cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

page_isolation.c (21187B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * linux/mm/page_isolation.c
      4 */
      5
      6#include <linux/mm.h>
      7#include <linux/page-isolation.h>
      8#include <linux/pageblock-flags.h>
      9#include <linux/memory.h>
     10#include <linux/hugetlb.h>
     11#include <linux/page_owner.h>
     12#include <linux/migrate.h>
     13#include "internal.h"
     14
     15#define CREATE_TRACE_POINTS
     16#include <trace/events/page_isolation.h>
     17
     18/*
     19 * This function checks whether the range [start_pfn, end_pfn) includes
     20 * unmovable pages or not. The range must fall into a single pageblock and
     21 * consequently belong to a single zone.
     22 *
     23 * PageLRU check without isolation or lru_lock could race so that
     24 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
     25 * check without lock_page also may miss some movable non-lru pages at
     26 * race condition. So you can't expect this function should be exact.
     27 *
     28 * Returns a page without holding a reference. If the caller wants to
     29 * dereference that page (e.g., dumping), it has to make sure that it
     30 * cannot get removed (e.g., via memory unplug) concurrently.
     31 *
     32 */
     33static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
     34				int migratetype, int flags)
     35{
     36	struct page *page = pfn_to_page(start_pfn);
     37	struct zone *zone = page_zone(page);
     38	unsigned long pfn;
     39
     40	VM_BUG_ON(ALIGN_DOWN(start_pfn, pageblock_nr_pages) !=
     41		  ALIGN_DOWN(end_pfn - 1, pageblock_nr_pages));
     42
     43	if (is_migrate_cma_page(page)) {
     44		/*
     45		 * CMA allocations (alloc_contig_range) really need to mark
     46		 * isolate CMA pageblocks even when they are not movable in fact
     47		 * so consider them movable here.
     48		 */
     49		if (is_migrate_cma(migratetype))
     50			return NULL;
     51
     52		return page;
     53	}
     54
     55	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
     56		page = pfn_to_page(pfn);
     57
     58		/*
     59		 * Both, bootmem allocations and memory holes are marked
     60		 * PG_reserved and are unmovable. We can even have unmovable
     61		 * allocations inside ZONE_MOVABLE, for example when
     62		 * specifying "movablecore".
     63		 */
     64		if (PageReserved(page))
     65			return page;
     66
     67		/*
     68		 * If the zone is movable and we have ruled out all reserved
     69		 * pages then it should be reasonably safe to assume the rest
     70		 * is movable.
     71		 */
     72		if (zone_idx(zone) == ZONE_MOVABLE)
     73			continue;
     74
     75		/*
     76		 * Hugepages are not in LRU lists, but they're movable.
     77		 * THPs are on the LRU, but need to be counted as #small pages.
     78		 * We need not scan over tail pages because we don't
     79		 * handle each tail page individually in migration.
     80		 */
     81		if (PageHuge(page) || PageTransCompound(page)) {
     82			struct page *head = compound_head(page);
     83			unsigned int skip_pages;
     84
     85			if (PageHuge(page)) {
     86				if (!hugepage_migration_supported(page_hstate(head)))
     87					return page;
     88			} else if (!PageLRU(head) && !__PageMovable(head)) {
     89				return page;
     90			}
     91
     92			skip_pages = compound_nr(head) - (page - head);
     93			pfn += skip_pages - 1;
     94			continue;
     95		}
     96
     97		/*
     98		 * We can't use page_count without pin a page
     99		 * because another CPU can free compound page.
    100		 * This check already skips compound tails of THP
    101		 * because their page->_refcount is zero at all time.
    102		 */
    103		if (!page_ref_count(page)) {
    104			if (PageBuddy(page))
    105				pfn += (1 << buddy_order(page)) - 1;
    106			continue;
    107		}
    108
    109		/*
    110		 * The HWPoisoned page may be not in buddy system, and
    111		 * page_count() is not 0.
    112		 */
    113		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
    114			continue;
    115
    116		/*
    117		 * We treat all PageOffline() pages as movable when offlining
    118		 * to give drivers a chance to decrement their reference count
    119		 * in MEM_GOING_OFFLINE in order to indicate that these pages
    120		 * can be offlined as there are no direct references anymore.
    121		 * For actually unmovable PageOffline() where the driver does
    122		 * not support this, we will fail later when trying to actually
    123		 * move these pages that still have a reference count > 0.
    124		 * (false negatives in this function only)
    125		 */
    126		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
    127			continue;
    128
    129		if (__PageMovable(page) || PageLRU(page))
    130			continue;
    131
    132		/*
    133		 * If there are RECLAIMABLE pages, we need to check
    134		 * it.  But now, memory offline itself doesn't call
    135		 * shrink_node_slabs() and it still to be fixed.
    136		 */
    137		return page;
    138	}
    139	return NULL;
    140}
    141
    142/*
    143 * This function set pageblock migratetype to isolate if no unmovable page is
    144 * present in [start_pfn, end_pfn). The pageblock must intersect with
    145 * [start_pfn, end_pfn).
    146 */
    147static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
    148			unsigned long start_pfn, unsigned long end_pfn)
    149{
    150	struct zone *zone = page_zone(page);
    151	struct page *unmovable;
    152	unsigned long flags;
    153	unsigned long check_unmovable_start, check_unmovable_end;
    154
    155	spin_lock_irqsave(&zone->lock, flags);
    156
    157	/*
    158	 * We assume the caller intended to SET migrate type to isolate.
    159	 * If it is already set, then someone else must have raced and
    160	 * set it before us.
    161	 */
    162	if (is_migrate_isolate_page(page)) {
    163		spin_unlock_irqrestore(&zone->lock, flags);
    164		return -EBUSY;
    165	}
    166
    167	/*
    168	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
    169	 * We just check MOVABLE pages.
    170	 *
    171	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
    172	 * to avoid redundant checks.
    173	 */
    174	check_unmovable_start = max(page_to_pfn(page), start_pfn);
    175	check_unmovable_end = min(ALIGN(page_to_pfn(page) + 1, pageblock_nr_pages),
    176				  end_pfn);
    177
    178	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
    179			migratetype, isol_flags);
    180	if (!unmovable) {
    181		unsigned long nr_pages;
    182		int mt = get_pageblock_migratetype(page);
    183
    184		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
    185		zone->nr_isolate_pageblock++;
    186		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE,
    187									NULL);
    188
    189		__mod_zone_freepage_state(zone, -nr_pages, mt);
    190		spin_unlock_irqrestore(&zone->lock, flags);
    191		return 0;
    192	}
    193
    194	spin_unlock_irqrestore(&zone->lock, flags);
    195	if (isol_flags & REPORT_FAILURE) {
    196		/*
    197		 * printk() with zone->lock held will likely trigger a
    198		 * lockdep splat, so defer it here.
    199		 */
    200		dump_page(unmovable, "unmovable page");
    201	}
    202
    203	return -EBUSY;
    204}
    205
    206static void unset_migratetype_isolate(struct page *page, int migratetype)
    207{
    208	struct zone *zone;
    209	unsigned long flags, nr_pages;
    210	bool isolated_page = false;
    211	unsigned int order;
    212	struct page *buddy;
    213
    214	zone = page_zone(page);
    215	spin_lock_irqsave(&zone->lock, flags);
    216	if (!is_migrate_isolate_page(page))
    217		goto out;
    218
    219	/*
    220	 * Because freepage with more than pageblock_order on isolated
    221	 * pageblock is restricted to merge due to freepage counting problem,
    222	 * it is possible that there is free buddy page.
    223	 * move_freepages_block() doesn't care of merge so we need other
    224	 * approach in order to merge them. Isolation and free will make
    225	 * these pages to be merged.
    226	 */
    227	if (PageBuddy(page)) {
    228		order = buddy_order(page);
    229		if (order >= pageblock_order && order < MAX_ORDER - 1) {
    230			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
    231						    order, NULL);
    232			if (buddy && !is_migrate_isolate_page(buddy)) {
    233				isolated_page = !!__isolate_free_page(page, order);
    234				/*
    235				 * Isolating a free page in an isolated pageblock
    236				 * is expected to always work as watermarks don't
    237				 * apply here.
    238				 */
    239				VM_WARN_ON(!isolated_page);
    240			}
    241		}
    242	}
    243
    244	/*
    245	 * If we isolate freepage with more than pageblock_order, there
    246	 * should be no freepage in the range, so we could avoid costly
    247	 * pageblock scanning for freepage moving.
    248	 *
    249	 * We didn't actually touch any of the isolated pages, so place them
    250	 * to the tail of the freelist. This is an optimization for memory
    251	 * onlining - just onlined memory won't immediately be considered for
    252	 * allocation.
    253	 */
    254	if (!isolated_page) {
    255		nr_pages = move_freepages_block(zone, page, migratetype, NULL);
    256		__mod_zone_freepage_state(zone, nr_pages, migratetype);
    257	}
    258	set_pageblock_migratetype(page, migratetype);
    259	if (isolated_page)
    260		__putback_isolated_page(page, order, migratetype);
    261	zone->nr_isolate_pageblock--;
    262out:
    263	spin_unlock_irqrestore(&zone->lock, flags);
    264}
    265
    266static inline struct page *
    267__first_valid_page(unsigned long pfn, unsigned long nr_pages)
    268{
    269	int i;
    270
    271	for (i = 0; i < nr_pages; i++) {
    272		struct page *page;
    273
    274		page = pfn_to_online_page(pfn + i);
    275		if (!page)
    276			continue;
    277		return page;
    278	}
    279	return NULL;
    280}
    281
    282/**
    283 * isolate_single_pageblock() -- tries to isolate a pageblock that might be
    284 * within a free or in-use page.
    285 * @boundary_pfn:		pageblock-aligned pfn that a page might cross
    286 * @flags:			isolation flags
    287 * @gfp_flags:			GFP flags used for migrating pages
    288 * @isolate_before:	isolate the pageblock before the boundary_pfn
    289 * @skip_isolation:	the flag to skip the pageblock isolation in second
    290 *			isolate_single_pageblock()
    291 *
    292 * Free and in-use pages can be as big as MAX_ORDER-1 and contain more than one
    293 * pageblock. When not all pageblocks within a page are isolated at the same
    294 * time, free page accounting can go wrong. For example, in the case of
    295 * MAX_ORDER-1 = pageblock_order + 1, a MAX_ORDER-1 page has two pagelbocks.
    296 * [         MAX_ORDER-1         ]
    297 * [  pageblock0  |  pageblock1  ]
    298 * When either pageblock is isolated, if it is a free page, the page is not
    299 * split into separate migratetype lists, which is supposed to; if it is an
    300 * in-use page and freed later, __free_one_page() does not split the free page
    301 * either. The function handles this by splitting the free page or migrating
    302 * the in-use page then splitting the free page.
    303 */
    304static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
    305			gfp_t gfp_flags, bool isolate_before, bool skip_isolation)
    306{
    307	unsigned char saved_mt;
    308	unsigned long start_pfn;
    309	unsigned long isolate_pageblock;
    310	unsigned long pfn;
    311	struct zone *zone;
    312	int ret;
    313
    314	VM_BUG_ON(!IS_ALIGNED(boundary_pfn, pageblock_nr_pages));
    315
    316	if (isolate_before)
    317		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
    318	else
    319		isolate_pageblock = boundary_pfn;
    320
    321	/*
    322	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
    323	 * only isolating a subset of pageblocks from a bigger than pageblock
    324	 * free or in-use page. Also make sure all to-be-isolated pageblocks
    325	 * are within the same zone.
    326	 */
    327	zone  = page_zone(pfn_to_page(isolate_pageblock));
    328	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
    329				      zone->zone_start_pfn);
    330
    331	saved_mt = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
    332
    333	if (skip_isolation)
    334		VM_BUG_ON(!is_migrate_isolate(saved_mt));
    335	else {
    336		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), saved_mt, flags,
    337				isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
    338
    339		if (ret)
    340			return ret;
    341	}
    342
    343	/*
    344	 * Bail out early when the to-be-isolated pageblock does not form
    345	 * a free or in-use page across boundary_pfn:
    346	 *
    347	 * 1. isolate before boundary_pfn: the page after is not online
    348	 * 2. isolate after boundary_pfn: the page before is not online
    349	 *
    350	 * This also ensures correctness. Without it, when isolate after
    351	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
    352	 * __first_valid_page() will return unexpected NULL in the for loop
    353	 * below.
    354	 */
    355	if (isolate_before) {
    356		if (!pfn_to_online_page(boundary_pfn))
    357			return 0;
    358	} else {
    359		if (!pfn_to_online_page(boundary_pfn - 1))
    360			return 0;
    361	}
    362
    363	for (pfn = start_pfn; pfn < boundary_pfn;) {
    364		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
    365
    366		VM_BUG_ON(!page);
    367		pfn = page_to_pfn(page);
    368		/*
    369		 * start_pfn is MAX_ORDER_NR_PAGES aligned, if there is any
    370		 * free pages in [start_pfn, boundary_pfn), its head page will
    371		 * always be in the range.
    372		 */
    373		if (PageBuddy(page)) {
    374			int order = buddy_order(page);
    375
    376			if (pfn + (1UL << order) > boundary_pfn) {
    377				/* free page changed before split, check it again */
    378				if (split_free_page(page, order, boundary_pfn - pfn))
    379					continue;
    380			}
    381
    382			pfn += 1UL << order;
    383			continue;
    384		}
    385		/*
    386		 * migrate compound pages then let the free page handling code
    387		 * above do the rest. If migration is not possible, just fail.
    388		 */
    389		if (PageCompound(page)) {
    390			struct page *head = compound_head(page);
    391			unsigned long head_pfn = page_to_pfn(head);
    392			unsigned long nr_pages = compound_nr(head);
    393
    394			if (head_pfn + nr_pages <= boundary_pfn) {
    395				pfn = head_pfn + nr_pages;
    396				continue;
    397			}
    398#if defined CONFIG_COMPACTION || defined CONFIG_CMA
    399			/*
    400			 * hugetlb, lru compound (THP), and movable compound pages
    401			 * can be migrated. Otherwise, fail the isolation.
    402			 */
    403			if (PageHuge(page) || PageLRU(page) || __PageMovable(page)) {
    404				int order;
    405				unsigned long outer_pfn;
    406				int page_mt = get_pageblock_migratetype(page);
    407				bool isolate_page = !is_migrate_isolate_page(page);
    408				struct compact_control cc = {
    409					.nr_migratepages = 0,
    410					.order = -1,
    411					.zone = page_zone(pfn_to_page(head_pfn)),
    412					.mode = MIGRATE_SYNC,
    413					.ignore_skip_hint = true,
    414					.no_set_skip_hint = true,
    415					.gfp_mask = gfp_flags,
    416					.alloc_contig = true,
    417				};
    418				INIT_LIST_HEAD(&cc.migratepages);
    419
    420				/*
    421				 * XXX: mark the page as MIGRATE_ISOLATE so that
    422				 * no one else can grab the freed page after migration.
    423				 * Ideally, the page should be freed as two separate
    424				 * pages to be added into separate migratetype free
    425				 * lists.
    426				 */
    427				if (isolate_page) {
    428					ret = set_migratetype_isolate(page, page_mt,
    429						flags, head_pfn, head_pfn + nr_pages);
    430					if (ret)
    431						goto failed;
    432				}
    433
    434				ret = __alloc_contig_migrate_range(&cc, head_pfn,
    435							head_pfn + nr_pages);
    436
    437				/*
    438				 * restore the page's migratetype so that it can
    439				 * be split into separate migratetype free lists
    440				 * later.
    441				 */
    442				if (isolate_page)
    443					unset_migratetype_isolate(page, page_mt);
    444
    445				if (ret)
    446					goto failed;
    447				/*
    448				 * reset pfn to the head of the free page, so
    449				 * that the free page handling code above can split
    450				 * the free page to the right migratetype list.
    451				 *
    452				 * head_pfn is not used here as a hugetlb page order
    453				 * can be bigger than MAX_ORDER-1, but after it is
    454				 * freed, the free page order is not. Use pfn within
    455				 * the range to find the head of the free page.
    456				 */
    457				order = 0;
    458				outer_pfn = pfn;
    459				while (!PageBuddy(pfn_to_page(outer_pfn))) {
    460					/* stop if we cannot find the free page */
    461					if (++order >= MAX_ORDER)
    462						goto failed;
    463					outer_pfn &= ~0UL << order;
    464				}
    465				pfn = outer_pfn;
    466				continue;
    467			} else
    468#endif
    469				goto failed;
    470		}
    471
    472		pfn++;
    473	}
    474	return 0;
    475failed:
    476	/* restore the original migratetype */
    477	if (!skip_isolation)
    478		unset_migratetype_isolate(pfn_to_page(isolate_pageblock), saved_mt);
    479	return -EBUSY;
    480}
    481
    482/**
    483 * start_isolate_page_range() - make page-allocation-type of range of pages to
    484 * be MIGRATE_ISOLATE.
    485 * @start_pfn:		The lower PFN of the range to be isolated.
    486 * @end_pfn:		The upper PFN of the range to be isolated.
    487 * @migratetype:	Migrate type to set in error recovery.
    488 * @flags:		The following flags are allowed (they can be combined in
    489 *			a bit mask)
    490 *			MEMORY_OFFLINE - isolate to offline (!allocate) memory
    491 *					 e.g., skip over PageHWPoison() pages
    492 *					 and PageOffline() pages.
    493 *			REPORT_FAILURE - report details about the failure to
    494 *			isolate the range
    495 * @gfp_flags:		GFP flags used for migrating pages that sit across the
    496 *			range boundaries.
    497 *
    498 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
    499 * the range will never be allocated. Any free pages and pages freed in the
    500 * future will not be allocated again. If specified range includes migrate types
    501 * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
    502 * pages in the range finally, the caller have to free all pages in the range.
    503 * test_page_isolated() can be used for test it.
    504 *
    505 * The function first tries to isolate the pageblocks at the beginning and end
    506 * of the range, since there might be pages across the range boundaries.
    507 * Afterwards, it isolates the rest of the range.
    508 *
    509 * There is no high level synchronization mechanism that prevents two threads
    510 * from trying to isolate overlapping ranges. If this happens, one thread
    511 * will notice pageblocks in the overlapping range already set to isolate.
    512 * This happens in set_migratetype_isolate, and set_migratetype_isolate
    513 * returns an error. We then clean up by restoring the migration type on
    514 * pageblocks we may have modified and return -EBUSY to caller. This
    515 * prevents two threads from simultaneously working on overlapping ranges.
    516 *
    517 * Please note that there is no strong synchronization with the page allocator
    518 * either. Pages might be freed while their page blocks are marked ISOLATED.
    519 * A call to drain_all_pages() after isolation can flush most of them. However
    520 * in some cases pages might still end up on pcp lists and that would allow
    521 * for their allocation even when they are in fact isolated already. Depending
    522 * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
    523 * might be used to flush and disable pcplist before isolation and enable after
    524 * unisolation.
    525 *
    526 * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
    527 */
    528int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
    529			     int migratetype, int flags, gfp_t gfp_flags)
    530{
    531	unsigned long pfn;
    532	struct page *page;
    533	/* isolation is done at page block granularity */
    534	unsigned long isolate_start = ALIGN_DOWN(start_pfn, pageblock_nr_pages);
    535	unsigned long isolate_end = ALIGN(end_pfn, pageblock_nr_pages);
    536	int ret;
    537	bool skip_isolation = false;
    538
    539	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
    540	ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false, skip_isolation);
    541	if (ret)
    542		return ret;
    543
    544	if (isolate_start == isolate_end - pageblock_nr_pages)
    545		skip_isolation = true;
    546
    547	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
    548	ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true, skip_isolation);
    549	if (ret) {
    550		unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
    551		return ret;
    552	}
    553
    554	/* skip isolated pageblocks at the beginning and end */
    555	for (pfn = isolate_start + pageblock_nr_pages;
    556	     pfn < isolate_end - pageblock_nr_pages;
    557	     pfn += pageblock_nr_pages) {
    558		page = __first_valid_page(pfn, pageblock_nr_pages);
    559		if (page && set_migratetype_isolate(page, migratetype, flags,
    560					start_pfn, end_pfn)) {
    561			undo_isolate_page_range(isolate_start, pfn, migratetype);
    562			unset_migratetype_isolate(
    563				pfn_to_page(isolate_end - pageblock_nr_pages),
    564				migratetype);
    565			return -EBUSY;
    566		}
    567	}
    568	return 0;
    569}
    570
    571/*
    572 * Make isolated pages available again.
    573 */
    574void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
    575			    int migratetype)
    576{
    577	unsigned long pfn;
    578	struct page *page;
    579	unsigned long isolate_start = ALIGN_DOWN(start_pfn, pageblock_nr_pages);
    580	unsigned long isolate_end = ALIGN(end_pfn, pageblock_nr_pages);
    581
    582
    583	for (pfn = isolate_start;
    584	     pfn < isolate_end;
    585	     pfn += pageblock_nr_pages) {
    586		page = __first_valid_page(pfn, pageblock_nr_pages);
    587		if (!page || !is_migrate_isolate_page(page))
    588			continue;
    589		unset_migratetype_isolate(page, migratetype);
    590	}
    591}
    592/*
    593 * Test all pages in the range is free(means isolated) or not.
    594 * all pages in [start_pfn...end_pfn) must be in the same zone.
    595 * zone->lock must be held before call this.
    596 *
    597 * Returns the last tested pfn.
    598 */
    599static unsigned long
    600__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
    601				  int flags)
    602{
    603	struct page *page;
    604
    605	while (pfn < end_pfn) {
    606		page = pfn_to_page(pfn);
    607		if (PageBuddy(page))
    608			/*
    609			 * If the page is on a free list, it has to be on
    610			 * the correct MIGRATE_ISOLATE freelist. There is no
    611			 * simple way to verify that as VM_BUG_ON(), though.
    612			 */
    613			pfn += 1 << buddy_order(page);
    614		else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
    615			/* A HWPoisoned page cannot be also PageBuddy */
    616			pfn++;
    617		else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
    618			 !page_count(page))
    619			/*
    620			 * The responsible driver agreed to skip PageOffline()
    621			 * pages when offlining memory by dropping its
    622			 * reference in MEM_GOING_OFFLINE.
    623			 */
    624			pfn++;
    625		else
    626			break;
    627	}
    628
    629	return pfn;
    630}
    631
    632/* Caller should ensure that requested range is in a single zone */
    633int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
    634			int isol_flags)
    635{
    636	unsigned long pfn, flags;
    637	struct page *page;
    638	struct zone *zone;
    639	int ret;
    640
    641	/*
    642	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
    643	 * are not aligned to pageblock_nr_pages.
    644	 * Then we just check migratetype first.
    645	 */
    646	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
    647		page = __first_valid_page(pfn, pageblock_nr_pages);
    648		if (page && !is_migrate_isolate_page(page))
    649			break;
    650	}
    651	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
    652	if ((pfn < end_pfn) || !page) {
    653		ret = -EBUSY;
    654		goto out;
    655	}
    656
    657	/* Check all pages are free or marked as ISOLATED */
    658	zone = page_zone(page);
    659	spin_lock_irqsave(&zone->lock, flags);
    660	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
    661	spin_unlock_irqrestore(&zone->lock, flags);
    662
    663	ret = pfn < end_pfn ? -EBUSY : 0;
    664
    665out:
    666	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
    667
    668	return ret;
    669}