-2
   8868 *   quantity of entries
   8869 * - limit is the number of hash buckets, not the total allocation size
   8870 */
   8871void *__init alloc_large_system_hash(const char *tablename,
   8872				     unsigned long bucketsize,
   8873				     unsigned long numentries,
   8874				     int scale,
   8875				     int flags,
   8876				     unsigned int *_hash_shift,
   8877				     unsigned int *_hash_mask,
   8878				     unsigned long low_limit,
   8879				     unsigned long high_limit)
   8880{
   8881	unsigned long long max = high_limit;
   8882	unsigned long log2qty, size;
   8883	void *table = NULL;
   8884	gfp_t gfp_flags;
   8885	bool virt;
   8886	bool huge;
   8887
   8888	/* allow the kernel cmdline to have a say */
   8889	if (!numentries) {
   8890		/* round applicable memory size up to nearest megabyte */
   8891		numentries = nr_kernel_pages;
   8892		numentries -= arch_reserved_kernel_pages();
   8893
   8894		/* It isn't necessary when PAGE_SIZE >= 1MB */
   8895		if (PAGE_SHIFT < 20)
   8896			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
   8897
   8898#if __BITS_PER_LONG > 32
   8899		if (!high_limit) {
   8900			unsigned long adapt;
   8901
   8902			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
   8903			     adapt <<= ADAPT_SCALE_SHIFT)
   8904				scale++;
   8905		}
   8906#endif
   8907
   8908		/* limit to 1 bucket per 2^scale bytes of low memory */
   8909		if (scale > PAGE_SHIFT)
   8910			numentries >>= (scale - PAGE_SHIFT);
   8911		else
   8912			numentries <<= (PAGE_SHIFT - scale);
   8913
   8914		/* Make sure we've got at least a 0-order allocation.. */
   8915		if (unlikely(flags & HASH_SMALL)) {
   8916			/* Makes no sense without HASH_EARLY */
   8917			WARN_ON(!(flags & HASH_EARLY));
   8918			if (!(numentries >> *_hash_shift)) {
   8919				numentries = 1UL << *_hash_shift;
   8920				BUG_ON(!numentries);
   8921			}
   8922		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
   8923			numentries = PAGE_SIZE / bucketsize;
   8924	}
   8925	numentries = roundup_pow_of_two(numentries);
   8926
   8927	/* limit allocation size to 1/16 total memory by default */
   8928	if (max == 0) {
   8929		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
   8930		do_div(max, bucketsize);
   8931	}
   8932	max = min(max, 0x80000000ULL);
   8933
   8934	if (numentries < low_limit)
   8935		numentries = low_limit;
   8936	if (numentries > max)
   8937		numentries = max;
   8938
   8939	log2qty = ilog2(numentries);
   8940
   8941	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
   8942	do {
   8943		virt = false;
   8944		size = bucketsize << log2qty;
   8945		if (flags & HASH_EARLY) {
   8946			if (flags & HASH_ZERO)
   8947				table = memblock_alloc(size, SMP_CACHE_BYTES);
   8948			else
   8949				table = memblock_alloc_raw(size,
   8950							   SMP_CACHE_BYTES);
   8951		} else if (get_order(size) >= MAX_ORDER || hashdist) {
   8952			table = vmalloc_huge(size, gfp_flags);
   8953			virt = true;
   8954			if (table)
   8955				huge = is_vm_area_hugepages(table);
   8956		} else {
   8957			/*
   8958			 * If bucketsize is not a power-of-two, we may free
   8959			 * some pages at the end of hash table which
   8960			 * alloc_pages_exact() automatically does
   8961			 */
   8962			table = alloc_pages_exact(size, gfp_flags);
   8963			kmemleak_alloc(table, size, 1, gfp_flags);
   8964		}
   8965	} while (!table && size > PAGE_SIZE && --log2qty);
   8966
   8967	if (!table)
   8968		panic("Failed to allocate %s hash table\n", tablename);
   8969
   8970	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
   8971		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
   8972		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
   8973
   8974	if (_hash_shift)
   8975		*_hash_shift = log2qty;
   8976	if (_hash_mask)
   8977		*_hash_mask = (1 << log2qty) - 1;
   8978
   8979	return table;
   8980}
   8981
   8982#ifdef CONFIG_CONTIG_ALLOC
   8983#if defined(CONFIG_DYNAMIC_DEBUG) || \
   8984	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
   8985/* Usage: See admin-guide/dynamic-debug-howto.rst */
   8986static void alloc_contig_dump_pages(struct list_head *page_list)
   8987{
   8988	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
   8989
   8990	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
   8991		struct page *page;
   8992
   8993		dump_stack();
   8994		list_for_each_entry(page, page_list, lru)
   8995			dump_page(page, "migration failure");
   8996	}
   8997}
   8998#else
   8999static inline void alloc_contig_dump_pages(struct list_head *page_list)
   9000{
   9001}
   9002#endif
   9003
   9004/* [start, end) must belong to a single zone. */
   9005int __alloc_contig_migrate_range(struct compact_control *cc,
   9006					unsigned long start, unsigned long end)
   9007{
   9008	/* This function is based on compact_zone() from compaction.c. */
   9009	unsigned int nr_reclaimed;
   9010	unsigned long pfn = start;
   9011	unsigned int tries = 0;
   9012	int ret = 0;
   9013	struct migration_target_control mtc = {
   9014		.nid = zone_to_nid(cc->zone),
   9015		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
   9016	};
   9017
   9018	lru_cache_disable();
   9019
   9020	while (pfn < end || !list_empty(&cc->migratepages)) {
   9021		if (fatal_signal_pending(current)) {
   9022			ret = -EINTR;
   9023			break;
   9024		}
   9025
   9026		if (list_empty(&cc->migratepages)) {
   9027			cc->nr_migratepages = 0;
   9028			ret = isolate_migratepages_range(cc, pfn, end);
   9029			if (ret && ret != -EAGAIN)
   9030				break;
   9031			pfn = cc->migrate_pfn;
   9032			tries = 0;
   9033		} else if (++tries == 5) {
   9034			ret = -EBUSY;
   9035			break;
   9036		}
   9037
   9038		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
   9039							&cc->migratepages);
   9040		cc->nr_migratepages -= nr_reclaimed;
   9041
   9042		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
   9043			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
   9044
   9045		/*
   9046		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
   9047		 * to retry again over this error, so do the same here.
   9048		 */
   9049		if (ret == -ENOMEM)
   9050			break;
   9051	}
   9052
   9053	lru_cache_enable();
   9054	if (ret < 0) {
   9055		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
   9056			alloc_contig_dump_pages(&cc->migratepages);
   9057		putback_movable_pages(&cc->migratepages);
   9058		return ret;
   9059	}
   9060	return 0;
   9061}
   9062
   9063/**
   9064 * alloc_contig_range() -- tries to allocate given range of pages
   9065 * @start:	start PFN to allocate
   9066 * @end:	one-past-the-last PFN to allocate
   9067 * @migratetype:	migratetype of the underlying pageblocks (either
   9068 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
   9069 *			in range must have the same migratetype and it must
   9070 *			be either of the two.
   9071 * @gfp_mask:	GFP mask to use during compaction
   9072 *
   9073 * The PFN range does not have to be pageblock aligned. The PFN range must
   9074 * belong to a single zone.
   9075 *
   9076 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
   9077 * pageblocks in the range.  Once isolated, the pageblocks should not
   9078 * be modified by others.
   9079 *
   9080 * Return: zero on success or negative error code.  On success all
   9081 * pages which PFN is in [start, end) are allocated for the caller and
   9082 * need to be freed with free_contig_range().
   9083 */
   9084int alloc_contig_range(unsigned long start, unsigned long end,
   9085		       unsigned migratetype, gfp_t gfp_mask)
   9086{
   9087	unsigned long outer_start, outer_end;
   9088	int order;
   9089	int ret = 0;
   9090
   9091	struct compact_control cc = {
   9092		.nr_migratepages = 0,
   9093		.order = -1,
   9094		.zone = page_zone(pfn_to_page(start)),
   9095		.mode = MIGRATE_SYNC,
   9096		.ignore_skip_hint = true,
   9097		.no_set_skip_hint = true,
   9098		.gfp_mask = current_gfp_context(gfp_mask),
   9099		.alloc_contig = true,
   9100	};
   9101	INIT_LIST_HEAD(&cc.migratepages);
   9102
   9103	/*
   9104	 * What we do here is we mark all pageblocks in range as
   9105	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
   9106	 * have different sizes, and due to the way page allocator
   9107	 * work, start_isolate_page_range() has special handlings for this.
   9108	 *
   9109	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
   9110	 * migrate the pages from an unaligned range (ie. pages that
   9111	 * we are interested in). This will put all the pages in
   9112	 * range back to page allocator as MIGRATE_ISOLATE.
   9113	 *
   9114	 * When this is done, we take the pages in range from page
   9115	 * allocator removing them from the buddy system.  This way
   9116	 * page allocator will never consider using them.
   9117	 *
   9118	 * This lets us mark the pageblocks back as
   9119	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
   9120	 * aligned range but not in the unaligned, original range are
   9121	 * put back to page allocator so that buddy can use them.
   9122	 */
   9123
   9124	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
   9125	if (ret)
   9126		goto done;
   9127
   9128	drain_all_pages(cc.zone);
   9129
   9130	/*
   9131	 * In case of -EBUSY, we'd like to know which page causes problem.
   9132	 * So, just fall through. test_pages_isolated() has a tracepoint
   9133	 * which will report the busy page.
   9134	 *
   9135	 * It is possible that busy pages could become available before
   9136	 * the call to test_pages_isolated, and the range will actually be
   9137	 * allocated.  So, if we fall through be sure to clear ret so that
   9138	 * -EBUSY is not accidentally used or returned to caller.
   9139	 */
   9140	ret = __alloc_contig_migrate_range(&cc, start, end);
   9141	if (ret && ret != -EBUSY)
   9142		goto done;
   9143	ret = 0;
   9144
   9145	/*
   9146	 * Pages from [start, end) are within a pageblock_nr_pages
   9147	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
   9148	 * more, all pages in [start, end) are free in page allocator.
   9149	 * What we are going to do is to allocate all pages from
   9150	 * [start, end) (that is remove them from page allocator).
   9151	 *
   9152	 * The only problem is that pages at the beginning and at the
   9153	 * end of interesting range may be not aligned with pages that
   9154	 * page allocator holds, ie. they can be part of higher order
   9155	 * pages.  Because of this, we reserve the bigger range and
   9156	 * once this is done free the pages we are not interested in.
   9157	 *
   9158	 * We don't have to hold zone->lock here because the pages are
   9159	 * isolated thus they won't get removed from buddy.
   9160	 */
   9161
   9162	order = 0;
   9163	outer_start = start;
   9164	while (!PageBuddy(pfn_to_page(outer_start))) {
   9165		if (++order >= MAX_ORDER) {
   9166			outer_start = start;
   9167			break;
   9168		}
   9169		outer_start &= ~0UL << order;
   9170	}
   9171
   9172	if (outer_start != start) {
   9173		order = buddy_order(pfn_to_page(outer_start));
   9174
   9175		/*
   9176		 * outer_start page could be small order buddy page and
   9177		 * it doesn't include start page. Adjust outer_start
   9178		 * in this case to report failed page properly
   9179		 * on tracepoint in test_pages_isolated()
   9180		 */
   9181		if (outer_start + (1UL << order) <= start)
   9182			outer_start = start;
   9183	}
   9184
   9185	/* Make sure the range is really isolated. */
   9186	if (test_pages_isolated(outer_start, end, 0)) {
   9187		ret = -EBUSY;
   9188		goto done;
   9189	}
   9190
   9191	/* Grab isolated pages from freelists. */
   9192	outer_end = isolate_freepages_range(&cc, outer_start, end);
   9193	if (!outer_end) {
   9194		ret = -EBUSY;
   9195		goto done;
   9196	}
   9197
   9198	/* Free head and tail (if any) */
   9199	if (start != outer_start)
   9200		free_contig_range(outer_start, start - outer_start);
   9201	if (end != outer_end)
   9202		free_contig_range(end, outer_end - end);
   9203
   9204done:
   9205	undo_isolate_page_range(start, end, migratetype);
   9206	return ret;
   9207}
   9208EXPORT_SYMBOL(alloc_contig_range);
   9209
   9210static int __alloc_contig_pages(unsigned long start_pfn,
   9211				unsigned long nr_pages, gfp_t gfp_mask)
   9212{
   9213	unsigned long end_pfn = start_pfn + nr_pages;
   9214
   9215	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
   9216				  gfp_mask);
   9217}
   9218
   9219static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
   9220				   unsigned long nr_pages)
   9221{
   9222	unsigned long i, end_pfn = start_pfn + nr_pages;
   9223	struct page *page;
   9224
   9225	for (i = start_pfn; i < end_pfn; i++) {
   9226		page = pfn_to_online_page(i);
   9227		if (!page)
   9228			return false;
   9229
   9230		if (page_zone(page) != z)
   9231			return false;
   9232
   9233		if (PageReserved(page))
   9234			return false;
   9235	}
   9236	return true;
   9237}
   9238
   9239static bool zone_spans_last_pfn(const struct zone *zone,
   9240				unsigned long start_pfn, unsigned long nr_pages)
   9241{
   9242	unsigned long last_pfn = start_pfn + nr_pages - 1;
   9243
   9244	return zone_spans_pfn(zone, last_pfn);
   9245}
   9246
   9247/**
   9248 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
   9249 * @nr_pages:	Number of contiguous pages to allocate
   9250 * @gfp_mask:	GFP mask to limit search and used during compaction
   9251 * @nid:	Target node
   9252 * @nodemask:	Mask for other possible nodes
   9253 *
   9254 * This routine is a wrapper around alloc_contig_range(). It scans over zones
   9255 * on an applicable zonelist to find a contiguous pfn range which can then be
   9256 * tried for allocation with alloc_contig_range(). This routine is intended
   9257 * for allocation requests which can not be fulfilled with the buddy allocator.
   9258 *
   9259 * The allocated memory is always aligned to a page boundary. If nr_pages is a
   9260 * power of two, then allocated range is also guaranteed to be aligned to same
   9261 * nr_pages (e.g. 1GB request would be aligned to 1GB).
   9262 *
   9263 * Allocated pages can be freed with free_contig_range() or by manually calling
   9264 * __free_page() on each allocated page.
   9265 *
   9266 * Return: pointer to contiguous pages on success, or NULL if not successful.
   9267 */
   9268struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
   9269				int nid, nodemask_t *nodemask)
   9270{
   9271	unsigned long ret, pfn, flags;
   9272	struct zonelist *zonelist;
   9273	struct zone *zone;
   9274	struct zoneref *z;
   9275
   9276	zonelist = node_zonelist(nid, gfp_mask);
   9277	for_each_zone_zonelist_nodemask(zone, z, zonelist,
   9278					gfp_zone(gfp_mask), nodemask) {
   9279		spin_lock_irqsave(&zone->lock, flags);
   9280
   9281		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
   9282		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
   9283			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
   9284				/*
   9285				 * We release the zone lock here because
   9286				 * alloc_contig_range() will also lock the zone
   9287				 * at some point. If there's an allocation
   9288				 * spinning on this lock, it may win the race
   9289				 * and cause alloc_contig_range() to fail...
   9290				 */
   9291				spin_unlock_irqrestore(&zone->lock, flags);
   9292				ret = __alloc_contig_pages(pfn, nr_pages,
   9293							gfp_mask);
   9294				if (!ret)
   9295					return pfn_to_page(pfn);
   9296				spin_lock_irqsave(&zone->lock, flags);
   9297			}
   9298			pfn += nr_pages;
   9299		}
   9300		spin_unlock_irqrestore(&zone->lock, flags);
   9301	}
   9302	return NULL;
   9303}
   9304#endif /* CONFIG_CONTIG_ALLOC */
   9305
   9306void free_contig_range(unsigned long pfn, unsigned long nr_pages)
   9307{
   9308	unsigned long count = 0;
   9309
   9310	for (; nr_pages--; pfn++) {
   9311		struct page *page = pfn_to_page(pfn);
   9312
   9313		count += page_count(page) != 1;
   9314		__free_page(page);
   9315	}
   9316	WARN(count != 0, "%lu pages are still in use!\n", count);
   9317}
   9318EXPORT_SYMBOL(free_contig_range);
   9319
   9320/*
   9321 * The zone indicated has a new number of managed_pages; batch sizes and percpu
   9322 * page high values need to be recalculated.
   9323 */
   9324void zone_pcp_update(struct zone *zone, int cpu_online)
   9325{
   9326	mutex_lock(&pcp_batch_high_lock);
   9327	zone_set_pageset_high_and_batch(zone, cpu_online);
   9328	mutex_unlock(&pcp_batch_high_lock);
   9329}
   9330
   9331/*
   9332 * Effectively disable pcplists for the zone by setting the high limit to 0
   9333 * and draining all cpus. A concurrent page freeing on another CPU that's about
   9334 * to put the page on pcplist will either finish before the drain and the page
   9335 * will be drained, or observe the new high limit and skip the pcplist.
   9336 *
   9337 * Must be paired with a call to zone_pcp_enable().
   9338 */
   9339void zone_pcp_disable(struct zone *zone)
   9340{
   9341	mutex_lock(&pcp_batch_high_lock);
   9342	__zone_set_pageset_high_and_batch(zone, 0, 1);
   9343	__drain_all_pages(zone, true);
   9344}
   9345
   9346void zone_pcp_enable(struct zone *zone)
   9347{
   9348	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
   9349	mutex_unlock(&pcp_batch_high_lock);
   9350}
   9351
   9352void zone_pcp_reset(struct zone *zone)
   9353{
   9354	int cpu;
   9355	struct per_cpu_zonestat *pzstats;
   9356
   9357	if (zone->per_cpu_pageset != &boot_pageset) {
   9358		for_each_online_cpu(cpu) {
   9359			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
   9360			drain_zonestat(zone, pzstats);
   9361		}
   9362		free_percpu(zone->per_cpu_pageset);
   9363		free_percpu(zone->per_cpu_zonestats);
   9364		zone->per_cpu_pageset = &boot_pageset;
   9365		zone->per_cpu_zonestats = &boot_zonestats;
   9366	}
   9367}
   9368
   9369#ifdef CONFIG_MEMORY_HOTREMOVE
   9370/*
   9371 * All pages in the range must be in a single zone, must not contain holes,
   9372 * must span full sections, and must be isolated before calling this function.
   9373 */
   9374void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
   9375{
   9376	unsigned long pfn = start_pfn;
   9377	struct page *page;
   9378	struct zone *zone;
   9379	unsigned int order;
   9380	unsigned long flags;
   9381
   9382	offline_mem_sections(pfn, end_pfn);
   9383	zone = page_zone(pfn_to_page(pfn));
   9384	spin_lock_irqsave(&zone->lock, flags);
   9385	while (pfn < end_pfn) {
   9386		page = pfn_to_page(pfn);
   9387		/*
   9388		 * The HWPoisoned page may be not in buddy system, and
   9389		 * page_count() is not 0.
   9390		 */
   9391		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
   9392			pfn++;
   9393			continue;
   9394		}
   9395		/*
   9396		 * At this point all remaining PageOffline() pages have a
   9397		 * reference count of 0 and can simply be skipped.
   9398		 */
   9399		if (PageOffline(page)) {
   9400			BUG_ON(page_count(page));
   9401			BUG_ON(PageBuddy(page));
   9402			pfn++;
   9403			continue;
   9404		}
   9405
   9406		BUG_ON(page_count(page));
   9407		BUG_ON(!PageBuddy(page));
   9408		order = buddy_order(page);
   9409		del_page_from_free_list(page, zone, order);
   9410		pfn += (1 << order);
   9411	}
   9412	spin_unlock_irqrestore(&zone->lock, flags);
   9413}
   9414#endif
   9415
   9416/*
   9417 * This function returns a stable result only if called under zone lock.
   9418 */
   9419bool is_free_buddy_page(struct page *page)
   9420{
   9421	unsigned long pfn = page_to_pfn(page);
   9422	unsigned int order;
   9423
   9424	for (order = 0; order < MAX_ORDER; order++) {
   9425		struct page *page_head = page - (pfn & ((1 << order) - 1));
   9426
   9427		if (PageBuddy(page_head) &&
   9428		    buddy_order_unsafe(page_head) >= order)
   9429			break;
   9430	}
   9431
   9432	return order < MAX_ORDER;
   9433}
   9434EXPORT_SYMBOL(is_free_buddy_page);
   9435
   9436#ifdef CONFIG_MEMORY_FAILURE
   9437/*
   9438 * Break down a higher-order page in sub-pages, and keep our target out of
   9439 * buddy allocator.
   9440 */
   9441static void break_down_buddy_pages(struct zone *zone, struct page *page,
   9442				   struct page *target, int low, int high,
   9443				   int migratetype)
   9444{
   9445	unsigned long size = 1 << high;
   9446	struct page *current_buddy, *next_page;
   9447
   9448	while (high > low) {
   9449		high--;
   9450		size >>= 1;
   9451
   9452		if (target >= &page[size]) {
   9453			next_page = page + size;
   9454			current_buddy = page;
   9455		} else {
   9456			next_page = page;
   9457			current_buddy = page + size;
   9458		}
   9459
   9460		if (set_page_guard(zone, current_buddy, high, migratetype))
   9461			continue;
   9462
   9463		if (current_buddy != target) {
   9464			add_to_free_list(current_buddy, zone, high, migratetype);
   9465			set_buddy_order(current_buddy, high);
   9466			page = next_page;
   9467		}
   9468	}
   9469}
   9470
   9471/*
   9472 * Take a page that will be marked as poisoned off the buddy allocator.
   9473 */
   9474bool take_page_off_buddy(struct page *page)
   9475{
   9476	struct zone *zone = page_zone(page);
   9477	unsigned long pfn = page_to_pfn(page);
   9478	unsigned long flags;
   9479	unsigned int order;
   9480	bool ret = false;
   9481
   9482	spin_lock_irqsave(&zone->lock, flags);
   9483	for (order = 0; order < MAX_ORDER; order++) {
   9484		struct page *page_head = page - (pfn & ((1 << order) - 1));
   9485		int page_order = buddy_order(page_head);
   9486
   9487		if (PageBuddy(page_head) && page_order >= order) {
   9488			unsigned long pfn_head = page_to_pfn(page_head);
   9489			int migratetype = get_pfnblock_migratetype(page_head,
   9490								   pfn_head);
   9491
   9492			del_page_from_free_list(page_head, zone, page_order);
   9493			break_down_buddy_pages(zone, page_head, page, 0,
   9494						page_order, migratetype);
   9495			SetPageHWPoisonTakenOff(page);
   9496			if (!is_migrate_isolate(migratetype))
   9497				__mod_zone_freepage_state(zone, -1, migratetype);
   9498			ret = true;
   9499			break;
   9500		}
   9501		if (page_count(page_head) > 0)
   9502			break;
   9503	}
   9504	spin_unlock_irqrestore(&zone->lock, flags);
   9505	return ret;
   9506}
   9507
   9508/*
   9509 * Cancel takeoff done by take_page_off_buddy().
   9510 */
   9511bool put_page_back_buddy(struct page *page)
   9512{
   9513	struct zone *zone = page_zone(page);
   9514	unsigned long pfn = page_to_pfn(page);
   9515	unsigned long flags;
   9516	int migratetype = get_pfnblock_migratetype(page, pfn);
   9517	bool ret = false;
   9518
   9519	spin_lock_irqsave(&zone->lock, flags);
   9520	if (put_page_testzero(page)) {
   9521		ClearPageHWPoisonTakenOff(page);
   9522		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
   9523		if (TestClearPageHWPoison(page)) {
   9524			ret = true;
   9525		}
   9526	}
   9527	spin_unlock_irqrestore(&zone->lock, flags);
   9528
   9529	return ret;
   9530}
   9531#endif
   9532
   9533#ifdef CONFIG_ZONE_DMA
   9534bool has_managed_dma(void)
   9535{
   9536	struct pglist_data *pgdat;
   9537
   9538	for_each_online_pgdat(pgdat) {
   9539		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
   9540
   9541		if (managed_zone(zone))
   9542			return true;
   9543	}
   9544	return false;
   9545}
   9546#endif /* CONFIG_ZONE_DMA */