page_alloc.c (271449B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18#include <linux/stddef.h> 19#include <linux/mm.h> 20#include <linux/highmem.h> 21#include <linux/swap.h> 22#include <linux/swapops.h> 23#include <linux/interrupt.h> 24#include <linux/pagemap.h> 25#include <linux/jiffies.h> 26#include <linux/memblock.h> 27#include <linux/compiler.h> 28#include <linux/kernel.h> 29#include <linux/kasan.h> 30#include <linux/module.h> 31#include <linux/suspend.h> 32#include <linux/pagevec.h> 33#include <linux/blkdev.h> 34#include <linux/slab.h> 35#include <linux/ratelimit.h> 36#include <linux/oom.h> 37#include <linux/topology.h> 38#include <linux/sysctl.h> 39#include <linux/cpu.h> 40#include <linux/cpuset.h> 41#include <linux/memory_hotplug.h> 42#include <linux/nodemask.h> 43#include <linux/vmalloc.h> 44#include <linux/vmstat.h> 45#include <linux/mempolicy.h> 46#include <linux/memremap.h> 47#include <linux/stop_machine.h> 48#include <linux/random.h> 49#include <linux/sort.h> 50#include <linux/pfn.h> 51#include <linux/backing-dev.h> 52#include <linux/fault-inject.h> 53#include <linux/page-isolation.h> 54#include <linux/debugobjects.h> 55#include <linux/kmemleak.h> 56#include <linux/compaction.h> 57#include <trace/events/kmem.h> 58#include <trace/events/oom.h> 59#include <linux/prefetch.h> 60#include <linux/mm_inline.h> 61#include <linux/mmu_notifier.h> 62#include <linux/migrate.h> 63#include <linux/hugetlb.h> 64#include <linux/sched/rt.h> 65#include <linux/sched/mm.h> 66#include <linux/page_owner.h> 67#include <linux/page_table_check.h> 68#include <linux/kthread.h> 69#include <linux/memcontrol.h> 70#include <linux/ftrace.h> 71#include <linux/lockdep.h> 72#include <linux/nmi.h> 73#include <linux/psi.h> 74#include <linux/padata.h> 75#include <linux/khugepaged.h> 76#include <linux/buffer_head.h> 77#include <linux/delayacct.h> 78#include <asm/sections.h> 79#include <asm/tlbflush.h> 80#include <asm/div64.h> 81#include "internal.h" 82#include "shuffle.h" 83#include "page_reporting.h" 84#include "swap.h" 85 86/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 87typedef int __bitwise fpi_t; 88 89/* No special request */ 90#define FPI_NONE ((__force fpi_t)0) 91 92/* 93 * Skip free page reporting notification for the (possibly merged) page. 94 * This does not hinder free page reporting from grabbing the page, 95 * reporting it and marking it "reported" - it only skips notifying 96 * the free page reporting infrastructure about a newly freed page. For 97 * example, used when temporarily pulling a page from a freelist and 98 * putting it back unmodified. 99 */ 100#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 101 102/* 103 * Place the (possibly merged) page to the tail of the freelist. Will ignore 104 * page shuffling (relevant code - e.g., memory onlining - is expected to 105 * shuffle the whole zone). 106 * 107 * Note: No code should rely on this flag for correctness - it's purely 108 * to allow for optimizations when handing back either fresh pages 109 * (memory onlining) or untouched pages (page isolation, free page 110 * reporting). 111 */ 112#define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 113 114/* 115 * Don't poison memory with KASAN (only for the tag-based modes). 116 * During boot, all non-reserved memblock memory is exposed to page_alloc. 117 * Poisoning all that memory lengthens boot time, especially on systems with 118 * large amount of RAM. This flag is used to skip that poisoning. 119 * This is only done for the tag-based KASAN modes, as those are able to 120 * detect memory corruptions with the memory tags assigned by default. 121 * All memory allocated normally after boot gets poisoned as usual. 122 */ 123#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 124 125/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 126static DEFINE_MUTEX(pcp_batch_high_lock); 127#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 128 129struct pagesets { 130 local_lock_t lock; 131}; 132static DEFINE_PER_CPU(struct pagesets, pagesets) = { 133 .lock = INIT_LOCAL_LOCK(lock), 134}; 135 136#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 137DEFINE_PER_CPU(int, numa_node); 138EXPORT_PER_CPU_SYMBOL(numa_node); 139#endif 140 141DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 142 143#ifdef CONFIG_HAVE_MEMORYLESS_NODES 144/* 145 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 146 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 147 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 148 * defined in <linux/topology.h>. 149 */ 150DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 151EXPORT_PER_CPU_SYMBOL(_numa_mem_); 152#endif 153 154/* work_structs for global per-cpu drains */ 155struct pcpu_drain { 156 struct zone *zone; 157 struct work_struct work; 158}; 159static DEFINE_MUTEX(pcpu_drain_mutex); 160static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 161 162#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 163volatile unsigned long latent_entropy __latent_entropy; 164EXPORT_SYMBOL(latent_entropy); 165#endif 166 167/* 168 * Array of node states. 169 */ 170nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 171 [N_POSSIBLE] = NODE_MASK_ALL, 172 [N_ONLINE] = { { [0] = 1UL } }, 173#ifndef CONFIG_NUMA 174 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 175#ifdef CONFIG_HIGHMEM 176 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 177#endif 178 [N_MEMORY] = { { [0] = 1UL } }, 179 [N_CPU] = { { [0] = 1UL } }, 180#endif /* NUMA */ 181}; 182EXPORT_SYMBOL(node_states); 183 184atomic_long_t _totalram_pages __read_mostly; 185EXPORT_SYMBOL(_totalram_pages); 186unsigned long totalreserve_pages __read_mostly; 187unsigned long totalcma_pages __read_mostly; 188 189int percpu_pagelist_high_fraction; 190gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 191DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 192EXPORT_SYMBOL(init_on_alloc); 193 194DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 195EXPORT_SYMBOL(init_on_free); 196 197static bool _init_on_alloc_enabled_early __read_mostly 198 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 199static int __init early_init_on_alloc(char *buf) 200{ 201 202 return kstrtobool(buf, &_init_on_alloc_enabled_early); 203} 204early_param("init_on_alloc", early_init_on_alloc); 205 206static bool _init_on_free_enabled_early __read_mostly 207 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 208static int __init early_init_on_free(char *buf) 209{ 210 return kstrtobool(buf, &_init_on_free_enabled_early); 211} 212early_param("init_on_free", early_init_on_free); 213 214/* 215 * A cached value of the page's pageblock's migratetype, used when the page is 216 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 217 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 218 * Also the migratetype set in the page does not necessarily match the pcplist 219 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 220 * other index - this ensures that it will be put on the correct CMA freelist. 221 */ 222static inline int get_pcppage_migratetype(struct page *page) 223{ 224 return page->index; 225} 226 227static inline void set_pcppage_migratetype(struct page *page, int migratetype) 228{ 229 page->index = migratetype; 230} 231 232#ifdef CONFIG_PM_SLEEP 233/* 234 * The following functions are used by the suspend/hibernate code to temporarily 235 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 236 * while devices are suspended. To avoid races with the suspend/hibernate code, 237 * they should always be called with system_transition_mutex held 238 * (gfp_allowed_mask also should only be modified with system_transition_mutex 239 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 240 * with that modification). 241 */ 242 243static gfp_t saved_gfp_mask; 244 245void pm_restore_gfp_mask(void) 246{ 247 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 248 if (saved_gfp_mask) { 249 gfp_allowed_mask = saved_gfp_mask; 250 saved_gfp_mask = 0; 251 } 252} 253 254void pm_restrict_gfp_mask(void) 255{ 256 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 257 WARN_ON(saved_gfp_mask); 258 saved_gfp_mask = gfp_allowed_mask; 259 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 260} 261 262bool pm_suspended_storage(void) 263{ 264 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 265 return false; 266 return true; 267} 268#endif /* CONFIG_PM_SLEEP */ 269 270#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 271unsigned int pageblock_order __read_mostly; 272#endif 273 274static void __free_pages_ok(struct page *page, unsigned int order, 275 fpi_t fpi_flags); 276 277/* 278 * results with 256, 32 in the lowmem_reserve sysctl: 279 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 280 * 1G machine -> (16M dma, 784M normal, 224M high) 281 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 282 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 283 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 284 * 285 * TBD: should special case ZONE_DMA32 machines here - in those we normally 286 * don't need any ZONE_NORMAL reservation 287 */ 288int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 289#ifdef CONFIG_ZONE_DMA 290 [ZONE_DMA] = 256, 291#endif 292#ifdef CONFIG_ZONE_DMA32 293 [ZONE_DMA32] = 256, 294#endif 295 [ZONE_NORMAL] = 32, 296#ifdef CONFIG_HIGHMEM 297 [ZONE_HIGHMEM] = 0, 298#endif 299 [ZONE_MOVABLE] = 0, 300}; 301 302static char * const zone_names[MAX_NR_ZONES] = { 303#ifdef CONFIG_ZONE_DMA 304 "DMA", 305#endif 306#ifdef CONFIG_ZONE_DMA32 307 "DMA32", 308#endif 309 "Normal", 310#ifdef CONFIG_HIGHMEM 311 "HighMem", 312#endif 313 "Movable", 314#ifdef CONFIG_ZONE_DEVICE 315 "Device", 316#endif 317}; 318 319const char * const migratetype_names[MIGRATE_TYPES] = { 320 "Unmovable", 321 "Movable", 322 "Reclaimable", 323 "HighAtomic", 324#ifdef CONFIG_CMA 325 "CMA", 326#endif 327#ifdef CONFIG_MEMORY_ISOLATION 328 "Isolate", 329#endif 330}; 331 332compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 333 [NULL_COMPOUND_DTOR] = NULL, 334 [COMPOUND_PAGE_DTOR] = free_compound_page, 335#ifdef CONFIG_HUGETLB_PAGE 336 [HUGETLB_PAGE_DTOR] = free_huge_page, 337#endif 338#ifdef CONFIG_TRANSPARENT_HUGEPAGE 339 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 340#endif 341}; 342 343int min_free_kbytes = 1024; 344int user_min_free_kbytes = -1; 345int watermark_boost_factor __read_mostly = 15000; 346int watermark_scale_factor = 10; 347 348static unsigned long nr_kernel_pages __initdata; 349static unsigned long nr_all_pages __initdata; 350static unsigned long dma_reserve __initdata; 351 352static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 353static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 354static unsigned long required_kernelcore __initdata; 355static unsigned long required_kernelcore_percent __initdata; 356static unsigned long required_movablecore __initdata; 357static unsigned long required_movablecore_percent __initdata; 358static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 359static bool mirrored_kernelcore __meminitdata; 360 361/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 362int movable_zone; 363EXPORT_SYMBOL(movable_zone); 364 365#if MAX_NUMNODES > 1 366unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 367unsigned int nr_online_nodes __read_mostly = 1; 368EXPORT_SYMBOL(nr_node_ids); 369EXPORT_SYMBOL(nr_online_nodes); 370#endif 371 372int page_group_by_mobility_disabled __read_mostly; 373 374#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 375/* 376 * During boot we initialize deferred pages on-demand, as needed, but once 377 * page_alloc_init_late() has finished, the deferred pages are all initialized, 378 * and we can permanently disable that path. 379 */ 380static DEFINE_STATIC_KEY_TRUE(deferred_pages); 381 382static inline bool deferred_pages_enabled(void) 383{ 384 return static_branch_unlikely(&deferred_pages); 385} 386 387/* Returns true if the struct page for the pfn is uninitialised */ 388static inline bool __meminit early_page_uninitialised(unsigned long pfn) 389{ 390 int nid = early_pfn_to_nid(pfn); 391 392 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 393 return true; 394 395 return false; 396} 397 398/* 399 * Returns true when the remaining initialisation should be deferred until 400 * later in the boot cycle when it can be parallelised. 401 */ 402static bool __meminit 403defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 404{ 405 static unsigned long prev_end_pfn, nr_initialised; 406 407 /* 408 * prev_end_pfn static that contains the end of previous zone 409 * No need to protect because called very early in boot before smp_init. 410 */ 411 if (prev_end_pfn != end_pfn) { 412 prev_end_pfn = end_pfn; 413 nr_initialised = 0; 414 } 415 416 /* Always populate low zones for address-constrained allocations */ 417 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 418 return false; 419 420 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 421 return true; 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433} 434#else 435static inline bool deferred_pages_enabled(void) 436{ 437 return false; 438} 439 440static inline bool early_page_uninitialised(unsigned long pfn) 441{ 442 return false; 443} 444 445static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 446{ 447 return false; 448} 449#endif 450 451/* Return a pointer to the bitmap storing bits affecting a block of pages */ 452static inline unsigned long *get_pageblock_bitmap(const struct page *page, 453 unsigned long pfn) 454{ 455#ifdef CONFIG_SPARSEMEM 456 return section_to_usemap(__pfn_to_section(pfn)); 457#else 458 return page_zone(page)->pageblock_flags; 459#endif /* CONFIG_SPARSEMEM */ 460} 461 462static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 463{ 464#ifdef CONFIG_SPARSEMEM 465 pfn &= (PAGES_PER_SECTION-1); 466#else 467 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 468#endif /* CONFIG_SPARSEMEM */ 469 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 470} 471 472static __always_inline 473unsigned long __get_pfnblock_flags_mask(const struct page *page, 474 unsigned long pfn, 475 unsigned long mask) 476{ 477 unsigned long *bitmap; 478 unsigned long bitidx, word_bitidx; 479 unsigned long word; 480 481 bitmap = get_pageblock_bitmap(page, pfn); 482 bitidx = pfn_to_bitidx(page, pfn); 483 word_bitidx = bitidx / BITS_PER_LONG; 484 bitidx &= (BITS_PER_LONG-1); 485 /* 486 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 487 * a consistent read of the memory array, so that results, even though 488 * racy, are not corrupted. 489 */ 490 word = READ_ONCE(bitmap[word_bitidx]); 491 return (word >> bitidx) & mask; 492} 493 494/** 495 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 496 * @page: The page within the block of interest 497 * @pfn: The target page frame number 498 * @mask: mask of bits that the caller is interested in 499 * 500 * Return: pageblock_bits flags 501 */ 502unsigned long get_pfnblock_flags_mask(const struct page *page, 503 unsigned long pfn, unsigned long mask) 504{ 505 return __get_pfnblock_flags_mask(page, pfn, mask); 506} 507 508static __always_inline int get_pfnblock_migratetype(const struct page *page, 509 unsigned long pfn) 510{ 511 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 512} 513 514/** 515 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 516 * @page: The page within the block of interest 517 * @flags: The flags to set 518 * @pfn: The target page frame number 519 * @mask: mask of bits that the caller is interested in 520 */ 521void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 522 unsigned long pfn, 523 unsigned long mask) 524{ 525 unsigned long *bitmap; 526 unsigned long bitidx, word_bitidx; 527 unsigned long old_word, word; 528 529 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 530 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 531 532 bitmap = get_pageblock_bitmap(page, pfn); 533 bitidx = pfn_to_bitidx(page, pfn); 534 word_bitidx = bitidx / BITS_PER_LONG; 535 bitidx &= (BITS_PER_LONG-1); 536 537 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 538 539 mask <<= bitidx; 540 flags <<= bitidx; 541 542 word = READ_ONCE(bitmap[word_bitidx]); 543 for (;;) { 544 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 545 if (word == old_word) 546 break; 547 word = old_word; 548 } 549} 550 551void set_pageblock_migratetype(struct page *page, int migratetype) 552{ 553 if (unlikely(page_group_by_mobility_disabled && 554 migratetype < MIGRATE_PCPTYPES)) 555 migratetype = MIGRATE_UNMOVABLE; 556 557 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 558 page_to_pfn(page), MIGRATETYPE_MASK); 559} 560 561#ifdef CONFIG_DEBUG_VM 562static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 563{ 564 int ret = 0; 565 unsigned seq; 566 unsigned long pfn = page_to_pfn(page); 567 unsigned long sp, start_pfn; 568 569 do { 570 seq = zone_span_seqbegin(zone); 571 start_pfn = zone->zone_start_pfn; 572 sp = zone->spanned_pages; 573 if (!zone_spans_pfn(zone, pfn)) 574 ret = 1; 575 } while (zone_span_seqretry(zone, seq)); 576 577 if (ret) 578 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 579 pfn, zone_to_nid(zone), zone->name, 580 start_pfn, start_pfn + sp); 581 582 return ret; 583} 584 585static int page_is_consistent(struct zone *zone, struct page *page) 586{ 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591} 592/* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596{ 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603} 604#else 605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606{ 607 return 0; 608} 609#endif 610 611static void bad_page(struct page *page, const char *reason) 612{ 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 dump_page(page, reason); 640 641 print_modules(); 642 dump_stack(); 643out: 644 /* Leave bad fields for debug, except PageBuddy could make trouble */ 645 page_mapcount_reset(page); /* remove PageBuddy */ 646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 647} 648 649static inline unsigned int order_to_pindex(int migratetype, int order) 650{ 651 int base = order; 652 653#ifdef CONFIG_TRANSPARENT_HUGEPAGE 654 if (order > PAGE_ALLOC_COSTLY_ORDER) { 655 VM_BUG_ON(order != pageblock_order); 656 base = PAGE_ALLOC_COSTLY_ORDER + 1; 657 } 658#else 659 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 660#endif 661 662 return (MIGRATE_PCPTYPES * base) + migratetype; 663} 664 665static inline int pindex_to_order(unsigned int pindex) 666{ 667 int order = pindex / MIGRATE_PCPTYPES; 668 669#ifdef CONFIG_TRANSPARENT_HUGEPAGE 670 if (order > PAGE_ALLOC_COSTLY_ORDER) 671 order = pageblock_order; 672#else 673 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 674#endif 675 676 return order; 677} 678 679static inline bool pcp_allowed_order(unsigned int order) 680{ 681 if (order <= PAGE_ALLOC_COSTLY_ORDER) 682 return true; 683#ifdef CONFIG_TRANSPARENT_HUGEPAGE 684 if (order == pageblock_order) 685 return true; 686#endif 687 return false; 688} 689 690static inline void free_the_page(struct page *page, unsigned int order) 691{ 692 if (pcp_allowed_order(order)) /* Via pcp? */ 693 free_unref_page(page, order); 694 else 695 __free_pages_ok(page, order, FPI_NONE); 696} 697 698/* 699 * Higher-order pages are called "compound pages". They are structured thusly: 700 * 701 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 702 * 703 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 704 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 705 * 706 * The first tail page's ->compound_dtor holds the offset in array of compound 707 * page destructors. See compound_page_dtors. 708 * 709 * The first tail page's ->compound_order holds the order of allocation. 710 * This usage means that zero-order pages may not be compound. 711 */ 712 713void free_compound_page(struct page *page) 714{ 715 mem_cgroup_uncharge(page_folio(page)); 716 free_the_page(page, compound_order(page)); 717} 718 719static void prep_compound_head(struct page *page, unsigned int order) 720{ 721 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 722 set_compound_order(page, order); 723 atomic_set(compound_mapcount_ptr(page), -1); 724 atomic_set(compound_pincount_ptr(page), 0); 725} 726 727static void prep_compound_tail(struct page *head, int tail_idx) 728{ 729 struct page *p = head + tail_idx; 730 731 p->mapping = TAIL_MAPPING; 732 set_compound_head(p, head); 733} 734 735void prep_compound_page(struct page *page, unsigned int order) 736{ 737 int i; 738 int nr_pages = 1 << order; 739 740 __SetPageHead(page); 741 for (i = 1; i < nr_pages; i++) 742 prep_compound_tail(page, i); 743 744 prep_compound_head(page, order); 745} 746 747#ifdef CONFIG_DEBUG_PAGEALLOC 748unsigned int _debug_guardpage_minorder; 749 750bool _debug_pagealloc_enabled_early __read_mostly 751 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 752EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 753DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 754EXPORT_SYMBOL(_debug_pagealloc_enabled); 755 756DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 757 758static int __init early_debug_pagealloc(char *buf) 759{ 760 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 761} 762early_param("debug_pagealloc", early_debug_pagealloc); 763 764static int __init debug_guardpage_minorder_setup(char *buf) 765{ 766 unsigned long res; 767 768 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 769 pr_err("Bad debug_guardpage_minorder value\n"); 770 return 0; 771 } 772 _debug_guardpage_minorder = res; 773 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 774 return 0; 775} 776early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 777 778static inline bool set_page_guard(struct zone *zone, struct page *page, 779 unsigned int order, int migratetype) 780{ 781 if (!debug_guardpage_enabled()) 782 return false; 783 784 if (order >= debug_guardpage_minorder()) 785 return false; 786 787 __SetPageGuard(page); 788 INIT_LIST_HEAD(&page->lru); 789 set_page_private(page, order); 790 /* Guard pages are not available for any usage */ 791 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 792 793 return true; 794} 795 796static inline void clear_page_guard(struct zone *zone, struct page *page, 797 unsigned int order, int migratetype) 798{ 799 if (!debug_guardpage_enabled()) 800 return; 801 802 __ClearPageGuard(page); 803 804 set_page_private(page, 0); 805 if (!is_migrate_isolate(migratetype)) 806 __mod_zone_freepage_state(zone, (1 << order), migratetype); 807} 808#else 809static inline bool set_page_guard(struct zone *zone, struct page *page, 810 unsigned int order, int migratetype) { return false; } 811static inline void clear_page_guard(struct zone *zone, struct page *page, 812 unsigned int order, int migratetype) {} 813#endif 814 815/* 816 * Enable static keys related to various memory debugging and hardening options. 817 * Some override others, and depend on early params that are evaluated in the 818 * order of appearance. So we need to first gather the full picture of what was 819 * enabled, and then make decisions. 820 */ 821void init_mem_debugging_and_hardening(void) 822{ 823 bool page_poisoning_requested = false; 824 825#ifdef CONFIG_PAGE_POISONING 826 /* 827 * Page poisoning is debug page alloc for some arches. If 828 * either of those options are enabled, enable poisoning. 829 */ 830 if (page_poisoning_enabled() || 831 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 832 debug_pagealloc_enabled())) { 833 static_branch_enable(&_page_poisoning_enabled); 834 page_poisoning_requested = true; 835 } 836#endif 837 838 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && 839 page_poisoning_requested) { 840 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 841 "will take precedence over init_on_alloc and init_on_free\n"); 842 _init_on_alloc_enabled_early = false; 843 _init_on_free_enabled_early = false; 844 } 845 846 if (_init_on_alloc_enabled_early) 847 static_branch_enable(&init_on_alloc); 848 else 849 static_branch_disable(&init_on_alloc); 850 851 if (_init_on_free_enabled_early) 852 static_branch_enable(&init_on_free); 853 else 854 static_branch_disable(&init_on_free); 855 856#ifdef CONFIG_DEBUG_PAGEALLOC 857 if (!debug_pagealloc_enabled()) 858 return; 859 860 static_branch_enable(&_debug_pagealloc_enabled); 861 862 if (!debug_guardpage_minorder()) 863 return; 864 865 static_branch_enable(&_debug_guardpage_enabled); 866#endif 867} 868 869static inline void set_buddy_order(struct page *page, unsigned int order) 870{ 871 set_page_private(page, order); 872 __SetPageBuddy(page); 873} 874 875#ifdef CONFIG_COMPACTION 876static inline struct capture_control *task_capc(struct zone *zone) 877{ 878 struct capture_control *capc = current->capture_control; 879 880 return unlikely(capc) && 881 !(current->flags & PF_KTHREAD) && 882 !capc->page && 883 capc->cc->zone == zone ? capc : NULL; 884} 885 886static inline bool 887compaction_capture(struct capture_control *capc, struct page *page, 888 int order, int migratetype) 889{ 890 if (!capc || order != capc->cc->order) 891 return false; 892 893 /* Do not accidentally pollute CMA or isolated regions*/ 894 if (is_migrate_cma(migratetype) || 895 is_migrate_isolate(migratetype)) 896 return false; 897 898 /* 899 * Do not let lower order allocations pollute a movable pageblock. 900 * This might let an unmovable request use a reclaimable pageblock 901 * and vice-versa but no more than normal fallback logic which can 902 * have trouble finding a high-order free page. 903 */ 904 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 905 return false; 906 907 capc->page = page; 908 return true; 909} 910 911#else 912static inline struct capture_control *task_capc(struct zone *zone) 913{ 914 return NULL; 915} 916 917static inline bool 918compaction_capture(struct capture_control *capc, struct page *page, 919 int order, int migratetype) 920{ 921 return false; 922} 923#endif /* CONFIG_COMPACTION */ 924 925/* Used for pages not on another list */ 926static inline void add_to_free_list(struct page *page, struct zone *zone, 927 unsigned int order, int migratetype) 928{ 929 struct free_area *area = &zone->free_area[order]; 930 931 list_add(&page->lru, &area->free_list[migratetype]); 932 area->nr_free++; 933} 934 935/* Used for pages not on another list */ 936static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 937 unsigned int order, int migratetype) 938{ 939 struct free_area *area = &zone->free_area[order]; 940 941 list_add_tail(&page->lru, &area->free_list[migratetype]); 942 area->nr_free++; 943} 944 945/* 946 * Used for pages which are on another list. Move the pages to the tail 947 * of the list - so the moved pages won't immediately be considered for 948 * allocation again (e.g., optimization for memory onlining). 949 */ 950static inline void move_to_free_list(struct page *page, struct zone *zone, 951 unsigned int order, int migratetype) 952{ 953 struct free_area *area = &zone->free_area[order]; 954 955 list_move_tail(&page->lru, &area->free_list[migratetype]); 956} 957 958static inline void del_page_from_free_list(struct page *page, struct zone *zone, 959 unsigned int order) 960{ 961 /* clear reported state and update reported page count */ 962 if (page_reported(page)) 963 __ClearPageReported(page); 964 965 list_del(&page->lru); 966 __ClearPageBuddy(page); 967 set_page_private(page, 0); 968 zone->free_area[order].nr_free--; 969} 970 971/* 972 * If this is not the largest possible page, check if the buddy 973 * of the next-highest order is free. If it is, it's possible 974 * that pages are being freed that will coalesce soon. In case, 975 * that is happening, add the free page to the tail of the list 976 * so it's less likely to be used soon and more likely to be merged 977 * as a higher order page 978 */ 979static inline bool 980buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 981 struct page *page, unsigned int order) 982{ 983 unsigned long higher_page_pfn; 984 struct page *higher_page; 985 986 if (order >= MAX_ORDER - 2) 987 return false; 988 989 higher_page_pfn = buddy_pfn & pfn; 990 higher_page = page + (higher_page_pfn - pfn); 991 992 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 993 NULL) != NULL; 994} 995 996/* 997 * Freeing function for a buddy system allocator. 998 * 999 * The concept of a buddy system is to maintain direct-mapped table 1000 * (containing bit values) for memory blocks of various "orders". 1001 * The bottom level table contains the map for the smallest allocatable 1002 * units of memory (here, pages), and each level above it describes 1003 * pairs of units from the levels below, hence, "buddies". 1004 * At a high level, all that happens here is marking the table entry 1005 * at the bottom level available, and propagating the changes upward 1006 * as necessary, plus some accounting needed to play nicely with other 1007 * parts of the VM system. 1008 * At each level, we keep a list of pages, which are heads of continuous 1009 * free pages of length of (1 << order) and marked with PageBuddy. 1010 * Page's order is recorded in page_private(page) field. 1011 * So when we are allocating or freeing one, we can derive the state of the 1012 * other. That is, if we allocate a small block, and both were 1013 * free, the remainder of the region must be split into blocks. 1014 * If a block is freed, and its buddy is also free, then this 1015 * triggers coalescing into a block of larger size. 1016 * 1017 * -- nyc 1018 */ 1019 1020static inline void __free_one_page(struct page *page, 1021 unsigned long pfn, 1022 struct zone *zone, unsigned int order, 1023 int migratetype, fpi_t fpi_flags) 1024{ 1025 struct capture_control *capc = task_capc(zone); 1026 unsigned long buddy_pfn; 1027 unsigned long combined_pfn; 1028 struct page *buddy; 1029 bool to_tail; 1030 1031 VM_BUG_ON(!zone_is_initialized(zone)); 1032 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1033 1034 VM_BUG_ON(migratetype == -1); 1035 if (likely(!is_migrate_isolate(migratetype))) 1036 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1037 1038 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1039 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1040 1041 while (order < MAX_ORDER - 1) { 1042 if (compaction_capture(capc, page, order, migratetype)) { 1043 __mod_zone_freepage_state(zone, -(1 << order), 1044 migratetype); 1045 return; 1046 } 1047 1048 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 1049 if (!buddy) 1050 goto done_merging; 1051 1052 if (unlikely(order >= pageblock_order)) { 1053 /* 1054 * We want to prevent merge between freepages on pageblock 1055 * without fallbacks and normal pageblock. Without this, 1056 * pageblock isolation could cause incorrect freepage or CMA 1057 * accounting or HIGHATOMIC accounting. 1058 */ 1059 int buddy_mt = get_pageblock_migratetype(buddy); 1060 1061 if (migratetype != buddy_mt 1062 && (!migratetype_is_mergeable(migratetype) || 1063 !migratetype_is_mergeable(buddy_mt))) 1064 goto done_merging; 1065 } 1066 1067 /* 1068 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1069 * merge with it and move up one order. 1070 */ 1071 if (page_is_guard(buddy)) 1072 clear_page_guard(zone, buddy, order, migratetype); 1073 else 1074 del_page_from_free_list(buddy, zone, order); 1075 combined_pfn = buddy_pfn & pfn; 1076 page = page + (combined_pfn - pfn); 1077 pfn = combined_pfn; 1078 order++; 1079 } 1080 1081done_merging: 1082 set_buddy_order(page, order); 1083 1084 if (fpi_flags & FPI_TO_TAIL) 1085 to_tail = true; 1086 else if (is_shuffle_order(order)) 1087 to_tail = shuffle_pick_tail(); 1088 else 1089 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1090 1091 if (to_tail) 1092 add_to_free_list_tail(page, zone, order, migratetype); 1093 else 1094 add_to_free_list(page, zone, order, migratetype); 1095 1096 /* Notify page reporting subsystem of freed page */ 1097 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1098 page_reporting_notify_free(order); 1099} 1100 1101/** 1102 * split_free_page() -- split a free page at split_pfn_offset 1103 * @free_page: the original free page 1104 * @order: the order of the page 1105 * @split_pfn_offset: split offset within the page 1106 * 1107 * Return -ENOENT if the free page is changed, otherwise 0 1108 * 1109 * It is used when the free page crosses two pageblocks with different migratetypes 1110 * at split_pfn_offset within the page. The split free page will be put into 1111 * separate migratetype lists afterwards. Otherwise, the function achieves 1112 * nothing. 1113 */ 1114int split_free_page(struct page *free_page, 1115 unsigned int order, unsigned long split_pfn_offset) 1116{ 1117 struct zone *zone = page_zone(free_page); 1118 unsigned long free_page_pfn = page_to_pfn(free_page); 1119 unsigned long pfn; 1120 unsigned long flags; 1121 int free_page_order; 1122 int mt; 1123 int ret = 0; 1124 1125 if (split_pfn_offset == 0) 1126 return ret; 1127 1128 spin_lock_irqsave(&zone->lock, flags); 1129 1130 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1131 ret = -ENOENT; 1132 goto out; 1133 } 1134 1135 mt = get_pageblock_migratetype(free_page); 1136 if (likely(!is_migrate_isolate(mt))) 1137 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1138 1139 del_page_from_free_list(free_page, zone, order); 1140 for (pfn = free_page_pfn; 1141 pfn < free_page_pfn + (1UL << order);) { 1142 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1143 1144 free_page_order = min_t(unsigned int, 1145 pfn ? __ffs(pfn) : order, 1146 __fls(split_pfn_offset)); 1147 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1148 mt, FPI_NONE); 1149 pfn += 1UL << free_page_order; 1150 split_pfn_offset -= (1UL << free_page_order); 1151 /* we have done the first part, now switch to second part */ 1152 if (split_pfn_offset == 0) 1153 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1154 } 1155out: 1156 spin_unlock_irqrestore(&zone->lock, flags); 1157 return ret; 1158} 1159/* 1160 * A bad page could be due to a number of fields. Instead of multiple branches, 1161 * try and check multiple fields with one check. The caller must do a detailed 1162 * check if necessary. 1163 */ 1164static inline bool page_expected_state(struct page *page, 1165 unsigned long check_flags) 1166{ 1167 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1168 return false; 1169 1170 if (unlikely((unsigned long)page->mapping | 1171 page_ref_count(page) | 1172#ifdef CONFIG_MEMCG 1173 page->memcg_data | 1174#endif 1175 (page->flags & check_flags))) 1176 return false; 1177 1178 return true; 1179} 1180 1181static const char *page_bad_reason(struct page *page, unsigned long flags) 1182{ 1183 const char *bad_reason = NULL; 1184 1185 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1186 bad_reason = "nonzero mapcount"; 1187 if (unlikely(page->mapping != NULL)) 1188 bad_reason = "non-NULL mapping"; 1189 if (unlikely(page_ref_count(page) != 0)) 1190 bad_reason = "nonzero _refcount"; 1191 if (unlikely(page->flags & flags)) { 1192 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1193 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1194 else 1195 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1196 } 1197#ifdef CONFIG_MEMCG 1198 if (unlikely(page->memcg_data)) 1199 bad_reason = "page still charged to cgroup"; 1200#endif 1201 return bad_reason; 1202} 1203 1204static void check_free_page_bad(struct page *page) 1205{ 1206 bad_page(page, 1207 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1208} 1209 1210static inline int check_free_page(struct page *page) 1211{ 1212 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1213 return 0; 1214 1215 /* Something has gone sideways, find it */ 1216 check_free_page_bad(page); 1217 return 1; 1218} 1219 1220static int free_tail_pages_check(struct page *head_page, struct page *page) 1221{ 1222 int ret = 1; 1223 1224 /* 1225 * We rely page->lru.next never has bit 0 set, unless the page 1226 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1227 */ 1228 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1229 1230 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1231 ret = 0; 1232 goto out; 1233 } 1234 switch (page - head_page) { 1235 case 1: 1236 /* the first tail page: ->mapping may be compound_mapcount() */ 1237 if (unlikely(compound_mapcount(page))) { 1238 bad_page(page, "nonzero compound_mapcount"); 1239 goto out; 1240 } 1241 break; 1242 case 2: 1243 /* 1244 * the second tail page: ->mapping is 1245 * deferred_list.next -- ignore value. 1246 */ 1247 break; 1248 default: 1249 if (page->mapping != TAIL_MAPPING) { 1250 bad_page(page, "corrupted mapping in tail page"); 1251 goto out; 1252 } 1253 break; 1254 } 1255 if (unlikely(!PageTail(page))) { 1256 bad_page(page, "PageTail not set"); 1257 goto out; 1258 } 1259 if (unlikely(compound_head(page) != head_page)) { 1260 bad_page(page, "compound_head not consistent"); 1261 goto out; 1262 } 1263 ret = 0; 1264out: 1265 page->mapping = NULL; 1266 clear_compound_head(page); 1267 return ret; 1268} 1269 1270/* 1271 * Skip KASAN memory poisoning when either: 1272 * 1273 * 1. Deferred memory initialization has not yet completed, 1274 * see the explanation below. 1275 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON, 1276 * see the comment next to it. 1277 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON, 1278 * see the comment next to it. 1279 * 1280 * Poisoning pages during deferred memory init will greatly lengthen the 1281 * process and cause problem in large memory systems as the deferred pages 1282 * initialization is done with interrupt disabled. 1283 * 1284 * Assuming that there will be no reference to those newly initialized 1285 * pages before they are ever allocated, this should have no effect on 1286 * KASAN memory tracking as the poison will be properly inserted at page 1287 * allocation time. The only corner case is when pages are allocated by 1288 * on-demand allocation and then freed again before the deferred pages 1289 * initialization is done, but this is not likely to happen. 1290 */ 1291static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1292{ 1293 return deferred_pages_enabled() || 1294 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 1295 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 1296 PageSkipKASanPoison(page); 1297} 1298 1299static void kernel_init_free_pages(struct page *page, int numpages) 1300{ 1301 int i; 1302 1303 /* s390's use of memset() could override KASAN redzones. */ 1304 kasan_disable_current(); 1305 for (i = 0; i < numpages; i++) { 1306 u8 tag = page_kasan_tag(page + i); 1307 page_kasan_tag_reset(page + i); 1308 clear_highpage(page + i); 1309 page_kasan_tag_set(page + i, tag); 1310 } 1311 kasan_enable_current(); 1312} 1313 1314static __always_inline bool free_pages_prepare(struct page *page, 1315 unsigned int order, bool check_free, fpi_t fpi_flags) 1316{ 1317 int bad = 0; 1318 bool init = want_init_on_free(); 1319 1320 VM_BUG_ON_PAGE(PageTail(page), page); 1321 1322 trace_mm_page_free(page, order); 1323 1324 if (unlikely(PageHWPoison(page)) && !order) { 1325 /* 1326 * Do not let hwpoison pages hit pcplists/buddy 1327 * Untie memcg state and reset page's owner 1328 */ 1329 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1330 __memcg_kmem_uncharge_page(page, order); 1331 reset_page_owner(page, order); 1332 page_table_check_free(page, order); 1333 return false; 1334 } 1335 1336 /* 1337 * Check tail pages before head page information is cleared to 1338 * avoid checking PageCompound for order-0 pages. 1339 */ 1340 if (unlikely(order)) { 1341 bool compound = PageCompound(page); 1342 int i; 1343 1344 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1345 1346 if (compound) { 1347 ClearPageDoubleMap(page); 1348 ClearPageHasHWPoisoned(page); 1349 } 1350 for (i = 1; i < (1 << order); i++) { 1351 if (compound) 1352 bad += free_tail_pages_check(page, page + i); 1353 if (unlikely(check_free_page(page + i))) { 1354 bad++; 1355 continue; 1356 } 1357 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1358 } 1359 } 1360 if (PageMappingFlags(page)) 1361 page->mapping = NULL; 1362 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1363 __memcg_kmem_uncharge_page(page, order); 1364 if (check_free) 1365 bad += check_free_page(page); 1366 if (bad) 1367 return false; 1368 1369 page_cpupid_reset_last(page); 1370 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1371 reset_page_owner(page, order); 1372 page_table_check_free(page, order); 1373 1374 if (!PageHighMem(page)) { 1375 debug_check_no_locks_freed(page_address(page), 1376 PAGE_SIZE << order); 1377 debug_check_no_obj_freed(page_address(page), 1378 PAGE_SIZE << order); 1379 } 1380 1381 kernel_poison_pages(page, 1 << order); 1382 1383 /* 1384 * As memory initialization might be integrated into KASAN, 1385 * KASAN poisoning and memory initialization code must be 1386 * kept together to avoid discrepancies in behavior. 1387 * 1388 * With hardware tag-based KASAN, memory tags must be set before the 1389 * page becomes unavailable via debug_pagealloc or arch_free_page. 1390 */ 1391 if (!should_skip_kasan_poison(page, fpi_flags)) { 1392 kasan_poison_pages(page, order, init); 1393 1394 /* Memory is already initialized if KASAN did it internally. */ 1395 if (kasan_has_integrated_init()) 1396 init = false; 1397 } 1398 if (init) 1399 kernel_init_free_pages(page, 1 << order); 1400 1401 /* 1402 * arch_free_page() can make the page's contents inaccessible. s390 1403 * does this. So nothing which can access the page's contents should 1404 * happen after this. 1405 */ 1406 arch_free_page(page, order); 1407 1408 debug_pagealloc_unmap_pages(page, 1 << order); 1409 1410 return true; 1411} 1412 1413#ifdef CONFIG_DEBUG_VM 1414/* 1415 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1416 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1417 * moved from pcp lists to free lists. 1418 */ 1419static bool free_pcp_prepare(struct page *page, unsigned int order) 1420{ 1421 return free_pages_prepare(page, order, true, FPI_NONE); 1422} 1423 1424static bool bulkfree_pcp_prepare(struct page *page) 1425{ 1426 if (debug_pagealloc_enabled_static()) 1427 return check_free_page(page); 1428 else 1429 return false; 1430} 1431#else 1432/* 1433 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1434 * moving from pcp lists to free list in order to reduce overhead. With 1435 * debug_pagealloc enabled, they are checked also immediately when being freed 1436 * to the pcp lists. 1437 */ 1438static bool free_pcp_prepare(struct page *page, unsigned int order) 1439{ 1440 if (debug_pagealloc_enabled_static()) 1441 return free_pages_prepare(page, order, true, FPI_NONE); 1442 else 1443 return free_pages_prepare(page, order, false, FPI_NONE); 1444} 1445 1446static bool bulkfree_pcp_prepare(struct page *page) 1447{ 1448 return check_free_page(page); 1449} 1450#endif /* CONFIG_DEBUG_VM */ 1451 1452/* 1453 * Frees a number of pages from the PCP lists 1454 * Assumes all pages on list are in same zone. 1455 * count is the number of pages to free. 1456 */ 1457static void free_pcppages_bulk(struct zone *zone, int count, 1458 struct per_cpu_pages *pcp, 1459 int pindex) 1460{ 1461 int min_pindex = 0; 1462 int max_pindex = NR_PCP_LISTS - 1; 1463 unsigned int order; 1464 bool isolated_pageblocks; 1465 struct page *page; 1466 1467 /* 1468 * Ensure proper count is passed which otherwise would stuck in the 1469 * below while (list_empty(list)) loop. 1470 */ 1471 count = min(pcp->count, count); 1472 1473 /* Ensure requested pindex is drained first. */ 1474 pindex = pindex - 1; 1475 1476 /* 1477 * local_lock_irq held so equivalent to spin_lock_irqsave for 1478 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1479 */ 1480 spin_lock(&zone->lock); 1481 isolated_pageblocks = has_isolate_pageblock(zone); 1482 1483 while (count > 0) { 1484 struct list_head *list; 1485 int nr_pages; 1486 1487 /* Remove pages from lists in a round-robin fashion. */ 1488 do { 1489 if (++pindex > max_pindex) 1490 pindex = min_pindex; 1491 list = &pcp->lists[pindex]; 1492 if (!list_empty(list)) 1493 break; 1494 1495 if (pindex == max_pindex) 1496 max_pindex--; 1497 if (pindex == min_pindex) 1498 min_pindex++; 1499 } while (1); 1500 1501 order = pindex_to_order(pindex); 1502 nr_pages = 1 << order; 1503 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1504 do { 1505 int mt; 1506 1507 page = list_last_entry(list, struct page, lru); 1508 mt = get_pcppage_migratetype(page); 1509 1510 /* must delete to avoid corrupting pcp list */ 1511 list_del(&page->lru); 1512 count -= nr_pages; 1513 pcp->count -= nr_pages; 1514 1515 if (bulkfree_pcp_prepare(page)) 1516 continue; 1517 1518 /* MIGRATE_ISOLATE page should not go to pcplists */ 1519 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1520 /* Pageblock could have been isolated meanwhile */ 1521 if (unlikely(isolated_pageblocks)) 1522 mt = get_pageblock_migratetype(page); 1523 1524 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1525 trace_mm_page_pcpu_drain(page, order, mt); 1526 } while (count > 0 && !list_empty(list)); 1527 } 1528 1529 spin_unlock(&zone->lock); 1530} 1531 1532static void free_one_page(struct zone *zone, 1533 struct page *page, unsigned long pfn, 1534 unsigned int order, 1535 int migratetype, fpi_t fpi_flags) 1536{ 1537 unsigned long flags; 1538 1539 spin_lock_irqsave(&zone->lock, flags); 1540 if (unlikely(has_isolate_pageblock(zone) || 1541 is_migrate_isolate(migratetype))) { 1542 migratetype = get_pfnblock_migratetype(page, pfn); 1543 } 1544 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1545 spin_unlock_irqrestore(&zone->lock, flags); 1546} 1547 1548static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1549 unsigned long zone, int nid) 1550{ 1551 mm_zero_struct_page(page); 1552 set_page_links(page, zone, nid, pfn); 1553 init_page_count(page); 1554 page_mapcount_reset(page); 1555 page_cpupid_reset_last(page); 1556 page_kasan_tag_reset(page); 1557 1558 INIT_LIST_HEAD(&page->lru); 1559#ifdef WANT_PAGE_VIRTUAL 1560 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1561 if (!is_highmem_idx(zone)) 1562 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1563#endif 1564} 1565 1566#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1567static void __meminit init_reserved_page(unsigned long pfn) 1568{ 1569 pg_data_t *pgdat; 1570 int nid, zid; 1571 1572 if (!early_page_uninitialised(pfn)) 1573 return; 1574 1575 nid = early_pfn_to_nid(pfn); 1576 pgdat = NODE_DATA(nid); 1577 1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1579 struct zone *zone = &pgdat->node_zones[zid]; 1580 1581 if (zone_spans_pfn(zone, pfn)) 1582 break; 1583 } 1584 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1585} 1586#else 1587static inline void init_reserved_page(unsigned long pfn) 1588{ 1589} 1590#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1591 1592/* 1593 * Initialised pages do not have PageReserved set. This function is 1594 * called for each range allocated by the bootmem allocator and 1595 * marks the pages PageReserved. The remaining valid pages are later 1596 * sent to the buddy page allocator. 1597 */ 1598void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1599{ 1600 unsigned long start_pfn = PFN_DOWN(start); 1601 unsigned long end_pfn = PFN_UP(end); 1602 1603 for (; start_pfn < end_pfn; start_pfn++) { 1604 if (pfn_valid(start_pfn)) { 1605 struct page *page = pfn_to_page(start_pfn); 1606 1607 init_reserved_page(start_pfn); 1608 1609 /* Avoid false-positive PageTail() */ 1610 INIT_LIST_HEAD(&page->lru); 1611 1612 /* 1613 * no need for atomic set_bit because the struct 1614 * page is not visible yet so nobody should 1615 * access it yet. 1616 */ 1617 __SetPageReserved(page); 1618 } 1619 } 1620} 1621 1622static void __free_pages_ok(struct page *page, unsigned int order, 1623 fpi_t fpi_flags) 1624{ 1625 unsigned long flags; 1626 int migratetype; 1627 unsigned long pfn = page_to_pfn(page); 1628 struct zone *zone = page_zone(page); 1629 1630 if (!free_pages_prepare(page, order, true, fpi_flags)) 1631 return; 1632 1633 migratetype = get_pfnblock_migratetype(page, pfn); 1634 1635 spin_lock_irqsave(&zone->lock, flags); 1636 if (unlikely(has_isolate_pageblock(zone) || 1637 is_migrate_isolate(migratetype))) { 1638 migratetype = get_pfnblock_migratetype(page, pfn); 1639 } 1640 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1641 spin_unlock_irqrestore(&zone->lock, flags); 1642 1643 __count_vm_events(PGFREE, 1 << order); 1644} 1645 1646void __free_pages_core(struct page *page, unsigned int order) 1647{ 1648 unsigned int nr_pages = 1 << order; 1649 struct page *p = page; 1650 unsigned int loop; 1651 1652 /* 1653 * When initializing the memmap, __init_single_page() sets the refcount 1654 * of all pages to 1 ("allocated"/"not free"). We have to set the 1655 * refcount of all involved pages to 0. 1656 */ 1657 prefetchw(p); 1658 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1659 prefetchw(p + 1); 1660 __ClearPageReserved(p); 1661 set_page_count(p, 0); 1662 } 1663 __ClearPageReserved(p); 1664 set_page_count(p, 0); 1665 1666 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1667 1668 /* 1669 * Bypass PCP and place fresh pages right to the tail, primarily 1670 * relevant for memory onlining. 1671 */ 1672 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1673} 1674 1675#ifdef CONFIG_NUMA 1676 1677/* 1678 * During memory init memblocks map pfns to nids. The search is expensive and 1679 * this caches recent lookups. The implementation of __early_pfn_to_nid 1680 * treats start/end as pfns. 1681 */ 1682struct mminit_pfnnid_cache { 1683 unsigned long last_start; 1684 unsigned long last_end; 1685 int last_nid; 1686}; 1687 1688static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1689 1690/* 1691 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1692 */ 1693static int __meminit __early_pfn_to_nid(unsigned long pfn, 1694 struct mminit_pfnnid_cache *state) 1695{ 1696 unsigned long start_pfn, end_pfn; 1697 int nid; 1698 1699 if (state->last_start <= pfn && pfn < state->last_end) 1700 return state->last_nid; 1701 1702 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1703 if (nid != NUMA_NO_NODE) { 1704 state->last_start = start_pfn; 1705 state->last_end = end_pfn; 1706 state->last_nid = nid; 1707 } 1708 1709 return nid; 1710} 1711 1712int __meminit early_pfn_to_nid(unsigned long pfn) 1713{ 1714 static DEFINE_SPINLOCK(early_pfn_lock); 1715 int nid; 1716 1717 spin_lock(&early_pfn_lock); 1718 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1719 if (nid < 0) 1720 nid = first_online_node; 1721 spin_unlock(&early_pfn_lock); 1722 1723 return nid; 1724} 1725#endif /* CONFIG_NUMA */ 1726 1727void __init memblock_free_pages(struct page *page, unsigned long pfn, 1728 unsigned int order) 1729{ 1730 if (early_page_uninitialised(pfn)) 1731 return; 1732 __free_pages_core(page, order); 1733} 1734 1735/* 1736 * Check that the whole (or subset of) a pageblock given by the interval of 1737 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1738 * with the migration of free compaction scanner. 1739 * 1740 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1741 * 1742 * It's possible on some configurations to have a setup like node0 node1 node0 1743 * i.e. it's possible that all pages within a zones range of pages do not 1744 * belong to a single zone. We assume that a border between node0 and node1 1745 * can occur within a single pageblock, but not a node0 node1 node0 1746 * interleaving within a single pageblock. It is therefore sufficient to check 1747 * the first and last page of a pageblock and avoid checking each individual 1748 * page in a pageblock. 1749 */ 1750struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1751 unsigned long end_pfn, struct zone *zone) 1752{ 1753 struct page *start_page; 1754 struct page *end_page; 1755 1756 /* end_pfn is one past the range we are checking */ 1757 end_pfn--; 1758 1759 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1760 return NULL; 1761 1762 start_page = pfn_to_online_page(start_pfn); 1763 if (!start_page) 1764 return NULL; 1765 1766 if (page_zone(start_page) != zone) 1767 return NULL; 1768 1769 end_page = pfn_to_page(end_pfn); 1770 1771 /* This gives a shorter code than deriving page_zone(end_page) */ 1772 if (page_zone_id(start_page) != page_zone_id(end_page)) 1773 return NULL; 1774 1775 return start_page; 1776} 1777 1778void set_zone_contiguous(struct zone *zone) 1779{ 1780 unsigned long block_start_pfn = zone->zone_start_pfn; 1781 unsigned long block_end_pfn; 1782 1783 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1784 for (; block_start_pfn < zone_end_pfn(zone); 1785 block_start_pfn = block_end_pfn, 1786 block_end_pfn += pageblock_nr_pages) { 1787 1788 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1789 1790 if (!__pageblock_pfn_to_page(block_start_pfn, 1791 block_end_pfn, zone)) 1792 return; 1793 cond_resched(); 1794 } 1795 1796 /* We confirm that there is no hole */ 1797 zone->contiguous = true; 1798} 1799 1800void clear_zone_contiguous(struct zone *zone) 1801{ 1802 zone->contiguous = false; 1803} 1804 1805#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1806static void __init deferred_free_range(unsigned long pfn, 1807 unsigned long nr_pages) 1808{ 1809 struct page *page; 1810 unsigned long i; 1811 1812 if (!nr_pages) 1813 return; 1814 1815 page = pfn_to_page(pfn); 1816 1817 /* Free a large naturally-aligned chunk if possible */ 1818 if (nr_pages == pageblock_nr_pages && 1819 (pfn & (pageblock_nr_pages - 1)) == 0) { 1820 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1821 __free_pages_core(page, pageblock_order); 1822 return; 1823 } 1824 1825 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1826 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1827 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1828 __free_pages_core(page, 0); 1829 } 1830} 1831 1832/* Completion tracking for deferred_init_memmap() threads */ 1833static atomic_t pgdat_init_n_undone __initdata; 1834static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1835 1836static inline void __init pgdat_init_report_one_done(void) 1837{ 1838 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1839 complete(&pgdat_init_all_done_comp); 1840} 1841 1842/* 1843 * Returns true if page needs to be initialized or freed to buddy allocator. 1844 * 1845 * First we check if pfn is valid on architectures where it is possible to have 1846 * holes within pageblock_nr_pages. On systems where it is not possible, this 1847 * function is optimized out. 1848 * 1849 * Then, we check if a current large page is valid by only checking the validity 1850 * of the head pfn. 1851 */ 1852static inline bool __init deferred_pfn_valid(unsigned long pfn) 1853{ 1854 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1855 return false; 1856 return true; 1857} 1858 1859/* 1860 * Free pages to buddy allocator. Try to free aligned pages in 1861 * pageblock_nr_pages sizes. 1862 */ 1863static void __init deferred_free_pages(unsigned long pfn, 1864 unsigned long end_pfn) 1865{ 1866 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1867 unsigned long nr_free = 0; 1868 1869 for (; pfn < end_pfn; pfn++) { 1870 if (!deferred_pfn_valid(pfn)) { 1871 deferred_free_range(pfn - nr_free, nr_free); 1872 nr_free = 0; 1873 } else if (!(pfn & nr_pgmask)) { 1874 deferred_free_range(pfn - nr_free, nr_free); 1875 nr_free = 1; 1876 } else { 1877 nr_free++; 1878 } 1879 } 1880 /* Free the last block of pages to allocator */ 1881 deferred_free_range(pfn - nr_free, nr_free); 1882} 1883 1884/* 1885 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1886 * by performing it only once every pageblock_nr_pages. 1887 * Return number of pages initialized. 1888 */ 1889static unsigned long __init deferred_init_pages(struct zone *zone, 1890 unsigned long pfn, 1891 unsigned long end_pfn) 1892{ 1893 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1894 int nid = zone_to_nid(zone); 1895 unsigned long nr_pages = 0; 1896 int zid = zone_idx(zone); 1897 struct page *page = NULL; 1898 1899 for (; pfn < end_pfn; pfn++) { 1900 if (!deferred_pfn_valid(pfn)) { 1901 page = NULL; 1902 continue; 1903 } else if (!page || !(pfn & nr_pgmask)) { 1904 page = pfn_to_page(pfn); 1905 } else { 1906 page++; 1907 } 1908 __init_single_page(page, pfn, zid, nid); 1909 nr_pages++; 1910 } 1911 return (nr_pages); 1912} 1913 1914/* 1915 * This function is meant to pre-load the iterator for the zone init. 1916 * Specifically it walks through the ranges until we are caught up to the 1917 * first_init_pfn value and exits there. If we never encounter the value we 1918 * return false indicating there are no valid ranges left. 1919 */ 1920static bool __init 1921deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1922 unsigned long *spfn, unsigned long *epfn, 1923 unsigned long first_init_pfn) 1924{ 1925 u64 j; 1926 1927 /* 1928 * Start out by walking through the ranges in this zone that have 1929 * already been initialized. We don't need to do anything with them 1930 * so we just need to flush them out of the system. 1931 */ 1932 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1933 if (*epfn <= first_init_pfn) 1934 continue; 1935 if (*spfn < first_init_pfn) 1936 *spfn = first_init_pfn; 1937 *i = j; 1938 return true; 1939 } 1940 1941 return false; 1942} 1943 1944/* 1945 * Initialize and free pages. We do it in two loops: first we initialize 1946 * struct page, then free to buddy allocator, because while we are 1947 * freeing pages we can access pages that are ahead (computing buddy 1948 * page in __free_one_page()). 1949 * 1950 * In order to try and keep some memory in the cache we have the loop 1951 * broken along max page order boundaries. This way we will not cause 1952 * any issues with the buddy page computation. 1953 */ 1954static unsigned long __init 1955deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1956 unsigned long *end_pfn) 1957{ 1958 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1959 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1960 unsigned long nr_pages = 0; 1961 u64 j = *i; 1962 1963 /* First we loop through and initialize the page values */ 1964 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1965 unsigned long t; 1966 1967 if (mo_pfn <= *start_pfn) 1968 break; 1969 1970 t = min(mo_pfn, *end_pfn); 1971 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1972 1973 if (mo_pfn < *end_pfn) { 1974 *start_pfn = mo_pfn; 1975 break; 1976 } 1977 } 1978 1979 /* Reset values and now loop through freeing pages as needed */ 1980 swap(j, *i); 1981 1982 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1983 unsigned long t; 1984 1985 if (mo_pfn <= spfn) 1986 break; 1987 1988 t = min(mo_pfn, epfn); 1989 deferred_free_pages(spfn, t); 1990 1991 if (mo_pfn <= epfn) 1992 break; 1993 } 1994 1995 return nr_pages; 1996} 1997 1998static void __init 1999deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2000 void *arg) 2001{ 2002 unsigned long spfn, epfn; 2003 struct zone *zone = arg; 2004 u64 i; 2005 2006 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2007 2008 /* 2009 * Initialize and free pages in MAX_ORDER sized increments so that we 2010 * can avoid introducing any issues with the buddy allocator. 2011 */ 2012 while (spfn < end_pfn) { 2013 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2014 cond_resched(); 2015 } 2016} 2017 2018/* An arch may override for more concurrency. */ 2019__weak int __init 2020deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2021{ 2022 return 1; 2023} 2024 2025/* Initialise remaining memory on a node */ 2026static int __init deferred_init_memmap(void *data) 2027{ 2028 pg_data_t *pgdat = data; 2029 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2030 unsigned long spfn = 0, epfn = 0; 2031 unsigned long first_init_pfn, flags; 2032 unsigned long start = jiffies; 2033 struct zone *zone; 2034 int zid, max_threads; 2035 u64 i; 2036 2037 /* Bind memory initialisation thread to a local node if possible */ 2038 if (!cpumask_empty(cpumask)) 2039 set_cpus_allowed_ptr(current, cpumask); 2040 2041 pgdat_resize_lock(pgdat, &flags); 2042 first_init_pfn = pgdat->first_deferred_pfn; 2043 if (first_init_pfn == ULONG_MAX) { 2044 pgdat_resize_unlock(pgdat, &flags); 2045 pgdat_init_report_one_done(); 2046 return 0; 2047 } 2048 2049 /* Sanity check boundaries */ 2050 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2051 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2052 pgdat->first_deferred_pfn = ULONG_MAX; 2053 2054 /* 2055 * Once we unlock here, the zone cannot be grown anymore, thus if an 2056 * interrupt thread must allocate this early in boot, zone must be 2057 * pre-grown prior to start of deferred page initialization. 2058 */ 2059 pgdat_resize_unlock(pgdat, &flags); 2060 2061 /* Only the highest zone is deferred so find it */ 2062 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2063 zone = pgdat->node_zones + zid; 2064 if (first_init_pfn < zone_end_pfn(zone)) 2065 break; 2066 } 2067 2068 /* If the zone is empty somebody else may have cleared out the zone */ 2069 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2070 first_init_pfn)) 2071 goto zone_empty; 2072 2073 max_threads = deferred_page_init_max_threads(cpumask); 2074 2075 while (spfn < epfn) { 2076 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2077 struct padata_mt_job job = { 2078 .thread_fn = deferred_init_memmap_chunk, 2079 .fn_arg = zone, 2080 .start = spfn, 2081 .size = epfn_align - spfn, 2082 .align = PAGES_PER_SECTION, 2083 .min_chunk = PAGES_PER_SECTION, 2084 .max_threads = max_threads, 2085 }; 2086 2087 padata_do_multithreaded(&job); 2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2089 epfn_align); 2090 } 2091zone_empty: 2092 /* Sanity check that the next zone really is unpopulated */ 2093 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2094 2095 pr_info("node %d deferred pages initialised in %ums\n", 2096 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2097 2098 pgdat_init_report_one_done(); 2099 return 0; 2100} 2101 2102/* 2103 * If this zone has deferred pages, try to grow it by initializing enough 2104 * deferred pages to satisfy the allocation specified by order, rounded up to 2105 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2106 * of SECTION_SIZE bytes by initializing struct pages in increments of 2107 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2108 * 2109 * Return true when zone was grown, otherwise return false. We return true even 2110 * when we grow less than requested, to let the caller decide if there are 2111 * enough pages to satisfy the allocation. 2112 * 2113 * Note: We use noinline because this function is needed only during boot, and 2114 * it is called from a __ref function _deferred_grow_zone. This way we are 2115 * making sure that it is not inlined into permanent text section. 2116 */ 2117static noinline bool __init 2118deferred_grow_zone(struct zone *zone, unsigned int order) 2119{ 2120 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2121 pg_data_t *pgdat = zone->zone_pgdat; 2122 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2123 unsigned long spfn, epfn, flags; 2124 unsigned long nr_pages = 0; 2125 u64 i; 2126 2127 /* Only the last zone may have deferred pages */ 2128 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2129 return false; 2130 2131 pgdat_resize_lock(pgdat, &flags); 2132 2133 /* 2134 * If someone grew this zone while we were waiting for spinlock, return 2135 * true, as there might be enough pages already. 2136 */ 2137 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2138 pgdat_resize_unlock(pgdat, &flags); 2139 return true; 2140 } 2141 2142 /* If the zone is empty somebody else may have cleared out the zone */ 2143 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2144 first_deferred_pfn)) { 2145 pgdat->first_deferred_pfn = ULONG_MAX; 2146 pgdat_resize_unlock(pgdat, &flags); 2147 /* Retry only once. */ 2148 return first_deferred_pfn != ULONG_MAX; 2149 } 2150 2151 /* 2152 * Initialize and free pages in MAX_ORDER sized increments so 2153 * that we can avoid introducing any issues with the buddy 2154 * allocator. 2155 */ 2156 while (spfn < epfn) { 2157 /* update our first deferred PFN for this section */ 2158 first_deferred_pfn = spfn; 2159 2160 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2161 touch_nmi_watchdog(); 2162 2163 /* We should only stop along section boundaries */ 2164 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2165 continue; 2166 2167 /* If our quota has been met we can stop here */ 2168 if (nr_pages >= nr_pages_needed) 2169 break; 2170 } 2171 2172 pgdat->first_deferred_pfn = spfn; 2173 pgdat_resize_unlock(pgdat, &flags); 2174 2175 return nr_pages > 0; 2176} 2177 2178/* 2179 * deferred_grow_zone() is __init, but it is called from 2180 * get_page_from_freelist() during early boot until deferred_pages permanently 2181 * disables this call. This is why we have refdata wrapper to avoid warning, 2182 * and to ensure that the function body gets unloaded. 2183 */ 2184static bool __ref 2185_deferred_grow_zone(struct zone *zone, unsigned int order) 2186{ 2187 return deferred_grow_zone(zone, order); 2188} 2189 2190#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2191 2192void __init page_alloc_init_late(void) 2193{ 2194 struct zone *zone; 2195 int nid; 2196 2197#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2198 2199 /* There will be num_node_state(N_MEMORY) threads */ 2200 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2201 for_each_node_state(nid, N_MEMORY) { 2202 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2203 } 2204 2205 /* Block until all are initialised */ 2206 wait_for_completion(&pgdat_init_all_done_comp); 2207 2208 /* 2209 * We initialized the rest of the deferred pages. Permanently disable 2210 * on-demand struct page initialization. 2211 */ 2212 static_branch_disable(&deferred_pages); 2213 2214 /* Reinit limits that are based on free pages after the kernel is up */ 2215 files_maxfiles_init(); 2216#endif 2217 2218 buffer_init(); 2219 2220 /* Discard memblock private memory */ 2221 memblock_discard(); 2222 2223 for_each_node_state(nid, N_MEMORY) 2224 shuffle_free_memory(NODE_DATA(nid)); 2225 2226 for_each_populated_zone(zone) 2227 set_zone_contiguous(zone); 2228} 2229 2230#ifdef CONFIG_CMA 2231/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2232void __init init_cma_reserved_pageblock(struct page *page) 2233{ 2234 unsigned i = pageblock_nr_pages; 2235 struct page *p = page; 2236 2237 do { 2238 __ClearPageReserved(p); 2239 set_page_count(p, 0); 2240 } while (++p, --i); 2241 2242 set_pageblock_migratetype(page, MIGRATE_CMA); 2243 set_page_refcounted(page); 2244 __free_pages(page, pageblock_order); 2245 2246 adjust_managed_page_count(page, pageblock_nr_pages); 2247 page_zone(page)->cma_pages += pageblock_nr_pages; 2248} 2249#endif 2250 2251/* 2252 * The order of subdivision here is critical for the IO subsystem. 2253 * Please do not alter this order without good reasons and regression 2254 * testing. Specifically, as large blocks of memory are subdivided, 2255 * the order in which smaller blocks are delivered depends on the order 2256 * they're subdivided in this function. This is the primary factor 2257 * influencing the order in which pages are delivered to the IO 2258 * subsystem according to empirical testing, and this is also justified 2259 * by considering the behavior of a buddy system containing a single 2260 * large block of memory acted on by a series of small allocations. 2261 * This behavior is a critical factor in sglist merging's success. 2262 * 2263 * -- nyc 2264 */ 2265static inline void expand(struct zone *zone, struct page *page, 2266 int low, int high, int migratetype) 2267{ 2268 unsigned long size = 1 << high; 2269 2270 while (high > low) { 2271 high--; 2272 size >>= 1; 2273 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2274 2275 /* 2276 * Mark as guard pages (or page), that will allow to 2277 * merge back to allocator when buddy will be freed. 2278 * Corresponding page table entries will not be touched, 2279 * pages will stay not present in virtual address space 2280 */ 2281 if (set_page_guard(zone, &page[size], high, migratetype)) 2282 continue; 2283 2284 add_to_free_list(&page[size], zone, high, migratetype); 2285 set_buddy_order(&page[size], high); 2286 } 2287} 2288 2289static void check_new_page_bad(struct page *page) 2290{ 2291 if (unlikely(page->flags & __PG_HWPOISON)) { 2292 /* Don't complain about hwpoisoned pages */ 2293 page_mapcount_reset(page); /* remove PageBuddy */ 2294 return; 2295 } 2296 2297 bad_page(page, 2298 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2299} 2300 2301/* 2302 * This page is about to be returned from the page allocator 2303 */ 2304static inline int check_new_page(struct page *page) 2305{ 2306 if (likely(page_expected_state(page, 2307 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2308 return 0; 2309 2310 check_new_page_bad(page); 2311 return 1; 2312} 2313 2314static bool check_new_pages(struct page *page, unsigned int order) 2315{ 2316 int i; 2317 for (i = 0; i < (1 << order); i++) { 2318 struct page *p = page + i; 2319 2320 if (unlikely(check_new_page(p))) 2321 return true; 2322 } 2323 2324 return false; 2325} 2326 2327#ifdef CONFIG_DEBUG_VM 2328/* 2329 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2330 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2331 * also checked when pcp lists are refilled from the free lists. 2332 */ 2333static inline bool check_pcp_refill(struct page *page, unsigned int order) 2334{ 2335 if (debug_pagealloc_enabled_static()) 2336 return check_new_pages(page, order); 2337 else 2338 return false; 2339} 2340 2341static inline bool check_new_pcp(struct page *page, unsigned int order) 2342{ 2343 return check_new_pages(page, order); 2344} 2345#else 2346/* 2347 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2348 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2349 * enabled, they are also checked when being allocated from the pcp lists. 2350 */ 2351static inline bool check_pcp_refill(struct page *page, unsigned int order) 2352{ 2353 return check_new_pages(page, order); 2354} 2355static inline bool check_new_pcp(struct page *page, unsigned int order) 2356{ 2357 if (debug_pagealloc_enabled_static()) 2358 return check_new_pages(page, order); 2359 else 2360 return false; 2361} 2362#endif /* CONFIG_DEBUG_VM */ 2363 2364static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags) 2365{ 2366 /* Don't skip if a software KASAN mode is enabled. */ 2367 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 2368 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 2369 return false; 2370 2371 /* Skip, if hardware tag-based KASAN is not enabled. */ 2372 if (!kasan_hw_tags_enabled()) 2373 return true; 2374 2375 /* 2376 * With hardware tag-based KASAN enabled, skip if either: 2377 * 2378 * 1. Memory tags have already been cleared via tag_clear_highpage(). 2379 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON. 2380 */ 2381 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON); 2382} 2383 2384static inline bool should_skip_init(gfp_t flags) 2385{ 2386 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 2387 if (!kasan_hw_tags_enabled()) 2388 return false; 2389 2390 /* For hardware tag-based KASAN, skip if requested. */ 2391 return (flags & __GFP_SKIP_ZERO); 2392} 2393 2394inline void post_alloc_hook(struct page *page, unsigned int order, 2395 gfp_t gfp_flags) 2396{ 2397 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 2398 !should_skip_init(gfp_flags); 2399 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS); 2400 2401 set_page_private(page, 0); 2402 set_page_refcounted(page); 2403 2404 arch_alloc_page(page, order); 2405 debug_pagealloc_map_pages(page, 1 << order); 2406 2407 /* 2408 * Page unpoisoning must happen before memory initialization. 2409 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2410 * allocations and the page unpoisoning code will complain. 2411 */ 2412 kernel_unpoison_pages(page, 1 << order); 2413 2414 /* 2415 * As memory initialization might be integrated into KASAN, 2416 * KASAN unpoisoning and memory initializion code must be 2417 * kept together to avoid discrepancies in behavior. 2418 */ 2419 2420 /* 2421 * If memory tags should be zeroed (which happens only when memory 2422 * should be initialized as well). 2423 */ 2424 if (init_tags) { 2425 int i; 2426 2427 /* Initialize both memory and tags. */ 2428 for (i = 0; i != 1 << order; ++i) 2429 tag_clear_highpage(page + i); 2430 2431 /* Note that memory is already initialized by the loop above. */ 2432 init = false; 2433 } 2434 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) { 2435 /* Unpoison shadow memory or set memory tags. */ 2436 kasan_unpoison_pages(page, order, init); 2437 2438 /* Note that memory is already initialized by KASAN. */ 2439 if (kasan_has_integrated_init()) 2440 init = false; 2441 } 2442 /* If memory is still not initialized, do it now. */ 2443 if (init) 2444 kernel_init_free_pages(page, 1 << order); 2445 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */ 2446 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON)) 2447 SetPageSkipKASanPoison(page); 2448 2449 set_page_owner(page, order, gfp_flags); 2450 page_table_check_alloc(page, order); 2451} 2452 2453static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2454 unsigned int alloc_flags) 2455{ 2456 post_alloc_hook(page, order, gfp_flags); 2457 2458 if (order && (gfp_flags & __GFP_COMP)) 2459 prep_compound_page(page, order); 2460 2461 /* 2462 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2463 * allocate the page. The expectation is that the caller is taking 2464 * steps that will free more memory. The caller should avoid the page 2465 * being used for !PFMEMALLOC purposes. 2466 */ 2467 if (alloc_flags & ALLOC_NO_WATERMARKS) 2468 set_page_pfmemalloc(page); 2469 else 2470 clear_page_pfmemalloc(page); 2471} 2472 2473/* 2474 * Go through the free lists for the given migratetype and remove 2475 * the smallest available page from the freelists 2476 */ 2477static __always_inline 2478struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2479 int migratetype) 2480{ 2481 unsigned int current_order; 2482 struct free_area *area; 2483 struct page *page; 2484 2485 /* Find a page of the appropriate size in the preferred list */ 2486 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2487 area = &(zone->free_area[current_order]); 2488 page = get_page_from_free_area(area, migratetype); 2489 if (!page) 2490 continue; 2491 del_page_from_free_list(page, zone, current_order); 2492 expand(zone, page, order, current_order, migratetype); 2493 set_pcppage_migratetype(page, migratetype); 2494 trace_mm_page_alloc_zone_locked(page, order, migratetype, 2495 pcp_allowed_order(order) && 2496 migratetype < MIGRATE_PCPTYPES); 2497 return page; 2498 } 2499 2500 return NULL; 2501} 2502 2503 2504/* 2505 * This array describes the order lists are fallen back to when 2506 * the free lists for the desirable migrate type are depleted 2507 * 2508 * The other migratetypes do not have fallbacks. 2509 */ 2510static int fallbacks[MIGRATE_TYPES][3] = { 2511 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2512 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2513 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2514}; 2515 2516#ifdef CONFIG_CMA 2517static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2518 unsigned int order) 2519{ 2520 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2521} 2522#else 2523static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2524 unsigned int order) { return NULL; } 2525#endif 2526 2527/* 2528 * Move the free pages in a range to the freelist tail of the requested type. 2529 * Note that start_page and end_pages are not aligned on a pageblock 2530 * boundary. If alignment is required, use move_freepages_block() 2531 */ 2532static int move_freepages(struct zone *zone, 2533 unsigned long start_pfn, unsigned long end_pfn, 2534 int migratetype, int *num_movable) 2535{ 2536 struct page *page; 2537 unsigned long pfn; 2538 unsigned int order; 2539 int pages_moved = 0; 2540 2541 for (pfn = start_pfn; pfn <= end_pfn;) { 2542 page = pfn_to_page(pfn); 2543 if (!PageBuddy(page)) { 2544 /* 2545 * We assume that pages that could be isolated for 2546 * migration are movable. But we don't actually try 2547 * isolating, as that would be expensive. 2548 */ 2549 if (num_movable && 2550 (PageLRU(page) || __PageMovable(page))) 2551 (*num_movable)++; 2552 pfn++; 2553 continue; 2554 } 2555 2556 /* Make sure we are not inadvertently changing nodes */ 2557 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2558 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2559 2560 order = buddy_order(page); 2561 move_to_free_list(page, zone, order, migratetype); 2562 pfn += 1 << order; 2563 pages_moved += 1 << order; 2564 } 2565 2566 return pages_moved; 2567} 2568 2569int move_freepages_block(struct zone *zone, struct page *page, 2570 int migratetype, int *num_movable) 2571{ 2572 unsigned long start_pfn, end_pfn, pfn; 2573 2574 if (num_movable) 2575 *num_movable = 0; 2576 2577 pfn = page_to_pfn(page); 2578 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2579 end_pfn = start_pfn + pageblock_nr_pages - 1; 2580 2581 /* Do not cross zone boundaries */ 2582 if (!zone_spans_pfn(zone, start_pfn)) 2583 start_pfn = pfn; 2584 if (!zone_spans_pfn(zone, end_pfn)) 2585 return 0; 2586 2587 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2588 num_movable); 2589} 2590 2591static void change_pageblock_range(struct page *pageblock_page, 2592 int start_order, int migratetype) 2593{ 2594 int nr_pageblocks = 1 << (start_order - pageblock_order); 2595 2596 while (nr_pageblocks--) { 2597 set_pageblock_migratetype(pageblock_page, migratetype); 2598 pageblock_page += pageblock_nr_pages; 2599 } 2600} 2601 2602/* 2603 * When we are falling back to another migratetype during allocation, try to 2604 * steal extra free pages from the same pageblocks to satisfy further 2605 * allocations, instead of polluting multiple pageblocks. 2606 * 2607 * If we are stealing a relatively large buddy page, it is likely there will 2608 * be more free pages in the pageblock, so try to steal them all. For 2609 * reclaimable and unmovable allocations, we steal regardless of page size, 2610 * as fragmentation caused by those allocations polluting movable pageblocks 2611 * is worse than movable allocations stealing from unmovable and reclaimable 2612 * pageblocks. 2613 */ 2614static bool can_steal_fallback(unsigned int order, int start_mt) 2615{ 2616 /* 2617 * Leaving this order check is intended, although there is 2618 * relaxed order check in next check. The reason is that 2619 * we can actually steal whole pageblock if this condition met, 2620 * but, below check doesn't guarantee it and that is just heuristic 2621 * so could be changed anytime. 2622 */ 2623 if (order >= pageblock_order) 2624 return true; 2625 2626 if (order >= pageblock_order / 2 || 2627 start_mt == MIGRATE_RECLAIMABLE || 2628 start_mt == MIGRATE_UNMOVABLE || 2629 page_group_by_mobility_disabled) 2630 return true; 2631 2632 return false; 2633} 2634 2635static inline bool boost_watermark(struct zone *zone) 2636{ 2637 unsigned long max_boost; 2638 2639 if (!watermark_boost_factor) 2640 return false; 2641 /* 2642 * Don't bother in zones that are unlikely to produce results. 2643 * On small machines, including kdump capture kernels running 2644 * in a small area, boosting the watermark can cause an out of 2645 * memory situation immediately. 2646 */ 2647 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2648 return false; 2649 2650 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2651 watermark_boost_factor, 10000); 2652 2653 /* 2654 * high watermark may be uninitialised if fragmentation occurs 2655 * very early in boot so do not boost. We do not fall 2656 * through and boost by pageblock_nr_pages as failing 2657 * allocations that early means that reclaim is not going 2658 * to help and it may even be impossible to reclaim the 2659 * boosted watermark resulting in a hang. 2660 */ 2661 if (!max_boost) 2662 return false; 2663 2664 max_boost = max(pageblock_nr_pages, max_boost); 2665 2666 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2667 max_boost); 2668 2669 return true; 2670} 2671 2672/* 2673 * This function implements actual steal behaviour. If order is large enough, 2674 * we can steal whole pageblock. If not, we first move freepages in this 2675 * pageblock to our migratetype and determine how many already-allocated pages 2676 * are there in the pageblock with a compatible migratetype. If at least half 2677 * of pages are free or compatible, we can change migratetype of the pageblock 2678 * itself, so pages freed in the future will be put on the correct free list. 2679 */ 2680static void steal_suitable_fallback(struct zone *zone, struct page *page, 2681 unsigned int alloc_flags, int start_type, bool whole_block) 2682{ 2683 unsigned int current_order = buddy_order(page); 2684 int free_pages, movable_pages, alike_pages; 2685 int old_block_type; 2686 2687 old_block_type = get_pageblock_migratetype(page); 2688 2689 /* 2690 * This can happen due to races and we want to prevent broken 2691 * highatomic accounting. 2692 */ 2693 if (is_migrate_highatomic(old_block_type)) 2694 goto single_page; 2695 2696 /* Take ownership for orders >= pageblock_order */ 2697 if (current_order >= pageblock_order) { 2698 change_pageblock_range(page, current_order, start_type); 2699 goto single_page; 2700 } 2701 2702 /* 2703 * Boost watermarks to increase reclaim pressure to reduce the 2704 * likelihood of future fallbacks. Wake kswapd now as the node 2705 * may be balanced overall and kswapd will not wake naturally. 2706 */ 2707 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2708 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2709 2710 /* We are not allowed to try stealing from the whole block */ 2711 if (!whole_block) 2712 goto single_page; 2713 2714 free_pages = move_freepages_block(zone, page, start_type, 2715 &movable_pages); 2716 /* 2717 * Determine how many pages are compatible with our allocation. 2718 * For movable allocation, it's the number of movable pages which 2719 * we just obtained. For other types it's a bit more tricky. 2720 */ 2721 if (start_type == MIGRATE_MOVABLE) { 2722 alike_pages = movable_pages; 2723 } else { 2724 /* 2725 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2726 * to MOVABLE pageblock, consider all non-movable pages as 2727 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2728 * vice versa, be conservative since we can't distinguish the 2729 * exact migratetype of non-movable pages. 2730 */ 2731 if (old_block_type == MIGRATE_MOVABLE) 2732 alike_pages = pageblock_nr_pages 2733 - (free_pages + movable_pages); 2734 else 2735 alike_pages = 0; 2736 } 2737 2738 /* moving whole block can fail due to zone boundary conditions */ 2739 if (!free_pages) 2740 goto single_page; 2741 2742 /* 2743 * If a sufficient number of pages in the block are either free or of 2744 * comparable migratability as our allocation, claim the whole block. 2745 */ 2746 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2747 page_group_by_mobility_disabled) 2748 set_pageblock_migratetype(page, start_type); 2749 2750 return; 2751 2752single_page: 2753 move_to_free_list(page, zone, current_order, start_type); 2754} 2755 2756/* 2757 * Check whether there is a suitable fallback freepage with requested order. 2758 * If only_stealable is true, this function returns fallback_mt only if 2759 * we can steal other freepages all together. This would help to reduce 2760 * fragmentation due to mixed migratetype pages in one pageblock. 2761 */ 2762int find_suitable_fallback(struct free_area *area, unsigned int order, 2763 int migratetype, bool only_stealable, bool *can_steal) 2764{ 2765 int i; 2766 int fallback_mt; 2767 2768 if (area->nr_free == 0) 2769 return -1; 2770 2771 *can_steal = false; 2772 for (i = 0;; i++) { 2773 fallback_mt = fallbacks[migratetype][i]; 2774 if (fallback_mt == MIGRATE_TYPES) 2775 break; 2776 2777 if (free_area_empty(area, fallback_mt)) 2778 continue; 2779 2780 if (can_steal_fallback(order, migratetype)) 2781 *can_steal = true; 2782 2783 if (!only_stealable) 2784 return fallback_mt; 2785 2786 if (*can_steal) 2787 return fallback_mt; 2788 } 2789 2790 return -1; 2791} 2792 2793/* 2794 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2795 * there are no empty page blocks that contain a page with a suitable order 2796 */ 2797static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2798 unsigned int alloc_order) 2799{ 2800 int mt; 2801 unsigned long max_managed, flags; 2802 2803 /* 2804 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2805 * Check is race-prone but harmless. 2806 */ 2807 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2808 if (zone->nr_reserved_highatomic >= max_managed) 2809 return; 2810 2811 spin_lock_irqsave(&zone->lock, flags); 2812 2813 /* Recheck the nr_reserved_highatomic limit under the lock */ 2814 if (zone->nr_reserved_highatomic >= max_managed) 2815 goto out_unlock; 2816 2817 /* Yoink! */ 2818 mt = get_pageblock_migratetype(page); 2819 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2820 if (migratetype_is_mergeable(mt)) { 2821 zone->nr_reserved_highatomic += pageblock_nr_pages; 2822 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2823 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2824 } 2825 2826out_unlock: 2827 spin_unlock_irqrestore(&zone->lock, flags); 2828} 2829 2830/* 2831 * Used when an allocation is about to fail under memory pressure. This 2832 * potentially hurts the reliability of high-order allocations when under 2833 * intense memory pressure but failed atomic allocations should be easier 2834 * to recover from than an OOM. 2835 * 2836 * If @force is true, try to unreserve a pageblock even though highatomic 2837 * pageblock is exhausted. 2838 */ 2839static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2840 bool force) 2841{ 2842 struct zonelist *zonelist = ac->zonelist; 2843 unsigned long flags; 2844 struct zoneref *z; 2845 struct zone *zone; 2846 struct page *page; 2847 int order; 2848 bool ret; 2849 2850 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2851 ac->nodemask) { 2852 /* 2853 * Preserve at least one pageblock unless memory pressure 2854 * is really high. 2855 */ 2856 if (!force && zone->nr_reserved_highatomic <= 2857 pageblock_nr_pages) 2858 continue; 2859 2860 spin_lock_irqsave(&zone->lock, flags); 2861 for (order = 0; order < MAX_ORDER; order++) { 2862 struct free_area *area = &(zone->free_area[order]); 2863 2864 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2865 if (!page) 2866 continue; 2867 2868 /* 2869 * In page freeing path, migratetype change is racy so 2870 * we can counter several free pages in a pageblock 2871 * in this loop although we changed the pageblock type 2872 * from highatomic to ac->migratetype. So we should 2873 * adjust the count once. 2874 */ 2875 if (is_migrate_highatomic_page(page)) { 2876 /* 2877 * It should never happen but changes to 2878 * locking could inadvertently allow a per-cpu 2879 * drain to add pages to MIGRATE_HIGHATOMIC 2880 * while unreserving so be safe and watch for 2881 * underflows. 2882 */ 2883 zone->nr_reserved_highatomic -= min( 2884 pageblock_nr_pages, 2885 zone->nr_reserved_highatomic); 2886 } 2887 2888 /* 2889 * Convert to ac->migratetype and avoid the normal 2890 * pageblock stealing heuristics. Minimally, the caller 2891 * is doing the work and needs the pages. More 2892 * importantly, if the block was always converted to 2893 * MIGRATE_UNMOVABLE or another type then the number 2894 * of pageblocks that cannot be completely freed 2895 * may increase. 2896 */ 2897 set_pageblock_migratetype(page, ac->migratetype); 2898 ret = move_freepages_block(zone, page, ac->migratetype, 2899 NULL); 2900 if (ret) { 2901 spin_unlock_irqrestore(&zone->lock, flags); 2902 return ret; 2903 } 2904 } 2905 spin_unlock_irqrestore(&zone->lock, flags); 2906 } 2907 2908 return false; 2909} 2910 2911/* 2912 * Try finding a free buddy page on the fallback list and put it on the free 2913 * list of requested migratetype, possibly along with other pages from the same 2914 * block, depending on fragmentation avoidance heuristics. Returns true if 2915 * fallback was found so that __rmqueue_smallest() can grab it. 2916 * 2917 * The use of signed ints for order and current_order is a deliberate 2918 * deviation from the rest of this file, to make the for loop 2919 * condition simpler. 2920 */ 2921static __always_inline bool 2922__rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2923 unsigned int alloc_flags) 2924{ 2925 struct free_area *area; 2926 int current_order; 2927 int min_order = order; 2928 struct page *page; 2929 int fallback_mt; 2930 bool can_steal; 2931 2932 /* 2933 * Do not steal pages from freelists belonging to other pageblocks 2934 * i.e. orders < pageblock_order. If there are no local zones free, 2935 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2936 */ 2937 if (alloc_flags & ALLOC_NOFRAGMENT) 2938 min_order = pageblock_order; 2939 2940 /* 2941 * Find the largest available free page in the other list. This roughly 2942 * approximates finding the pageblock with the most free pages, which 2943 * would be too costly to do exactly. 2944 */ 2945 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2946 --current_order) { 2947 area = &(zone->free_area[current_order]); 2948 fallback_mt = find_suitable_fallback(area, current_order, 2949 start_migratetype, false, &can_steal); 2950 if (fallback_mt == -1) 2951 continue; 2952 2953 /* 2954 * We cannot steal all free pages from the pageblock and the 2955 * requested migratetype is movable. In that case it's better to 2956 * steal and split the smallest available page instead of the 2957 * largest available page, because even if the next movable 2958 * allocation falls back into a different pageblock than this 2959 * one, it won't cause permanent fragmentation. 2960 */ 2961 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2962 && current_order > order) 2963 goto find_smallest; 2964 2965 goto do_steal; 2966 } 2967 2968 return false; 2969 2970find_smallest: 2971 for (current_order = order; current_order < MAX_ORDER; 2972 current_order++) { 2973 area = &(zone->free_area[current_order]); 2974 fallback_mt = find_suitable_fallback(area, current_order, 2975 start_migratetype, false, &can_steal); 2976 if (fallback_mt != -1) 2977 break; 2978 } 2979 2980 /* 2981 * This should not happen - we already found a suitable fallback 2982 * when looking for the largest page. 2983 */ 2984 VM_BUG_ON(current_order == MAX_ORDER); 2985 2986do_steal: 2987 page = get_page_from_free_area(area, fallback_mt); 2988 2989 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2990 can_steal); 2991 2992 trace_mm_page_alloc_extfrag(page, order, current_order, 2993 start_migratetype, fallback_mt); 2994 2995 return true; 2996 2997} 2998 2999/* 3000 * Do the hard work of removing an element from the buddy allocator. 3001 * Call me with the zone->lock already held. 3002 */ 3003static __always_inline struct page * 3004__rmqueue(struct zone *zone, unsigned int order, int migratetype, 3005 unsigned int alloc_flags) 3006{ 3007 struct page *page; 3008 3009 if (IS_ENABLED(CONFIG_CMA)) { 3010 /* 3011 * Balance movable allocations between regular and CMA areas by 3012 * allocating from CMA when over half of the zone's free memory 3013 * is in the CMA area. 3014 */ 3015 if (alloc_flags & ALLOC_CMA && 3016 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3017 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3018 page = __rmqueue_cma_fallback(zone, order); 3019 if (page) 3020 return page; 3021 } 3022 } 3023retry: 3024 page = __rmqueue_smallest(zone, order, migratetype); 3025 if (unlikely(!page)) { 3026 if (alloc_flags & ALLOC_CMA) 3027 page = __rmqueue_cma_fallback(zone, order); 3028 3029 if (!page && __rmqueue_fallback(zone, order, migratetype, 3030 alloc_flags)) 3031 goto retry; 3032 } 3033 return page; 3034} 3035 3036/* 3037 * Obtain a specified number of elements from the buddy allocator, all under 3038 * a single hold of the lock, for efficiency. Add them to the supplied list. 3039 * Returns the number of new pages which were placed at *list. 3040 */ 3041static int rmqueue_bulk(struct zone *zone, unsigned int order, 3042 unsigned long count, struct list_head *list, 3043 int migratetype, unsigned int alloc_flags) 3044{ 3045 int i, allocated = 0; 3046 3047 /* 3048 * local_lock_irq held so equivalent to spin_lock_irqsave for 3049 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3050 */ 3051 spin_lock(&zone->lock); 3052 for (i = 0; i < count; ++i) { 3053 struct page *page = __rmqueue(zone, order, migratetype, 3054 alloc_flags); 3055 if (unlikely(page == NULL)) 3056 break; 3057 3058 if (unlikely(check_pcp_refill(page, order))) 3059 continue; 3060 3061 /* 3062 * Split buddy pages returned by expand() are received here in 3063 * physical page order. The page is added to the tail of 3064 * caller's list. From the callers perspective, the linked list 3065 * is ordered by page number under some conditions. This is 3066 * useful for IO devices that can forward direction from the 3067 * head, thus also in the physical page order. This is useful 3068 * for IO devices that can merge IO requests if the physical 3069 * pages are ordered properly. 3070 */ 3071 list_add_tail(&page->lru, list); 3072 allocated++; 3073 if (is_migrate_cma(get_pcppage_migratetype(page))) 3074 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3075 -(1 << order)); 3076 } 3077 3078 /* 3079 * i pages were removed from the buddy list even if some leak due 3080 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3081 * on i. Do not confuse with 'allocated' which is the number of 3082 * pages added to the pcp list. 3083 */ 3084 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3085 spin_unlock(&zone->lock); 3086 return allocated; 3087} 3088 3089#ifdef CONFIG_NUMA 3090/* 3091 * Called from the vmstat counter updater to drain pagesets of this 3092 * currently executing processor on remote nodes after they have 3093 * expired. 3094 * 3095 * Note that this function must be called with the thread pinned to 3096 * a single processor. 3097 */ 3098void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3099{ 3100 unsigned long flags; 3101 int to_drain, batch; 3102 3103 local_lock_irqsave(&pagesets.lock, flags); 3104 batch = READ_ONCE(pcp->batch); 3105 to_drain = min(pcp->count, batch); 3106 if (to_drain > 0) 3107 free_pcppages_bulk(zone, to_drain, pcp, 0); 3108 local_unlock_irqrestore(&pagesets.lock, flags); 3109} 3110#endif 3111 3112/* 3113 * Drain pcplists of the indicated processor and zone. 3114 * 3115 * The processor must either be the current processor and the 3116 * thread pinned to the current processor or a processor that 3117 * is not online. 3118 */ 3119static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3120{ 3121 unsigned long flags; 3122 struct per_cpu_pages *pcp; 3123 3124 local_lock_irqsave(&pagesets.lock, flags); 3125 3126 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3127 if (pcp->count) 3128 free_pcppages_bulk(zone, pcp->count, pcp, 0); 3129 3130 local_unlock_irqrestore(&pagesets.lock, flags); 3131} 3132 3133/* 3134 * Drain pcplists of all zones on the indicated processor. 3135 * 3136 * The processor must either be the current processor and the 3137 * thread pinned to the current processor or a processor that 3138 * is not online. 3139 */ 3140static void drain_pages(unsigned int cpu) 3141{ 3142 struct zone *zone; 3143 3144 for_each_populated_zone(zone) { 3145 drain_pages_zone(cpu, zone); 3146 } 3147} 3148 3149/* 3150 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3151 * 3152 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3153 * the single zone's pages. 3154 */ 3155void drain_local_pages(struct zone *zone) 3156{ 3157 int cpu = smp_processor_id(); 3158 3159 if (zone) 3160 drain_pages_zone(cpu, zone); 3161 else 3162 drain_pages(cpu); 3163} 3164 3165static void drain_local_pages_wq(struct work_struct *work) 3166{ 3167 struct pcpu_drain *drain; 3168 3169 drain = container_of(work, struct pcpu_drain, work); 3170 3171 /* 3172 * drain_all_pages doesn't use proper cpu hotplug protection so 3173 * we can race with cpu offline when the WQ can move this from 3174 * a cpu pinned worker to an unbound one. We can operate on a different 3175 * cpu which is alright but we also have to make sure to not move to 3176 * a different one. 3177 */ 3178 migrate_disable(); 3179 drain_local_pages(drain->zone); 3180 migrate_enable(); 3181} 3182 3183/* 3184 * The implementation of drain_all_pages(), exposing an extra parameter to 3185 * drain on all cpus. 3186 * 3187 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3188 * not empty. The check for non-emptiness can however race with a free to 3189 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3190 * that need the guarantee that every CPU has drained can disable the 3191 * optimizing racy check. 3192 */ 3193static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3194{ 3195 int cpu; 3196 3197 /* 3198 * Allocate in the BSS so we won't require allocation in 3199 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3200 */ 3201 static cpumask_t cpus_with_pcps; 3202 3203 /* 3204 * Make sure nobody triggers this path before mm_percpu_wq is fully 3205 * initialized. 3206 */ 3207 if (WARN_ON_ONCE(!mm_percpu_wq)) 3208 return; 3209 3210 /* 3211 * Do not drain if one is already in progress unless it's specific to 3212 * a zone. Such callers are primarily CMA and memory hotplug and need 3213 * the drain to be complete when the call returns. 3214 */ 3215 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3216 if (!zone) 3217 return; 3218 mutex_lock(&pcpu_drain_mutex); 3219 } 3220 3221 /* 3222 * We don't care about racing with CPU hotplug event 3223 * as offline notification will cause the notified 3224 * cpu to drain that CPU pcps and on_each_cpu_mask 3225 * disables preemption as part of its processing 3226 */ 3227 for_each_online_cpu(cpu) { 3228 struct per_cpu_pages *pcp; 3229 struct zone *z; 3230 bool has_pcps = false; 3231 3232 if (force_all_cpus) { 3233 /* 3234 * The pcp.count check is racy, some callers need a 3235 * guarantee that no cpu is missed. 3236 */ 3237 has_pcps = true; 3238 } else if (zone) { 3239 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3240 if (pcp->count) 3241 has_pcps = true; 3242 } else { 3243 for_each_populated_zone(z) { 3244 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3245 if (pcp->count) { 3246 has_pcps = true; 3247 break; 3248 } 3249 } 3250 } 3251 3252 if (has_pcps) 3253 cpumask_set_cpu(cpu, &cpus_with_pcps); 3254 else 3255 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3256 } 3257 3258 for_each_cpu(cpu, &cpus_with_pcps) { 3259 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3260 3261 drain->zone = zone; 3262 INIT_WORK(&drain->work, drain_local_pages_wq); 3263 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3264 } 3265 for_each_cpu(cpu, &cpus_with_pcps) 3266 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3267 3268 mutex_unlock(&pcpu_drain_mutex); 3269} 3270 3271/* 3272 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3273 * 3274 * When zone parameter is non-NULL, spill just the single zone's pages. 3275 * 3276 * Note that this can be extremely slow as the draining happens in a workqueue. 3277 */ 3278void drain_all_pages(struct zone *zone) 3279{ 3280 __drain_all_pages(zone, false); 3281} 3282 3283#ifdef CONFIG_HIBERNATION 3284 3285/* 3286 * Touch the watchdog for every WD_PAGE_COUNT pages. 3287 */ 3288#define WD_PAGE_COUNT (128*1024) 3289 3290void mark_free_pages(struct zone *zone) 3291{ 3292 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3293 unsigned long flags; 3294 unsigned int order, t; 3295 struct page *page; 3296 3297 if (zone_is_empty(zone)) 3298 return; 3299 3300 spin_lock_irqsave(&zone->lock, flags); 3301 3302 max_zone_pfn = zone_end_pfn(zone); 3303 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3304 if (pfn_valid(pfn)) { 3305 page = pfn_to_page(pfn); 3306 3307 if (!--page_count) { 3308 touch_nmi_watchdog(); 3309 page_count = WD_PAGE_COUNT; 3310 } 3311 3312 if (page_zone(page) != zone) 3313 continue; 3314 3315 if (!swsusp_page_is_forbidden(page)) 3316 swsusp_unset_page_free(page); 3317 } 3318 3319 for_each_migratetype_order(order, t) { 3320 list_for_each_entry(page, 3321 &zone->free_area[order].free_list[t], lru) { 3322 unsigned long i; 3323 3324 pfn = page_to_pfn(page); 3325 for (i = 0; i < (1UL << order); i++) { 3326 if (!--page_count) { 3327 touch_nmi_watchdog(); 3328 page_count = WD_PAGE_COUNT; 3329 } 3330 swsusp_set_page_free(pfn_to_page(pfn + i)); 3331 } 3332 } 3333 } 3334 spin_unlock_irqrestore(&zone->lock, flags); 3335} 3336#endif /* CONFIG_PM */ 3337 3338static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3339 unsigned int order) 3340{ 3341 int migratetype; 3342 3343 if (!free_pcp_prepare(page, order)) 3344 return false; 3345 3346 migratetype = get_pfnblock_migratetype(page, pfn); 3347 set_pcppage_migratetype(page, migratetype); 3348 return true; 3349} 3350 3351static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 3352 bool free_high) 3353{ 3354 int min_nr_free, max_nr_free; 3355 3356 /* Free everything if batch freeing high-order pages. */ 3357 if (unlikely(free_high)) 3358 return pcp->count; 3359 3360 /* Check for PCP disabled or boot pageset */ 3361 if (unlikely(high < batch)) 3362 return 1; 3363 3364 /* Leave at least pcp->batch pages on the list */ 3365 min_nr_free = batch; 3366 max_nr_free = high - batch; 3367 3368 /* 3369 * Double the number of pages freed each time there is subsequent 3370 * freeing of pages without any allocation. 3371 */ 3372 batch <<= pcp->free_factor; 3373 if (batch < max_nr_free) 3374 pcp->free_factor++; 3375 batch = clamp(batch, min_nr_free, max_nr_free); 3376 3377 return batch; 3378} 3379 3380static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 3381 bool free_high) 3382{ 3383 int high = READ_ONCE(pcp->high); 3384 3385 if (unlikely(!high || free_high)) 3386 return 0; 3387 3388 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3389 return high; 3390 3391 /* 3392 * If reclaim is active, limit the number of pages that can be 3393 * stored on pcp lists 3394 */ 3395 return min(READ_ONCE(pcp->batch) << 2, high); 3396} 3397 3398static void free_unref_page_commit(struct page *page, int migratetype, 3399 unsigned int order) 3400{ 3401 struct zone *zone = page_zone(page); 3402 struct per_cpu_pages *pcp; 3403 int high; 3404 int pindex; 3405 bool free_high; 3406 3407 __count_vm_event(PGFREE); 3408 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3409 pindex = order_to_pindex(migratetype, order); 3410 list_add(&page->lru, &pcp->lists[pindex]); 3411 pcp->count += 1 << order; 3412 3413 /* 3414 * As high-order pages other than THP's stored on PCP can contribute 3415 * to fragmentation, limit the number stored when PCP is heavily 3416 * freeing without allocation. The remainder after bulk freeing 3417 * stops will be drained from vmstat refresh context. 3418 */ 3419 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 3420 3421 high = nr_pcp_high(pcp, zone, free_high); 3422 if (pcp->count >= high) { 3423 int batch = READ_ONCE(pcp->batch); 3424 3425 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 3426 } 3427} 3428 3429/* 3430 * Free a pcp page 3431 */ 3432void free_unref_page(struct page *page, unsigned int order) 3433{ 3434 unsigned long flags; 3435 unsigned long pfn = page_to_pfn(page); 3436 int migratetype; 3437 3438 if (!free_unref_page_prepare(page, pfn, order)) 3439 return; 3440 3441 /* 3442 * We only track unmovable, reclaimable and movable on pcp lists. 3443 * Place ISOLATE pages on the isolated list because they are being 3444 * offlined but treat HIGHATOMIC as movable pages so we can get those 3445 * areas back if necessary. Otherwise, we may have to free 3446 * excessively into the page allocator 3447 */ 3448 migratetype = get_pcppage_migratetype(page); 3449 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3450 if (unlikely(is_migrate_isolate(migratetype))) { 3451 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3452 return; 3453 } 3454 migratetype = MIGRATE_MOVABLE; 3455 } 3456 3457 local_lock_irqsave(&pagesets.lock, flags); 3458 free_unref_page_commit(page, migratetype, order); 3459 local_unlock_irqrestore(&pagesets.lock, flags); 3460} 3461 3462/* 3463 * Free a list of 0-order pages 3464 */ 3465void free_unref_page_list(struct list_head *list) 3466{ 3467 struct page *page, *next; 3468 unsigned long flags; 3469 int batch_count = 0; 3470 int migratetype; 3471 3472 /* Prepare pages for freeing */ 3473 list_for_each_entry_safe(page, next, list, lru) { 3474 unsigned long pfn = page_to_pfn(page); 3475 if (!free_unref_page_prepare(page, pfn, 0)) { 3476 list_del(&page->lru); 3477 continue; 3478 } 3479 3480 /* 3481 * Free isolated pages directly to the allocator, see 3482 * comment in free_unref_page. 3483 */ 3484 migratetype = get_pcppage_migratetype(page); 3485 if (unlikely(is_migrate_isolate(migratetype))) { 3486 list_del(&page->lru); 3487 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 3488 continue; 3489 } 3490 } 3491 3492 local_lock_irqsave(&pagesets.lock, flags); 3493 list_for_each_entry_safe(page, next, list, lru) { 3494 /* 3495 * Non-isolated types over MIGRATE_PCPTYPES get added 3496 * to the MIGRATE_MOVABLE pcp list. 3497 */ 3498 migratetype = get_pcppage_migratetype(page); 3499 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3500 migratetype = MIGRATE_MOVABLE; 3501 3502 trace_mm_page_free_batched(page); 3503 free_unref_page_commit(page, migratetype, 0); 3504 3505 /* 3506 * Guard against excessive IRQ disabled times when we get 3507 * a large list of pages to free. 3508 */ 3509 if (++batch_count == SWAP_CLUSTER_MAX) { 3510 local_unlock_irqrestore(&pagesets.lock, flags); 3511 batch_count = 0; 3512 local_lock_irqsave(&pagesets.lock, flags); 3513 } 3514 } 3515 local_unlock_irqrestore(&pagesets.lock, flags); 3516} 3517 3518/* 3519 * split_page takes a non-compound higher-order page, and splits it into 3520 * n (1<<order) sub-pages: page[0..n] 3521 * Each sub-page must be freed individually. 3522 * 3523 * Note: this is probably too low level an operation for use in drivers. 3524 * Please consult with lkml before using this in your driver. 3525 */ 3526void split_page(struct page *page, unsigned int order) 3527{ 3528 int i; 3529 3530 VM_BUG_ON_PAGE(PageCompound(page), page); 3531 VM_BUG_ON_PAGE(!page_count(page), page); 3532 3533 for (i = 1; i < (1 << order); i++) 3534 set_page_refcounted(page + i); 3535 split_page_owner(page, 1 << order); 3536 split_page_memcg(page, 1 << order); 3537} 3538EXPORT_SYMBOL_GPL(split_page); 3539 3540int __isolate_free_page(struct page *page, unsigned int order) 3541{ 3542 unsigned long watermark; 3543 struct zone *zone; 3544 int mt; 3545 3546 BUG_ON(!PageBuddy(page)); 3547 3548 zone = page_zone(page); 3549 mt = get_pageblock_migratetype(page); 3550 3551 if (!is_migrate_isolate(mt)) { 3552 /* 3553 * Obey watermarks as if the page was being allocated. We can 3554 * emulate a high-order watermark check with a raised order-0 3555 * watermark, because we already know our high-order page 3556 * exists. 3557 */ 3558 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3559 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3560 return 0; 3561 3562 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3563 } 3564 3565 /* Remove page from free list */ 3566 3567 del_page_from_free_list(page, zone, order); 3568 3569 /* 3570 * Set the pageblock if the isolated page is at least half of a 3571 * pageblock 3572 */ 3573 if (order >= pageblock_order - 1) { 3574 struct page *endpage = page + (1 << order) - 1; 3575 for (; page < endpage; page += pageblock_nr_pages) { 3576 int mt = get_pageblock_migratetype(page); 3577 /* 3578 * Only change normal pageblocks (i.e., they can merge 3579 * with others) 3580 */ 3581 if (migratetype_is_mergeable(mt)) 3582 set_pageblock_migratetype(page, 3583 MIGRATE_MOVABLE); 3584 } 3585 } 3586 3587 3588 return 1UL << order; 3589} 3590 3591/** 3592 * __putback_isolated_page - Return a now-isolated page back where we got it 3593 * @page: Page that was isolated 3594 * @order: Order of the isolated page 3595 * @mt: The page's pageblock's migratetype 3596 * 3597 * This function is meant to return a page pulled from the free lists via 3598 * __isolate_free_page back to the free lists they were pulled from. 3599 */ 3600void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3601{ 3602 struct zone *zone = page_zone(page); 3603 3604 /* zone lock should be held when this function is called */ 3605 lockdep_assert_held(&zone->lock); 3606 3607 /* Return isolated page to tail of freelist. */ 3608 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3609 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3610} 3611 3612/* 3613 * Update NUMA hit/miss statistics 3614 * 3615 * Must be called with interrupts disabled. 3616 */ 3617static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3618 long nr_account) 3619{ 3620#ifdef CONFIG_NUMA 3621 enum numa_stat_item local_stat = NUMA_LOCAL; 3622 3623 /* skip numa counters update if numa stats is disabled */ 3624 if (!static_branch_likely(&vm_numa_stat_key)) 3625 return; 3626 3627 if (zone_to_nid(z) != numa_node_id()) 3628 local_stat = NUMA_OTHER; 3629 3630 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3631 __count_numa_events(z, NUMA_HIT, nr_account); 3632 else { 3633 __count_numa_events(z, NUMA_MISS, nr_account); 3634 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3635 } 3636 __count_numa_events(z, local_stat, nr_account); 3637#endif 3638} 3639 3640/* Remove page from the per-cpu list, caller must protect the list */ 3641static inline 3642struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3643 int migratetype, 3644 unsigned int alloc_flags, 3645 struct per_cpu_pages *pcp, 3646 struct list_head *list) 3647{ 3648 struct page *page; 3649 3650 do { 3651 if (list_empty(list)) { 3652 int batch = READ_ONCE(pcp->batch); 3653 int alloced; 3654 3655 /* 3656 * Scale batch relative to order if batch implies 3657 * free pages can be stored on the PCP. Batch can 3658 * be 1 for small zones or for boot pagesets which 3659 * should never store free pages as the pages may 3660 * belong to arbitrary zones. 3661 */ 3662 if (batch > 1) 3663 batch = max(batch >> order, 2); 3664 alloced = rmqueue_bulk(zone, order, 3665 batch, list, 3666 migratetype, alloc_flags); 3667 3668 pcp->count += alloced << order; 3669 if (unlikely(list_empty(list))) 3670 return NULL; 3671 } 3672 3673 page = list_first_entry(list, struct page, lru); 3674 list_del(&page->lru); 3675 pcp->count -= 1 << order; 3676 } while (check_new_pcp(page, order)); 3677 3678 return page; 3679} 3680 3681/* Lock and remove page from the per-cpu list */ 3682static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3683 struct zone *zone, unsigned int order, 3684 gfp_t gfp_flags, int migratetype, 3685 unsigned int alloc_flags) 3686{ 3687 struct per_cpu_pages *pcp; 3688 struct list_head *list; 3689 struct page *page; 3690 unsigned long flags; 3691 3692 local_lock_irqsave(&pagesets.lock, flags); 3693 3694 /* 3695 * On allocation, reduce the number of pages that are batch freed. 3696 * See nr_pcp_free() where free_factor is increased for subsequent 3697 * frees. 3698 */ 3699 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3700 pcp->free_factor >>= 1; 3701 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3702 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3703 local_unlock_irqrestore(&pagesets.lock, flags); 3704 if (page) { 3705 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3706 zone_statistics(preferred_zone, zone, 1); 3707 } 3708 return page; 3709} 3710 3711/* 3712 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3713 */ 3714static inline 3715struct page *rmqueue(struct zone *preferred_zone, 3716 struct zone *zone, unsigned int order, 3717 gfp_t gfp_flags, unsigned int alloc_flags, 3718 int migratetype) 3719{ 3720 unsigned long flags; 3721 struct page *page; 3722 3723 if (likely(pcp_allowed_order(order))) { 3724 /* 3725 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3726 * we need to skip it when CMA area isn't allowed. 3727 */ 3728 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3729 migratetype != MIGRATE_MOVABLE) { 3730 page = rmqueue_pcplist(preferred_zone, zone, order, 3731 gfp_flags, migratetype, alloc_flags); 3732 goto out; 3733 } 3734 } 3735 3736 /* 3737 * We most definitely don't want callers attempting to 3738 * allocate greater than order-1 page units with __GFP_NOFAIL. 3739 */ 3740 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3741 3742 do { 3743 page = NULL; 3744 spin_lock_irqsave(&zone->lock, flags); 3745 /* 3746 * order-0 request can reach here when the pcplist is skipped 3747 * due to non-CMA allocation context. HIGHATOMIC area is 3748 * reserved for high-order atomic allocation, so order-0 3749 * request should skip it. 3750 */ 3751 if (order > 0 && alloc_flags & ALLOC_HARDER) 3752 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3753 if (!page) { 3754 page = __rmqueue(zone, order, migratetype, alloc_flags); 3755 if (!page) 3756 goto failed; 3757 } 3758 __mod_zone_freepage_state(zone, -(1 << order), 3759 get_pcppage_migratetype(page)); 3760 spin_unlock_irqrestore(&zone->lock, flags); 3761 } while (check_new_pages(page, order)); 3762 3763 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3764 zone_statistics(preferred_zone, zone, 1); 3765 3766out: 3767 /* Separate test+clear to avoid unnecessary atomics */ 3768 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3769 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3770 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3771 } 3772 3773 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3774 return page; 3775 3776failed: 3777 spin_unlock_irqrestore(&zone->lock, flags); 3778 return NULL; 3779} 3780 3781#ifdef CONFIG_FAIL_PAGE_ALLOC 3782 3783static struct { 3784 struct fault_attr attr; 3785 3786 bool ignore_gfp_highmem; 3787 bool ignore_gfp_reclaim; 3788 u32 min_order; 3789} fail_page_alloc = { 3790 .attr = FAULT_ATTR_INITIALIZER, 3791 .ignore_gfp_reclaim = true, 3792 .ignore_gfp_highmem = true, 3793 .min_order = 1, 3794}; 3795 3796static int __init setup_fail_page_alloc(char *str) 3797{ 3798 return setup_fault_attr(&fail_page_alloc.attr, str); 3799} 3800__setup("fail_page_alloc=", setup_fail_page_alloc); 3801 3802static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3803{ 3804 if (order < fail_page_alloc.min_order) 3805 return false; 3806 if (gfp_mask & __GFP_NOFAIL) 3807 return false; 3808 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3809 return false; 3810 if (fail_page_alloc.ignore_gfp_reclaim && 3811 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3812 return false; 3813 3814 if (gfp_mask & __GFP_NOWARN) 3815 fail_page_alloc.attr.no_warn = true; 3816 3817 return should_fail(&fail_page_alloc.attr, 1 << order); 3818} 3819 3820#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3821 3822static int __init fail_page_alloc_debugfs(void) 3823{ 3824 umode_t mode = S_IFREG | 0600; 3825 struct dentry *dir; 3826 3827 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3828 &fail_page_alloc.attr); 3829 3830 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3831 &fail_page_alloc.ignore_gfp_reclaim); 3832 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3833 &fail_page_alloc.ignore_gfp_highmem); 3834 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3835 3836 return 0; 3837} 3838 3839late_initcall(fail_page_alloc_debugfs); 3840 3841#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3842 3843#else /* CONFIG_FAIL_PAGE_ALLOC */ 3844 3845static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3846{ 3847 return false; 3848} 3849 3850#endif /* CONFIG_FAIL_PAGE_ALLOC */ 3851 3852noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3853{ 3854 return __should_fail_alloc_page(gfp_mask, order); 3855} 3856ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3857 3858static inline long __zone_watermark_unusable_free(struct zone *z, 3859 unsigned int order, unsigned int alloc_flags) 3860{ 3861 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3862 long unusable_free = (1 << order) - 1; 3863 3864 /* 3865 * If the caller does not have rights to ALLOC_HARDER then subtract 3866 * the high-atomic reserves. This will over-estimate the size of the 3867 * atomic reserve but it avoids a search. 3868 */ 3869 if (likely(!alloc_harder)) 3870 unusable_free += z->nr_reserved_highatomic; 3871 3872#ifdef CONFIG_CMA 3873 /* If allocation can't use CMA areas don't use free CMA pages */ 3874 if (!(alloc_flags & ALLOC_CMA)) 3875 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3876#endif 3877 3878 return unusable_free; 3879} 3880 3881/* 3882 * Return true if free base pages are above 'mark'. For high-order checks it 3883 * will return true of the order-0 watermark is reached and there is at least 3884 * one free page of a suitable size. Checking now avoids taking the zone lock 3885 * to check in the allocation paths if no pages are free. 3886 */ 3887bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3888 int highest_zoneidx, unsigned int alloc_flags, 3889 long free_pages) 3890{ 3891 long min = mark; 3892 int o; 3893 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3894 3895 /* free_pages may go negative - that's OK */ 3896 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3897 3898 if (alloc_flags & ALLOC_HIGH) 3899 min -= min / 2; 3900 3901 if (unlikely(alloc_harder)) { 3902 /* 3903 * OOM victims can try even harder than normal ALLOC_HARDER 3904 * users on the grounds that it's definitely going to be in 3905 * the exit path shortly and free memory. Any allocation it 3906 * makes during the free path will be small and short-lived. 3907 */ 3908 if (alloc_flags & ALLOC_OOM) 3909 min -= min / 2; 3910 else 3911 min -= min / 4; 3912 } 3913 3914 /* 3915 * Check watermarks for an order-0 allocation request. If these 3916 * are not met, then a high-order request also cannot go ahead 3917 * even if a suitable page happened to be free. 3918 */ 3919 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3920 return false; 3921 3922 /* If this is an order-0 request then the watermark is fine */ 3923 if (!order) 3924 return true; 3925 3926 /* For a high-order request, check at least one suitable page is free */ 3927 for (o = order; o < MAX_ORDER; o++) { 3928 struct free_area *area = &z->free_area[o]; 3929 int mt; 3930 3931 if (!area->nr_free) 3932 continue; 3933 3934 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3935 if (!free_area_empty(area, mt)) 3936 return true; 3937 } 3938 3939#ifdef CONFIG_CMA 3940 if ((alloc_flags & ALLOC_CMA) && 3941 !free_area_empty(area, MIGRATE_CMA)) { 3942 return true; 3943 } 3944#endif 3945 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3946 return true; 3947 } 3948 return false; 3949} 3950 3951bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3952 int highest_zoneidx, unsigned int alloc_flags) 3953{ 3954 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3955 zone_page_state(z, NR_FREE_PAGES)); 3956} 3957 3958static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3959 unsigned long mark, int highest_zoneidx, 3960 unsigned int alloc_flags, gfp_t gfp_mask) 3961{ 3962 long free_pages; 3963 3964 free_pages = zone_page_state(z, NR_FREE_PAGES); 3965 3966 /* 3967 * Fast check for order-0 only. If this fails then the reserves 3968 * need to be calculated. 3969 */ 3970 if (!order) { 3971 long fast_free; 3972 3973 fast_free = free_pages; 3974 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3975 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3976 return true; 3977 } 3978 3979 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3980 free_pages)) 3981 return true; 3982 /* 3983 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3984 * when checking the min watermark. The min watermark is the 3985 * point where boosting is ignored so that kswapd is woken up 3986 * when below the low watermark. 3987 */ 3988 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3989 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3990 mark = z->_watermark[WMARK_MIN]; 3991 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3992 alloc_flags, free_pages); 3993 } 3994 3995 return false; 3996} 3997 3998bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3999 unsigned long mark, int highest_zoneidx) 4000{ 4001 long free_pages = zone_page_state(z, NR_FREE_PAGES); 4002 4003 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 4004 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 4005 4006 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 4007 free_pages); 4008} 4009 4010#ifdef CONFIG_NUMA 4011int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 4012 4013static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4014{ 4015 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 4016 node_reclaim_distance; 4017} 4018#else /* CONFIG_NUMA */ 4019static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4020{ 4021 return true; 4022} 4023#endif /* CONFIG_NUMA */ 4024 4025/* 4026 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4027 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4028 * premature use of a lower zone may cause lowmem pressure problems that 4029 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4030 * probably too small. It only makes sense to spread allocations to avoid 4031 * fragmentation between the Normal and DMA32 zones. 4032 */ 4033static inline unsigned int 4034alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4035{ 4036 unsigned int alloc_flags; 4037 4038 /* 4039 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4040 * to save a branch. 4041 */ 4042 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4043 4044#ifdef CONFIG_ZONE_DMA32 4045 if (!zone) 4046 return alloc_flags; 4047 4048 if (zone_idx(zone) != ZONE_NORMAL) 4049 return alloc_flags; 4050 4051 /* 4052 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4053 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4054 * on UMA that if Normal is populated then so is DMA32. 4055 */ 4056 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4057 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4058 return alloc_flags; 4059 4060 alloc_flags |= ALLOC_NOFRAGMENT; 4061#endif /* CONFIG_ZONE_DMA32 */ 4062 return alloc_flags; 4063} 4064 4065/* Must be called after current_gfp_context() which can change gfp_mask */ 4066static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4067 unsigned int alloc_flags) 4068{ 4069#ifdef CONFIG_CMA 4070 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4071 alloc_flags |= ALLOC_CMA; 4072#endif 4073 return alloc_flags; 4074} 4075 4076/* 4077 * get_page_from_freelist goes through the zonelist trying to allocate 4078 * a page. 4079 */ 4080static struct page * 4081get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4082 const struct alloc_context *ac) 4083{ 4084 struct zoneref *z; 4085 struct zone *zone; 4086 struct pglist_data *last_pgdat = NULL; 4087 bool last_pgdat_dirty_ok = false; 4088 bool no_fallback; 4089 4090retry: 4091 /* 4092 * Scan zonelist, looking for a zone with enough free. 4093 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4094 */ 4095 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4096 z = ac->preferred_zoneref; 4097 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4098 ac->nodemask) { 4099 struct page *page; 4100 unsigned long mark; 4101 4102 if (cpusets_enabled() && 4103 (alloc_flags & ALLOC_CPUSET) && 4104 !__cpuset_zone_allowed(zone, gfp_mask)) 4105 continue; 4106 /* 4107 * When allocating a page cache page for writing, we 4108 * want to get it from a node that is within its dirty 4109 * limit, such that no single node holds more than its 4110 * proportional share of globally allowed dirty pages. 4111 * The dirty limits take into account the node's 4112 * lowmem reserves and high watermark so that kswapd 4113 * should be able to balance it without having to 4114 * write pages from its LRU list. 4115 * 4116 * XXX: For now, allow allocations to potentially 4117 * exceed the per-node dirty limit in the slowpath 4118 * (spread_dirty_pages unset) before going into reclaim, 4119 * which is important when on a NUMA setup the allowed 4120 * nodes are together not big enough to reach the 4121 * global limit. The proper fix for these situations 4122 * will require awareness of nodes in the 4123 * dirty-throttling and the flusher threads. 4124 */ 4125 if (ac->spread_dirty_pages) { 4126 if (last_pgdat != zone->zone_pgdat) { 4127 last_pgdat = zone->zone_pgdat; 4128 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 4129 } 4130 4131 if (!last_pgdat_dirty_ok) 4132 continue; 4133 } 4134 4135 if (no_fallback && nr_online_nodes > 1 && 4136 zone != ac->preferred_zoneref->zone) { 4137 int local_nid; 4138 4139 /* 4140 * If moving to a remote node, retry but allow 4141 * fragmenting fallbacks. Locality is more important 4142 * than fragmentation avoidance. 4143 */ 4144 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4145 if (zone_to_nid(zone) != local_nid) { 4146 alloc_flags &= ~ALLOC_NOFRAGMENT; 4147 goto retry; 4148 } 4149 } 4150 4151 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4152 if (!zone_watermark_fast(zone, order, mark, 4153 ac->highest_zoneidx, alloc_flags, 4154 gfp_mask)) { 4155 int ret; 4156 4157#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4158 /* 4159 * Watermark failed for this zone, but see if we can 4160 * grow this zone if it contains deferred pages. 4161 */ 4162 if (static_branch_unlikely(&deferred_pages)) { 4163 if (_deferred_grow_zone(zone, order)) 4164 goto try_this_zone; 4165 } 4166#endif 4167 /* Checked here to keep the fast path fast */ 4168 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4169 if (alloc_flags & ALLOC_NO_WATERMARKS) 4170 goto try_this_zone; 4171 4172 if (!node_reclaim_enabled() || 4173 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4174 continue; 4175 4176 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4177 switch (ret) { 4178 case NODE_RECLAIM_NOSCAN: 4179 /* did not scan */ 4180 continue; 4181 case NODE_RECLAIM_FULL: 4182 /* scanned but unreclaimable */ 4183 continue; 4184 default: 4185 /* did we reclaim enough */ 4186 if (zone_watermark_ok(zone, order, mark, 4187 ac->highest_zoneidx, alloc_flags)) 4188 goto try_this_zone; 4189 4190 continue; 4191 } 4192 } 4193 4194try_this_zone: 4195 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4196 gfp_mask, alloc_flags, ac->migratetype); 4197 if (page) { 4198 prep_new_page(page, order, gfp_mask, alloc_flags); 4199 4200 /* 4201 * If this is a high-order atomic allocation then check 4202 * if the pageblock should be reserved for the future 4203 */ 4204 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4205 reserve_highatomic_pageblock(page, zone, order); 4206 4207 return page; 4208 } else { 4209#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4210 /* Try again if zone has deferred pages */ 4211 if (static_branch_unlikely(&deferred_pages)) { 4212 if (_deferred_grow_zone(zone, order)) 4213 goto try_this_zone; 4214 } 4215#endif 4216 } 4217 } 4218 4219 /* 4220 * It's possible on a UMA machine to get through all zones that are 4221 * fragmented. If avoiding fragmentation, reset and try again. 4222 */ 4223 if (no_fallback) { 4224 alloc_flags &= ~ALLOC_NOFRAGMENT; 4225 goto retry; 4226 } 4227 4228 return NULL; 4229} 4230 4231static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4232{ 4233 unsigned int filter = SHOW_MEM_FILTER_NODES; 4234 4235 /* 4236 * This documents exceptions given to allocations in certain 4237 * contexts that are allowed to allocate outside current's set 4238 * of allowed nodes. 4239 */ 4240 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4241 if (tsk_is_oom_victim(current) || 4242 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4243 filter &= ~SHOW_MEM_FILTER_NODES; 4244 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4245 filter &= ~SHOW_MEM_FILTER_NODES; 4246 4247 show_mem(filter, nodemask); 4248} 4249 4250void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4251{ 4252 struct va_format vaf; 4253 va_list args; 4254 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4255 4256 if ((gfp_mask & __GFP_NOWARN) || 4257 !__ratelimit(&nopage_rs) || 4258 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 4259 return; 4260 4261 va_start(args, fmt); 4262 vaf.fmt = fmt; 4263 vaf.va = &args; 4264 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4265 current->comm, &vaf, gfp_mask, &gfp_mask, 4266 nodemask_pr_args(nodemask)); 4267 va_end(args); 4268 4269 cpuset_print_current_mems_allowed(); 4270 pr_cont("\n"); 4271 dump_stack(); 4272 warn_alloc_show_mem(gfp_mask, nodemask); 4273} 4274 4275static inline struct page * 4276__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4277 unsigned int alloc_flags, 4278 const struct alloc_context *ac) 4279{ 4280 struct page *page; 4281 4282 page = get_page_from_freelist(gfp_mask, order, 4283 alloc_flags|ALLOC_CPUSET, ac); 4284 /* 4285 * fallback to ignore cpuset restriction if our nodes 4286 * are depleted 4287 */ 4288 if (!page) 4289 page = get_page_from_freelist(gfp_mask, order, 4290 alloc_flags, ac); 4291 4292 return page; 4293} 4294 4295static inline struct page * 4296__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4297 const struct alloc_context *ac, unsigned long *did_some_progress) 4298{ 4299 struct oom_control oc = { 4300 .zonelist = ac->zonelist, 4301 .nodemask = ac->nodemask, 4302 .memcg = NULL, 4303 .gfp_mask = gfp_mask, 4304 .order = order, 4305 }; 4306 struct page *page; 4307 4308 *did_some_progress = 0; 4309 4310 /* 4311 * Acquire the oom lock. If that fails, somebody else is 4312 * making progress for us. 4313 */ 4314 if (!mutex_trylock(&oom_lock)) { 4315 *did_some_progress = 1; 4316 schedule_timeout_uninterruptible(1); 4317 return NULL; 4318 } 4319 4320 /* 4321 * Go through the zonelist yet one more time, keep very high watermark 4322 * here, this is only to catch a parallel oom killing, we must fail if 4323 * we're still under heavy pressure. But make sure that this reclaim 4324 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4325 * allocation which will never fail due to oom_lock already held. 4326 */ 4327 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4328 ~__GFP_DIRECT_RECLAIM, order, 4329 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4330 if (page) 4331 goto out; 4332 4333 /* Coredumps can quickly deplete all memory reserves */ 4334 if (current->flags & PF_DUMPCORE) 4335 goto out; 4336 /* The OOM killer will not help higher order allocs */ 4337 if (order > PAGE_ALLOC_COSTLY_ORDER) 4338 goto out; 4339 /* 4340 * We have already exhausted all our reclaim opportunities without any 4341 * success so it is time to admit defeat. We will skip the OOM killer 4342 * because it is very likely that the caller has a more reasonable 4343 * fallback than shooting a random task. 4344 * 4345 * The OOM killer may not free memory on a specific node. 4346 */ 4347 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4348 goto out; 4349 /* The OOM killer does not needlessly kill tasks for lowmem */ 4350 if (ac->highest_zoneidx < ZONE_NORMAL) 4351 goto out; 4352 if (pm_suspended_storage()) 4353 goto out; 4354 /* 4355 * XXX: GFP_NOFS allocations should rather fail than rely on 4356 * other request to make a forward progress. 4357 * We are in an unfortunate situation where out_of_memory cannot 4358 * do much for this context but let's try it to at least get 4359 * access to memory reserved if the current task is killed (see 4360 * out_of_memory). Once filesystems are ready to handle allocation 4361 * failures more gracefully we should just bail out here. 4362 */ 4363 4364 /* Exhausted what can be done so it's blame time */ 4365 if (out_of_memory(&oc) || 4366 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4367 *did_some_progress = 1; 4368 4369 /* 4370 * Help non-failing allocations by giving them access to memory 4371 * reserves 4372 */ 4373 if (gfp_mask & __GFP_NOFAIL) 4374 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4375 ALLOC_NO_WATERMARKS, ac); 4376 } 4377out: 4378 mutex_unlock(&oom_lock); 4379 return page; 4380} 4381 4382/* 4383 * Maximum number of compaction retries with a progress before OOM 4384 * killer is consider as the only way to move forward. 4385 */ 4386#define MAX_COMPACT_RETRIES 16 4387 4388#ifdef CONFIG_COMPACTION 4389/* Try memory compaction for high-order allocations before reclaim */ 4390static struct page * 4391__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4392 unsigned int alloc_flags, const struct alloc_context *ac, 4393 enum compact_priority prio, enum compact_result *compact_result) 4394{ 4395 struct page *page = NULL; 4396 unsigned long pflags; 4397 unsigned int noreclaim_flag; 4398 4399 if (!order) 4400 return NULL; 4401 4402 psi_memstall_enter(&pflags); 4403 delayacct_compact_start(); 4404 noreclaim_flag = memalloc_noreclaim_save(); 4405 4406 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4407 prio, &page); 4408 4409 memalloc_noreclaim_restore(noreclaim_flag); 4410 psi_memstall_leave(&pflags); 4411 delayacct_compact_end(); 4412 4413 if (*compact_result == COMPACT_SKIPPED) 4414 return NULL; 4415 /* 4416 * At least in one zone compaction wasn't deferred or skipped, so let's 4417 * count a compaction stall 4418 */ 4419 count_vm_event(COMPACTSTALL); 4420 4421 /* Prep a captured page if available */ 4422 if (page) 4423 prep_new_page(page, order, gfp_mask, alloc_flags); 4424 4425 /* Try get a page from the freelist if available */ 4426 if (!page) 4427 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4428 4429 if (page) { 4430 struct zone *zone = page_zone(page); 4431 4432 zone->compact_blockskip_flush = false; 4433 compaction_defer_reset(zone, order, true); 4434 count_vm_event(COMPACTSUCCESS); 4435 return page; 4436 } 4437 4438 /* 4439 * It's bad if compaction run occurs and fails. The most likely reason 4440 * is that pages exist, but not enough to satisfy watermarks. 4441 */ 4442 count_vm_event(COMPACTFAIL); 4443 4444 cond_resched(); 4445 4446 return NULL; 4447} 4448 4449static inline bool 4450should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4451 enum compact_result compact_result, 4452 enum compact_priority *compact_priority, 4453 int *compaction_retries) 4454{ 4455 int max_retries = MAX_COMPACT_RETRIES; 4456 int min_priority; 4457 bool ret = false; 4458 int retries = *compaction_retries; 4459 enum compact_priority priority = *compact_priority; 4460 4461 if (!order) 4462 return false; 4463 4464 if (fatal_signal_pending(current)) 4465 return false; 4466 4467 if (compaction_made_progress(compact_result)) 4468 (*compaction_retries)++; 4469 4470 /* 4471 * compaction considers all the zone as desperately out of memory 4472 * so it doesn't really make much sense to retry except when the 4473 * failure could be caused by insufficient priority 4474 */ 4475 if (compaction_failed(compact_result)) 4476 goto check_priority; 4477 4478 /* 4479 * compaction was skipped because there are not enough order-0 pages 4480 * to work with, so we retry only if it looks like reclaim can help. 4481 */ 4482 if (compaction_needs_reclaim(compact_result)) { 4483 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4484 goto out; 4485 } 4486 4487 /* 4488 * make sure the compaction wasn't deferred or didn't bail out early 4489 * due to locks contention before we declare that we should give up. 4490 * But the next retry should use a higher priority if allowed, so 4491 * we don't just keep bailing out endlessly. 4492 */ 4493 if (compaction_withdrawn(compact_result)) { 4494 goto check_priority; 4495 } 4496 4497 /* 4498 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4499 * costly ones because they are de facto nofail and invoke OOM 4500 * killer to move on while costly can fail and users are ready 4501 * to cope with that. 1/4 retries is rather arbitrary but we 4502 * would need much more detailed feedback from compaction to 4503 * make a better decision. 4504 */ 4505 if (order > PAGE_ALLOC_COSTLY_ORDER) 4506 max_retries /= 4; 4507 if (*compaction_retries <= max_retries) { 4508 ret = true; 4509 goto out; 4510 } 4511 4512 /* 4513 * Make sure there are attempts at the highest priority if we exhausted 4514 * all retries or failed at the lower priorities. 4515 */ 4516check_priority: 4517 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4518 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4519 4520 if (*compact_priority > min_priority) { 4521 (*compact_priority)--; 4522 *compaction_retries = 0; 4523 ret = true; 4524 } 4525out: 4526 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4527 return ret; 4528} 4529#else 4530static inline struct page * 4531__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4532 unsigned int alloc_flags, const struct alloc_context *ac, 4533 enum compact_priority prio, enum compact_result *compact_result) 4534{ 4535 *compact_result = COMPACT_SKIPPED; 4536 return NULL; 4537} 4538 4539static inline bool 4540should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4541 enum compact_result compact_result, 4542 enum compact_priority *compact_priority, 4543 int *compaction_retries) 4544{ 4545 struct zone *zone; 4546 struct zoneref *z; 4547 4548 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4549 return false; 4550 4551 /* 4552 * There are setups with compaction disabled which would prefer to loop 4553 * inside the allocator rather than hit the oom killer prematurely. 4554 * Let's give them a good hope and keep retrying while the order-0 4555 * watermarks are OK. 4556 */ 4557 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4558 ac->highest_zoneidx, ac->nodemask) { 4559 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4560 ac->highest_zoneidx, alloc_flags)) 4561 return true; 4562 } 4563 return false; 4564} 4565#endif /* CONFIG_COMPACTION */ 4566 4567#ifdef CONFIG_LOCKDEP 4568static struct lockdep_map __fs_reclaim_map = 4569 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4570 4571static bool __need_reclaim(gfp_t gfp_mask) 4572{ 4573 /* no reclaim without waiting on it */ 4574 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4575 return false; 4576 4577 /* this guy won't enter reclaim */ 4578 if (current->flags & PF_MEMALLOC) 4579 return false; 4580 4581 if (gfp_mask & __GFP_NOLOCKDEP) 4582 return false; 4583 4584 return true; 4585} 4586 4587void __fs_reclaim_acquire(unsigned long ip) 4588{ 4589 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4590} 4591 4592void __fs_reclaim_release(unsigned long ip) 4593{ 4594 lock_release(&__fs_reclaim_map, ip); 4595} 4596 4597void fs_reclaim_acquire(gfp_t gfp_mask) 4598{ 4599 gfp_mask = current_gfp_context(gfp_mask); 4600 4601 if (__need_reclaim(gfp_mask)) { 4602 if (gfp_mask & __GFP_FS) 4603 __fs_reclaim_acquire(_RET_IP_); 4604 4605#ifdef CONFIG_MMU_NOTIFIER 4606 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4607 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4608#endif 4609 4610 } 4611} 4612EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4613 4614void fs_reclaim_release(gfp_t gfp_mask) 4615{ 4616 gfp_mask = current_gfp_context(gfp_mask); 4617 4618 if (__need_reclaim(gfp_mask)) { 4619 if (gfp_mask & __GFP_FS) 4620 __fs_reclaim_release(_RET_IP_); 4621 } 4622} 4623EXPORT_SYMBOL_GPL(fs_reclaim_release); 4624#endif 4625 4626/* Perform direct synchronous page reclaim */ 4627static unsigned long 4628__perform_reclaim(gfp_t gfp_mask, unsigned int order, 4629 const struct alloc_context *ac) 4630{ 4631 unsigned int noreclaim_flag; 4632 unsigned long progress; 4633 4634 cond_resched(); 4635 4636 /* We now go into synchronous reclaim */ 4637 cpuset_memory_pressure_bump(); 4638 fs_reclaim_acquire(gfp_mask); 4639 noreclaim_flag = memalloc_noreclaim_save(); 4640 4641 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4642 ac->nodemask); 4643 4644 memalloc_noreclaim_restore(noreclaim_flag); 4645 fs_reclaim_release(gfp_mask); 4646 4647 cond_resched(); 4648 4649 return progress; 4650} 4651 4652/* The really slow allocator path where we enter direct reclaim */ 4653static inline struct page * 4654__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4655 unsigned int alloc_flags, const struct alloc_context *ac, 4656 unsigned long *did_some_progress) 4657{ 4658 struct page *page = NULL; 4659 unsigned long pflags; 4660 bool drained = false; 4661 4662 psi_memstall_enter(&pflags); 4663 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4664 if (unlikely(!(*did_some_progress))) 4665 goto out; 4666 4667retry: 4668 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4669 4670 /* 4671 * If an allocation failed after direct reclaim, it could be because 4672 * pages are pinned on the per-cpu lists or in high alloc reserves. 4673 * Shrink them and try again 4674 */ 4675 if (!page && !drained) { 4676 unreserve_highatomic_pageblock(ac, false); 4677 drain_all_pages(NULL); 4678 drained = true; 4679 goto retry; 4680 } 4681out: 4682 psi_memstall_leave(&pflags); 4683 4684 return page; 4685} 4686 4687static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4688 const struct alloc_context *ac) 4689{ 4690 struct zoneref *z; 4691 struct zone *zone; 4692 pg_data_t *last_pgdat = NULL; 4693 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4694 4695 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4696 ac->nodemask) { 4697 if (!managed_zone(zone)) 4698 continue; 4699 if (last_pgdat != zone->zone_pgdat) { 4700 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4701 last_pgdat = zone->zone_pgdat; 4702 } 4703 } 4704} 4705 4706static inline unsigned int 4707gfp_to_alloc_flags(gfp_t gfp_mask) 4708{ 4709 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4710 4711 /* 4712 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4713 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4714 * to save two branches. 4715 */ 4716 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4717 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4718 4719 /* 4720 * The caller may dip into page reserves a bit more if the caller 4721 * cannot run direct reclaim, or if the caller has realtime scheduling 4722 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4723 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4724 */ 4725 alloc_flags |= (__force int) 4726 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4727 4728 if (gfp_mask & __GFP_ATOMIC) { 4729 /* 4730 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4731 * if it can't schedule. 4732 */ 4733 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4734 alloc_flags |= ALLOC_HARDER; 4735 /* 4736 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4737 * comment for __cpuset_node_allowed(). 4738 */ 4739 alloc_flags &= ~ALLOC_CPUSET; 4740 } else if (unlikely(rt_task(current)) && in_task()) 4741 alloc_flags |= ALLOC_HARDER; 4742 4743 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4744 4745 return alloc_flags; 4746} 4747 4748static bool oom_reserves_allowed(struct task_struct *tsk) 4749{ 4750 if (!tsk_is_oom_victim(tsk)) 4751 return false; 4752 4753 /* 4754 * !MMU doesn't have oom reaper so give access to memory reserves 4755 * only to the thread with TIF_MEMDIE set 4756 */ 4757 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4758 return false; 4759 4760 return true; 4761} 4762 4763/* 4764 * Distinguish requests which really need access to full memory 4765 * reserves from oom victims which can live with a portion of it 4766 */ 4767static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4768{ 4769 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4770 return 0; 4771 if (gfp_mask & __GFP_MEMALLOC) 4772 return ALLOC_NO_WATERMARKS; 4773 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4774 return ALLOC_NO_WATERMARKS; 4775 if (!in_interrupt()) { 4776 if (current->flags & PF_MEMALLOC) 4777 return ALLOC_NO_WATERMARKS; 4778 else if (oom_reserves_allowed(current)) 4779 return ALLOC_OOM; 4780 } 4781 4782 return 0; 4783} 4784 4785bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4786{ 4787 return !!__gfp_pfmemalloc_flags(gfp_mask); 4788} 4789 4790/* 4791 * Checks whether it makes sense to retry the reclaim to make a forward progress 4792 * for the given allocation request. 4793 * 4794 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4795 * without success, or when we couldn't even meet the watermark if we 4796 * reclaimed all remaining pages on the LRU lists. 4797 * 4798 * Returns true if a retry is viable or false to enter the oom path. 4799 */ 4800static inline bool 4801should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4802 struct alloc_context *ac, int alloc_flags, 4803 bool did_some_progress, int *no_progress_loops) 4804{ 4805 struct zone *zone; 4806 struct zoneref *z; 4807 bool ret = false; 4808 4809 /* 4810 * Costly allocations might have made a progress but this doesn't mean 4811 * their order will become available due to high fragmentation so 4812 * always increment the no progress counter for them 4813 */ 4814 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4815 *no_progress_loops = 0; 4816 else 4817 (*no_progress_loops)++; 4818 4819 /* 4820 * Make sure we converge to OOM if we cannot make any progress 4821 * several times in the row. 4822 */ 4823 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4824 /* Before OOM, exhaust highatomic_reserve */ 4825 return unreserve_highatomic_pageblock(ac, true); 4826 } 4827 4828 /* 4829 * Keep reclaiming pages while there is a chance this will lead 4830 * somewhere. If none of the target zones can satisfy our allocation 4831 * request even if all reclaimable pages are considered then we are 4832 * screwed and have to go OOM. 4833 */ 4834 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4835 ac->highest_zoneidx, ac->nodemask) { 4836 unsigned long available; 4837 unsigned long reclaimable; 4838 unsigned long min_wmark = min_wmark_pages(zone); 4839 bool wmark; 4840 4841 available = reclaimable = zone_reclaimable_pages(zone); 4842 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4843 4844 /* 4845 * Would the allocation succeed if we reclaimed all 4846 * reclaimable pages? 4847 */ 4848 wmark = __zone_watermark_ok(zone, order, min_wmark, 4849 ac->highest_zoneidx, alloc_flags, available); 4850 trace_reclaim_retry_zone(z, order, reclaimable, 4851 available, min_wmark, *no_progress_loops, wmark); 4852 if (wmark) { 4853 ret = true; 4854 break; 4855 } 4856 } 4857 4858 /* 4859 * Memory allocation/reclaim might be called from a WQ context and the 4860 * current implementation of the WQ concurrency control doesn't 4861 * recognize that a particular WQ is congested if the worker thread is 4862 * looping without ever sleeping. Therefore we have to do a short sleep 4863 * here rather than calling cond_resched(). 4864 */ 4865 if (current->flags & PF_WQ_WORKER) 4866 schedule_timeout_uninterruptible(1); 4867 else 4868 cond_resched(); 4869 return ret; 4870} 4871 4872static inline bool 4873check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4874{ 4875 /* 4876 * It's possible that cpuset's mems_allowed and the nodemask from 4877 * mempolicy don't intersect. This should be normally dealt with by 4878 * policy_nodemask(), but it's possible to race with cpuset update in 4879 * such a way the check therein was true, and then it became false 4880 * before we got our cpuset_mems_cookie here. 4881 * This assumes that for all allocations, ac->nodemask can come only 4882 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4883 * when it does not intersect with the cpuset restrictions) or the 4884 * caller can deal with a violated nodemask. 4885 */ 4886 if (cpusets_enabled() && ac->nodemask && 4887 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4888 ac->nodemask = NULL; 4889 return true; 4890 } 4891 4892 /* 4893 * When updating a task's mems_allowed or mempolicy nodemask, it is 4894 * possible to race with parallel threads in such a way that our 4895 * allocation can fail while the mask is being updated. If we are about 4896 * to fail, check if the cpuset changed during allocation and if so, 4897 * retry. 4898 */ 4899 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4900 return true; 4901 4902 return false; 4903} 4904 4905static inline struct page * 4906__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4907 struct alloc_context *ac) 4908{ 4909 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4910 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4911 struct page *page = NULL; 4912 unsigned int alloc_flags; 4913 unsigned long did_some_progress; 4914 enum compact_priority compact_priority; 4915 enum compact_result compact_result; 4916 int compaction_retries; 4917 int no_progress_loops; 4918 unsigned int cpuset_mems_cookie; 4919 int reserve_flags; 4920 4921 /* 4922 * We also sanity check to catch abuse of atomic reserves being used by 4923 * callers that are not in atomic context. 4924 */ 4925 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4926 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4927 gfp_mask &= ~__GFP_ATOMIC; 4928 4929retry_cpuset: 4930 compaction_retries = 0; 4931 no_progress_loops = 0; 4932 compact_priority = DEF_COMPACT_PRIORITY; 4933 cpuset_mems_cookie = read_mems_allowed_begin(); 4934 4935 /* 4936 * The fast path uses conservative alloc_flags to succeed only until 4937 * kswapd needs to be woken up, and to avoid the cost of setting up 4938 * alloc_flags precisely. So we do that now. 4939 */ 4940 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4941 4942 /* 4943 * We need to recalculate the starting point for the zonelist iterator 4944 * because we might have used different nodemask in the fast path, or 4945 * there was a cpuset modification and we are retrying - otherwise we 4946 * could end up iterating over non-eligible zones endlessly. 4947 */ 4948 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4949 ac->highest_zoneidx, ac->nodemask); 4950 if (!ac->preferred_zoneref->zone) 4951 goto nopage; 4952 4953 /* 4954 * Check for insane configurations where the cpuset doesn't contain 4955 * any suitable zone to satisfy the request - e.g. non-movable 4956 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4957 */ 4958 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4959 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4960 ac->highest_zoneidx, 4961 &cpuset_current_mems_allowed); 4962 if (!z->zone) 4963 goto nopage; 4964 } 4965 4966 if (alloc_flags & ALLOC_KSWAPD) 4967 wake_all_kswapds(order, gfp_mask, ac); 4968 4969 /* 4970 * The adjusted alloc_flags might result in immediate success, so try 4971 * that first 4972 */ 4973 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4974 if (page) 4975 goto got_pg; 4976 4977 /* 4978 * For costly allocations, try direct compaction first, as it's likely 4979 * that we have enough base pages and don't need to reclaim. For non- 4980 * movable high-order allocations, do that as well, as compaction will 4981 * try prevent permanent fragmentation by migrating from blocks of the 4982 * same migratetype. 4983 * Don't try this for allocations that are allowed to ignore 4984 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4985 */ 4986 if (can_direct_reclaim && 4987 (costly_order || 4988 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4989 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4990 page = __alloc_pages_direct_compact(gfp_mask, order, 4991 alloc_flags, ac, 4992 INIT_COMPACT_PRIORITY, 4993 &compact_result); 4994 if (page) 4995 goto got_pg; 4996 4997 /* 4998 * Checks for costly allocations with __GFP_NORETRY, which 4999 * includes some THP page fault allocations 5000 */ 5001 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 5002 /* 5003 * If allocating entire pageblock(s) and compaction 5004 * failed because all zones are below low watermarks 5005 * or is prohibited because it recently failed at this 5006 * order, fail immediately unless the allocator has 5007 * requested compaction and reclaim retry. 5008 * 5009 * Reclaim is 5010 * - potentially very expensive because zones are far 5011 * below their low watermarks or this is part of very 5012 * bursty high order allocations, 5013 * - not guaranteed to help because isolate_freepages() 5014 * may not iterate over freed pages as part of its 5015 * linear scan, and 5016 * - unlikely to make entire pageblocks free on its 5017 * own. 5018 */ 5019 if (compact_result == COMPACT_SKIPPED || 5020 compact_result == COMPACT_DEFERRED) 5021 goto nopage; 5022 5023 /* 5024 * Looks like reclaim/compaction is worth trying, but 5025 * sync compaction could be very expensive, so keep 5026 * using async compaction. 5027 */ 5028 compact_priority = INIT_COMPACT_PRIORITY; 5029 } 5030 } 5031 5032retry: 5033 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5034 if (alloc_flags & ALLOC_KSWAPD) 5035 wake_all_kswapds(order, gfp_mask, ac); 5036 5037 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5038 if (reserve_flags) 5039 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5040 5041 /* 5042 * Reset the nodemask and zonelist iterators if memory policies can be 5043 * ignored. These allocations are high priority and system rather than 5044 * user oriented. 5045 */ 5046 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5047 ac->nodemask = NULL; 5048 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5049 ac->highest_zoneidx, ac->nodemask); 5050 } 5051 5052 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5053 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5054 if (page) 5055 goto got_pg; 5056 5057 /* Caller is not willing to reclaim, we can't balance anything */ 5058 if (!can_direct_reclaim) 5059 goto nopage; 5060 5061 /* Avoid recursion of direct reclaim */ 5062 if (current->flags & PF_MEMALLOC) 5063 goto nopage; 5064 5065 /* Try direct reclaim and then allocating */ 5066 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5067 &did_some_progress); 5068 if (page) 5069 goto got_pg; 5070 5071 /* Try direct compaction and then allocating */ 5072 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5073 compact_priority, &compact_result); 5074 if (page) 5075 goto got_pg; 5076 5077 /* Do not loop if specifically requested */ 5078 if (gfp_mask & __GFP_NORETRY) 5079 goto nopage; 5080 5081 /* 5082 * Do not retry costly high order allocations unless they are 5083 * __GFP_RETRY_MAYFAIL 5084 */ 5085 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5086 goto nopage; 5087 5088 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5089 did_some_progress > 0, &no_progress_loops)) 5090 goto retry; 5091 5092 /* 5093 * It doesn't make any sense to retry for the compaction if the order-0 5094 * reclaim is not able to make any progress because the current 5095 * implementation of the compaction depends on the sufficient amount 5096 * of free memory (see __compaction_suitable) 5097 */ 5098 if (did_some_progress > 0 && 5099 should_compact_retry(ac, order, alloc_flags, 5100 compact_result, &compact_priority, 5101 &compaction_retries)) 5102 goto retry; 5103 5104 5105 /* Deal with possible cpuset update races before we start OOM killing */ 5106 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5107 goto retry_cpuset; 5108 5109 /* Reclaim has failed us, start killing things */ 5110 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5111 if (page) 5112 goto got_pg; 5113 5114 /* Avoid allocations with no watermarks from looping endlessly */ 5115 if (tsk_is_oom_victim(current) && 5116 (alloc_flags & ALLOC_OOM || 5117 (gfp_mask & __GFP_NOMEMALLOC))) 5118 goto nopage; 5119 5120 /* Retry as long as the OOM killer is making progress */ 5121 if (did_some_progress) { 5122 no_progress_loops = 0; 5123 goto retry; 5124 } 5125 5126nopage: 5127 /* Deal with possible cpuset update races before we fail */ 5128 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5129 goto retry_cpuset; 5130 5131 /* 5132 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5133 * we always retry 5134 */ 5135 if (gfp_mask & __GFP_NOFAIL) { 5136 /* 5137 * All existing users of the __GFP_NOFAIL are blockable, so warn 5138 * of any new users that actually require GFP_NOWAIT 5139 */ 5140 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 5141 goto fail; 5142 5143 /* 5144 * PF_MEMALLOC request from this context is rather bizarre 5145 * because we cannot reclaim anything and only can loop waiting 5146 * for somebody to do a work for us 5147 */ 5148 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 5149 5150 /* 5151 * non failing costly orders are a hard requirement which we 5152 * are not prepared for much so let's warn about these users 5153 * so that we can identify them and convert them to something 5154 * else. 5155 */ 5156 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask); 5157 5158 /* 5159 * Help non-failing allocations by giving them access to memory 5160 * reserves but do not use ALLOC_NO_WATERMARKS because this 5161 * could deplete whole memory reserves which would just make 5162 * the situation worse 5163 */ 5164 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5165 if (page) 5166 goto got_pg; 5167 5168 cond_resched(); 5169 goto retry; 5170 } 5171fail: 5172 warn_alloc(gfp_mask, ac->nodemask, 5173 "page allocation failure: order:%u", order); 5174got_pg: 5175 return page; 5176} 5177 5178static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5179 int preferred_nid, nodemask_t *nodemask, 5180 struct alloc_context *ac, gfp_t *alloc_gfp, 5181 unsigned int *alloc_flags) 5182{ 5183 ac->highest_zoneidx = gfp_zone(gfp_mask); 5184 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5185 ac->nodemask = nodemask; 5186 ac->migratetype = gfp_migratetype(gfp_mask); 5187 5188 if (cpusets_enabled()) { 5189 *alloc_gfp |= __GFP_HARDWALL; 5190 /* 5191 * When we are in the interrupt context, it is irrelevant 5192 * to the current task context. It means that any node ok. 5193 */ 5194 if (in_task() && !ac->nodemask) 5195 ac->nodemask = &cpuset_current_mems_allowed; 5196 else 5197 *alloc_flags |= ALLOC_CPUSET; 5198 } 5199 5200 fs_reclaim_acquire(gfp_mask); 5201 fs_reclaim_release(gfp_mask); 5202 5203 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5204 5205 if (should_fail_alloc_page(gfp_mask, order)) 5206 return false; 5207 5208 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5209 5210 /* Dirty zone balancing only done in the fast path */ 5211 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5212 5213 /* 5214 * The preferred zone is used for statistics but crucially it is 5215 * also used as the starting point for the zonelist iterator. It 5216 * may get reset for allocations that ignore memory policies. 5217 */ 5218 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5219 ac->highest_zoneidx, ac->nodemask); 5220 5221 return true; 5222} 5223 5224/* 5225 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5226 * @gfp: GFP flags for the allocation 5227 * @preferred_nid: The preferred NUMA node ID to allocate from 5228 * @nodemask: Set of nodes to allocate from, may be NULL 5229 * @nr_pages: The number of pages desired on the list or array 5230 * @page_list: Optional list to store the allocated pages 5231 * @page_array: Optional array to store the pages 5232 * 5233 * This is a batched version of the page allocator that attempts to 5234 * allocate nr_pages quickly. Pages are added to page_list if page_list 5235 * is not NULL, otherwise it is assumed that the page_array is valid. 5236 * 5237 * For lists, nr_pages is the number of pages that should be allocated. 5238 * 5239 * For arrays, only NULL elements are populated with pages and nr_pages 5240 * is the maximum number of pages that will be stored in the array. 5241 * 5242 * Returns the number of pages on the list or array. 5243 */ 5244unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5245 nodemask_t *nodemask, int nr_pages, 5246 struct list_head *page_list, 5247 struct page **page_array) 5248{ 5249 struct page *page; 5250 unsigned long flags; 5251 struct zone *zone; 5252 struct zoneref *z; 5253 struct per_cpu_pages *pcp; 5254 struct list_head *pcp_list; 5255 struct alloc_context ac; 5256 gfp_t alloc_gfp; 5257 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5258 int nr_populated = 0, nr_account = 0; 5259 5260 /* 5261 * Skip populated array elements to determine if any pages need 5262 * to be allocated before disabling IRQs. 5263 */ 5264 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5265 nr_populated++; 5266 5267 /* No pages requested? */ 5268 if (unlikely(nr_pages <= 0)) 5269 goto out; 5270 5271 /* Already populated array? */ 5272 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5273 goto out; 5274 5275 /* Bulk allocator does not support memcg accounting. */ 5276 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT)) 5277 goto failed; 5278 5279 /* Use the single page allocator for one page. */ 5280 if (nr_pages - nr_populated == 1) 5281 goto failed; 5282 5283#ifdef CONFIG_PAGE_OWNER 5284 /* 5285 * PAGE_OWNER may recurse into the allocator to allocate space to 5286 * save the stack with pagesets.lock held. Releasing/reacquiring 5287 * removes much of the performance benefit of bulk allocation so 5288 * force the caller to allocate one page at a time as it'll have 5289 * similar performance to added complexity to the bulk allocator. 5290 */ 5291 if (static_branch_unlikely(&page_owner_inited)) 5292 goto failed; 5293#endif 5294 5295 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5296 gfp &= gfp_allowed_mask; 5297 alloc_gfp = gfp; 5298 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5299 goto out; 5300 gfp = alloc_gfp; 5301 5302 /* Find an allowed local zone that meets the low watermark. */ 5303 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5304 unsigned long mark; 5305 5306 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5307 !__cpuset_zone_allowed(zone, gfp)) { 5308 continue; 5309 } 5310 5311 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5312 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5313 goto failed; 5314 } 5315 5316 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5317 if (zone_watermark_fast(zone, 0, mark, 5318 zonelist_zone_idx(ac.preferred_zoneref), 5319 alloc_flags, gfp)) { 5320 break; 5321 } 5322 } 5323 5324 /* 5325 * If there are no allowed local zones that meets the watermarks then 5326 * try to allocate a single page and reclaim if necessary. 5327 */ 5328 if (unlikely(!zone)) 5329 goto failed; 5330 5331 /* Attempt the batch allocation */ 5332 local_lock_irqsave(&pagesets.lock, flags); 5333 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5334 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5335 5336 while (nr_populated < nr_pages) { 5337 5338 /* Skip existing pages */ 5339 if (page_array && page_array[nr_populated]) { 5340 nr_populated++; 5341 continue; 5342 } 5343 5344 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5345 pcp, pcp_list); 5346 if (unlikely(!page)) { 5347 /* Try and allocate at least one page */ 5348 if (!nr_account) 5349 goto failed_irq; 5350 break; 5351 } 5352 nr_account++; 5353 5354 prep_new_page(page, 0, gfp, 0); 5355 if (page_list) 5356 list_add(&page->lru, page_list); 5357 else 5358 page_array[nr_populated] = page; 5359 nr_populated++; 5360 } 5361 5362 local_unlock_irqrestore(&pagesets.lock, flags); 5363 5364 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5365 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5366 5367out: 5368 return nr_populated; 5369 5370failed_irq: 5371 local_unlock_irqrestore(&pagesets.lock, flags); 5372 5373failed: 5374 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5375 if (page) { 5376 if (page_list) 5377 list_add(&page->lru, page_list); 5378 else 5379 page_array[nr_populated] = page; 5380 nr_populated++; 5381 } 5382 5383 goto out; 5384} 5385EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5386 5387/* 5388 * This is the 'heart' of the zoned buddy allocator. 5389 */ 5390struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5391 nodemask_t *nodemask) 5392{ 5393 struct page *page; 5394 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5395 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5396 struct alloc_context ac = { }; 5397 5398 /* 5399 * There are several places where we assume that the order value is sane 5400 * so bail out early if the request is out of bound. 5401 */ 5402 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp)) 5403 return NULL; 5404 5405 gfp &= gfp_allowed_mask; 5406 /* 5407 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5408 * resp. GFP_NOIO which has to be inherited for all allocation requests 5409 * from a particular context which has been marked by 5410 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5411 * movable zones are not used during allocation. 5412 */ 5413 gfp = current_gfp_context(gfp); 5414 alloc_gfp = gfp; 5415 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5416 &alloc_gfp, &alloc_flags)) 5417 return NULL; 5418 5419 /* 5420 * Forbid the first pass from falling back to types that fragment 5421 * memory until all local zones are considered. 5422 */ 5423 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5424 5425 /* First allocation attempt */ 5426 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5427 if (likely(page)) 5428 goto out; 5429 5430 alloc_gfp = gfp; 5431 ac.spread_dirty_pages = false; 5432 5433 /* 5434 * Restore the original nodemask if it was potentially replaced with 5435 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5436 */ 5437 ac.nodemask = nodemask; 5438 5439 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5440 5441out: 5442 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5443 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5444 __free_pages(page, order); 5445 page = NULL; 5446 } 5447 5448 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5449 5450 return page; 5451} 5452EXPORT_SYMBOL(__alloc_pages); 5453 5454struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 5455 nodemask_t *nodemask) 5456{ 5457 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 5458 preferred_nid, nodemask); 5459 5460 if (page && order > 1) 5461 prep_transhuge_page(page); 5462 return (struct folio *)page; 5463} 5464EXPORT_SYMBOL(__folio_alloc); 5465 5466/* 5467 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5468 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5469 * you need to access high mem. 5470 */ 5471unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5472{ 5473 struct page *page; 5474 5475 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5476 if (!page) 5477 return 0; 5478 return (unsigned long) page_address(page); 5479} 5480EXPORT_SYMBOL(__get_free_pages); 5481 5482unsigned long get_zeroed_page(gfp_t gfp_mask) 5483{ 5484 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5485} 5486EXPORT_SYMBOL(get_zeroed_page); 5487 5488/** 5489 * __free_pages - Free pages allocated with alloc_pages(). 5490 * @page: The page pointer returned from alloc_pages(). 5491 * @order: The order of the allocation. 5492 * 5493 * This function can free multi-page allocations that are not compound 5494 * pages. It does not check that the @order passed in matches that of 5495 * the allocation, so it is easy to leak memory. Freeing more memory 5496 * than was allocated will probably emit a warning. 5497 * 5498 * If the last reference to this page is speculative, it will be released 5499 * by put_page() which only frees the first page of a non-compound 5500 * allocation. To prevent the remaining pages from being leaked, we free 5501 * the subsequent pages here. If you want to use the page's reference 5502 * count to decide when to free the allocation, you should allocate a 5503 * compound page, and use put_page() instead of __free_pages(). 5504 * 5505 * Context: May be called in interrupt context or while holding a normal 5506 * spinlock, but not in NMI context or while holding a raw spinlock. 5507 */ 5508void __free_pages(struct page *page, unsigned int order) 5509{ 5510 if (put_page_testzero(page)) 5511 free_the_page(page, order); 5512 else if (!PageHead(page)) 5513 while (order-- > 0) 5514 free_the_page(page + (1 << order), order); 5515} 5516EXPORT_SYMBOL(__free_pages); 5517 5518void free_pages(unsigned long addr, unsigned int order) 5519{ 5520 if (addr != 0) { 5521 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5522 __free_pages(virt_to_page((void *)addr), order); 5523 } 5524} 5525 5526EXPORT_SYMBOL(free_pages); 5527 5528/* 5529 * Page Fragment: 5530 * An arbitrary-length arbitrary-offset area of memory which resides 5531 * within a 0 or higher order page. Multiple fragments within that page 5532 * are individually refcounted, in the page's reference counter. 5533 * 5534 * The page_frag functions below provide a simple allocation framework for 5535 * page fragments. This is used by the network stack and network device 5536 * drivers to provide a backing region of memory for use as either an 5537 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5538 */ 5539static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5540 gfp_t gfp_mask) 5541{ 5542 struct page *page = NULL; 5543 gfp_t gfp = gfp_mask; 5544 5545#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5546 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5547 __GFP_NOMEMALLOC; 5548 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5549 PAGE_FRAG_CACHE_MAX_ORDER); 5550 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5551#endif 5552 if (unlikely(!page)) 5553 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5554 5555 nc->va = page ? page_address(page) : NULL; 5556 5557 return page; 5558} 5559 5560void __page_frag_cache_drain(struct page *page, unsigned int count) 5561{ 5562 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5563 5564 if (page_ref_sub_and_test(page, count)) 5565 free_the_page(page, compound_order(page)); 5566} 5567EXPORT_SYMBOL(__page_frag_cache_drain); 5568 5569void *page_frag_alloc_align(struct page_frag_cache *nc, 5570 unsigned int fragsz, gfp_t gfp_mask, 5571 unsigned int align_mask) 5572{ 5573 unsigned int size = PAGE_SIZE; 5574 struct page *page; 5575 int offset; 5576 5577 if (unlikely(!nc->va)) { 5578refill: 5579 page = __page_frag_cache_refill(nc, gfp_mask); 5580 if (!page) 5581 return NULL; 5582 5583#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5584 /* if size can vary use size else just use PAGE_SIZE */ 5585 size = nc->size; 5586#endif 5587 /* Even if we own the page, we do not use atomic_set(). 5588 * This would break get_page_unless_zero() users. 5589 */ 5590 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5591 5592 /* reset page count bias and offset to start of new frag */ 5593 nc->pfmemalloc = page_is_pfmemalloc(page); 5594 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5595 nc->offset = size; 5596 } 5597 5598 offset = nc->offset - fragsz; 5599 if (unlikely(offset < 0)) { 5600 page = virt_to_page(nc->va); 5601 5602 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5603 goto refill; 5604 5605 if (unlikely(nc->pfmemalloc)) { 5606 free_the_page(page, compound_order(page)); 5607 goto refill; 5608 } 5609 5610#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5611 /* if size can vary use size else just use PAGE_SIZE */ 5612 size = nc->size; 5613#endif 5614 /* OK, page count is 0, we can safely set it */ 5615 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5616 5617 /* reset page count bias and offset to start of new frag */ 5618 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5619 offset = size - fragsz; 5620 } 5621 5622 nc->pagecnt_bias--; 5623 offset &= align_mask; 5624 nc->offset = offset; 5625 5626 return nc->va + offset; 5627} 5628EXPORT_SYMBOL(page_frag_alloc_align); 5629 5630/* 5631 * Frees a page fragment allocated out of either a compound or order 0 page. 5632 */ 5633void page_frag_free(void *addr) 5634{ 5635 struct page *page = virt_to_head_page(addr); 5636 5637 if (unlikely(put_page_testzero(page))) 5638 free_the_page(page, compound_order(page)); 5639} 5640EXPORT_SYMBOL(page_frag_free); 5641 5642static void *make_alloc_exact(unsigned long addr, unsigned int order, 5643 size_t size) 5644{ 5645 if (addr) { 5646 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5647 unsigned long used = addr + PAGE_ALIGN(size); 5648 5649 split_page(virt_to_page((void *)addr), order); 5650 while (used < alloc_end) { 5651 free_page(used); 5652 used += PAGE_SIZE; 5653 } 5654 } 5655 return (void *)addr; 5656} 5657 5658/** 5659 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5660 * @size: the number of bytes to allocate 5661 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5662 * 5663 * This function is similar to alloc_pages(), except that it allocates the 5664 * minimum number of pages to satisfy the request. alloc_pages() can only 5665 * allocate memory in power-of-two pages. 5666 * 5667 * This function is also limited by MAX_ORDER. 5668 * 5669 * Memory allocated by this function must be released by free_pages_exact(). 5670 * 5671 * Return: pointer to the allocated area or %NULL in case of error. 5672 */ 5673void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5674{ 5675 unsigned int order = get_order(size); 5676 unsigned long addr; 5677 5678 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5679 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5680 5681 addr = __get_free_pages(gfp_mask, order); 5682 return make_alloc_exact(addr, order, size); 5683} 5684EXPORT_SYMBOL(alloc_pages_exact); 5685 5686/** 5687 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5688 * pages on a node. 5689 * @nid: the preferred node ID where memory should be allocated 5690 * @size: the number of bytes to allocate 5691 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5692 * 5693 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5694 * back. 5695 * 5696 * Return: pointer to the allocated area or %NULL in case of error. 5697 */ 5698void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5699{ 5700 unsigned int order = get_order(size); 5701 struct page *p; 5702 5703 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5704 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5705 5706 p = alloc_pages_node(nid, gfp_mask, order); 5707 if (!p) 5708 return NULL; 5709 return make_alloc_exact((unsigned long)page_address(p), order, size); 5710} 5711 5712/** 5713 * free_pages_exact - release memory allocated via alloc_pages_exact() 5714 * @virt: the value returned by alloc_pages_exact. 5715 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5716 * 5717 * Release the memory allocated by a previous call to alloc_pages_exact. 5718 */ 5719void free_pages_exact(void *virt, size_t size) 5720{ 5721 unsigned long addr = (unsigned long)virt; 5722 unsigned long end = addr + PAGE_ALIGN(size); 5723 5724 while (addr < end) { 5725 free_page(addr); 5726 addr += PAGE_SIZE; 5727 } 5728} 5729EXPORT_SYMBOL(free_pages_exact); 5730 5731/** 5732 * nr_free_zone_pages - count number of pages beyond high watermark 5733 * @offset: The zone index of the highest zone 5734 * 5735 * nr_free_zone_pages() counts the number of pages which are beyond the 5736 * high watermark within all zones at or below a given zone index. For each 5737 * zone, the number of pages is calculated as: 5738 * 5739 * nr_free_zone_pages = managed_pages - high_pages 5740 * 5741 * Return: number of pages beyond high watermark. 5742 */ 5743static unsigned long nr_free_zone_pages(int offset) 5744{ 5745 struct zoneref *z; 5746 struct zone *zone; 5747 5748 /* Just pick one node, since fallback list is circular */ 5749 unsigned long sum = 0; 5750 5751 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5752 5753 for_each_zone_zonelist(zone, z, zonelist, offset) { 5754 unsigned long size = zone_managed_pages(zone); 5755 unsigned long high = high_wmark_pages(zone); 5756 if (size > high) 5757 sum += size - high; 5758 } 5759 5760 return sum; 5761} 5762 5763/** 5764 * nr_free_buffer_pages - count number of pages beyond high watermark 5765 * 5766 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5767 * watermark within ZONE_DMA and ZONE_NORMAL. 5768 * 5769 * Return: number of pages beyond high watermark within ZONE_DMA and 5770 * ZONE_NORMAL. 5771 */ 5772unsigned long nr_free_buffer_pages(void) 5773{ 5774 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5775} 5776EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5777 5778static inline void show_node(struct zone *zone) 5779{ 5780 if (IS_ENABLED(CONFIG_NUMA)) 5781 printk("Node %d ", zone_to_nid(zone)); 5782} 5783 5784long si_mem_available(void) 5785{ 5786 long available; 5787 unsigned long pagecache; 5788 unsigned long wmark_low = 0; 5789 unsigned long pages[NR_LRU_LISTS]; 5790 unsigned long reclaimable; 5791 struct zone *zone; 5792 int lru; 5793 5794 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5795 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5796 5797 for_each_zone(zone) 5798 wmark_low += low_wmark_pages(zone); 5799 5800 /* 5801 * Estimate the amount of memory available for userspace allocations, 5802 * without causing swapping. 5803 */ 5804 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5805 5806 /* 5807 * Not all the page cache can be freed, otherwise the system will 5808 * start swapping. Assume at least half of the page cache, or the 5809 * low watermark worth of cache, needs to stay. 5810 */ 5811 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5812 pagecache -= min(pagecache / 2, wmark_low); 5813 available += pagecache; 5814 5815 /* 5816 * Part of the reclaimable slab and other kernel memory consists of 5817 * items that are in use, and cannot be freed. Cap this estimate at the 5818 * low watermark. 5819 */ 5820 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5821 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5822 available += reclaimable - min(reclaimable / 2, wmark_low); 5823 5824 if (available < 0) 5825 available = 0; 5826 return available; 5827} 5828EXPORT_SYMBOL_GPL(si_mem_available); 5829 5830void si_meminfo(struct sysinfo *val) 5831{ 5832 val->totalram = totalram_pages(); 5833 val->sharedram = global_node_page_state(NR_SHMEM); 5834 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5835 val->bufferram = nr_blockdev_pages(); 5836 val->totalhigh = totalhigh_pages(); 5837 val->freehigh = nr_free_highpages(); 5838 val->mem_unit = PAGE_SIZE; 5839} 5840 5841EXPORT_SYMBOL(si_meminfo); 5842 5843#ifdef CONFIG_NUMA 5844void si_meminfo_node(struct sysinfo *val, int nid) 5845{ 5846 int zone_type; /* needs to be signed */ 5847 unsigned long managed_pages = 0; 5848 unsigned long managed_highpages = 0; 5849 unsigned long free_highpages = 0; 5850 pg_data_t *pgdat = NODE_DATA(nid); 5851 5852 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5853 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5854 val->totalram = managed_pages; 5855 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5856 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5857#ifdef CONFIG_HIGHMEM 5858 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5859 struct zone *zone = &pgdat->node_zones[zone_type]; 5860 5861 if (is_highmem(zone)) { 5862 managed_highpages += zone_managed_pages(zone); 5863 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5864 } 5865 } 5866 val->totalhigh = managed_highpages; 5867 val->freehigh = free_highpages; 5868#else 5869 val->totalhigh = managed_highpages; 5870 val->freehigh = free_highpages; 5871#endif 5872 val->mem_unit = PAGE_SIZE; 5873} 5874#endif 5875 5876/* 5877 * Determine whether the node should be displayed or not, depending on whether 5878 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5879 */ 5880static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5881{ 5882 if (!(flags & SHOW_MEM_FILTER_NODES)) 5883 return false; 5884 5885 /* 5886 * no node mask - aka implicit memory numa policy. Do not bother with 5887 * the synchronization - read_mems_allowed_begin - because we do not 5888 * have to be precise here. 5889 */ 5890 if (!nodemask) 5891 nodemask = &cpuset_current_mems_allowed; 5892 5893 return !node_isset(nid, *nodemask); 5894} 5895 5896#define K(x) ((x) << (PAGE_SHIFT-10)) 5897 5898static void show_migration_types(unsigned char type) 5899{ 5900 static const char types[MIGRATE_TYPES] = { 5901 [MIGRATE_UNMOVABLE] = 'U', 5902 [MIGRATE_MOVABLE] = 'M', 5903 [MIGRATE_RECLAIMABLE] = 'E', 5904 [MIGRATE_HIGHATOMIC] = 'H', 5905#ifdef CONFIG_CMA 5906 [MIGRATE_CMA] = 'C', 5907#endif 5908#ifdef CONFIG_MEMORY_ISOLATION 5909 [MIGRATE_ISOLATE] = 'I', 5910#endif 5911 }; 5912 char tmp[MIGRATE_TYPES + 1]; 5913 char *p = tmp; 5914 int i; 5915 5916 for (i = 0; i < MIGRATE_TYPES; i++) { 5917 if (type & (1 << i)) 5918 *p++ = types[i]; 5919 } 5920 5921 *p = '\0'; 5922 printk(KERN_CONT "(%s) ", tmp); 5923} 5924 5925/* 5926 * Show free area list (used inside shift_scroll-lock stuff) 5927 * We also calculate the percentage fragmentation. We do this by counting the 5928 * memory on each free list with the exception of the first item on the list. 5929 * 5930 * Bits in @filter: 5931 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5932 * cpuset. 5933 */ 5934void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5935{ 5936 unsigned long free_pcp = 0; 5937 int cpu; 5938 struct zone *zone; 5939 pg_data_t *pgdat; 5940 5941 for_each_populated_zone(zone) { 5942 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5943 continue; 5944 5945 for_each_online_cpu(cpu) 5946 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5947 } 5948 5949 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5950 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5951 " unevictable:%lu dirty:%lu writeback:%lu\n" 5952 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5953 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5954 " kernel_misc_reclaimable:%lu\n" 5955 " free:%lu free_pcp:%lu free_cma:%lu\n", 5956 global_node_page_state(NR_ACTIVE_ANON), 5957 global_node_page_state(NR_INACTIVE_ANON), 5958 global_node_page_state(NR_ISOLATED_ANON), 5959 global_node_page_state(NR_ACTIVE_FILE), 5960 global_node_page_state(NR_INACTIVE_FILE), 5961 global_node_page_state(NR_ISOLATED_FILE), 5962 global_node_page_state(NR_UNEVICTABLE), 5963 global_node_page_state(NR_FILE_DIRTY), 5964 global_node_page_state(NR_WRITEBACK), 5965 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5966 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5967 global_node_page_state(NR_FILE_MAPPED), 5968 global_node_page_state(NR_SHMEM), 5969 global_node_page_state(NR_PAGETABLE), 5970 global_zone_page_state(NR_BOUNCE), 5971 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5972 global_zone_page_state(NR_FREE_PAGES), 5973 free_pcp, 5974 global_zone_page_state(NR_FREE_CMA_PAGES)); 5975 5976 for_each_online_pgdat(pgdat) { 5977 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5978 continue; 5979 5980 printk("Node %d" 5981 " active_anon:%lukB" 5982 " inactive_anon:%lukB" 5983 " active_file:%lukB" 5984 " inactive_file:%lukB" 5985 " unevictable:%lukB" 5986 " isolated(anon):%lukB" 5987 " isolated(file):%lukB" 5988 " mapped:%lukB" 5989 " dirty:%lukB" 5990 " writeback:%lukB" 5991 " shmem:%lukB" 5992#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5993 " shmem_thp: %lukB" 5994 " shmem_pmdmapped: %lukB" 5995 " anon_thp: %lukB" 5996#endif 5997 " writeback_tmp:%lukB" 5998 " kernel_stack:%lukB" 5999#ifdef CONFIG_SHADOW_CALL_STACK 6000 " shadow_call_stack:%lukB" 6001#endif 6002 " pagetables:%lukB" 6003 " all_unreclaimable? %s" 6004 "\n", 6005 pgdat->node_id, 6006 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 6007 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 6008 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 6009 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 6010 K(node_page_state(pgdat, NR_UNEVICTABLE)), 6011 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 6012 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 6013 K(node_page_state(pgdat, NR_FILE_MAPPED)), 6014 K(node_page_state(pgdat, NR_FILE_DIRTY)), 6015 K(node_page_state(pgdat, NR_WRITEBACK)), 6016 K(node_page_state(pgdat, NR_SHMEM)), 6017#ifdef CONFIG_TRANSPARENT_HUGEPAGE 6018 K(node_page_state(pgdat, NR_SHMEM_THPS)), 6019 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 6020 K(node_page_state(pgdat, NR_ANON_THPS)), 6021#endif 6022 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 6023 node_page_state(pgdat, NR_KERNEL_STACK_KB), 6024#ifdef CONFIG_SHADOW_CALL_STACK 6025 node_page_state(pgdat, NR_KERNEL_SCS_KB), 6026#endif 6027 K(node_page_state(pgdat, NR_PAGETABLE)), 6028 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 6029 "yes" : "no"); 6030 } 6031 6032 for_each_populated_zone(zone) { 6033 int i; 6034 6035 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6036 continue; 6037 6038 free_pcp = 0; 6039 for_each_online_cpu(cpu) 6040 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 6041 6042 show_node(zone); 6043 printk(KERN_CONT 6044 "%s" 6045 " free:%lukB" 6046 " boost:%lukB" 6047 " min:%lukB" 6048 " low:%lukB" 6049 " high:%lukB" 6050 " reserved_highatomic:%luKB" 6051 " active_anon:%lukB" 6052 " inactive_anon:%lukB" 6053 " active_file:%lukB" 6054 " inactive_file:%lukB" 6055 " unevictable:%lukB" 6056 " writepending:%lukB" 6057 " present:%lukB" 6058 " managed:%lukB" 6059 " mlocked:%lukB" 6060 " bounce:%lukB" 6061 " free_pcp:%lukB" 6062 " local_pcp:%ukB" 6063 " free_cma:%lukB" 6064 "\n", 6065 zone->name, 6066 K(zone_page_state(zone, NR_FREE_PAGES)), 6067 K(zone->watermark_boost), 6068 K(min_wmark_pages(zone)), 6069 K(low_wmark_pages(zone)), 6070 K(high_wmark_pages(zone)), 6071 K(zone->nr_reserved_highatomic), 6072 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6073 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6074 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6075 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6076 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6077 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6078 K(zone->present_pages), 6079 K(zone_managed_pages(zone)), 6080 K(zone_page_state(zone, NR_MLOCK)), 6081 K(zone_page_state(zone, NR_BOUNCE)), 6082 K(free_pcp), 6083 K(this_cpu_read(zone->per_cpu_pageset->count)), 6084 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6085 printk("lowmem_reserve[]:"); 6086 for (i = 0; i < MAX_NR_ZONES; i++) 6087 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6088 printk(KERN_CONT "\n"); 6089 } 6090 6091 for_each_populated_zone(zone) { 6092 unsigned int order; 6093 unsigned long nr[MAX_ORDER], flags, total = 0; 6094 unsigned char types[MAX_ORDER]; 6095 6096 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6097 continue; 6098 show_node(zone); 6099 printk(KERN_CONT "%s: ", zone->name); 6100 6101 spin_lock_irqsave(&zone->lock, flags); 6102 for (order = 0; order < MAX_ORDER; order++) { 6103 struct free_area *area = &zone->free_area[order]; 6104 int type; 6105 6106 nr[order] = area->nr_free; 6107 total += nr[order] << order; 6108 6109 types[order] = 0; 6110 for (type = 0; type < MIGRATE_TYPES; type++) { 6111 if (!free_area_empty(area, type)) 6112 types[order] |= 1 << type; 6113 } 6114 } 6115 spin_unlock_irqrestore(&zone->lock, flags); 6116 for (order = 0; order < MAX_ORDER; order++) { 6117 printk(KERN_CONT "%lu*%lukB ", 6118 nr[order], K(1UL) << order); 6119 if (nr[order]) 6120 show_migration_types(types[order]); 6121 } 6122 printk(KERN_CONT "= %lukB\n", K(total)); 6123 } 6124 6125 hugetlb_show_meminfo(); 6126 6127 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6128 6129 show_swap_cache_info(); 6130} 6131 6132static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6133{ 6134 zoneref->zone = zone; 6135 zoneref->zone_idx = zone_idx(zone); 6136} 6137 6138/* 6139 * Builds allocation fallback zone lists. 6140 * 6141 * Add all populated zones of a node to the zonelist. 6142 */ 6143static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6144{ 6145 struct zone *zone; 6146 enum zone_type zone_type = MAX_NR_ZONES; 6147 int nr_zones = 0; 6148 6149 do { 6150 zone_type--; 6151 zone = pgdat->node_zones + zone_type; 6152 if (populated_zone(zone)) { 6153 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6154 check_highest_zone(zone_type); 6155 } 6156 } while (zone_type); 6157 6158 return nr_zones; 6159} 6160 6161#ifdef CONFIG_NUMA 6162 6163static int __parse_numa_zonelist_order(char *s) 6164{ 6165 /* 6166 * We used to support different zonelists modes but they turned 6167 * out to be just not useful. Let's keep the warning in place 6168 * if somebody still use the cmd line parameter so that we do 6169 * not fail it silently 6170 */ 6171 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6172 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6173 return -EINVAL; 6174 } 6175 return 0; 6176} 6177 6178char numa_zonelist_order[] = "Node"; 6179 6180/* 6181 * sysctl handler for numa_zonelist_order 6182 */ 6183int numa_zonelist_order_handler(struct ctl_table *table, int write, 6184 void *buffer, size_t *length, loff_t *ppos) 6185{ 6186 if (write) 6187 return __parse_numa_zonelist_order(buffer); 6188 return proc_dostring(table, write, buffer, length, ppos); 6189} 6190 6191 6192static int node_load[MAX_NUMNODES]; 6193 6194/** 6195 * find_next_best_node - find the next node that should appear in a given node's fallback list 6196 * @node: node whose fallback list we're appending 6197 * @used_node_mask: nodemask_t of already used nodes 6198 * 6199 * We use a number of factors to determine which is the next node that should 6200 * appear on a given node's fallback list. The node should not have appeared 6201 * already in @node's fallback list, and it should be the next closest node 6202 * according to the distance array (which contains arbitrary distance values 6203 * from each node to each node in the system), and should also prefer nodes 6204 * with no CPUs, since presumably they'll have very little allocation pressure 6205 * on them otherwise. 6206 * 6207 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6208 */ 6209int find_next_best_node(int node, nodemask_t *used_node_mask) 6210{ 6211 int n, val; 6212 int min_val = INT_MAX; 6213 int best_node = NUMA_NO_NODE; 6214 6215 /* Use the local node if we haven't already */ 6216 if (!node_isset(node, *used_node_mask)) { 6217 node_set(node, *used_node_mask); 6218 return node; 6219 } 6220 6221 for_each_node_state(n, N_MEMORY) { 6222 6223 /* Don't want a node to appear more than once */ 6224 if (node_isset(n, *used_node_mask)) 6225 continue; 6226 6227 /* Use the distance array to find the distance */ 6228 val = node_distance(node, n); 6229 6230 /* Penalize nodes under us ("prefer the next node") */ 6231 val += (n < node); 6232 6233 /* Give preference to headless and unused nodes */ 6234 if (!cpumask_empty(cpumask_of_node(n))) 6235 val += PENALTY_FOR_NODE_WITH_CPUS; 6236 6237 /* Slight preference for less loaded node */ 6238 val *= MAX_NUMNODES; 6239 val += node_load[n]; 6240 6241 if (val < min_val) { 6242 min_val = val; 6243 best_node = n; 6244 } 6245 } 6246 6247 if (best_node >= 0) 6248 node_set(best_node, *used_node_mask); 6249 6250 return best_node; 6251} 6252 6253 6254/* 6255 * Build zonelists ordered by node and zones within node. 6256 * This results in maximum locality--normal zone overflows into local 6257 * DMA zone, if any--but risks exhausting DMA zone. 6258 */ 6259static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6260 unsigned nr_nodes) 6261{ 6262 struct zoneref *zonerefs; 6263 int i; 6264 6265 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6266 6267 for (i = 0; i < nr_nodes; i++) { 6268 int nr_zones; 6269 6270 pg_data_t *node = NODE_DATA(node_order[i]); 6271 6272 nr_zones = build_zonerefs_node(node, zonerefs); 6273 zonerefs += nr_zones; 6274 } 6275 zonerefs->zone = NULL; 6276 zonerefs->zone_idx = 0; 6277} 6278 6279/* 6280 * Build gfp_thisnode zonelists 6281 */ 6282static void build_thisnode_zonelists(pg_data_t *pgdat) 6283{ 6284 struct zoneref *zonerefs; 6285 int nr_zones; 6286 6287 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6288 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6289 zonerefs += nr_zones; 6290 zonerefs->zone = NULL; 6291 zonerefs->zone_idx = 0; 6292} 6293 6294/* 6295 * Build zonelists ordered by zone and nodes within zones. 6296 * This results in conserving DMA zone[s] until all Normal memory is 6297 * exhausted, but results in overflowing to remote node while memory 6298 * may still exist in local DMA zone. 6299 */ 6300 6301static void build_zonelists(pg_data_t *pgdat) 6302{ 6303 static int node_order[MAX_NUMNODES]; 6304 int node, nr_nodes = 0; 6305 nodemask_t used_mask = NODE_MASK_NONE; 6306 int local_node, prev_node; 6307 6308 /* NUMA-aware ordering of nodes */ 6309 local_node = pgdat->node_id; 6310 prev_node = local_node; 6311 6312 memset(node_order, 0, sizeof(node_order)); 6313 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6314 /* 6315 * We don't want to pressure a particular node. 6316 * So adding penalty to the first node in same 6317 * distance group to make it round-robin. 6318 */ 6319 if (node_distance(local_node, node) != 6320 node_distance(local_node, prev_node)) 6321 node_load[node] += 1; 6322 6323 node_order[nr_nodes++] = node; 6324 prev_node = node; 6325 } 6326 6327 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6328 build_thisnode_zonelists(pgdat); 6329 pr_info("Fallback order for Node %d: ", local_node); 6330 for (node = 0; node < nr_nodes; node++) 6331 pr_cont("%d ", node_order[node]); 6332 pr_cont("\n"); 6333} 6334 6335#ifdef CONFIG_HAVE_MEMORYLESS_NODES 6336/* 6337 * Return node id of node used for "local" allocations. 6338 * I.e., first node id of first zone in arg node's generic zonelist. 6339 * Used for initializing percpu 'numa_mem', which is used primarily 6340 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6341 */ 6342int local_memory_node(int node) 6343{ 6344 struct zoneref *z; 6345 6346 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6347 gfp_zone(GFP_KERNEL), 6348 NULL); 6349 return zone_to_nid(z->zone); 6350} 6351#endif 6352 6353static void setup_min_unmapped_ratio(void); 6354static void setup_min_slab_ratio(void); 6355#else /* CONFIG_NUMA */ 6356 6357static void build_zonelists(pg_data_t *pgdat) 6358{ 6359 int node, local_node; 6360 struct zoneref *zonerefs; 6361 int nr_zones; 6362 6363 local_node = pgdat->node_id; 6364 6365 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6366 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6367 zonerefs += nr_zones; 6368 6369 /* 6370 * Now we build the zonelist so that it contains the zones 6371 * of all the other nodes. 6372 * We don't want to pressure a particular node, so when 6373 * building the zones for node N, we make sure that the 6374 * zones coming right after the local ones are those from 6375 * node N+1 (modulo N) 6376 */ 6377 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6378 if (!node_online(node)) 6379 continue; 6380 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6381 zonerefs += nr_zones; 6382 } 6383 for (node = 0; node < local_node; node++) { 6384 if (!node_online(node)) 6385 continue; 6386 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6387 zonerefs += nr_zones; 6388 } 6389 6390 zonerefs->zone = NULL; 6391 zonerefs->zone_idx = 0; 6392} 6393 6394#endif /* CONFIG_NUMA */ 6395 6396/* 6397 * Boot pageset table. One per cpu which is going to be used for all 6398 * zones and all nodes. The parameters will be set in such a way 6399 * that an item put on a list will immediately be handed over to 6400 * the buddy list. This is safe since pageset manipulation is done 6401 * with interrupts disabled. 6402 * 6403 * The boot_pagesets must be kept even after bootup is complete for 6404 * unused processors and/or zones. They do play a role for bootstrapping 6405 * hotplugged processors. 6406 * 6407 * zoneinfo_show() and maybe other functions do 6408 * not check if the processor is online before following the pageset pointer. 6409 * Other parts of the kernel may not check if the zone is available. 6410 */ 6411static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6412/* These effectively disable the pcplists in the boot pageset completely */ 6413#define BOOT_PAGESET_HIGH 0 6414#define BOOT_PAGESET_BATCH 1 6415static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6416static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6417DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6418 6419static void __build_all_zonelists(void *data) 6420{ 6421 int nid; 6422 int __maybe_unused cpu; 6423 pg_data_t *self = data; 6424 static DEFINE_SPINLOCK(lock); 6425 6426 spin_lock(&lock); 6427 6428#ifdef CONFIG_NUMA 6429 memset(node_load, 0, sizeof(node_load)); 6430#endif 6431 6432 /* 6433 * This node is hotadded and no memory is yet present. So just 6434 * building zonelists is fine - no need to touch other nodes. 6435 */ 6436 if (self && !node_online(self->node_id)) { 6437 build_zonelists(self); 6438 } else { 6439 /* 6440 * All possible nodes have pgdat preallocated 6441 * in free_area_init 6442 */ 6443 for_each_node(nid) { 6444 pg_data_t *pgdat = NODE_DATA(nid); 6445 6446 build_zonelists(pgdat); 6447 } 6448 6449#ifdef CONFIG_HAVE_MEMORYLESS_NODES 6450 /* 6451 * We now know the "local memory node" for each node-- 6452 * i.e., the node of the first zone in the generic zonelist. 6453 * Set up numa_mem percpu variable for on-line cpus. During 6454 * boot, only the boot cpu should be on-line; we'll init the 6455 * secondary cpus' numa_mem as they come on-line. During 6456 * node/memory hotplug, we'll fixup all on-line cpus. 6457 */ 6458 for_each_online_cpu(cpu) 6459 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6460#endif 6461 } 6462 6463 spin_unlock(&lock); 6464} 6465 6466static noinline void __init 6467build_all_zonelists_init(void) 6468{ 6469 int cpu; 6470 6471 __build_all_zonelists(NULL); 6472 6473 /* 6474 * Initialize the boot_pagesets that are going to be used 6475 * for bootstrapping processors. The real pagesets for 6476 * each zone will be allocated later when the per cpu 6477 * allocator is available. 6478 * 6479 * boot_pagesets are used also for bootstrapping offline 6480 * cpus if the system is already booted because the pagesets 6481 * are needed to initialize allocators on a specific cpu too. 6482 * F.e. the percpu allocator needs the page allocator which 6483 * needs the percpu allocator in order to allocate its pagesets 6484 * (a chicken-egg dilemma). 6485 */ 6486 for_each_possible_cpu(cpu) 6487 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6488 6489 mminit_verify_zonelist(); 6490 cpuset_init_current_mems_allowed(); 6491} 6492 6493/* 6494 * unless system_state == SYSTEM_BOOTING. 6495 * 6496 * __ref due to call of __init annotated helper build_all_zonelists_init 6497 * [protected by SYSTEM_BOOTING]. 6498 */ 6499void __ref build_all_zonelists(pg_data_t *pgdat) 6500{ 6501 unsigned long vm_total_pages; 6502 6503 if (system_state == SYSTEM_BOOTING) { 6504 build_all_zonelists_init(); 6505 } else { 6506 __build_all_zonelists(pgdat); 6507 /* cpuset refresh routine should be here */ 6508 } 6509 /* Get the number of free pages beyond high watermark in all zones. */ 6510 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6511 /* 6512 * Disable grouping by mobility if the number of pages in the 6513 * system is too low to allow the mechanism to work. It would be 6514 * more accurate, but expensive to check per-zone. This check is 6515 * made on memory-hotadd so a system can start with mobility 6516 * disabled and enable it later 6517 */ 6518 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6519 page_group_by_mobility_disabled = 1; 6520 else 6521 page_group_by_mobility_disabled = 0; 6522 6523 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6524 nr_online_nodes, 6525 page_group_by_mobility_disabled ? "off" : "on", 6526 vm_total_pages); 6527#ifdef CONFIG_NUMA 6528 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6529#endif 6530} 6531 6532/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6533static bool __meminit 6534overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6535{ 6536 static struct memblock_region *r; 6537 6538 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6539 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6540 for_each_mem_region(r) { 6541 if (*pfn < memblock_region_memory_end_pfn(r)) 6542 break; 6543 } 6544 } 6545 if (*pfn >= memblock_region_memory_base_pfn(r) && 6546 memblock_is_mirror(r)) { 6547 *pfn = memblock_region_memory_end_pfn(r); 6548 return true; 6549 } 6550 } 6551 return false; 6552} 6553 6554/* 6555 * Initially all pages are reserved - free ones are freed 6556 * up by memblock_free_all() once the early boot process is 6557 * done. Non-atomic initialization, single-pass. 6558 * 6559 * All aligned pageblocks are initialized to the specified migratetype 6560 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6561 * zone stats (e.g., nr_isolate_pageblock) are touched. 6562 */ 6563void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6564 unsigned long start_pfn, unsigned long zone_end_pfn, 6565 enum meminit_context context, 6566 struct vmem_altmap *altmap, int migratetype) 6567{ 6568 unsigned long pfn, end_pfn = start_pfn + size; 6569 struct page *page; 6570 6571 if (highest_memmap_pfn < end_pfn - 1) 6572 highest_memmap_pfn = end_pfn - 1; 6573 6574#ifdef CONFIG_ZONE_DEVICE 6575 /* 6576 * Honor reservation requested by the driver for this ZONE_DEVICE 6577 * memory. We limit the total number of pages to initialize to just 6578 * those that might contain the memory mapping. We will defer the 6579 * ZONE_DEVICE page initialization until after we have released 6580 * the hotplug lock. 6581 */ 6582 if (zone == ZONE_DEVICE) { 6583 if (!altmap) 6584 return; 6585 6586 if (start_pfn == altmap->base_pfn) 6587 start_pfn += altmap->reserve; 6588 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6589 } 6590#endif 6591 6592 for (pfn = start_pfn; pfn < end_pfn; ) { 6593 /* 6594 * There can be holes in boot-time mem_map[]s handed to this 6595 * function. They do not exist on hotplugged memory. 6596 */ 6597 if (context == MEMINIT_EARLY) { 6598 if (overlap_memmap_init(zone, &pfn)) 6599 continue; 6600 if (defer_init(nid, pfn, zone_end_pfn)) 6601 break; 6602 } 6603 6604 page = pfn_to_page(pfn); 6605 __init_single_page(page, pfn, zone, nid); 6606 if (context == MEMINIT_HOTPLUG) 6607 __SetPageReserved(page); 6608 6609 /* 6610 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6611 * such that unmovable allocations won't be scattered all 6612 * over the place during system boot. 6613 */ 6614 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6615 set_pageblock_migratetype(page, migratetype); 6616 cond_resched(); 6617 } 6618 pfn++; 6619 } 6620} 6621 6622#ifdef CONFIG_ZONE_DEVICE 6623static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, 6624 unsigned long zone_idx, int nid, 6625 struct dev_pagemap *pgmap) 6626{ 6627 6628 __init_single_page(page, pfn, zone_idx, nid); 6629 6630 /* 6631 * Mark page reserved as it will need to wait for onlining 6632 * phase for it to be fully associated with a zone. 6633 * 6634 * We can use the non-atomic __set_bit operation for setting 6635 * the flag as we are still initializing the pages. 6636 */ 6637 __SetPageReserved(page); 6638 6639 /* 6640 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6641 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6642 * ever freed or placed on a driver-private list. 6643 */ 6644 page->pgmap = pgmap; 6645 page->zone_device_data = NULL; 6646 6647 /* 6648 * Mark the block movable so that blocks are reserved for 6649 * movable at startup. This will force kernel allocations 6650 * to reserve their blocks rather than leaking throughout 6651 * the address space during boot when many long-lived 6652 * kernel allocations are made. 6653 * 6654 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6655 * because this is done early in section_activate() 6656 */ 6657 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6658 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6659 cond_resched(); 6660 } 6661} 6662 6663/* 6664 * With compound page geometry and when struct pages are stored in ram most 6665 * tail pages are reused. Consequently, the amount of unique struct pages to 6666 * initialize is a lot smaller that the total amount of struct pages being 6667 * mapped. This is a paired / mild layering violation with explicit knowledge 6668 * of how the sparse_vmemmap internals handle compound pages in the lack 6669 * of an altmap. See vmemmap_populate_compound_pages(). 6670 */ 6671static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, 6672 unsigned long nr_pages) 6673{ 6674 return is_power_of_2(sizeof(struct page)) && 6675 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages; 6676} 6677 6678static void __ref memmap_init_compound(struct page *head, 6679 unsigned long head_pfn, 6680 unsigned long zone_idx, int nid, 6681 struct dev_pagemap *pgmap, 6682 unsigned long nr_pages) 6683{ 6684 unsigned long pfn, end_pfn = head_pfn + nr_pages; 6685 unsigned int order = pgmap->vmemmap_shift; 6686 6687 __SetPageHead(head); 6688 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { 6689 struct page *page = pfn_to_page(pfn); 6690 6691 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6692 prep_compound_tail(head, pfn - head_pfn); 6693 set_page_count(page, 0); 6694 6695 /* 6696 * The first tail page stores compound_mapcount_ptr() and 6697 * compound_order() and the second tail page stores 6698 * compound_pincount_ptr(). Call prep_compound_head() after 6699 * the first and second tail pages have been initialized to 6700 * not have the data overwritten. 6701 */ 6702 if (pfn == head_pfn + 2) 6703 prep_compound_head(head, order); 6704 } 6705} 6706 6707void __ref memmap_init_zone_device(struct zone *zone, 6708 unsigned long start_pfn, 6709 unsigned long nr_pages, 6710 struct dev_pagemap *pgmap) 6711{ 6712 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6713 struct pglist_data *pgdat = zone->zone_pgdat; 6714 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6715 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); 6716 unsigned long zone_idx = zone_idx(zone); 6717 unsigned long start = jiffies; 6718 int nid = pgdat->node_id; 6719 6720 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6721 return; 6722 6723 /* 6724 * The call to memmap_init should have already taken care 6725 * of the pages reserved for the memmap, so we can just jump to 6726 * the end of that region and start processing the device pages. 6727 */ 6728 if (altmap) { 6729 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6730 nr_pages = end_pfn - start_pfn; 6731 } 6732 6733 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { 6734 struct page *page = pfn_to_page(pfn); 6735 6736 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); 6737 6738 if (pfns_per_compound == 1) 6739 continue; 6740 6741 memmap_init_compound(page, pfn, zone_idx, nid, pgmap, 6742 compound_nr_pages(altmap, pfns_per_compound)); 6743 } 6744 6745 pr_info("%s initialised %lu pages in %ums\n", __func__, 6746 nr_pages, jiffies_to_msecs(jiffies - start)); 6747} 6748 6749#endif 6750static void __meminit zone_init_free_lists(struct zone *zone) 6751{ 6752 unsigned int order, t; 6753 for_each_migratetype_order(order, t) { 6754 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6755 zone->free_area[order].nr_free = 0; 6756 } 6757} 6758 6759/* 6760 * Only struct pages that correspond to ranges defined by memblock.memory 6761 * are zeroed and initialized by going through __init_single_page() during 6762 * memmap_init_zone_range(). 6763 * 6764 * But, there could be struct pages that correspond to holes in 6765 * memblock.memory. This can happen because of the following reasons: 6766 * - physical memory bank size is not necessarily the exact multiple of the 6767 * arbitrary section size 6768 * - early reserved memory may not be listed in memblock.memory 6769 * - memory layouts defined with memmap= kernel parameter may not align 6770 * nicely with memmap sections 6771 * 6772 * Explicitly initialize those struct pages so that: 6773 * - PG_Reserved is set 6774 * - zone and node links point to zone and node that span the page if the 6775 * hole is in the middle of a zone 6776 * - zone and node links point to adjacent zone/node if the hole falls on 6777 * the zone boundary; the pages in such holes will be prepended to the 6778 * zone/node above the hole except for the trailing pages in the last 6779 * section that will be appended to the zone/node below. 6780 */ 6781static void __init init_unavailable_range(unsigned long spfn, 6782 unsigned long epfn, 6783 int zone, int node) 6784{ 6785 unsigned long pfn; 6786 u64 pgcnt = 0; 6787 6788 for (pfn = spfn; pfn < epfn; pfn++) { 6789 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6790 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6791 + pageblock_nr_pages - 1; 6792 continue; 6793 } 6794 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6795 __SetPageReserved(pfn_to_page(pfn)); 6796 pgcnt++; 6797 } 6798 6799 if (pgcnt) 6800 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6801 node, zone_names[zone], pgcnt); 6802} 6803 6804static void __init memmap_init_zone_range(struct zone *zone, 6805 unsigned long start_pfn, 6806 unsigned long end_pfn, 6807 unsigned long *hole_pfn) 6808{ 6809 unsigned long zone_start_pfn = zone->zone_start_pfn; 6810 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6811 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6812 6813 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6814 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6815 6816 if (start_pfn >= end_pfn) 6817 return; 6818 6819 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6820 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6821 6822 if (*hole_pfn < start_pfn) 6823 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6824 6825 *hole_pfn = end_pfn; 6826} 6827 6828static void __init memmap_init(void) 6829{ 6830 unsigned long start_pfn, end_pfn; 6831 unsigned long hole_pfn = 0; 6832 int i, j, zone_id = 0, nid; 6833 6834 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6835 struct pglist_data *node = NODE_DATA(nid); 6836 6837 for (j = 0; j < MAX_NR_ZONES; j++) { 6838 struct zone *zone = node->node_zones + j; 6839 6840 if (!populated_zone(zone)) 6841 continue; 6842 6843 memmap_init_zone_range(zone, start_pfn, end_pfn, 6844 &hole_pfn); 6845 zone_id = j; 6846 } 6847 } 6848 6849#ifdef CONFIG_SPARSEMEM 6850 /* 6851 * Initialize the memory map for hole in the range [memory_end, 6852 * section_end]. 6853 * Append the pages in this hole to the highest zone in the last 6854 * node. 6855 * The call to init_unavailable_range() is outside the ifdef to 6856 * silence the compiler warining about zone_id set but not used; 6857 * for FLATMEM it is a nop anyway 6858 */ 6859 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6860 if (hole_pfn < end_pfn) 6861#endif 6862 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6863} 6864 6865void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, 6866 phys_addr_t min_addr, int nid, bool exact_nid) 6867{ 6868 void *ptr; 6869 6870 if (exact_nid) 6871 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, 6872 MEMBLOCK_ALLOC_ACCESSIBLE, 6873 nid); 6874 else 6875 ptr = memblock_alloc_try_nid_raw(size, align, min_addr, 6876 MEMBLOCK_ALLOC_ACCESSIBLE, 6877 nid); 6878 6879 if (ptr && size > 0) 6880 page_init_poison(ptr, size); 6881 6882 return ptr; 6883} 6884 6885static int zone_batchsize(struct zone *zone) 6886{ 6887#ifdef CONFIG_MMU 6888 int batch; 6889 6890 /* 6891 * The number of pages to batch allocate is either ~0.1% 6892 * of the zone or 1MB, whichever is smaller. The batch 6893 * size is striking a balance between allocation latency 6894 * and zone lock contention. 6895 */ 6896 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6897 batch /= 4; /* We effectively *= 4 below */ 6898 if (batch < 1) 6899 batch = 1; 6900 6901 /* 6902 * Clamp the batch to a 2^n - 1 value. Having a power 6903 * of 2 value was found to be more likely to have 6904 * suboptimal cache aliasing properties in some cases. 6905 * 6906 * For example if 2 tasks are alternately allocating 6907 * batches of pages, one task can end up with a lot 6908 * of pages of one half of the possible page colors 6909 * and the other with pages of the other colors. 6910 */ 6911 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6912 6913 return batch; 6914 6915#else 6916 /* The deferral and batching of frees should be suppressed under NOMMU 6917 * conditions. 6918 * 6919 * The problem is that NOMMU needs to be able to allocate large chunks 6920 * of contiguous memory as there's no hardware page translation to 6921 * assemble apparent contiguous memory from discontiguous pages. 6922 * 6923 * Queueing large contiguous runs of pages for batching, however, 6924 * causes the pages to actually be freed in smaller chunks. As there 6925 * can be a significant delay between the individual batches being 6926 * recycled, this leads to the once large chunks of space being 6927 * fragmented and becoming unavailable for high-order allocations. 6928 */ 6929 return 0; 6930#endif 6931} 6932 6933static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6934{ 6935#ifdef CONFIG_MMU 6936 int high; 6937 int nr_split_cpus; 6938 unsigned long total_pages; 6939 6940 if (!percpu_pagelist_high_fraction) { 6941 /* 6942 * By default, the high value of the pcp is based on the zone 6943 * low watermark so that if they are full then background 6944 * reclaim will not be started prematurely. 6945 */ 6946 total_pages = low_wmark_pages(zone); 6947 } else { 6948 /* 6949 * If percpu_pagelist_high_fraction is configured, the high 6950 * value is based on a fraction of the managed pages in the 6951 * zone. 6952 */ 6953 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6954 } 6955 6956 /* 6957 * Split the high value across all online CPUs local to the zone. Note 6958 * that early in boot that CPUs may not be online yet and that during 6959 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6960 * onlined. For memory nodes that have no CPUs, split pcp->high across 6961 * all online CPUs to mitigate the risk that reclaim is triggered 6962 * prematurely due to pages stored on pcp lists. 6963 */ 6964 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6965 if (!nr_split_cpus) 6966 nr_split_cpus = num_online_cpus(); 6967 high = total_pages / nr_split_cpus; 6968 6969 /* 6970 * Ensure high is at least batch*4. The multiple is based on the 6971 * historical relationship between high and batch. 6972 */ 6973 high = max(high, batch << 2); 6974 6975 return high; 6976#else 6977 return 0; 6978#endif 6979} 6980 6981/* 6982 * pcp->high and pcp->batch values are related and generally batch is lower 6983 * than high. They are also related to pcp->count such that count is lower 6984 * than high, and as soon as it reaches high, the pcplist is flushed. 6985 * 6986 * However, guaranteeing these relations at all times would require e.g. write 6987 * barriers here but also careful usage of read barriers at the read side, and 6988 * thus be prone to error and bad for performance. Thus the update only prevents 6989 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6990 * can cope with those fields changing asynchronously, and fully trust only the 6991 * pcp->count field on the local CPU with interrupts disabled. 6992 * 6993 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6994 * outside of boot time (or some other assurance that no concurrent updaters 6995 * exist). 6996 */ 6997static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6998 unsigned long batch) 6999{ 7000 WRITE_ONCE(pcp->batch, batch); 7001 WRITE_ONCE(pcp->high, high); 7002} 7003 7004static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 7005{ 7006 int pindex; 7007 7008 memset(pcp, 0, sizeof(*pcp)); 7009 memset(pzstats, 0, sizeof(*pzstats)); 7010 7011 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 7012 INIT_LIST_HEAD(&pcp->lists[pindex]); 7013 7014 /* 7015 * Set batch and high values safe for a boot pageset. A true percpu 7016 * pageset's initialization will update them subsequently. Here we don't 7017 * need to be as careful as pageset_update() as nobody can access the 7018 * pageset yet. 7019 */ 7020 pcp->high = BOOT_PAGESET_HIGH; 7021 pcp->batch = BOOT_PAGESET_BATCH; 7022 pcp->free_factor = 0; 7023} 7024 7025static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 7026 unsigned long batch) 7027{ 7028 struct per_cpu_pages *pcp; 7029 int cpu; 7030 7031 for_each_possible_cpu(cpu) { 7032 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7033 pageset_update(pcp, high, batch); 7034 } 7035} 7036 7037/* 7038 * Calculate and set new high and batch values for all per-cpu pagesets of a 7039 * zone based on the zone's size. 7040 */ 7041static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 7042{ 7043 int new_high, new_batch; 7044 7045 new_batch = max(1, zone_batchsize(zone)); 7046 new_high = zone_highsize(zone, new_batch, cpu_online); 7047 7048 if (zone->pageset_high == new_high && 7049 zone->pageset_batch == new_batch) 7050 return; 7051 7052 zone->pageset_high = new_high; 7053 zone->pageset_batch = new_batch; 7054 7055 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 7056} 7057 7058void __meminit setup_zone_pageset(struct zone *zone) 7059{ 7060 int cpu; 7061 7062 /* Size may be 0 on !SMP && !NUMA */ 7063 if (sizeof(struct per_cpu_zonestat) > 0) 7064 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 7065 7066 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 7067 for_each_possible_cpu(cpu) { 7068 struct per_cpu_pages *pcp; 7069 struct per_cpu_zonestat *pzstats; 7070 7071 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 7072 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7073 per_cpu_pages_init(pcp, pzstats); 7074 } 7075 7076 zone_set_pageset_high_and_batch(zone, 0); 7077} 7078 7079/* 7080 * Allocate per cpu pagesets and initialize them. 7081 * Before this call only boot pagesets were available. 7082 */ 7083void __init setup_per_cpu_pageset(void) 7084{ 7085 struct pglist_data *pgdat; 7086 struct zone *zone; 7087 int __maybe_unused cpu; 7088 7089 for_each_populated_zone(zone) 7090 setup_zone_pageset(zone); 7091 7092#ifdef CONFIG_NUMA 7093 /* 7094 * Unpopulated zones continue using the boot pagesets. 7095 * The numa stats for these pagesets need to be reset. 7096 * Otherwise, they will end up skewing the stats of 7097 * the nodes these zones are associated with. 7098 */ 7099 for_each_possible_cpu(cpu) { 7100 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 7101 memset(pzstats->vm_numa_event, 0, 7102 sizeof(pzstats->vm_numa_event)); 7103 } 7104#endif 7105 7106 for_each_online_pgdat(pgdat) 7107 pgdat->per_cpu_nodestats = 7108 alloc_percpu(struct per_cpu_nodestat); 7109} 7110 7111static __meminit void zone_pcp_init(struct zone *zone) 7112{ 7113 /* 7114 * per cpu subsystem is not up at this point. The following code 7115 * relies on the ability of the linker to provide the 7116 * offset of a (static) per cpu variable into the per cpu area. 7117 */ 7118 zone->per_cpu_pageset = &boot_pageset; 7119 zone->per_cpu_zonestats = &boot_zonestats; 7120 zone->pageset_high = BOOT_PAGESET_HIGH; 7121 zone->pageset_batch = BOOT_PAGESET_BATCH; 7122 7123 if (populated_zone(zone)) 7124 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 7125 zone->present_pages, zone_batchsize(zone)); 7126} 7127 7128void __meminit init_currently_empty_zone(struct zone *zone, 7129 unsigned long zone_start_pfn, 7130 unsigned long size) 7131{ 7132 struct pglist_data *pgdat = zone->zone_pgdat; 7133 int zone_idx = zone_idx(zone) + 1; 7134 7135 if (zone_idx > pgdat->nr_zones) 7136 pgdat->nr_zones = zone_idx; 7137 7138 zone->zone_start_pfn = zone_start_pfn; 7139 7140 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7141 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7142 pgdat->node_id, 7143 (unsigned long)zone_idx(zone), 7144 zone_start_pfn, (zone_start_pfn + size)); 7145 7146 zone_init_free_lists(zone); 7147 zone->initialized = 1; 7148} 7149 7150/** 7151 * get_pfn_range_for_nid - Return the start and end page frames for a node 7152 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7153 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7154 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7155 * 7156 * It returns the start and end page frame of a node based on information 7157 * provided by memblock_set_node(). If called for a node 7158 * with no available memory, a warning is printed and the start and end 7159 * PFNs will be 0. 7160 */ 7161void __init get_pfn_range_for_nid(unsigned int nid, 7162 unsigned long *start_pfn, unsigned long *end_pfn) 7163{ 7164 unsigned long this_start_pfn, this_end_pfn; 7165 int i; 7166 7167 *start_pfn = -1UL; 7168 *end_pfn = 0; 7169 7170 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7171 *start_pfn = min(*start_pfn, this_start_pfn); 7172 *end_pfn = max(*end_pfn, this_end_pfn); 7173 } 7174 7175 if (*start_pfn == -1UL) 7176 *start_pfn = 0; 7177} 7178 7179/* 7180 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7181 * assumption is made that zones within a node are ordered in monotonic 7182 * increasing memory addresses so that the "highest" populated zone is used 7183 */ 7184static void __init find_usable_zone_for_movable(void) 7185{ 7186 int zone_index; 7187 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7188 if (zone_index == ZONE_MOVABLE) 7189 continue; 7190 7191 if (arch_zone_highest_possible_pfn[zone_index] > 7192 arch_zone_lowest_possible_pfn[zone_index]) 7193 break; 7194 } 7195 7196 VM_BUG_ON(zone_index == -1); 7197 movable_zone = zone_index; 7198} 7199 7200/* 7201 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7202 * because it is sized independent of architecture. Unlike the other zones, 7203 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7204 * in each node depending on the size of each node and how evenly kernelcore 7205 * is distributed. This helper function adjusts the zone ranges 7206 * provided by the architecture for a given node by using the end of the 7207 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7208 * zones within a node are in order of monotonic increases memory addresses 7209 */ 7210static void __init adjust_zone_range_for_zone_movable(int nid, 7211 unsigned long zone_type, 7212 unsigned long node_start_pfn, 7213 unsigned long node_end_pfn, 7214 unsigned long *zone_start_pfn, 7215 unsigned long *zone_end_pfn) 7216{ 7217 /* Only adjust if ZONE_MOVABLE is on this node */ 7218 if (zone_movable_pfn[nid]) { 7219 /* Size ZONE_MOVABLE */ 7220 if (zone_type == ZONE_MOVABLE) { 7221 *zone_start_pfn = zone_movable_pfn[nid]; 7222 *zone_end_pfn = min(node_end_pfn, 7223 arch_zone_highest_possible_pfn[movable_zone]); 7224 7225 /* Adjust for ZONE_MOVABLE starting within this range */ 7226 } else if (!mirrored_kernelcore && 7227 *zone_start_pfn < zone_movable_pfn[nid] && 7228 *zone_end_pfn > zone_movable_pfn[nid]) { 7229 *zone_end_pfn = zone_movable_pfn[nid]; 7230 7231 /* Check if this whole range is within ZONE_MOVABLE */ 7232 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7233 *zone_start_pfn = *zone_end_pfn; 7234 } 7235} 7236 7237/* 7238 * Return the number of pages a zone spans in a node, including holes 7239 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7240 */ 7241static unsigned long __init zone_spanned_pages_in_node(int nid, 7242 unsigned long zone_type, 7243 unsigned long node_start_pfn, 7244 unsigned long node_end_pfn, 7245 unsigned long *zone_start_pfn, 7246 unsigned long *zone_end_pfn) 7247{ 7248 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7249 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7250 /* When hotadd a new node from cpu_up(), the node should be empty */ 7251 if (!node_start_pfn && !node_end_pfn) 7252 return 0; 7253 7254 /* Get the start and end of the zone */ 7255 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7256 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7257 adjust_zone_range_for_zone_movable(nid, zone_type, 7258 node_start_pfn, node_end_pfn, 7259 zone_start_pfn, zone_end_pfn); 7260 7261 /* Check that this node has pages within the zone's required range */ 7262 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7263 return 0; 7264 7265 /* Move the zone boundaries inside the node if necessary */ 7266 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7267 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7268 7269 /* Return the spanned pages */ 7270 return *zone_end_pfn - *zone_start_pfn; 7271} 7272 7273/* 7274 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7275 * then all holes in the requested range will be accounted for. 7276 */ 7277unsigned long __init __absent_pages_in_range(int nid, 7278 unsigned long range_start_pfn, 7279 unsigned long range_end_pfn) 7280{ 7281 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7282 unsigned long start_pfn, end_pfn; 7283 int i; 7284 7285 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7286 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7287 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7288 nr_absent -= end_pfn - start_pfn; 7289 } 7290 return nr_absent; 7291} 7292 7293/** 7294 * absent_pages_in_range - Return number of page frames in holes within a range 7295 * @start_pfn: The start PFN to start searching for holes 7296 * @end_pfn: The end PFN to stop searching for holes 7297 * 7298 * Return: the number of pages frames in memory holes within a range. 7299 */ 7300unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7301 unsigned long end_pfn) 7302{ 7303 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7304} 7305 7306/* Return the number of page frames in holes in a zone on a node */ 7307static unsigned long __init zone_absent_pages_in_node(int nid, 7308 unsigned long zone_type, 7309 unsigned long node_start_pfn, 7310 unsigned long node_end_pfn) 7311{ 7312 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7313 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7314 unsigned long zone_start_pfn, zone_end_pfn; 7315 unsigned long nr_absent; 7316 7317 /* When hotadd a new node from cpu_up(), the node should be empty */ 7318 if (!node_start_pfn && !node_end_pfn) 7319 return 0; 7320 7321 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7322 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7323 7324 adjust_zone_range_for_zone_movable(nid, zone_type, 7325 node_start_pfn, node_end_pfn, 7326 &zone_start_pfn, &zone_end_pfn); 7327 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7328 7329 /* 7330 * ZONE_MOVABLE handling. 7331 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7332 * and vice versa. 7333 */ 7334 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7335 unsigned long start_pfn, end_pfn; 7336 struct memblock_region *r; 7337 7338 for_each_mem_region(r) { 7339 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7340 zone_start_pfn, zone_end_pfn); 7341 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7342 zone_start_pfn, zone_end_pfn); 7343 7344 if (zone_type == ZONE_MOVABLE && 7345 memblock_is_mirror(r)) 7346 nr_absent += end_pfn - start_pfn; 7347 7348 if (zone_type == ZONE_NORMAL && 7349 !memblock_is_mirror(r)) 7350 nr_absent += end_pfn - start_pfn; 7351 } 7352 } 7353 7354 return nr_absent; 7355} 7356 7357static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7358 unsigned long node_start_pfn, 7359 unsigned long node_end_pfn) 7360{ 7361 unsigned long realtotalpages = 0, totalpages = 0; 7362 enum zone_type i; 7363 7364 for (i = 0; i < MAX_NR_ZONES; i++) { 7365 struct zone *zone = pgdat->node_zones + i; 7366 unsigned long zone_start_pfn, zone_end_pfn; 7367 unsigned long spanned, absent; 7368 unsigned long size, real_size; 7369 7370 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7371 node_start_pfn, 7372 node_end_pfn, 7373 &zone_start_pfn, 7374 &zone_end_pfn); 7375 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7376 node_start_pfn, 7377 node_end_pfn); 7378 7379 size = spanned; 7380 real_size = size - absent; 7381 7382 if (size) 7383 zone->zone_start_pfn = zone_start_pfn; 7384 else 7385 zone->zone_start_pfn = 0; 7386 zone->spanned_pages = size; 7387 zone->present_pages = real_size; 7388#if defined(CONFIG_MEMORY_HOTPLUG) 7389 zone->present_early_pages = real_size; 7390#endif 7391 7392 totalpages += size; 7393 realtotalpages += real_size; 7394 } 7395 7396 pgdat->node_spanned_pages = totalpages; 7397 pgdat->node_present_pages = realtotalpages; 7398 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7399} 7400 7401#ifndef CONFIG_SPARSEMEM 7402/* 7403 * Calculate the size of the zone->blockflags rounded to an unsigned long 7404 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7405 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7406 * round what is now in bits to nearest long in bits, then return it in 7407 * bytes. 7408 */ 7409static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7410{ 7411 unsigned long usemapsize; 7412 7413 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7414 usemapsize = roundup(zonesize, pageblock_nr_pages); 7415 usemapsize = usemapsize >> pageblock_order; 7416 usemapsize *= NR_PAGEBLOCK_BITS; 7417 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7418 7419 return usemapsize / 8; 7420} 7421 7422static void __ref setup_usemap(struct zone *zone) 7423{ 7424 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7425 zone->spanned_pages); 7426 zone->pageblock_flags = NULL; 7427 if (usemapsize) { 7428 zone->pageblock_flags = 7429 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7430 zone_to_nid(zone)); 7431 if (!zone->pageblock_flags) 7432 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7433 usemapsize, zone->name, zone_to_nid(zone)); 7434 } 7435} 7436#else 7437static inline void setup_usemap(struct zone *zone) {} 7438#endif /* CONFIG_SPARSEMEM */ 7439 7440#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7441 7442/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7443void __init set_pageblock_order(void) 7444{ 7445 unsigned int order = MAX_ORDER - 1; 7446 7447 /* Check that pageblock_nr_pages has not already been setup */ 7448 if (pageblock_order) 7449 return; 7450 7451 /* Don't let pageblocks exceed the maximum allocation granularity. */ 7452 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) 7453 order = HUGETLB_PAGE_ORDER; 7454 7455 /* 7456 * Assume the largest contiguous order of interest is a huge page. 7457 * This value may be variable depending on boot parameters on IA64 and 7458 * powerpc. 7459 */ 7460 pageblock_order = order; 7461} 7462#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7463 7464/* 7465 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7466 * is unused as pageblock_order is set at compile-time. See 7467 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7468 * the kernel config 7469 */ 7470void __init set_pageblock_order(void) 7471{ 7472} 7473 7474#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7475 7476static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7477 unsigned long present_pages) 7478{ 7479 unsigned long pages = spanned_pages; 7480 7481 /* 7482 * Provide a more accurate estimation if there are holes within 7483 * the zone and SPARSEMEM is in use. If there are holes within the 7484 * zone, each populated memory region may cost us one or two extra 7485 * memmap pages due to alignment because memmap pages for each 7486 * populated regions may not be naturally aligned on page boundary. 7487 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7488 */ 7489 if (spanned_pages > present_pages + (present_pages >> 4) && 7490 IS_ENABLED(CONFIG_SPARSEMEM)) 7491 pages = present_pages; 7492 7493 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7494} 7495 7496#ifdef CONFIG_TRANSPARENT_HUGEPAGE 7497static void pgdat_init_split_queue(struct pglist_data *pgdat) 7498{ 7499 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7500 7501 spin_lock_init(&ds_queue->split_queue_lock); 7502 INIT_LIST_HEAD(&ds_queue->split_queue); 7503 ds_queue->split_queue_len = 0; 7504} 7505#else 7506static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7507#endif 7508 7509#ifdef CONFIG_COMPACTION 7510static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7511{ 7512 init_waitqueue_head(&pgdat->kcompactd_wait); 7513} 7514#else 7515static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7516#endif 7517 7518static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7519{ 7520 int i; 7521 7522 pgdat_resize_init(pgdat); 7523 7524 pgdat_init_split_queue(pgdat); 7525 pgdat_init_kcompactd(pgdat); 7526 7527 init_waitqueue_head(&pgdat->kswapd_wait); 7528 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7529 7530 for (i = 0; i < NR_VMSCAN_THROTTLE; i++) 7531 init_waitqueue_head(&pgdat->reclaim_wait[i]); 7532 7533 pgdat_page_ext_init(pgdat); 7534 lruvec_init(&pgdat->__lruvec); 7535} 7536 7537static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7538 unsigned long remaining_pages) 7539{ 7540 atomic_long_set(&zone->managed_pages, remaining_pages); 7541 zone_set_nid(zone, nid); 7542 zone->name = zone_names[idx]; 7543 zone->zone_pgdat = NODE_DATA(nid); 7544 spin_lock_init(&zone->lock); 7545 zone_seqlock_init(zone); 7546 zone_pcp_init(zone); 7547} 7548 7549/* 7550 * Set up the zone data structures 7551 * - init pgdat internals 7552 * - init all zones belonging to this node 7553 * 7554 * NOTE: this function is only called during memory hotplug 7555 */ 7556#ifdef CONFIG_MEMORY_HOTPLUG 7557void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) 7558{ 7559 int nid = pgdat->node_id; 7560 enum zone_type z; 7561 int cpu; 7562 7563 pgdat_init_internals(pgdat); 7564 7565 if (pgdat->per_cpu_nodestats == &boot_nodestats) 7566 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 7567 7568 /* 7569 * Reset the nr_zones, order and highest_zoneidx before reuse. 7570 * Note that kswapd will init kswapd_highest_zoneidx properly 7571 * when it starts in the near future. 7572 */ 7573 pgdat->nr_zones = 0; 7574 pgdat->kswapd_order = 0; 7575 pgdat->kswapd_highest_zoneidx = 0; 7576 pgdat->node_start_pfn = 0; 7577 for_each_online_cpu(cpu) { 7578 struct per_cpu_nodestat *p; 7579 7580 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 7581 memset(p, 0, sizeof(*p)); 7582 } 7583 7584 for (z = 0; z < MAX_NR_ZONES; z++) 7585 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7586} 7587#endif 7588 7589/* 7590 * Set up the zone data structures: 7591 * - mark all pages reserved 7592 * - mark all memory queues empty 7593 * - clear the memory bitmaps 7594 * 7595 * NOTE: pgdat should get zeroed by caller. 7596 * NOTE: this function is only called during early init. 7597 */ 7598static void __init free_area_init_core(struct pglist_data *pgdat) 7599{ 7600 enum zone_type j; 7601 int nid = pgdat->node_id; 7602 7603 pgdat_init_internals(pgdat); 7604 pgdat->per_cpu_nodestats = &boot_nodestats; 7605 7606 for (j = 0; j < MAX_NR_ZONES; j++) { 7607 struct zone *zone = pgdat->node_zones + j; 7608 unsigned long size, freesize, memmap_pages; 7609 7610 size = zone->spanned_pages; 7611 freesize = zone->present_pages; 7612 7613 /* 7614 * Adjust freesize so that it accounts for how much memory 7615 * is used by this zone for memmap. This affects the watermark 7616 * and per-cpu initialisations 7617 */ 7618 memmap_pages = calc_memmap_size(size, freesize); 7619 if (!is_highmem_idx(j)) { 7620 if (freesize >= memmap_pages) { 7621 freesize -= memmap_pages; 7622 if (memmap_pages) 7623 pr_debug(" %s zone: %lu pages used for memmap\n", 7624 zone_names[j], memmap_pages); 7625 } else 7626 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7627 zone_names[j], memmap_pages, freesize); 7628 } 7629 7630 /* Account for reserved pages */ 7631 if (j == 0 && freesize > dma_reserve) { 7632 freesize -= dma_reserve; 7633 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7634 } 7635 7636 if (!is_highmem_idx(j)) 7637 nr_kernel_pages += freesize; 7638 /* Charge for highmem memmap if there are enough kernel pages */ 7639 else if (nr_kernel_pages > memmap_pages * 2) 7640 nr_kernel_pages -= memmap_pages; 7641 nr_all_pages += freesize; 7642 7643 /* 7644 * Set an approximate value for lowmem here, it will be adjusted 7645 * when the bootmem allocator frees pages into the buddy system. 7646 * And all highmem pages will be managed by the buddy system. 7647 */ 7648 zone_init_internals(zone, j, nid, freesize); 7649 7650 if (!size) 7651 continue; 7652 7653 set_pageblock_order(); 7654 setup_usemap(zone); 7655 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7656 } 7657} 7658 7659#ifdef CONFIG_FLATMEM 7660static void __init alloc_node_mem_map(struct pglist_data *pgdat) 7661{ 7662 unsigned long __maybe_unused start = 0; 7663 unsigned long __maybe_unused offset = 0; 7664 7665 /* Skip empty nodes */ 7666 if (!pgdat->node_spanned_pages) 7667 return; 7668 7669 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7670 offset = pgdat->node_start_pfn - start; 7671 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7672 if (!pgdat->node_mem_map) { 7673 unsigned long size, end; 7674 struct page *map; 7675 7676 /* 7677 * The zone's endpoints aren't required to be MAX_ORDER 7678 * aligned but the node_mem_map endpoints must be in order 7679 * for the buddy allocator to function correctly. 7680 */ 7681 end = pgdat_end_pfn(pgdat); 7682 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7683 size = (end - start) * sizeof(struct page); 7684 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, 7685 pgdat->node_id, false); 7686 if (!map) 7687 panic("Failed to allocate %ld bytes for node %d memory map\n", 7688 size, pgdat->node_id); 7689 pgdat->node_mem_map = map + offset; 7690 } 7691 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7692 __func__, pgdat->node_id, (unsigned long)pgdat, 7693 (unsigned long)pgdat->node_mem_map); 7694#ifndef CONFIG_NUMA 7695 /* 7696 * With no DISCONTIG, the global mem_map is just set as node 0's 7697 */ 7698 if (pgdat == NODE_DATA(0)) { 7699 mem_map = NODE_DATA(0)->node_mem_map; 7700 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7701 mem_map -= offset; 7702 } 7703#endif 7704} 7705#else 7706static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } 7707#endif /* CONFIG_FLATMEM */ 7708 7709#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7710static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7711{ 7712 pgdat->first_deferred_pfn = ULONG_MAX; 7713} 7714#else 7715static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7716#endif 7717 7718static void __init free_area_init_node(int nid) 7719{ 7720 pg_data_t *pgdat = NODE_DATA(nid); 7721 unsigned long start_pfn = 0; 7722 unsigned long end_pfn = 0; 7723 7724 /* pg_data_t should be reset to zero when it's allocated */ 7725 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7726 7727 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7728 7729 pgdat->node_id = nid; 7730 pgdat->node_start_pfn = start_pfn; 7731 pgdat->per_cpu_nodestats = NULL; 7732 7733 if (start_pfn != end_pfn) { 7734 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7735 (u64)start_pfn << PAGE_SHIFT, 7736 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7737 } else { 7738 pr_info("Initmem setup node %d as memoryless\n", nid); 7739 } 7740 7741 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7742 7743 alloc_node_mem_map(pgdat); 7744 pgdat_set_deferred_range(pgdat); 7745 7746 free_area_init_core(pgdat); 7747} 7748 7749static void __init free_area_init_memoryless_node(int nid) 7750{ 7751 free_area_init_node(nid); 7752} 7753 7754#if MAX_NUMNODES > 1 7755/* 7756 * Figure out the number of possible node ids. 7757 */ 7758void __init setup_nr_node_ids(void) 7759{ 7760 unsigned int highest; 7761 7762 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7763 nr_node_ids = highest + 1; 7764} 7765#endif 7766 7767/** 7768 * node_map_pfn_alignment - determine the maximum internode alignment 7769 * 7770 * This function should be called after node map is populated and sorted. 7771 * It calculates the maximum power of two alignment which can distinguish 7772 * all the nodes. 7773 * 7774 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7775 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7776 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7777 * shifted, 1GiB is enough and this function will indicate so. 7778 * 7779 * This is used to test whether pfn -> nid mapping of the chosen memory 7780 * model has fine enough granularity to avoid incorrect mapping for the 7781 * populated node map. 7782 * 7783 * Return: the determined alignment in pfn's. 0 if there is no alignment 7784 * requirement (single node). 7785 */ 7786unsigned long __init node_map_pfn_alignment(void) 7787{ 7788 unsigned long accl_mask = 0, last_end = 0; 7789 unsigned long start, end, mask; 7790 int last_nid = NUMA_NO_NODE; 7791 int i, nid; 7792 7793 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7794 if (!start || last_nid < 0 || last_nid == nid) { 7795 last_nid = nid; 7796 last_end = end; 7797 continue; 7798 } 7799 7800 /* 7801 * Start with a mask granular enough to pin-point to the 7802 * start pfn and tick off bits one-by-one until it becomes 7803 * too coarse to separate the current node from the last. 7804 */ 7805 mask = ~((1 << __ffs(start)) - 1); 7806 while (mask && last_end <= (start & (mask << 1))) 7807 mask <<= 1; 7808 7809 /* accumulate all internode masks */ 7810 accl_mask |= mask; 7811 } 7812 7813 /* convert mask to number of pages */ 7814 return ~accl_mask + 1; 7815} 7816 7817/** 7818 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7819 * 7820 * Return: the minimum PFN based on information provided via 7821 * memblock_set_node(). 7822 */ 7823unsigned long __init find_min_pfn_with_active_regions(void) 7824{ 7825 return PHYS_PFN(memblock_start_of_DRAM()); 7826} 7827 7828/* 7829 * early_calculate_totalpages() 7830 * Sum pages in active regions for movable zone. 7831 * Populate N_MEMORY for calculating usable_nodes. 7832 */ 7833static unsigned long __init early_calculate_totalpages(void) 7834{ 7835 unsigned long totalpages = 0; 7836 unsigned long start_pfn, end_pfn; 7837 int i, nid; 7838 7839 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7840 unsigned long pages = end_pfn - start_pfn; 7841 7842 totalpages += pages; 7843 if (pages) 7844 node_set_state(nid, N_MEMORY); 7845 } 7846 return totalpages; 7847} 7848 7849/* 7850 * Find the PFN the Movable zone begins in each node. Kernel memory 7851 * is spread evenly between nodes as long as the nodes have enough 7852 * memory. When they don't, some nodes will have more kernelcore than 7853 * others 7854 */ 7855static void __init find_zone_movable_pfns_for_nodes(void) 7856{ 7857 int i, nid; 7858 unsigned long usable_startpfn; 7859 unsigned long kernelcore_node, kernelcore_remaining; 7860 /* save the state before borrow the nodemask */ 7861 nodemask_t saved_node_state = node_states[N_MEMORY]; 7862 unsigned long totalpages = early_calculate_totalpages(); 7863 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7864 struct memblock_region *r; 7865 7866 /* Need to find movable_zone earlier when movable_node is specified. */ 7867 find_usable_zone_for_movable(); 7868 7869 /* 7870 * If movable_node is specified, ignore kernelcore and movablecore 7871 * options. 7872 */ 7873 if (movable_node_is_enabled()) { 7874 for_each_mem_region(r) { 7875 if (!memblock_is_hotpluggable(r)) 7876 continue; 7877 7878 nid = memblock_get_region_node(r); 7879 7880 usable_startpfn = PFN_DOWN(r->base); 7881 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7882 min(usable_startpfn, zone_movable_pfn[nid]) : 7883 usable_startpfn; 7884 } 7885 7886 goto out2; 7887 } 7888 7889 /* 7890 * If kernelcore=mirror is specified, ignore movablecore option 7891 */ 7892 if (mirrored_kernelcore) { 7893 bool mem_below_4gb_not_mirrored = false; 7894 7895 for_each_mem_region(r) { 7896 if (memblock_is_mirror(r)) 7897 continue; 7898 7899 nid = memblock_get_region_node(r); 7900 7901 usable_startpfn = memblock_region_memory_base_pfn(r); 7902 7903 if (usable_startpfn < PHYS_PFN(SZ_4G)) { 7904 mem_below_4gb_not_mirrored = true; 7905 continue; 7906 } 7907 7908 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7909 min(usable_startpfn, zone_movable_pfn[nid]) : 7910 usable_startpfn; 7911 } 7912 7913 if (mem_below_4gb_not_mirrored) 7914 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7915 7916 goto out2; 7917 } 7918 7919 /* 7920 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7921 * amount of necessary memory. 7922 */ 7923 if (required_kernelcore_percent) 7924 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7925 10000UL; 7926 if (required_movablecore_percent) 7927 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7928 10000UL; 7929 7930 /* 7931 * If movablecore= was specified, calculate what size of 7932 * kernelcore that corresponds so that memory usable for 7933 * any allocation type is evenly spread. If both kernelcore 7934 * and movablecore are specified, then the value of kernelcore 7935 * will be used for required_kernelcore if it's greater than 7936 * what movablecore would have allowed. 7937 */ 7938 if (required_movablecore) { 7939 unsigned long corepages; 7940 7941 /* 7942 * Round-up so that ZONE_MOVABLE is at least as large as what 7943 * was requested by the user 7944 */ 7945 required_movablecore = 7946 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7947 required_movablecore = min(totalpages, required_movablecore); 7948 corepages = totalpages - required_movablecore; 7949 7950 required_kernelcore = max(required_kernelcore, corepages); 7951 } 7952 7953 /* 7954 * If kernelcore was not specified or kernelcore size is larger 7955 * than totalpages, there is no ZONE_MOVABLE. 7956 */ 7957 if (!required_kernelcore || required_kernelcore >= totalpages) 7958 goto out; 7959 7960 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7961 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7962 7963restart: 7964 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7965 kernelcore_node = required_kernelcore / usable_nodes; 7966 for_each_node_state(nid, N_MEMORY) { 7967 unsigned long start_pfn, end_pfn; 7968 7969 /* 7970 * Recalculate kernelcore_node if the division per node 7971 * now exceeds what is necessary to satisfy the requested 7972 * amount of memory for the kernel 7973 */ 7974 if (required_kernelcore < kernelcore_node) 7975 kernelcore_node = required_kernelcore / usable_nodes; 7976 7977 /* 7978 * As the map is walked, we track how much memory is usable 7979 * by the kernel using kernelcore_remaining. When it is 7980 * 0, the rest of the node is usable by ZONE_MOVABLE 7981 */ 7982 kernelcore_remaining = kernelcore_node; 7983 7984 /* Go through each range of PFNs within this node */ 7985 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7986 unsigned long size_pages; 7987 7988 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7989 if (start_pfn >= end_pfn) 7990 continue; 7991 7992 /* Account for what is only usable for kernelcore */ 7993 if (start_pfn < usable_startpfn) { 7994 unsigned long kernel_pages; 7995 kernel_pages = min(end_pfn, usable_startpfn) 7996 - start_pfn; 7997 7998 kernelcore_remaining -= min(kernel_pages, 7999 kernelcore_remaining); 8000 required_kernelcore -= min(kernel_pages, 8001 required_kernelcore); 8002 8003 /* Continue if range is now fully accounted */ 8004 if (end_pfn <= usable_startpfn) { 8005 8006 /* 8007 * Push zone_movable_pfn to the end so 8008 * that if we have to rebalance 8009 * kernelcore across nodes, we will 8010 * not double account here 8011 */ 8012 zone_movable_pfn[nid] = end_pfn; 8013 continue; 8014 } 8015 start_pfn = usable_startpfn; 8016 } 8017 8018 /* 8019 * The usable PFN range for ZONE_MOVABLE is from 8020 * start_pfn->end_pfn. Calculate size_pages as the 8021 * number of pages used as kernelcore 8022 */ 8023 size_pages = end_pfn - start_pfn; 8024 if (size_pages > kernelcore_remaining) 8025 size_pages = kernelcore_remaining; 8026 zone_movable_pfn[nid] = start_pfn + size_pages; 8027 8028 /* 8029 * Some kernelcore has been met, update counts and 8030 * break if the kernelcore for this node has been 8031 * satisfied 8032 */ 8033 required_kernelcore -= min(required_kernelcore, 8034 size_pages); 8035 kernelcore_remaining -= size_pages; 8036 if (!kernelcore_remaining) 8037 break; 8038 } 8039 } 8040 8041 /* 8042 * If there is still required_kernelcore, we do another pass with one 8043 * less node in the count. This will push zone_movable_pfn[nid] further 8044 * along on the nodes that still have memory until kernelcore is 8045 * satisfied 8046 */ 8047 usable_nodes--; 8048 if (usable_nodes && required_kernelcore > usable_nodes) 8049 goto restart; 8050 8051out2: 8052 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 8053 for (nid = 0; nid < MAX_NUMNODES; nid++) { 8054 unsigned long start_pfn, end_pfn; 8055 8056 zone_movable_pfn[nid] = 8057 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 8058 8059 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 8060 if (zone_movable_pfn[nid] >= end_pfn) 8061 zone_movable_pfn[nid] = 0; 8062 } 8063 8064out: 8065 /* restore the node_state */ 8066 node_states[N_MEMORY] = saved_node_state; 8067} 8068 8069/* Any regular or high memory on that node ? */ 8070static void check_for_memory(pg_data_t *pgdat, int nid) 8071{ 8072 enum zone_type zone_type; 8073 8074 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 8075 struct zone *zone = &pgdat->node_zones[zone_type]; 8076 if (populated_zone(zone)) { 8077 if (IS_ENABLED(CONFIG_HIGHMEM)) 8078 node_set_state(nid, N_HIGH_MEMORY); 8079 if (zone_type <= ZONE_NORMAL) 8080 node_set_state(nid, N_NORMAL_MEMORY); 8081 break; 8082 } 8083 } 8084} 8085 8086/* 8087 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 8088 * such cases we allow max_zone_pfn sorted in the descending order 8089 */ 8090bool __weak arch_has_descending_max_zone_pfns(void) 8091{ 8092 return false; 8093} 8094 8095/** 8096 * free_area_init - Initialise all pg_data_t and zone data 8097 * @max_zone_pfn: an array of max PFNs for each zone 8098 * 8099 * This will call free_area_init_node() for each active node in the system. 8100 * Using the page ranges provided by memblock_set_node(), the size of each 8101 * zone in each node and their holes is calculated. If the maximum PFN 8102 * between two adjacent zones match, it is assumed that the zone is empty. 8103 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 8104 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 8105 * starts where the previous one ended. For example, ZONE_DMA32 starts 8106 * at arch_max_dma_pfn. 8107 */ 8108void __init free_area_init(unsigned long *max_zone_pfn) 8109{ 8110 unsigned long start_pfn, end_pfn; 8111 int i, nid, zone; 8112 bool descending; 8113 8114 /* Record where the zone boundaries are */ 8115 memset(arch_zone_lowest_possible_pfn, 0, 8116 sizeof(arch_zone_lowest_possible_pfn)); 8117 memset(arch_zone_highest_possible_pfn, 0, 8118 sizeof(arch_zone_highest_possible_pfn)); 8119 8120 start_pfn = find_min_pfn_with_active_regions(); 8121 descending = arch_has_descending_max_zone_pfns(); 8122 8123 for (i = 0; i < MAX_NR_ZONES; i++) { 8124 if (descending) 8125 zone = MAX_NR_ZONES - i - 1; 8126 else 8127 zone = i; 8128 8129 if (zone == ZONE_MOVABLE) 8130 continue; 8131 8132 end_pfn = max(max_zone_pfn[zone], start_pfn); 8133 arch_zone_lowest_possible_pfn[zone] = start_pfn; 8134 arch_zone_highest_possible_pfn[zone] = end_pfn; 8135 8136 start_pfn = end_pfn; 8137 } 8138 8139 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 8140 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 8141 find_zone_movable_pfns_for_nodes(); 8142 8143 /* Print out the zone ranges */ 8144 pr_info("Zone ranges:\n"); 8145 for (i = 0; i < MAX_NR_ZONES; i++) { 8146 if (i == ZONE_MOVABLE) 8147 continue; 8148 pr_info(" %-8s ", zone_names[i]); 8149 if (arch_zone_lowest_possible_pfn[i] == 8150 arch_zone_highest_possible_pfn[i]) 8151 pr_cont("empty\n"); 8152 else 8153 pr_cont("[mem %#018Lx-%#018Lx]\n", 8154 (u64)arch_zone_lowest_possible_pfn[i] 8155 << PAGE_SHIFT, 8156 ((u64)arch_zone_highest_possible_pfn[i] 8157 << PAGE_SHIFT) - 1); 8158 } 8159 8160 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 8161 pr_info("Movable zone start for each node\n"); 8162 for (i = 0; i < MAX_NUMNODES; i++) { 8163 if (zone_movable_pfn[i]) 8164 pr_info(" Node %d: %#018Lx\n", i, 8165 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 8166 } 8167 8168 /* 8169 * Print out the early node map, and initialize the 8170 * subsection-map relative to active online memory ranges to 8171 * enable future "sub-section" extensions of the memory map. 8172 */ 8173 pr_info("Early memory node ranges\n"); 8174 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8175 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8176 (u64)start_pfn << PAGE_SHIFT, 8177 ((u64)end_pfn << PAGE_SHIFT) - 1); 8178 subsection_map_init(start_pfn, end_pfn - start_pfn); 8179 } 8180 8181 /* Initialise every node */ 8182 mminit_verify_pageflags_layout(); 8183 setup_nr_node_ids(); 8184 for_each_node(nid) { 8185 pg_data_t *pgdat; 8186 8187 if (!node_online(nid)) { 8188 pr_info("Initializing node %d as memoryless\n", nid); 8189 8190 /* Allocator not initialized yet */ 8191 pgdat = arch_alloc_nodedata(nid); 8192 if (!pgdat) { 8193 pr_err("Cannot allocate %zuB for node %d.\n", 8194 sizeof(*pgdat), nid); 8195 continue; 8196 } 8197 arch_refresh_nodedata(nid, pgdat); 8198 free_area_init_memoryless_node(nid); 8199 8200 /* 8201 * We do not want to confuse userspace by sysfs 8202 * files/directories for node without any memory 8203 * attached to it, so this node is not marked as 8204 * N_MEMORY and not marked online so that no sysfs 8205 * hierarchy will be created via register_one_node for 8206 * it. The pgdat will get fully initialized by 8207 * hotadd_init_pgdat() when memory is hotplugged into 8208 * this node. 8209 */ 8210 continue; 8211 } 8212 8213 pgdat = NODE_DATA(nid); 8214 free_area_init_node(nid); 8215 8216 /* Any memory on that node */ 8217 if (pgdat->node_present_pages) 8218 node_set_state(nid, N_MEMORY); 8219 check_for_memory(pgdat, nid); 8220 } 8221 8222 memmap_init(); 8223} 8224 8225static int __init cmdline_parse_core(char *p, unsigned long *core, 8226 unsigned long *percent) 8227{ 8228 unsigned long long coremem; 8229 char *endptr; 8230 8231 if (!p) 8232 return -EINVAL; 8233 8234 /* Value may be a percentage of total memory, otherwise bytes */ 8235 coremem = simple_strtoull(p, &endptr, 0); 8236 if (*endptr == '%') { 8237 /* Paranoid check for percent values greater than 100 */ 8238 WARN_ON(coremem > 100); 8239 8240 *percent = coremem; 8241 } else { 8242 coremem = memparse(p, &p); 8243 /* Paranoid check that UL is enough for the coremem value */ 8244 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8245 8246 *core = coremem >> PAGE_SHIFT; 8247 *percent = 0UL; 8248 } 8249 return 0; 8250} 8251 8252/* 8253 * kernelcore=size sets the amount of memory for use for allocations that 8254 * cannot be reclaimed or migrated. 8255 */ 8256static int __init cmdline_parse_kernelcore(char *p) 8257{ 8258 /* parse kernelcore=mirror */ 8259 if (parse_option_str(p, "mirror")) { 8260 mirrored_kernelcore = true; 8261 return 0; 8262 } 8263 8264 return cmdline_parse_core(p, &required_kernelcore, 8265 &required_kernelcore_percent); 8266} 8267 8268/* 8269 * movablecore=size sets the amount of memory for use for allocations that 8270 * can be reclaimed or migrated. 8271 */ 8272static int __init cmdline_parse_movablecore(char *p) 8273{ 8274 return cmdline_parse_core(p, &required_movablecore, 8275 &required_movablecore_percent); 8276} 8277 8278early_param("kernelcore", cmdline_parse_kernelcore); 8279early_param("movablecore", cmdline_parse_movablecore); 8280 8281void adjust_managed_page_count(struct page *page, long count) 8282{ 8283 atomic_long_add(count, &page_zone(page)->managed_pages); 8284 totalram_pages_add(count); 8285#ifdef CONFIG_HIGHMEM 8286 if (PageHighMem(page)) 8287 totalhigh_pages_add(count); 8288#endif 8289} 8290EXPORT_SYMBOL(adjust_managed_page_count); 8291 8292unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8293{ 8294 void *pos; 8295 unsigned long pages = 0; 8296 8297 start = (void *)PAGE_ALIGN((unsigned long)start); 8298 end = (void *)((unsigned long)end & PAGE_MASK); 8299 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8300 struct page *page = virt_to_page(pos); 8301 void *direct_map_addr; 8302 8303 /* 8304 * 'direct_map_addr' might be different from 'pos' 8305 * because some architectures' virt_to_page() 8306 * work with aliases. Getting the direct map 8307 * address ensures that we get a _writeable_ 8308 * alias for the memset(). 8309 */ 8310 direct_map_addr = page_address(page); 8311 /* 8312 * Perform a kasan-unchecked memset() since this memory 8313 * has not been initialized. 8314 */ 8315 direct_map_addr = kasan_reset_tag(direct_map_addr); 8316 if ((unsigned int)poison <= 0xFF) 8317 memset(direct_map_addr, poison, PAGE_SIZE); 8318 8319 free_reserved_page(page); 8320 } 8321 8322 if (pages && s) 8323 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 8324 8325 return pages; 8326} 8327 8328void __init mem_init_print_info(void) 8329{ 8330 unsigned long physpages, codesize, datasize, rosize, bss_size; 8331 unsigned long init_code_size, init_data_size; 8332 8333 physpages = get_num_physpages(); 8334 codesize = _etext - _stext; 8335 datasize = _edata - _sdata; 8336 rosize = __end_rodata - __start_rodata; 8337 bss_size = __bss_stop - __bss_start; 8338 init_data_size = __init_end - __init_begin; 8339 init_code_size = _einittext - _sinittext; 8340 8341 /* 8342 * Detect special cases and adjust section sizes accordingly: 8343 * 1) .init.* may be embedded into .data sections 8344 * 2) .init.text.* may be out of [__init_begin, __init_end], 8345 * please refer to arch/tile/kernel/vmlinux.lds.S. 8346 * 3) .rodata.* may be embedded into .text or .data sections. 8347 */ 8348#define adj_init_size(start, end, size, pos, adj) \ 8349 do { \ 8350 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ 8351 size -= adj; \ 8352 } while (0) 8353 8354 adj_init_size(__init_begin, __init_end, init_data_size, 8355 _sinittext, init_code_size); 8356 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8357 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8358 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8359 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8360 8361#undef adj_init_size 8362 8363 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8364#ifdef CONFIG_HIGHMEM 8365 ", %luK highmem" 8366#endif 8367 ")\n", 8368 K(nr_free_pages()), K(physpages), 8369 codesize >> 10, datasize >> 10, rosize >> 10, 8370 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8371 K(physpages - totalram_pages() - totalcma_pages), 8372 K(totalcma_pages) 8373#ifdef CONFIG_HIGHMEM 8374 , K(totalhigh_pages()) 8375#endif 8376 ); 8377} 8378 8379/** 8380 * set_dma_reserve - set the specified number of pages reserved in the first zone 8381 * @new_dma_reserve: The number of pages to mark reserved 8382 * 8383 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8384 * In the DMA zone, a significant percentage may be consumed by kernel image 8385 * and other unfreeable allocations which can skew the watermarks badly. This 8386 * function may optionally be used to account for unfreeable pages in the 8387 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8388 * smaller per-cpu batchsize. 8389 */ 8390void __init set_dma_reserve(unsigned long new_dma_reserve) 8391{ 8392 dma_reserve = new_dma_reserve; 8393} 8394 8395static int page_alloc_cpu_dead(unsigned int cpu) 8396{ 8397 struct zone *zone; 8398 8399 lru_add_drain_cpu(cpu); 8400 mlock_page_drain_remote(cpu); 8401 drain_pages(cpu); 8402 8403 /* 8404 * Spill the event counters of the dead processor 8405 * into the current processors event counters. 8406 * This artificially elevates the count of the current 8407 * processor. 8408 */ 8409 vm_events_fold_cpu(cpu); 8410 8411 /* 8412 * Zero the differential counters of the dead processor 8413 * so that the vm statistics are consistent. 8414 * 8415 * This is only okay since the processor is dead and cannot 8416 * race with what we are doing. 8417 */ 8418 cpu_vm_stats_fold(cpu); 8419 8420 for_each_populated_zone(zone) 8421 zone_pcp_update(zone, 0); 8422 8423 return 0; 8424} 8425 8426static int page_alloc_cpu_online(unsigned int cpu) 8427{ 8428 struct zone *zone; 8429 8430 for_each_populated_zone(zone) 8431 zone_pcp_update(zone, 1); 8432 return 0; 8433} 8434 8435#ifdef CONFIG_NUMA 8436int hashdist = HASHDIST_DEFAULT; 8437 8438static int __init set_hashdist(char *str) 8439{ 8440 if (!str) 8441 return 0; 8442 hashdist = simple_strtoul(str, &str, 0); 8443 return 1; 8444} 8445__setup("hashdist=", set_hashdist); 8446#endif 8447 8448void __init page_alloc_init(void) 8449{ 8450 int ret; 8451 8452#ifdef CONFIG_NUMA 8453 if (num_node_state(N_MEMORY) == 1) 8454 hashdist = 0; 8455#endif 8456 8457 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8458 "mm/page_alloc:pcp", 8459 page_alloc_cpu_online, 8460 page_alloc_cpu_dead); 8461 WARN_ON(ret < 0); 8462} 8463 8464/* 8465 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8466 * or min_free_kbytes changes. 8467 */ 8468static void calculate_totalreserve_pages(void) 8469{ 8470 struct pglist_data *pgdat; 8471 unsigned long reserve_pages = 0; 8472 enum zone_type i, j; 8473 8474 for_each_online_pgdat(pgdat) { 8475 8476 pgdat->totalreserve_pages = 0; 8477 8478 for (i = 0; i < MAX_NR_ZONES; i++) { 8479 struct zone *zone = pgdat->node_zones + i; 8480 long max = 0; 8481 unsigned long managed_pages = zone_managed_pages(zone); 8482 8483 /* Find valid and maximum lowmem_reserve in the zone */ 8484 for (j = i; j < MAX_NR_ZONES; j++) { 8485 if (zone->lowmem_reserve[j] > max) 8486 max = zone->lowmem_reserve[j]; 8487 } 8488 8489 /* we treat the high watermark as reserved pages. */ 8490 max += high_wmark_pages(zone); 8491 8492 if (max > managed_pages) 8493 max = managed_pages; 8494 8495 pgdat->totalreserve_pages += max; 8496 8497 reserve_pages += max; 8498 } 8499 } 8500 totalreserve_pages = reserve_pages; 8501} 8502 8503/* 8504 * setup_per_zone_lowmem_reserve - called whenever 8505 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8506 * has a correct pages reserved value, so an adequate number of 8507 * pages are left in the zone after a successful __alloc_pages(). 8508 */ 8509static void setup_per_zone_lowmem_reserve(void) 8510{ 8511 struct pglist_data *pgdat; 8512 enum zone_type i, j; 8513 8514 for_each_online_pgdat(pgdat) { 8515 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8516 struct zone *zone = &pgdat->node_zones[i]; 8517 int ratio = sysctl_lowmem_reserve_ratio[i]; 8518 bool clear = !ratio || !zone_managed_pages(zone); 8519 unsigned long managed_pages = 0; 8520 8521 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8522 struct zone *upper_zone = &pgdat->node_zones[j]; 8523 8524 managed_pages += zone_managed_pages(upper_zone); 8525 8526 if (clear) 8527 zone->lowmem_reserve[j] = 0; 8528 else 8529 zone->lowmem_reserve[j] = managed_pages / ratio; 8530 } 8531 } 8532 } 8533 8534 /* update totalreserve_pages */ 8535 calculate_totalreserve_pages(); 8536} 8537 8538static void __setup_per_zone_wmarks(void) 8539{ 8540 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8541 unsigned long lowmem_pages = 0; 8542 struct zone *zone; 8543 unsigned long flags; 8544 8545 /* Calculate total number of !ZONE_HIGHMEM pages */ 8546 for_each_zone(zone) { 8547 if (!is_highmem(zone)) 8548 lowmem_pages += zone_managed_pages(zone); 8549 } 8550 8551 for_each_zone(zone) { 8552 u64 tmp; 8553 8554 spin_lock_irqsave(&zone->lock, flags); 8555 tmp = (u64)pages_min * zone_managed_pages(zone); 8556 do_div(tmp, lowmem_pages); 8557 if (is_highmem(zone)) { 8558 /* 8559 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8560 * need highmem pages, so cap pages_min to a small 8561 * value here. 8562 * 8563 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8564 * deltas control async page reclaim, and so should 8565 * not be capped for highmem. 8566 */ 8567 unsigned long min_pages; 8568 8569 min_pages = zone_managed_pages(zone) / 1024; 8570 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8571 zone->_watermark[WMARK_MIN] = min_pages; 8572 } else { 8573 /* 8574 * If it's a lowmem zone, reserve a number of pages 8575 * proportionate to the zone's size. 8576 */ 8577 zone->_watermark[WMARK_MIN] = tmp; 8578 } 8579 8580 /* 8581 * Set the kswapd watermarks distance according to the 8582 * scale factor in proportion to available memory, but 8583 * ensure a minimum size on small systems. 8584 */ 8585 tmp = max_t(u64, tmp >> 2, 8586 mult_frac(zone_managed_pages(zone), 8587 watermark_scale_factor, 10000)); 8588 8589 zone->watermark_boost = 0; 8590 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8591 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 8592 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 8593 8594 spin_unlock_irqrestore(&zone->lock, flags); 8595 } 8596 8597 /* update totalreserve_pages */ 8598 calculate_totalreserve_pages(); 8599} 8600 8601/** 8602 * setup_per_zone_wmarks - called when min_free_kbytes changes 8603 * or when memory is hot-{added|removed} 8604 * 8605 * Ensures that the watermark[min,low,high] values for each zone are set 8606 * correctly with respect to min_free_kbytes. 8607 */ 8608void setup_per_zone_wmarks(void) 8609{ 8610 struct zone *zone; 8611 static DEFINE_SPINLOCK(lock); 8612 8613 spin_lock(&lock); 8614 __setup_per_zone_wmarks(); 8615 spin_unlock(&lock); 8616 8617 /* 8618 * The watermark size have changed so update the pcpu batch 8619 * and high limits or the limits may be inappropriate. 8620 */ 8621 for_each_zone(zone) 8622 zone_pcp_update(zone, 0); 8623} 8624 8625/* 8626 * Initialise min_free_kbytes. 8627 * 8628 * For small machines we want it small (128k min). For large machines 8629 * we want it large (256MB max). But it is not linear, because network 8630 * bandwidth does not increase linearly with machine size. We use 8631 * 8632 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8633 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8634 * 8635 * which yields 8636 * 8637 * 16MB: 512k 8638 * 32MB: 724k 8639 * 64MB: 1024k 8640 * 128MB: 1448k 8641 * 256MB: 2048k 8642 * 512MB: 2896k 8643 * 1024MB: 4096k 8644 * 2048MB: 5792k 8645 * 4096MB: 8192k 8646 * 8192MB: 11584k 8647 * 16384MB: 16384k 8648 */ 8649void calculate_min_free_kbytes(void) 8650{ 8651 unsigned long lowmem_kbytes; 8652 int new_min_free_kbytes; 8653 8654 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8655 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8656 8657 if (new_min_free_kbytes > user_min_free_kbytes) 8658 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 8659 else 8660 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8661 new_min_free_kbytes, user_min_free_kbytes); 8662 8663} 8664 8665int __meminit init_per_zone_wmark_min(void) 8666{ 8667 calculate_min_free_kbytes(); 8668 setup_per_zone_wmarks(); 8669 refresh_zone_stat_thresholds(); 8670 setup_per_zone_lowmem_reserve(); 8671 8672#ifdef CONFIG_NUMA 8673 setup_min_unmapped_ratio(); 8674 setup_min_slab_ratio(); 8675#endif 8676 8677 khugepaged_min_free_kbytes_update(); 8678 8679 return 0; 8680} 8681postcore_initcall(init_per_zone_wmark_min) 8682 8683/* 8684 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8685 * that we can call two helper functions whenever min_free_kbytes 8686 * changes. 8687 */ 8688int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8689 void *buffer, size_t *length, loff_t *ppos) 8690{ 8691 int rc; 8692 8693 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8694 if (rc) 8695 return rc; 8696 8697 if (write) { 8698 user_min_free_kbytes = min_free_kbytes; 8699 setup_per_zone_wmarks(); 8700 } 8701 return 0; 8702} 8703 8704int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8705 void *buffer, size_t *length, loff_t *ppos) 8706{ 8707 int rc; 8708 8709 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8710 if (rc) 8711 return rc; 8712 8713 if (write) 8714 setup_per_zone_wmarks(); 8715 8716 return 0; 8717} 8718 8719#ifdef CONFIG_NUMA 8720static void setup_min_unmapped_ratio(void) 8721{ 8722 pg_data_t *pgdat; 8723 struct zone *zone; 8724 8725 for_each_online_pgdat(pgdat) 8726 pgdat->min_unmapped_pages = 0; 8727 8728 for_each_zone(zone) 8729 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8730 sysctl_min_unmapped_ratio) / 100; 8731} 8732 8733 8734int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8735 void *buffer, size_t *length, loff_t *ppos) 8736{ 8737 int rc; 8738 8739 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8740 if (rc) 8741 return rc; 8742 8743 setup_min_unmapped_ratio(); 8744 8745 return 0; 8746} 8747 8748static void setup_min_slab_ratio(void) 8749{ 8750 pg_data_t *pgdat; 8751 struct zone *zone; 8752 8753 for_each_online_pgdat(pgdat) 8754 pgdat->min_slab_pages = 0; 8755 8756 for_each_zone(zone) 8757 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8758 sysctl_min_slab_ratio) / 100; 8759} 8760 8761int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8762 void *buffer, size_t *length, loff_t *ppos) 8763{ 8764 int rc; 8765 8766 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8767 if (rc) 8768 return rc; 8769 8770 setup_min_slab_ratio(); 8771 8772 return 0; 8773} 8774#endif 8775 8776/* 8777 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8778 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8779 * whenever sysctl_lowmem_reserve_ratio changes. 8780 * 8781 * The reserve ratio obviously has absolutely no relation with the 8782 * minimum watermarks. The lowmem reserve ratio can only make sense 8783 * if in function of the boot time zone sizes. 8784 */ 8785int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8786 void *buffer, size_t *length, loff_t *ppos) 8787{ 8788 int i; 8789 8790 proc_dointvec_minmax(table, write, buffer, length, ppos); 8791 8792 for (i = 0; i < MAX_NR_ZONES; i++) { 8793 if (sysctl_lowmem_reserve_ratio[i] < 1) 8794 sysctl_lowmem_reserve_ratio[i] = 0; 8795 } 8796 8797 setup_per_zone_lowmem_reserve(); 8798 return 0; 8799} 8800 8801/* 8802 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8803 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8804 * pagelist can have before it gets flushed back to buddy allocator. 8805 */ 8806int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8807 int write, void *buffer, size_t *length, loff_t *ppos) 8808{ 8809 struct zone *zone; 8810 int old_percpu_pagelist_high_fraction; 8811 int ret; 8812 8813 mutex_lock(&pcp_batch_high_lock); 8814 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8815 8816 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8817 if (!write || ret < 0) 8818 goto out; 8819 8820 /* Sanity checking to avoid pcp imbalance */ 8821 if (percpu_pagelist_high_fraction && 8822 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8823 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8824 ret = -EINVAL; 8825 goto out; 8826 } 8827 8828 /* No change? */ 8829 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8830 goto out; 8831 8832 for_each_populated_zone(zone) 8833 zone_set_pageset_high_and_batch(zone, 0); 8834out: 8835 mutex_unlock(&pcp_batch_high_lock); 8836 return ret; 8837} 8838 8839#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8840/* 8841 * Returns the number of pages that arch has reserved but 8842 * is not known to alloc_large_system_hash(). 8843 */ 8844static unsigned long __init arch_reserved_kernel_pages(void) 8845{ 8846 return 0; 8847} 8848#endif 8849 8850/* 8851 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8852 * machines. As memory size is increased the scale is also increased but at 8853 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8854 * quadruples the scale is increased by one, which means the size of hash table 8855 * only doubles, instead of quadrupling as well. 8856 * Because 32-bit systems cannot have large physical memory, where this scaling 8857 * makes sense, it is disabled on such platforms. 8858 */ 8859#if __BITS_PER_LONG > 32 8860#define ADAPT_SCALE_BASE (64ul << 30) 8861#define ADAPT_SCALE_SHIFT 2 8862#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8863#endif 8864 8865/* 8866 * allocate a large system hash table from bootmem 8867 * - it is assumed that the hash table must contain an exact power-of-2 8868 * quantity of entries 8869 * - limit is the number of hash buckets, not the total allocation size 8870 */ 8871void *__init alloc_large_system_hash(const char *tablename, 8872 unsigned long bucketsize, 8873 unsigned long numentries, 8874 int scale, 8875 int flags, 8876 unsigned int *_hash_shift, 8877 unsigned int *_hash_mask, 8878 unsigned long low_limit, 8879 unsigned long high_limit) 8880{ 8881 unsigned long long max = high_limit; 8882 unsigned long log2qty, size; 8883 void *table = NULL; 8884 gfp_t gfp_flags; 8885 bool virt; 8886 bool huge; 8887 8888 /* allow the kernel cmdline to have a say */ 8889 if (!numentries) { 8890 /* round applicable memory size up to nearest megabyte */ 8891 numentries = nr_kernel_pages; 8892 numentries -= arch_reserved_kernel_pages(); 8893 8894 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8895 if (PAGE_SHIFT < 20) 8896 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8897 8898#if __BITS_PER_LONG > 32 8899 if (!high_limit) { 8900 unsigned long adapt; 8901 8902 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8903 adapt <<= ADAPT_SCALE_SHIFT) 8904 scale++; 8905 } 8906#endif 8907 8908 /* limit to 1 bucket per 2^scale bytes of low memory */ 8909 if (scale > PAGE_SHIFT) 8910 numentries >>= (scale - PAGE_SHIFT); 8911 else 8912 numentries <<= (PAGE_SHIFT - scale); 8913 8914 /* Make sure we've got at least a 0-order allocation.. */ 8915 if (unlikely(flags & HASH_SMALL)) { 8916 /* Makes no sense without HASH_EARLY */ 8917 WARN_ON(!(flags & HASH_EARLY)); 8918 if (!(numentries >> *_hash_shift)) { 8919 numentries = 1UL << *_hash_shift; 8920 BUG_ON(!numentries); 8921 } 8922 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8923 numentries = PAGE_SIZE / bucketsize; 8924 } 8925 numentries = roundup_pow_of_two(numentries); 8926 8927 /* limit allocation size to 1/16 total memory by default */ 8928 if (max == 0) { 8929 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8930 do_div(max, bucketsize); 8931 } 8932 max = min(max, 0x80000000ULL); 8933 8934 if (numentries < low_limit) 8935 numentries = low_limit; 8936 if (numentries > max) 8937 numentries = max; 8938 8939 log2qty = ilog2(numentries); 8940 8941 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8942 do { 8943 virt = false; 8944 size = bucketsize << log2qty; 8945 if (flags & HASH_EARLY) { 8946 if (flags & HASH_ZERO) 8947 table = memblock_alloc(size, SMP_CACHE_BYTES); 8948 else 8949 table = memblock_alloc_raw(size, 8950 SMP_CACHE_BYTES); 8951 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8952 table = vmalloc_huge(size, gfp_flags); 8953 virt = true; 8954 if (table) 8955 huge = is_vm_area_hugepages(table); 8956 } else { 8957 /* 8958 * If bucketsize is not a power-of-two, we may free 8959 * some pages at the end of hash table which 8960 * alloc_pages_exact() automatically does 8961 */ 8962 table = alloc_pages_exact(size, gfp_flags); 8963 kmemleak_alloc(table, size, 1, gfp_flags); 8964 } 8965 } while (!table && size > PAGE_SIZE && --log2qty); 8966 8967 if (!table) 8968 panic("Failed to allocate %s hash table\n", tablename); 8969 8970 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8971 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8972 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8973 8974 if (_hash_shift) 8975 *_hash_shift = log2qty; 8976 if (_hash_mask) 8977 *_hash_mask = (1 << log2qty) - 1; 8978 8979 return table; 8980} 8981 8982#ifdef CONFIG_CONTIG_ALLOC 8983#if defined(CONFIG_DYNAMIC_DEBUG) || \ 8984 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8985/* Usage: See admin-guide/dynamic-debug-howto.rst */ 8986static void alloc_contig_dump_pages(struct list_head *page_list) 8987{ 8988 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8989 8990 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8991 struct page *page; 8992 8993 dump_stack(); 8994 list_for_each_entry(page, page_list, lru) 8995 dump_page(page, "migration failure"); 8996 } 8997} 8998#else 8999static inline void alloc_contig_dump_pages(struct list_head *page_list) 9000{ 9001} 9002#endif 9003 9004/* [start, end) must belong to a single zone. */ 9005int __alloc_contig_migrate_range(struct compact_control *cc, 9006 unsigned long start, unsigned long end) 9007{ 9008 /* This function is based on compact_zone() from compaction.c. */ 9009 unsigned int nr_reclaimed; 9010 unsigned long pfn = start; 9011 unsigned int tries = 0; 9012 int ret = 0; 9013 struct migration_target_control mtc = { 9014 .nid = zone_to_nid(cc->zone), 9015 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 9016 }; 9017 9018 lru_cache_disable(); 9019 9020 while (pfn < end || !list_empty(&cc->migratepages)) { 9021 if (fatal_signal_pending(current)) { 9022 ret = -EINTR; 9023 break; 9024 } 9025 9026 if (list_empty(&cc->migratepages)) { 9027 cc->nr_migratepages = 0; 9028 ret = isolate_migratepages_range(cc, pfn, end); 9029 if (ret && ret != -EAGAIN) 9030 break; 9031 pfn = cc->migrate_pfn; 9032 tries = 0; 9033 } else if (++tries == 5) { 9034 ret = -EBUSY; 9035 break; 9036 } 9037 9038 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 9039 &cc->migratepages); 9040 cc->nr_migratepages -= nr_reclaimed; 9041 9042 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 9043 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 9044 9045 /* 9046 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 9047 * to retry again over this error, so do the same here. 9048 */ 9049 if (ret == -ENOMEM) 9050 break; 9051 } 9052 9053 lru_cache_enable(); 9054 if (ret < 0) { 9055 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 9056 alloc_contig_dump_pages(&cc->migratepages); 9057 putback_movable_pages(&cc->migratepages); 9058 return ret; 9059 } 9060 return 0; 9061} 9062 9063/** 9064 * alloc_contig_range() -- tries to allocate given range of pages 9065 * @start: start PFN to allocate 9066 * @end: one-past-the-last PFN to allocate 9067 * @migratetype: migratetype of the underlying pageblocks (either 9068 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9069 * in range must have the same migratetype and it must 9070 * be either of the two. 9071 * @gfp_mask: GFP mask to use during compaction 9072 * 9073 * The PFN range does not have to be pageblock aligned. The PFN range must 9074 * belong to a single zone. 9075 * 9076 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9077 * pageblocks in the range. Once isolated, the pageblocks should not 9078 * be modified by others. 9079 * 9080 * Return: zero on success or negative error code. On success all 9081 * pages which PFN is in [start, end) are allocated for the caller and 9082 * need to be freed with free_contig_range(). 9083 */ 9084int alloc_contig_range(unsigned long start, unsigned long end, 9085 unsigned migratetype, gfp_t gfp_mask) 9086{ 9087 unsigned long outer_start, outer_end; 9088 int order; 9089 int ret = 0; 9090 9091 struct compact_control cc = { 9092 .nr_migratepages = 0, 9093 .order = -1, 9094 .zone = page_zone(pfn_to_page(start)), 9095 .mode = MIGRATE_SYNC, 9096 .ignore_skip_hint = true, 9097 .no_set_skip_hint = true, 9098 .gfp_mask = current_gfp_context(gfp_mask), 9099 .alloc_contig = true, 9100 }; 9101 INIT_LIST_HEAD(&cc.migratepages); 9102 9103 /* 9104 * What we do here is we mark all pageblocks in range as 9105 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9106 * have different sizes, and due to the way page allocator 9107 * work, start_isolate_page_range() has special handlings for this. 9108 * 9109 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9110 * migrate the pages from an unaligned range (ie. pages that 9111 * we are interested in). This will put all the pages in 9112 * range back to page allocator as MIGRATE_ISOLATE. 9113 * 9114 * When this is done, we take the pages in range from page 9115 * allocator removing them from the buddy system. This way 9116 * page allocator will never consider using them. 9117 * 9118 * This lets us mark the pageblocks back as 9119 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9120 * aligned range but not in the unaligned, original range are 9121 * put back to page allocator so that buddy can use them. 9122 */ 9123 9124 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 9125 if (ret) 9126 goto done; 9127 9128 drain_all_pages(cc.zone); 9129 9130 /* 9131 * In case of -EBUSY, we'd like to know which page causes problem. 9132 * So, just fall through. test_pages_isolated() has a tracepoint 9133 * which will report the busy page. 9134 * 9135 * It is possible that busy pages could become available before 9136 * the call to test_pages_isolated, and the range will actually be 9137 * allocated. So, if we fall through be sure to clear ret so that 9138 * -EBUSY is not accidentally used or returned to caller. 9139 */ 9140 ret = __alloc_contig_migrate_range(&cc, start, end); 9141 if (ret && ret != -EBUSY) 9142 goto done; 9143 ret = 0; 9144 9145 /* 9146 * Pages from [start, end) are within a pageblock_nr_pages 9147 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9148 * more, all pages in [start, end) are free in page allocator. 9149 * What we are going to do is to allocate all pages from 9150 * [start, end) (that is remove them from page allocator). 9151 * 9152 * The only problem is that pages at the beginning and at the 9153 * end of interesting range may be not aligned with pages that 9154 * page allocator holds, ie. they can be part of higher order 9155 * pages. Because of this, we reserve the bigger range and 9156 * once this is done free the pages we are not interested in. 9157 * 9158 * We don't have to hold zone->lock here because the pages are 9159 * isolated thus they won't get removed from buddy. 9160 */ 9161 9162 order = 0; 9163 outer_start = start; 9164 while (!PageBuddy(pfn_to_page(outer_start))) { 9165 if (++order >= MAX_ORDER) { 9166 outer_start = start; 9167 break; 9168 } 9169 outer_start &= ~0UL << order; 9170 } 9171 9172 if (outer_start != start) { 9173 order = buddy_order(pfn_to_page(outer_start)); 9174 9175 /* 9176 * outer_start page could be small order buddy page and 9177 * it doesn't include start page. Adjust outer_start 9178 * in this case to report failed page properly 9179 * on tracepoint in test_pages_isolated() 9180 */ 9181 if (outer_start + (1UL << order) <= start) 9182 outer_start = start; 9183 } 9184 9185 /* Make sure the range is really isolated. */ 9186 if (test_pages_isolated(outer_start, end, 0)) { 9187 ret = -EBUSY; 9188 goto done; 9189 } 9190 9191 /* Grab isolated pages from freelists. */ 9192 outer_end = isolate_freepages_range(&cc, outer_start, end); 9193 if (!outer_end) { 9194 ret = -EBUSY; 9195 goto done; 9196 } 9197 9198 /* Free head and tail (if any) */ 9199 if (start != outer_start) 9200 free_contig_range(outer_start, start - outer_start); 9201 if (end != outer_end) 9202 free_contig_range(end, outer_end - end); 9203 9204done: 9205 undo_isolate_page_range(start, end, migratetype); 9206 return ret; 9207} 9208EXPORT_SYMBOL(alloc_contig_range); 9209 9210static int __alloc_contig_pages(unsigned long start_pfn, 9211 unsigned long nr_pages, gfp_t gfp_mask) 9212{ 9213 unsigned long end_pfn = start_pfn + nr_pages; 9214 9215 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9216 gfp_mask); 9217} 9218 9219static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9220 unsigned long nr_pages) 9221{ 9222 unsigned long i, end_pfn = start_pfn + nr_pages; 9223 struct page *page; 9224 9225 for (i = start_pfn; i < end_pfn; i++) { 9226 page = pfn_to_online_page(i); 9227 if (!page) 9228 return false; 9229 9230 if (page_zone(page) != z) 9231 return false; 9232 9233 if (PageReserved(page)) 9234 return false; 9235 } 9236 return true; 9237} 9238 9239static bool zone_spans_last_pfn(const struct zone *zone, 9240 unsigned long start_pfn, unsigned long nr_pages) 9241{ 9242 unsigned long last_pfn = start_pfn + nr_pages - 1; 9243 9244 return zone_spans_pfn(zone, last_pfn); 9245} 9246 9247/** 9248 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9249 * @nr_pages: Number of contiguous pages to allocate 9250 * @gfp_mask: GFP mask to limit search and used during compaction 9251 * @nid: Target node 9252 * @nodemask: Mask for other possible nodes 9253 * 9254 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9255 * on an applicable zonelist to find a contiguous pfn range which can then be 9256 * tried for allocation with alloc_contig_range(). This routine is intended 9257 * for allocation requests which can not be fulfilled with the buddy allocator. 9258 * 9259 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9260 * power of two, then allocated range is also guaranteed to be aligned to same 9261 * nr_pages (e.g. 1GB request would be aligned to 1GB). 9262 * 9263 * Allocated pages can be freed with free_contig_range() or by manually calling 9264 * __free_page() on each allocated page. 9265 * 9266 * Return: pointer to contiguous pages on success, or NULL if not successful. 9267 */ 9268struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9269 int nid, nodemask_t *nodemask) 9270{ 9271 unsigned long ret, pfn, flags; 9272 struct zonelist *zonelist; 9273 struct zone *zone; 9274 struct zoneref *z; 9275 9276 zonelist = node_zonelist(nid, gfp_mask); 9277 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9278 gfp_zone(gfp_mask), nodemask) { 9279 spin_lock_irqsave(&zone->lock, flags); 9280 9281 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9282 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9283 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9284 /* 9285 * We release the zone lock here because 9286 * alloc_contig_range() will also lock the zone 9287 * at some point. If there's an allocation 9288 * spinning on this lock, it may win the race 9289 * and cause alloc_contig_range() to fail... 9290 */ 9291 spin_unlock_irqrestore(&zone->lock, flags); 9292 ret = __alloc_contig_pages(pfn, nr_pages, 9293 gfp_mask); 9294 if (!ret) 9295 return pfn_to_page(pfn); 9296 spin_lock_irqsave(&zone->lock, flags); 9297 } 9298 pfn += nr_pages; 9299 } 9300 spin_unlock_irqrestore(&zone->lock, flags); 9301 } 9302 return NULL; 9303} 9304#endif /* CONFIG_CONTIG_ALLOC */ 9305 9306void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9307{ 9308 unsigned long count = 0; 9309 9310 for (; nr_pages--; pfn++) { 9311 struct page *page = pfn_to_page(pfn); 9312 9313 count += page_count(page) != 1; 9314 __free_page(page); 9315 } 9316 WARN(count != 0, "%lu pages are still in use!\n", count); 9317} 9318EXPORT_SYMBOL(free_contig_range); 9319 9320/* 9321 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9322 * page high values need to be recalculated. 9323 */ 9324void zone_pcp_update(struct zone *zone, int cpu_online) 9325{ 9326 mutex_lock(&pcp_batch_high_lock); 9327 zone_set_pageset_high_and_batch(zone, cpu_online); 9328 mutex_unlock(&pcp_batch_high_lock); 9329} 9330 9331/* 9332 * Effectively disable pcplists for the zone by setting the high limit to 0 9333 * and draining all cpus. A concurrent page freeing on another CPU that's about 9334 * to put the page on pcplist will either finish before the drain and the page 9335 * will be drained, or observe the new high limit and skip the pcplist. 9336 * 9337 * Must be paired with a call to zone_pcp_enable(). 9338 */ 9339void zone_pcp_disable(struct zone *zone) 9340{ 9341 mutex_lock(&pcp_batch_high_lock); 9342 __zone_set_pageset_high_and_batch(zone, 0, 1); 9343 __drain_all_pages(zone, true); 9344} 9345 9346void zone_pcp_enable(struct zone *zone) 9347{ 9348 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9349 mutex_unlock(&pcp_batch_high_lock); 9350} 9351 9352void zone_pcp_reset(struct zone *zone) 9353{ 9354 int cpu; 9355 struct per_cpu_zonestat *pzstats; 9356 9357 if (zone->per_cpu_pageset != &boot_pageset) { 9358 for_each_online_cpu(cpu) { 9359 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9360 drain_zonestat(zone, pzstats); 9361 } 9362 free_percpu(zone->per_cpu_pageset); 9363 free_percpu(zone->per_cpu_zonestats); 9364 zone->per_cpu_pageset = &boot_pageset; 9365 zone->per_cpu_zonestats = &boot_zonestats; 9366 } 9367} 9368 9369#ifdef CONFIG_MEMORY_HOTREMOVE 9370/* 9371 * All pages in the range must be in a single zone, must not contain holes, 9372 * must span full sections, and must be isolated before calling this function. 9373 */ 9374void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9375{ 9376 unsigned long pfn = start_pfn; 9377 struct page *page; 9378 struct zone *zone; 9379 unsigned int order; 9380 unsigned long flags; 9381 9382 offline_mem_sections(pfn, end_pfn); 9383 zone = page_zone(pfn_to_page(pfn)); 9384 spin_lock_irqsave(&zone->lock, flags); 9385 while (pfn < end_pfn) { 9386 page = pfn_to_page(pfn); 9387 /* 9388 * The HWPoisoned page may be not in buddy system, and 9389 * page_count() is not 0. 9390 */ 9391 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9392 pfn++; 9393 continue; 9394 } 9395 /* 9396 * At this point all remaining PageOffline() pages have a 9397 * reference count of 0 and can simply be skipped. 9398 */ 9399 if (PageOffline(page)) { 9400 BUG_ON(page_count(page)); 9401 BUG_ON(PageBuddy(page)); 9402 pfn++; 9403 continue; 9404 } 9405 9406 BUG_ON(page_count(page)); 9407 BUG_ON(!PageBuddy(page)); 9408 order = buddy_order(page); 9409 del_page_from_free_list(page, zone, order); 9410 pfn += (1 << order); 9411 } 9412 spin_unlock_irqrestore(&zone->lock, flags); 9413} 9414#endif 9415 9416/* 9417 * This function returns a stable result only if called under zone lock. 9418 */ 9419bool is_free_buddy_page(struct page *page) 9420{ 9421 unsigned long pfn = page_to_pfn(page); 9422 unsigned int order; 9423 9424 for (order = 0; order < MAX_ORDER; order++) { 9425 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9426 9427 if (PageBuddy(page_head) && 9428 buddy_order_unsafe(page_head) >= order) 9429 break; 9430 } 9431 9432 return order < MAX_ORDER; 9433} 9434EXPORT_SYMBOL(is_free_buddy_page); 9435 9436#ifdef CONFIG_MEMORY_FAILURE 9437/* 9438 * Break down a higher-order page in sub-pages, and keep our target out of 9439 * buddy allocator. 9440 */ 9441static void break_down_buddy_pages(struct zone *zone, struct page *page, 9442 struct page *target, int low, int high, 9443 int migratetype) 9444{ 9445 unsigned long size = 1 << high; 9446 struct page *current_buddy, *next_page; 9447 9448 while (high > low) { 9449 high--; 9450 size >>= 1; 9451 9452 if (target >= &page[size]) { 9453 next_page = page + size; 9454 current_buddy = page; 9455 } else { 9456 next_page = page; 9457 current_buddy = page + size; 9458 } 9459 9460 if (set_page_guard(zone, current_buddy, high, migratetype)) 9461 continue; 9462 9463 if (current_buddy != target) { 9464 add_to_free_list(current_buddy, zone, high, migratetype); 9465 set_buddy_order(current_buddy, high); 9466 page = next_page; 9467 } 9468 } 9469} 9470 9471/* 9472 * Take a page that will be marked as poisoned off the buddy allocator. 9473 */ 9474bool take_page_off_buddy(struct page *page) 9475{ 9476 struct zone *zone = page_zone(page); 9477 unsigned long pfn = page_to_pfn(page); 9478 unsigned long flags; 9479 unsigned int order; 9480 bool ret = false; 9481 9482 spin_lock_irqsave(&zone->lock, flags); 9483 for (order = 0; order < MAX_ORDER; order++) { 9484 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9485 int page_order = buddy_order(page_head); 9486 9487 if (PageBuddy(page_head) && page_order >= order) { 9488 unsigned long pfn_head = page_to_pfn(page_head); 9489 int migratetype = get_pfnblock_migratetype(page_head, 9490 pfn_head); 9491 9492 del_page_from_free_list(page_head, zone, page_order); 9493 break_down_buddy_pages(zone, page_head, page, 0, 9494 page_order, migratetype); 9495 SetPageHWPoisonTakenOff(page); 9496 if (!is_migrate_isolate(migratetype)) 9497 __mod_zone_freepage_state(zone, -1, migratetype); 9498 ret = true; 9499 break; 9500 } 9501 if (page_count(page_head) > 0) 9502 break; 9503 } 9504 spin_unlock_irqrestore(&zone->lock, flags); 9505 return ret; 9506} 9507 9508/* 9509 * Cancel takeoff done by take_page_off_buddy(). 9510 */ 9511bool put_page_back_buddy(struct page *page) 9512{ 9513 struct zone *zone = page_zone(page); 9514 unsigned long pfn = page_to_pfn(page); 9515 unsigned long flags; 9516 int migratetype = get_pfnblock_migratetype(page, pfn); 9517 bool ret = false; 9518 9519 spin_lock_irqsave(&zone->lock, flags); 9520 if (put_page_testzero(page)) { 9521 ClearPageHWPoisonTakenOff(page); 9522 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 9523 if (TestClearPageHWPoison(page)) { 9524 ret = true; 9525 } 9526 } 9527 spin_unlock_irqrestore(&zone->lock, flags); 9528 9529 return ret; 9530} 9531#endif 9532 9533#ifdef CONFIG_ZONE_DMA 9534bool has_managed_dma(void) 9535{ 9536 struct pglist_data *pgdat; 9537 9538 for_each_online_pgdat(pgdat) { 9539 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 9540 9541 if (managed_zone(zone)) 9542 return true; 9543 } 9544 return false; 9545} 9546#endif /* CONFIG_ZONE_DMA */