cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

percpu-vm.c (11969B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * mm/percpu-vm.c - vmalloc area based chunk allocation
      4 *
      5 * Copyright (C) 2010		SUSE Linux Products GmbH
      6 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
      7 *
      8 * Chunks are mapped into vmalloc areas and populated page by page.
      9 * This is the default chunk allocator.
     10 */
     11#include "internal.h"
     12
     13static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
     14				    unsigned int cpu, int page_idx)
     15{
     16	/* must not be used on pre-mapped chunk */
     17	WARN_ON(chunk->immutable);
     18
     19	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
     20}
     21
     22/**
     23 * pcpu_get_pages - get temp pages array
     24 *
     25 * Returns pointer to array of pointers to struct page which can be indexed
     26 * with pcpu_page_idx().  Note that there is only one array and accesses
     27 * should be serialized by pcpu_alloc_mutex.
     28 *
     29 * RETURNS:
     30 * Pointer to temp pages array on success.
     31 */
     32static struct page **pcpu_get_pages(void)
     33{
     34	static struct page **pages;
     35	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
     36
     37	lockdep_assert_held(&pcpu_alloc_mutex);
     38
     39	if (!pages)
     40		pages = pcpu_mem_zalloc(pages_size, GFP_KERNEL);
     41	return pages;
     42}
     43
     44/**
     45 * pcpu_free_pages - free pages which were allocated for @chunk
     46 * @chunk: chunk pages were allocated for
     47 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
     48 * @page_start: page index of the first page to be freed
     49 * @page_end: page index of the last page to be freed + 1
     50 *
     51 * Free pages [@page_start and @page_end) in @pages for all units.
     52 * The pages were allocated for @chunk.
     53 */
     54static void pcpu_free_pages(struct pcpu_chunk *chunk,
     55			    struct page **pages, int page_start, int page_end)
     56{
     57	unsigned int cpu;
     58	int i;
     59
     60	for_each_possible_cpu(cpu) {
     61		for (i = page_start; i < page_end; i++) {
     62			struct page *page = pages[pcpu_page_idx(cpu, i)];
     63
     64			if (page)
     65				__free_page(page);
     66		}
     67	}
     68}
     69
     70/**
     71 * pcpu_alloc_pages - allocates pages for @chunk
     72 * @chunk: target chunk
     73 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
     74 * @page_start: page index of the first page to be allocated
     75 * @page_end: page index of the last page to be allocated + 1
     76 * @gfp: allocation flags passed to the underlying allocator
     77 *
     78 * Allocate pages [@page_start,@page_end) into @pages for all units.
     79 * The allocation is for @chunk.  Percpu core doesn't care about the
     80 * content of @pages and will pass it verbatim to pcpu_map_pages().
     81 */
     82static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
     83			    struct page **pages, int page_start, int page_end,
     84			    gfp_t gfp)
     85{
     86	unsigned int cpu, tcpu;
     87	int i;
     88
     89	gfp |= __GFP_HIGHMEM;
     90
     91	for_each_possible_cpu(cpu) {
     92		for (i = page_start; i < page_end; i++) {
     93			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
     94
     95			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
     96			if (!*pagep)
     97				goto err;
     98		}
     99	}
    100	return 0;
    101
    102err:
    103	while (--i >= page_start)
    104		__free_page(pages[pcpu_page_idx(cpu, i)]);
    105
    106	for_each_possible_cpu(tcpu) {
    107		if (tcpu == cpu)
    108			break;
    109		for (i = page_start; i < page_end; i++)
    110			__free_page(pages[pcpu_page_idx(tcpu, i)]);
    111	}
    112	return -ENOMEM;
    113}
    114
    115/**
    116 * pcpu_pre_unmap_flush - flush cache prior to unmapping
    117 * @chunk: chunk the regions to be flushed belongs to
    118 * @page_start: page index of the first page to be flushed
    119 * @page_end: page index of the last page to be flushed + 1
    120 *
    121 * Pages in [@page_start,@page_end) of @chunk are about to be
    122 * unmapped.  Flush cache.  As each flushing trial can be very
    123 * expensive, issue flush on the whole region at once rather than
    124 * doing it for each cpu.  This could be an overkill but is more
    125 * scalable.
    126 */
    127static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
    128				 int page_start, int page_end)
    129{
    130	flush_cache_vunmap(
    131		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
    132		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
    133}
    134
    135static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
    136{
    137	vunmap_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT));
    138}
    139
    140/**
    141 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
    142 * @chunk: chunk of interest
    143 * @pages: pages array which can be used to pass information to free
    144 * @page_start: page index of the first page to unmap
    145 * @page_end: page index of the last page to unmap + 1
    146 *
    147 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
    148 * Corresponding elements in @pages were cleared by the caller and can
    149 * be used to carry information to pcpu_free_pages() which will be
    150 * called after all unmaps are finished.  The caller should call
    151 * proper pre/post flush functions.
    152 */
    153static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
    154			     struct page **pages, int page_start, int page_end)
    155{
    156	unsigned int cpu;
    157	int i;
    158
    159	for_each_possible_cpu(cpu) {
    160		for (i = page_start; i < page_end; i++) {
    161			struct page *page;
    162
    163			page = pcpu_chunk_page(chunk, cpu, i);
    164			WARN_ON(!page);
    165			pages[pcpu_page_idx(cpu, i)] = page;
    166		}
    167		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
    168				   page_end - page_start);
    169	}
    170}
    171
    172/**
    173 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
    174 * @chunk: pcpu_chunk the regions to be flushed belong to
    175 * @page_start: page index of the first page to be flushed
    176 * @page_end: page index of the last page to be flushed + 1
    177 *
    178 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
    179 * TLB for the regions.  This can be skipped if the area is to be
    180 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
    181 *
    182 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
    183 * for the whole region.
    184 */
    185static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
    186				      int page_start, int page_end)
    187{
    188	flush_tlb_kernel_range(
    189		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
    190		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
    191}
    192
    193static int __pcpu_map_pages(unsigned long addr, struct page **pages,
    194			    int nr_pages)
    195{
    196	return vmap_pages_range_noflush(addr, addr + (nr_pages << PAGE_SHIFT),
    197					PAGE_KERNEL, pages, PAGE_SHIFT);
    198}
    199
    200/**
    201 * pcpu_map_pages - map pages into a pcpu_chunk
    202 * @chunk: chunk of interest
    203 * @pages: pages array containing pages to be mapped
    204 * @page_start: page index of the first page to map
    205 * @page_end: page index of the last page to map + 1
    206 *
    207 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
    208 * caller is responsible for calling pcpu_post_map_flush() after all
    209 * mappings are complete.
    210 *
    211 * This function is responsible for setting up whatever is necessary for
    212 * reverse lookup (addr -> chunk).
    213 */
    214static int pcpu_map_pages(struct pcpu_chunk *chunk,
    215			  struct page **pages, int page_start, int page_end)
    216{
    217	unsigned int cpu, tcpu;
    218	int i, err;
    219
    220	for_each_possible_cpu(cpu) {
    221		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
    222				       &pages[pcpu_page_idx(cpu, page_start)],
    223				       page_end - page_start);
    224		if (err < 0)
    225			goto err;
    226
    227		for (i = page_start; i < page_end; i++)
    228			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
    229					    chunk);
    230	}
    231	return 0;
    232err:
    233	for_each_possible_cpu(tcpu) {
    234		if (tcpu == cpu)
    235			break;
    236		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
    237				   page_end - page_start);
    238	}
    239	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
    240	return err;
    241}
    242
    243/**
    244 * pcpu_post_map_flush - flush cache after mapping
    245 * @chunk: pcpu_chunk the regions to be flushed belong to
    246 * @page_start: page index of the first page to be flushed
    247 * @page_end: page index of the last page to be flushed + 1
    248 *
    249 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
    250 * cache.
    251 *
    252 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
    253 * for the whole region.
    254 */
    255static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
    256				int page_start, int page_end)
    257{
    258	flush_cache_vmap(
    259		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
    260		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
    261}
    262
    263/**
    264 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
    265 * @chunk: chunk of interest
    266 * @page_start: the start page
    267 * @page_end: the end page
    268 * @gfp: allocation flags passed to the underlying memory allocator
    269 *
    270 * For each cpu, populate and map pages [@page_start,@page_end) into
    271 * @chunk.
    272 *
    273 * CONTEXT:
    274 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
    275 */
    276static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
    277			       int page_start, int page_end, gfp_t gfp)
    278{
    279	struct page **pages;
    280
    281	pages = pcpu_get_pages();
    282	if (!pages)
    283		return -ENOMEM;
    284
    285	if (pcpu_alloc_pages(chunk, pages, page_start, page_end, gfp))
    286		return -ENOMEM;
    287
    288	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
    289		pcpu_free_pages(chunk, pages, page_start, page_end);
    290		return -ENOMEM;
    291	}
    292	pcpu_post_map_flush(chunk, page_start, page_end);
    293
    294	return 0;
    295}
    296
    297/**
    298 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
    299 * @chunk: chunk to depopulate
    300 * @page_start: the start page
    301 * @page_end: the end page
    302 *
    303 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
    304 * from @chunk.
    305 *
    306 * Caller is required to call pcpu_post_unmap_tlb_flush() if not returning the
    307 * region back to vmalloc() which will lazily flush the tlb.
    308 *
    309 * CONTEXT:
    310 * pcpu_alloc_mutex.
    311 */
    312static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
    313				  int page_start, int page_end)
    314{
    315	struct page **pages;
    316
    317	/*
    318	 * If control reaches here, there must have been at least one
    319	 * successful population attempt so the temp pages array must
    320	 * be available now.
    321	 */
    322	pages = pcpu_get_pages();
    323	BUG_ON(!pages);
    324
    325	/* unmap and free */
    326	pcpu_pre_unmap_flush(chunk, page_start, page_end);
    327
    328	pcpu_unmap_pages(chunk, pages, page_start, page_end);
    329
    330	pcpu_free_pages(chunk, pages, page_start, page_end);
    331}
    332
    333static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp)
    334{
    335	struct pcpu_chunk *chunk;
    336	struct vm_struct **vms;
    337
    338	chunk = pcpu_alloc_chunk(gfp);
    339	if (!chunk)
    340		return NULL;
    341
    342	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
    343				pcpu_nr_groups, pcpu_atom_size);
    344	if (!vms) {
    345		pcpu_free_chunk(chunk);
    346		return NULL;
    347	}
    348
    349	chunk->data = vms;
    350	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
    351
    352	pcpu_stats_chunk_alloc();
    353	trace_percpu_create_chunk(chunk->base_addr);
    354
    355	return chunk;
    356}
    357
    358static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
    359{
    360	if (!chunk)
    361		return;
    362
    363	pcpu_stats_chunk_dealloc();
    364	trace_percpu_destroy_chunk(chunk->base_addr);
    365
    366	if (chunk->data)
    367		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
    368	pcpu_free_chunk(chunk);
    369}
    370
    371static struct page *pcpu_addr_to_page(void *addr)
    372{
    373	return vmalloc_to_page(addr);
    374}
    375
    376static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
    377{
    378	/* no extra restriction */
    379	return 0;
    380}
    381
    382/**
    383 * pcpu_should_reclaim_chunk - determine if a chunk should go into reclaim
    384 * @chunk: chunk of interest
    385 *
    386 * This is the entry point for percpu reclaim.  If a chunk qualifies, it is then
    387 * isolated and managed in separate lists at the back of pcpu_slot: sidelined
    388 * and to_depopulate respectively.  The to_depopulate list holds chunks slated
    389 * for depopulation.  They no longer contribute to pcpu_nr_empty_pop_pages once
    390 * they are on this list.  Once depopulated, they are moved onto the sidelined
    391 * list which enables them to be pulled back in for allocation if no other chunk
    392 * can suffice the allocation.
    393 */
    394static bool pcpu_should_reclaim_chunk(struct pcpu_chunk *chunk)
    395{
    396	/* do not reclaim either the first chunk or reserved chunk */
    397	if (chunk == pcpu_first_chunk || chunk == pcpu_reserved_chunk)
    398		return false;
    399
    400	/*
    401	 * If it is isolated, it may be on the sidelined list so move it back to
    402	 * the to_depopulate list.  If we hit at least 1/4 pages empty pages AND
    403	 * there is no system-wide shortage of empty pages aside from this
    404	 * chunk, move it to the to_depopulate list.
    405	 */
    406	return ((chunk->isolated && chunk->nr_empty_pop_pages) ||
    407		(pcpu_nr_empty_pop_pages >
    408		 (PCPU_EMPTY_POP_PAGES_HIGH + chunk->nr_empty_pop_pages) &&
    409		 chunk->nr_empty_pop_pages >= chunk->nr_pages / 4));
    410}