cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

page_ext.c (11436B)


      1// SPDX-License-Identifier: GPL-2.0
      2#include <linux/mm.h>
      3#include <linux/mmzone.h>
      4#include <linux/memblock.h>
      5#include <linux/page_ext.h>
      6#include <linux/memory.h>
      7#include <linux/vmalloc.h>
      8#include <linux/kmemleak.h>
      9#include <linux/page_owner.h>
     10#include <linux/page_idle.h>
     11#include <linux/page_table_check.h>
     12
     13/*
     14 * struct page extension
     15 *
     16 * This is the feature to manage memory for extended data per page.
     17 *
     18 * Until now, we must modify struct page itself to store extra data per page.
     19 * This requires rebuilding the kernel and it is really time consuming process.
     20 * And, sometimes, rebuild is impossible due to third party module dependency.
     21 * At last, enlarging struct page could cause un-wanted system behaviour change.
     22 *
     23 * This feature is intended to overcome above mentioned problems. This feature
     24 * allocates memory for extended data per page in certain place rather than
     25 * the struct page itself. This memory can be accessed by the accessor
     26 * functions provided by this code. During the boot process, it checks whether
     27 * allocation of huge chunk of memory is needed or not. If not, it avoids
     28 * allocating memory at all. With this advantage, we can include this feature
     29 * into the kernel in default and can avoid rebuild and solve related problems.
     30 *
     31 * To help these things to work well, there are two callbacks for clients. One
     32 * is the need callback which is mandatory if user wants to avoid useless
     33 * memory allocation at boot-time. The other is optional, init callback, which
     34 * is used to do proper initialization after memory is allocated.
     35 *
     36 * The need callback is used to decide whether extended memory allocation is
     37 * needed or not. Sometimes users want to deactivate some features in this
     38 * boot and extra memory would be unnecessary. In this case, to avoid
     39 * allocating huge chunk of memory, each clients represent their need of
     40 * extra memory through the need callback. If one of the need callbacks
     41 * returns true, it means that someone needs extra memory so that
     42 * page extension core should allocates memory for page extension. If
     43 * none of need callbacks return true, memory isn't needed at all in this boot
     44 * and page extension core can skip to allocate memory. As result,
     45 * none of memory is wasted.
     46 *
     47 * When need callback returns true, page_ext checks if there is a request for
     48 * extra memory through size in struct page_ext_operations. If it is non-zero,
     49 * extra space is allocated for each page_ext entry and offset is returned to
     50 * user through offset in struct page_ext_operations.
     51 *
     52 * The init callback is used to do proper initialization after page extension
     53 * is completely initialized. In sparse memory system, extra memory is
     54 * allocated some time later than memmap is allocated. In other words, lifetime
     55 * of memory for page extension isn't same with memmap for struct page.
     56 * Therefore, clients can't store extra data until page extension is
     57 * initialized, even if pages are allocated and used freely. This could
     58 * cause inadequate state of extra data per page, so, to prevent it, client
     59 * can utilize this callback to initialize the state of it correctly.
     60 */
     61
     62#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
     63static bool need_page_idle(void)
     64{
     65	return true;
     66}
     67static struct page_ext_operations page_idle_ops __initdata = {
     68	.need = need_page_idle,
     69};
     70#endif
     71
     72static struct page_ext_operations *page_ext_ops[] __initdata = {
     73#ifdef CONFIG_PAGE_OWNER
     74	&page_owner_ops,
     75#endif
     76#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
     77	&page_idle_ops,
     78#endif
     79#ifdef CONFIG_PAGE_TABLE_CHECK
     80	&page_table_check_ops,
     81#endif
     82};
     83
     84unsigned long page_ext_size = sizeof(struct page_ext);
     85
     86static unsigned long total_usage;
     87
     88static bool __init invoke_need_callbacks(void)
     89{
     90	int i;
     91	int entries = ARRAY_SIZE(page_ext_ops);
     92	bool need = false;
     93
     94	for (i = 0; i < entries; i++) {
     95		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
     96			page_ext_ops[i]->offset = page_ext_size;
     97			page_ext_size += page_ext_ops[i]->size;
     98			need = true;
     99		}
    100	}
    101
    102	return need;
    103}
    104
    105static void __init invoke_init_callbacks(void)
    106{
    107	int i;
    108	int entries = ARRAY_SIZE(page_ext_ops);
    109
    110	for (i = 0; i < entries; i++) {
    111		if (page_ext_ops[i]->init)
    112			page_ext_ops[i]->init();
    113	}
    114}
    115
    116#ifndef CONFIG_SPARSEMEM
    117void __init page_ext_init_flatmem_late(void)
    118{
    119	invoke_init_callbacks();
    120}
    121#endif
    122
    123static inline struct page_ext *get_entry(void *base, unsigned long index)
    124{
    125	return base + page_ext_size * index;
    126}
    127
    128#ifndef CONFIG_SPARSEMEM
    129
    130
    131void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
    132{
    133	pgdat->node_page_ext = NULL;
    134}
    135
    136struct page_ext *lookup_page_ext(const struct page *page)
    137{
    138	unsigned long pfn = page_to_pfn(page);
    139	unsigned long index;
    140	struct page_ext *base;
    141
    142	base = NODE_DATA(page_to_nid(page))->node_page_ext;
    143	/*
    144	 * The sanity checks the page allocator does upon freeing a
    145	 * page can reach here before the page_ext arrays are
    146	 * allocated when feeding a range of pages to the allocator
    147	 * for the first time during bootup or memory hotplug.
    148	 */
    149	if (unlikely(!base))
    150		return NULL;
    151	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
    152					MAX_ORDER_NR_PAGES);
    153	return get_entry(base, index);
    154}
    155
    156static int __init alloc_node_page_ext(int nid)
    157{
    158	struct page_ext *base;
    159	unsigned long table_size;
    160	unsigned long nr_pages;
    161
    162	nr_pages = NODE_DATA(nid)->node_spanned_pages;
    163	if (!nr_pages)
    164		return 0;
    165
    166	/*
    167	 * Need extra space if node range is not aligned with
    168	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
    169	 * checks buddy's status, range could be out of exact node range.
    170	 */
    171	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
    172		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
    173		nr_pages += MAX_ORDER_NR_PAGES;
    174
    175	table_size = page_ext_size * nr_pages;
    176
    177	base = memblock_alloc_try_nid(
    178			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
    179			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
    180	if (!base)
    181		return -ENOMEM;
    182	NODE_DATA(nid)->node_page_ext = base;
    183	total_usage += table_size;
    184	return 0;
    185}
    186
    187void __init page_ext_init_flatmem(void)
    188{
    189
    190	int nid, fail;
    191
    192	if (!invoke_need_callbacks())
    193		return;
    194
    195	for_each_online_node(nid)  {
    196		fail = alloc_node_page_ext(nid);
    197		if (fail)
    198			goto fail;
    199	}
    200	pr_info("allocated %ld bytes of page_ext\n", total_usage);
    201	return;
    202
    203fail:
    204	pr_crit("allocation of page_ext failed.\n");
    205	panic("Out of memory");
    206}
    207
    208#else /* CONFIG_SPARSEMEM */
    209
    210struct page_ext *lookup_page_ext(const struct page *page)
    211{
    212	unsigned long pfn = page_to_pfn(page);
    213	struct mem_section *section = __pfn_to_section(pfn);
    214	/*
    215	 * The sanity checks the page allocator does upon freeing a
    216	 * page can reach here before the page_ext arrays are
    217	 * allocated when feeding a range of pages to the allocator
    218	 * for the first time during bootup or memory hotplug.
    219	 */
    220	if (!section->page_ext)
    221		return NULL;
    222	return get_entry(section->page_ext, pfn);
    223}
    224
    225static void *__meminit alloc_page_ext(size_t size, int nid)
    226{
    227	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
    228	void *addr = NULL;
    229
    230	addr = alloc_pages_exact_nid(nid, size, flags);
    231	if (addr) {
    232		kmemleak_alloc(addr, size, 1, flags);
    233		return addr;
    234	}
    235
    236	addr = vzalloc_node(size, nid);
    237
    238	return addr;
    239}
    240
    241static int __meminit init_section_page_ext(unsigned long pfn, int nid)
    242{
    243	struct mem_section *section;
    244	struct page_ext *base;
    245	unsigned long table_size;
    246
    247	section = __pfn_to_section(pfn);
    248
    249	if (section->page_ext)
    250		return 0;
    251
    252	table_size = page_ext_size * PAGES_PER_SECTION;
    253	base = alloc_page_ext(table_size, nid);
    254
    255	/*
    256	 * The value stored in section->page_ext is (base - pfn)
    257	 * and it does not point to the memory block allocated above,
    258	 * causing kmemleak false positives.
    259	 */
    260	kmemleak_not_leak(base);
    261
    262	if (!base) {
    263		pr_err("page ext allocation failure\n");
    264		return -ENOMEM;
    265	}
    266
    267	/*
    268	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
    269	 * we need to apply a mask.
    270	 */
    271	pfn &= PAGE_SECTION_MASK;
    272	section->page_ext = (void *)base - page_ext_size * pfn;
    273	total_usage += table_size;
    274	return 0;
    275}
    276
    277static void free_page_ext(void *addr)
    278{
    279	if (is_vmalloc_addr(addr)) {
    280		vfree(addr);
    281	} else {
    282		struct page *page = virt_to_page(addr);
    283		size_t table_size;
    284
    285		table_size = page_ext_size * PAGES_PER_SECTION;
    286
    287		BUG_ON(PageReserved(page));
    288		kmemleak_free(addr);
    289		free_pages_exact(addr, table_size);
    290	}
    291}
    292
    293static void __free_page_ext(unsigned long pfn)
    294{
    295	struct mem_section *ms;
    296	struct page_ext *base;
    297
    298	ms = __pfn_to_section(pfn);
    299	if (!ms || !ms->page_ext)
    300		return;
    301	base = get_entry(ms->page_ext, pfn);
    302	free_page_ext(base);
    303	ms->page_ext = NULL;
    304}
    305
    306static int __meminit online_page_ext(unsigned long start_pfn,
    307				unsigned long nr_pages,
    308				int nid)
    309{
    310	unsigned long start, end, pfn;
    311	int fail = 0;
    312
    313	start = SECTION_ALIGN_DOWN(start_pfn);
    314	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
    315
    316	if (nid == NUMA_NO_NODE) {
    317		/*
    318		 * In this case, "nid" already exists and contains valid memory.
    319		 * "start_pfn" passed to us is a pfn which is an arg for
    320		 * online__pages(), and start_pfn should exist.
    321		 */
    322		nid = pfn_to_nid(start_pfn);
    323		VM_BUG_ON(!node_online(nid));
    324	}
    325
    326	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
    327		fail = init_section_page_ext(pfn, nid);
    328	if (!fail)
    329		return 0;
    330
    331	/* rollback */
    332	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
    333		__free_page_ext(pfn);
    334
    335	return -ENOMEM;
    336}
    337
    338static int __meminit offline_page_ext(unsigned long start_pfn,
    339				unsigned long nr_pages, int nid)
    340{
    341	unsigned long start, end, pfn;
    342
    343	start = SECTION_ALIGN_DOWN(start_pfn);
    344	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
    345
    346	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
    347		__free_page_ext(pfn);
    348	return 0;
    349
    350}
    351
    352static int __meminit page_ext_callback(struct notifier_block *self,
    353			       unsigned long action, void *arg)
    354{
    355	struct memory_notify *mn = arg;
    356	int ret = 0;
    357
    358	switch (action) {
    359	case MEM_GOING_ONLINE:
    360		ret = online_page_ext(mn->start_pfn,
    361				   mn->nr_pages, mn->status_change_nid);
    362		break;
    363	case MEM_OFFLINE:
    364		offline_page_ext(mn->start_pfn,
    365				mn->nr_pages, mn->status_change_nid);
    366		break;
    367	case MEM_CANCEL_ONLINE:
    368		offline_page_ext(mn->start_pfn,
    369				mn->nr_pages, mn->status_change_nid);
    370		break;
    371	case MEM_GOING_OFFLINE:
    372		break;
    373	case MEM_ONLINE:
    374	case MEM_CANCEL_OFFLINE:
    375		break;
    376	}
    377
    378	return notifier_from_errno(ret);
    379}
    380
    381void __init page_ext_init(void)
    382{
    383	unsigned long pfn;
    384	int nid;
    385
    386	if (!invoke_need_callbacks())
    387		return;
    388
    389	for_each_node_state(nid, N_MEMORY) {
    390		unsigned long start_pfn, end_pfn;
    391
    392		start_pfn = node_start_pfn(nid);
    393		end_pfn = node_end_pfn(nid);
    394		/*
    395		 * start_pfn and end_pfn may not be aligned to SECTION and the
    396		 * page->flags of out of node pages are not initialized.  So we
    397		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
    398		 */
    399		for (pfn = start_pfn; pfn < end_pfn;
    400			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
    401
    402			if (!pfn_valid(pfn))
    403				continue;
    404			/*
    405			 * Nodes's pfns can be overlapping.
    406			 * We know some arch can have a nodes layout such as
    407			 * -------------pfn-------------->
    408			 * N0 | N1 | N2 | N0 | N1 | N2|....
    409			 */
    410			if (pfn_to_nid(pfn) != nid)
    411				continue;
    412			if (init_section_page_ext(pfn, nid))
    413				goto oom;
    414			cond_resched();
    415		}
    416	}
    417	hotplug_memory_notifier(page_ext_callback, 0);
    418	pr_info("allocated %ld bytes of page_ext\n", total_usage);
    419	invoke_init_callbacks();
    420	return;
    421
    422oom:
    423	panic("Out of memory");
    424}
    425
    426void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
    427{
    428}
    429
    430#endif