percpu.c (104959B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * mm/percpu.c - percpu memory allocator 4 * 5 * Copyright (C) 2009 SUSE Linux Products GmbH 6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 7 * 8 * Copyright (C) 2017 Facebook Inc. 9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> 10 * 11 * The percpu allocator handles both static and dynamic areas. Percpu 12 * areas are allocated in chunks which are divided into units. There is 13 * a 1-to-1 mapping for units to possible cpus. These units are grouped 14 * based on NUMA properties of the machine. 15 * 16 * c0 c1 c2 17 * ------------------- ------------------- ------------ 18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 19 * ------------------- ...... ------------------- .... ------------ 20 * 21 * Allocation is done by offsets into a unit's address space. Ie., an 22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 24 * and even sparse. Access is handled by configuring percpu base 25 * registers according to the cpu to unit mappings and offsetting the 26 * base address using pcpu_unit_size. 27 * 28 * There is special consideration for the first chunk which must handle 29 * the static percpu variables in the kernel image as allocation services 30 * are not online yet. In short, the first chunk is structured like so: 31 * 32 * <Static | [Reserved] | Dynamic> 33 * 34 * The static data is copied from the original section managed by the 35 * linker. The reserved section, if non-zero, primarily manages static 36 * percpu variables from kernel modules. Finally, the dynamic section 37 * takes care of normal allocations. 38 * 39 * The allocator organizes chunks into lists according to free size and 40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT 41 * flag should be passed. All memcg-aware allocations are sharing one set 42 * of chunks and all unaccounted allocations and allocations performed 43 * by processes belonging to the root memory cgroup are using the second set. 44 * 45 * The allocator tries to allocate from the fullest chunk first. Each chunk 46 * is managed by a bitmap with metadata blocks. The allocation map is updated 47 * on every allocation and free to reflect the current state while the boundary 48 * map is only updated on allocation. Each metadata block contains 49 * information to help mitigate the need to iterate over large portions 50 * of the bitmap. The reverse mapping from page to chunk is stored in 51 * the page's index. Lastly, units are lazily backed and grow in unison. 52 * 53 * There is a unique conversion that goes on here between bytes and bits. 54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 55 * tracks the number of pages it is responsible for in nr_pages. Helper 56 * functions are used to convert from between the bytes, bits, and blocks. 57 * All hints are managed in bits unless explicitly stated. 58 * 59 * To use this allocator, arch code should do the following: 60 * 61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 62 * regular address to percpu pointer and back if they need to be 63 * different from the default 64 * 65 * - use pcpu_setup_first_chunk() during percpu area initialization to 66 * setup the first chunk containing the kernel static percpu area 67 */ 68 69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 70 71#include <linux/bitmap.h> 72#include <linux/cpumask.h> 73#include <linux/memblock.h> 74#include <linux/err.h> 75#include <linux/lcm.h> 76#include <linux/list.h> 77#include <linux/log2.h> 78#include <linux/mm.h> 79#include <linux/module.h> 80#include <linux/mutex.h> 81#include <linux/percpu.h> 82#include <linux/pfn.h> 83#include <linux/slab.h> 84#include <linux/spinlock.h> 85#include <linux/vmalloc.h> 86#include <linux/workqueue.h> 87#include <linux/kmemleak.h> 88#include <linux/sched.h> 89#include <linux/sched/mm.h> 90#include <linux/memcontrol.h> 91 92#include <asm/cacheflush.h> 93#include <asm/sections.h> 94#include <asm/tlbflush.h> 95#include <asm/io.h> 96 97#define CREATE_TRACE_POINTS 98#include <trace/events/percpu.h> 99 100#include "percpu-internal.h" 101 102/* 103 * The slots are sorted by the size of the biggest continuous free area. 104 * 1-31 bytes share the same slot. 105 */ 106#define PCPU_SLOT_BASE_SHIFT 5 107/* chunks in slots below this are subject to being sidelined on failed alloc */ 108#define PCPU_SLOT_FAIL_THRESHOLD 3 109 110#define PCPU_EMPTY_POP_PAGES_LOW 2 111#define PCPU_EMPTY_POP_PAGES_HIGH 4 112 113#ifdef CONFIG_SMP 114/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 115#ifndef __addr_to_pcpu_ptr 116#define __addr_to_pcpu_ptr(addr) \ 117 (void __percpu *)((unsigned long)(addr) - \ 118 (unsigned long)pcpu_base_addr + \ 119 (unsigned long)__per_cpu_start) 120#endif 121#ifndef __pcpu_ptr_to_addr 122#define __pcpu_ptr_to_addr(ptr) \ 123 (void __force *)((unsigned long)(ptr) + \ 124 (unsigned long)pcpu_base_addr - \ 125 (unsigned long)__per_cpu_start) 126#endif 127#else /* CONFIG_SMP */ 128/* on UP, it's always identity mapped */ 129#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 130#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 131#endif /* CONFIG_SMP */ 132 133static int pcpu_unit_pages __ro_after_init; 134static int pcpu_unit_size __ro_after_init; 135static int pcpu_nr_units __ro_after_init; 136static int pcpu_atom_size __ro_after_init; 137int pcpu_nr_slots __ro_after_init; 138static int pcpu_free_slot __ro_after_init; 139int pcpu_sidelined_slot __ro_after_init; 140int pcpu_to_depopulate_slot __ro_after_init; 141static size_t pcpu_chunk_struct_size __ro_after_init; 142 143/* cpus with the lowest and highest unit addresses */ 144static unsigned int pcpu_low_unit_cpu __ro_after_init; 145static unsigned int pcpu_high_unit_cpu __ro_after_init; 146 147/* the address of the first chunk which starts with the kernel static area */ 148void *pcpu_base_addr __ro_after_init; 149 150static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 151const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 152 153/* group information, used for vm allocation */ 154static int pcpu_nr_groups __ro_after_init; 155static const unsigned long *pcpu_group_offsets __ro_after_init; 156static const size_t *pcpu_group_sizes __ro_after_init; 157 158/* 159 * The first chunk which always exists. Note that unlike other 160 * chunks, this one can be allocated and mapped in several different 161 * ways and thus often doesn't live in the vmalloc area. 162 */ 163struct pcpu_chunk *pcpu_first_chunk __ro_after_init; 164 165/* 166 * Optional reserved chunk. This chunk reserves part of the first 167 * chunk and serves it for reserved allocations. When the reserved 168 * region doesn't exist, the following variable is NULL. 169 */ 170struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 171 172DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 173static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 174 175struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ 176 177/* chunks which need their map areas extended, protected by pcpu_lock */ 178static LIST_HEAD(pcpu_map_extend_chunks); 179 180/* 181 * The number of empty populated pages, protected by pcpu_lock. 182 * The reserved chunk doesn't contribute to the count. 183 */ 184int pcpu_nr_empty_pop_pages; 185 186/* 187 * The number of populated pages in use by the allocator, protected by 188 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 189 * allocated/deallocated, it is allocated/deallocated in all units of a chunk 190 * and increments/decrements this count by 1). 191 */ 192static unsigned long pcpu_nr_populated; 193 194/* 195 * Balance work is used to populate or destroy chunks asynchronously. We 196 * try to keep the number of populated free pages between 197 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 198 * empty chunk. 199 */ 200static void pcpu_balance_workfn(struct work_struct *work); 201static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 202static bool pcpu_async_enabled __read_mostly; 203static bool pcpu_atomic_alloc_failed; 204 205static void pcpu_schedule_balance_work(void) 206{ 207 if (pcpu_async_enabled) 208 schedule_work(&pcpu_balance_work); 209} 210 211/** 212 * pcpu_addr_in_chunk - check if the address is served from this chunk 213 * @chunk: chunk of interest 214 * @addr: percpu address 215 * 216 * RETURNS: 217 * True if the address is served from this chunk. 218 */ 219static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 220{ 221 void *start_addr, *end_addr; 222 223 if (!chunk) 224 return false; 225 226 start_addr = chunk->base_addr + chunk->start_offset; 227 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 228 chunk->end_offset; 229 230 return addr >= start_addr && addr < end_addr; 231} 232 233static int __pcpu_size_to_slot(int size) 234{ 235 int highbit = fls(size); /* size is in bytes */ 236 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 237} 238 239static int pcpu_size_to_slot(int size) 240{ 241 if (size == pcpu_unit_size) 242 return pcpu_free_slot; 243 return __pcpu_size_to_slot(size); 244} 245 246static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 247{ 248 const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 249 250 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 251 chunk_md->contig_hint == 0) 252 return 0; 253 254 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 255} 256 257/* set the pointer to a chunk in a page struct */ 258static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 259{ 260 page->index = (unsigned long)pcpu; 261} 262 263/* obtain pointer to a chunk from a page struct */ 264static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 265{ 266 return (struct pcpu_chunk *)page->index; 267} 268 269static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 270{ 271 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 272} 273 274static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 275{ 276 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 277} 278 279static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 280 unsigned int cpu, int page_idx) 281{ 282 return (unsigned long)chunk->base_addr + 283 pcpu_unit_page_offset(cpu, page_idx); 284} 285 286/* 287 * The following are helper functions to help access bitmaps and convert 288 * between bitmap offsets to address offsets. 289 */ 290static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 291{ 292 return chunk->alloc_map + 293 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 294} 295 296static unsigned long pcpu_off_to_block_index(int off) 297{ 298 return off / PCPU_BITMAP_BLOCK_BITS; 299} 300 301static unsigned long pcpu_off_to_block_off(int off) 302{ 303 return off & (PCPU_BITMAP_BLOCK_BITS - 1); 304} 305 306static unsigned long pcpu_block_off_to_off(int index, int off) 307{ 308 return index * PCPU_BITMAP_BLOCK_BITS + off; 309} 310 311/** 312 * pcpu_check_block_hint - check against the contig hint 313 * @block: block of interest 314 * @bits: size of allocation 315 * @align: alignment of area (max PAGE_SIZE) 316 * 317 * Check to see if the allocation can fit in the block's contig hint. 318 * Note, a chunk uses the same hints as a block so this can also check against 319 * the chunk's contig hint. 320 */ 321static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits, 322 size_t align) 323{ 324 int bit_off = ALIGN(block->contig_hint_start, align) - 325 block->contig_hint_start; 326 327 return bit_off + bits <= block->contig_hint; 328} 329 330/* 331 * pcpu_next_hint - determine which hint to use 332 * @block: block of interest 333 * @alloc_bits: size of allocation 334 * 335 * This determines if we should scan based on the scan_hint or first_free. 336 * In general, we want to scan from first_free to fulfill allocations by 337 * first fit. However, if we know a scan_hint at position scan_hint_start 338 * cannot fulfill an allocation, we can begin scanning from there knowing 339 * the contig_hint will be our fallback. 340 */ 341static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 342{ 343 /* 344 * The three conditions below determine if we can skip past the 345 * scan_hint. First, does the scan hint exist. Second, is the 346 * contig_hint after the scan_hint (possibly not true iff 347 * contig_hint == scan_hint). Third, is the allocation request 348 * larger than the scan_hint. 349 */ 350 if (block->scan_hint && 351 block->contig_hint_start > block->scan_hint_start && 352 alloc_bits > block->scan_hint) 353 return block->scan_hint_start + block->scan_hint; 354 355 return block->first_free; 356} 357 358/** 359 * pcpu_next_md_free_region - finds the next hint free area 360 * @chunk: chunk of interest 361 * @bit_off: chunk offset 362 * @bits: size of free area 363 * 364 * Helper function for pcpu_for_each_md_free_region. It checks 365 * block->contig_hint and performs aggregation across blocks to find the 366 * next hint. It modifies bit_off and bits in-place to be consumed in the 367 * loop. 368 */ 369static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 370 int *bits) 371{ 372 int i = pcpu_off_to_block_index(*bit_off); 373 int block_off = pcpu_off_to_block_off(*bit_off); 374 struct pcpu_block_md *block; 375 376 *bits = 0; 377 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 378 block++, i++) { 379 /* handles contig area across blocks */ 380 if (*bits) { 381 *bits += block->left_free; 382 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 383 continue; 384 return; 385 } 386 387 /* 388 * This checks three things. First is there a contig_hint to 389 * check. Second, have we checked this hint before by 390 * comparing the block_off. Third, is this the same as the 391 * right contig hint. In the last case, it spills over into 392 * the next block and should be handled by the contig area 393 * across blocks code. 394 */ 395 *bits = block->contig_hint; 396 if (*bits && block->contig_hint_start >= block_off && 397 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 398 *bit_off = pcpu_block_off_to_off(i, 399 block->contig_hint_start); 400 return; 401 } 402 /* reset to satisfy the second predicate above */ 403 block_off = 0; 404 405 *bits = block->right_free; 406 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 407 } 408} 409 410/** 411 * pcpu_next_fit_region - finds fit areas for a given allocation request 412 * @chunk: chunk of interest 413 * @alloc_bits: size of allocation 414 * @align: alignment of area (max PAGE_SIZE) 415 * @bit_off: chunk offset 416 * @bits: size of free area 417 * 418 * Finds the next free region that is viable for use with a given size and 419 * alignment. This only returns if there is a valid area to be used for this 420 * allocation. block->first_free is returned if the allocation request fits 421 * within the block to see if the request can be fulfilled prior to the contig 422 * hint. 423 */ 424static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 425 int align, int *bit_off, int *bits) 426{ 427 int i = pcpu_off_to_block_index(*bit_off); 428 int block_off = pcpu_off_to_block_off(*bit_off); 429 struct pcpu_block_md *block; 430 431 *bits = 0; 432 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 433 block++, i++) { 434 /* handles contig area across blocks */ 435 if (*bits) { 436 *bits += block->left_free; 437 if (*bits >= alloc_bits) 438 return; 439 if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 440 continue; 441 } 442 443 /* check block->contig_hint */ 444 *bits = ALIGN(block->contig_hint_start, align) - 445 block->contig_hint_start; 446 /* 447 * This uses the block offset to determine if this has been 448 * checked in the prior iteration. 449 */ 450 if (block->contig_hint && 451 block->contig_hint_start >= block_off && 452 block->contig_hint >= *bits + alloc_bits) { 453 int start = pcpu_next_hint(block, alloc_bits); 454 455 *bits += alloc_bits + block->contig_hint_start - 456 start; 457 *bit_off = pcpu_block_off_to_off(i, start); 458 return; 459 } 460 /* reset to satisfy the second predicate above */ 461 block_off = 0; 462 463 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 464 align); 465 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 466 *bit_off = pcpu_block_off_to_off(i, *bit_off); 467 if (*bits >= alloc_bits) 468 return; 469 } 470 471 /* no valid offsets were found - fail condition */ 472 *bit_off = pcpu_chunk_map_bits(chunk); 473} 474 475/* 476 * Metadata free area iterators. These perform aggregation of free areas 477 * based on the metadata blocks and return the offset @bit_off and size in 478 * bits of the free area @bits. pcpu_for_each_fit_region only returns when 479 * a fit is found for the allocation request. 480 */ 481#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 482 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 483 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 484 (bit_off) += (bits) + 1, \ 485 pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 486 487#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 488 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 489 &(bits)); \ 490 (bit_off) < pcpu_chunk_map_bits((chunk)); \ 491 (bit_off) += (bits), \ 492 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 493 &(bits))) 494 495/** 496 * pcpu_mem_zalloc - allocate memory 497 * @size: bytes to allocate 498 * @gfp: allocation flags 499 * 500 * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 501 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 502 * This is to facilitate passing through whitelisted flags. The 503 * returned memory is always zeroed. 504 * 505 * RETURNS: 506 * Pointer to the allocated area on success, NULL on failure. 507 */ 508static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 509{ 510 if (WARN_ON_ONCE(!slab_is_available())) 511 return NULL; 512 513 if (size <= PAGE_SIZE) 514 return kzalloc(size, gfp); 515 else 516 return __vmalloc(size, gfp | __GFP_ZERO); 517} 518 519/** 520 * pcpu_mem_free - free memory 521 * @ptr: memory to free 522 * 523 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 524 */ 525static void pcpu_mem_free(void *ptr) 526{ 527 kvfree(ptr); 528} 529 530static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 531 bool move_front) 532{ 533 if (chunk != pcpu_reserved_chunk) { 534 if (move_front) 535 list_move(&chunk->list, &pcpu_chunk_lists[slot]); 536 else 537 list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]); 538 } 539} 540 541static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 542{ 543 __pcpu_chunk_move(chunk, slot, true); 544} 545 546/** 547 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 548 * @chunk: chunk of interest 549 * @oslot: the previous slot it was on 550 * 551 * This function is called after an allocation or free changed @chunk. 552 * New slot according to the changed state is determined and @chunk is 553 * moved to the slot. Note that the reserved chunk is never put on 554 * chunk slots. 555 * 556 * CONTEXT: 557 * pcpu_lock. 558 */ 559static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 560{ 561 int nslot = pcpu_chunk_slot(chunk); 562 563 /* leave isolated chunks in-place */ 564 if (chunk->isolated) 565 return; 566 567 if (oslot != nslot) 568 __pcpu_chunk_move(chunk, nslot, oslot < nslot); 569} 570 571static void pcpu_isolate_chunk(struct pcpu_chunk *chunk) 572{ 573 lockdep_assert_held(&pcpu_lock); 574 575 if (!chunk->isolated) { 576 chunk->isolated = true; 577 pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages; 578 } 579 list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]); 580} 581 582static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk) 583{ 584 lockdep_assert_held(&pcpu_lock); 585 586 if (chunk->isolated) { 587 chunk->isolated = false; 588 pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages; 589 pcpu_chunk_relocate(chunk, -1); 590 } 591} 592 593/* 594 * pcpu_update_empty_pages - update empty page counters 595 * @chunk: chunk of interest 596 * @nr: nr of empty pages 597 * 598 * This is used to keep track of the empty pages now based on the premise 599 * a md_block covers a page. The hint update functions recognize if a block 600 * is made full or broken to calculate deltas for keeping track of free pages. 601 */ 602static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 603{ 604 chunk->nr_empty_pop_pages += nr; 605 if (chunk != pcpu_reserved_chunk && !chunk->isolated) 606 pcpu_nr_empty_pop_pages += nr; 607} 608 609/* 610 * pcpu_region_overlap - determines if two regions overlap 611 * @a: start of first region, inclusive 612 * @b: end of first region, exclusive 613 * @x: start of second region, inclusive 614 * @y: end of second region, exclusive 615 * 616 * This is used to determine if the hint region [a, b) overlaps with the 617 * allocated region [x, y). 618 */ 619static inline bool pcpu_region_overlap(int a, int b, int x, int y) 620{ 621 return (a < y) && (x < b); 622} 623 624/** 625 * pcpu_block_update - updates a block given a free area 626 * @block: block of interest 627 * @start: start offset in block 628 * @end: end offset in block 629 * 630 * Updates a block given a known free area. The region [start, end) is 631 * expected to be the entirety of the free area within a block. Chooses 632 * the best starting offset if the contig hints are equal. 633 */ 634static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 635{ 636 int contig = end - start; 637 638 block->first_free = min(block->first_free, start); 639 if (start == 0) 640 block->left_free = contig; 641 642 if (end == block->nr_bits) 643 block->right_free = contig; 644 645 if (contig > block->contig_hint) { 646 /* promote the old contig_hint to be the new scan_hint */ 647 if (start > block->contig_hint_start) { 648 if (block->contig_hint > block->scan_hint) { 649 block->scan_hint_start = 650 block->contig_hint_start; 651 block->scan_hint = block->contig_hint; 652 } else if (start < block->scan_hint_start) { 653 /* 654 * The old contig_hint == scan_hint. But, the 655 * new contig is larger so hold the invariant 656 * scan_hint_start < contig_hint_start. 657 */ 658 block->scan_hint = 0; 659 } 660 } else { 661 block->scan_hint = 0; 662 } 663 block->contig_hint_start = start; 664 block->contig_hint = contig; 665 } else if (contig == block->contig_hint) { 666 if (block->contig_hint_start && 667 (!start || 668 __ffs(start) > __ffs(block->contig_hint_start))) { 669 /* start has a better alignment so use it */ 670 block->contig_hint_start = start; 671 if (start < block->scan_hint_start && 672 block->contig_hint > block->scan_hint) 673 block->scan_hint = 0; 674 } else if (start > block->scan_hint_start || 675 block->contig_hint > block->scan_hint) { 676 /* 677 * Knowing contig == contig_hint, update the scan_hint 678 * if it is farther than or larger than the current 679 * scan_hint. 680 */ 681 block->scan_hint_start = start; 682 block->scan_hint = contig; 683 } 684 } else { 685 /* 686 * The region is smaller than the contig_hint. So only update 687 * the scan_hint if it is larger than or equal and farther than 688 * the current scan_hint. 689 */ 690 if ((start < block->contig_hint_start && 691 (contig > block->scan_hint || 692 (contig == block->scan_hint && 693 start > block->scan_hint_start)))) { 694 block->scan_hint_start = start; 695 block->scan_hint = contig; 696 } 697 } 698} 699 700/* 701 * pcpu_block_update_scan - update a block given a free area from a scan 702 * @chunk: chunk of interest 703 * @bit_off: chunk offset 704 * @bits: size of free area 705 * 706 * Finding the final allocation spot first goes through pcpu_find_block_fit() 707 * to find a block that can hold the allocation and then pcpu_alloc_area() 708 * where a scan is used. When allocations require specific alignments, 709 * we can inadvertently create holes which will not be seen in the alloc 710 * or free paths. 711 * 712 * This takes a given free area hole and updates a block as it may change the 713 * scan_hint. We need to scan backwards to ensure we don't miss free bits 714 * from alignment. 715 */ 716static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 717 int bits) 718{ 719 int s_off = pcpu_off_to_block_off(bit_off); 720 int e_off = s_off + bits; 721 int s_index, l_bit; 722 struct pcpu_block_md *block; 723 724 if (e_off > PCPU_BITMAP_BLOCK_BITS) 725 return; 726 727 s_index = pcpu_off_to_block_index(bit_off); 728 block = chunk->md_blocks + s_index; 729 730 /* scan backwards in case of alignment skipping free bits */ 731 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 732 s_off = (s_off == l_bit) ? 0 : l_bit + 1; 733 734 pcpu_block_update(block, s_off, e_off); 735} 736 737/** 738 * pcpu_chunk_refresh_hint - updates metadata about a chunk 739 * @chunk: chunk of interest 740 * @full_scan: if we should scan from the beginning 741 * 742 * Iterates over the metadata blocks to find the largest contig area. 743 * A full scan can be avoided on the allocation path as this is triggered 744 * if we broke the contig_hint. In doing so, the scan_hint will be before 745 * the contig_hint or after if the scan_hint == contig_hint. This cannot 746 * be prevented on freeing as we want to find the largest area possibly 747 * spanning blocks. 748 */ 749static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 750{ 751 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 752 int bit_off, bits; 753 754 /* promote scan_hint to contig_hint */ 755 if (!full_scan && chunk_md->scan_hint) { 756 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 757 chunk_md->contig_hint_start = chunk_md->scan_hint_start; 758 chunk_md->contig_hint = chunk_md->scan_hint; 759 chunk_md->scan_hint = 0; 760 } else { 761 bit_off = chunk_md->first_free; 762 chunk_md->contig_hint = 0; 763 } 764 765 bits = 0; 766 pcpu_for_each_md_free_region(chunk, bit_off, bits) 767 pcpu_block_update(chunk_md, bit_off, bit_off + bits); 768} 769 770/** 771 * pcpu_block_refresh_hint 772 * @chunk: chunk of interest 773 * @index: index of the metadata block 774 * 775 * Scans over the block beginning at first_free and updates the block 776 * metadata accordingly. 777 */ 778static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 779{ 780 struct pcpu_block_md *block = chunk->md_blocks + index; 781 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 782 unsigned int start, end; /* region start, region end */ 783 784 /* promote scan_hint to contig_hint */ 785 if (block->scan_hint) { 786 start = block->scan_hint_start + block->scan_hint; 787 block->contig_hint_start = block->scan_hint_start; 788 block->contig_hint = block->scan_hint; 789 block->scan_hint = 0; 790 } else { 791 start = block->first_free; 792 block->contig_hint = 0; 793 } 794 795 block->right_free = 0; 796 797 /* iterate over free areas and update the contig hints */ 798 for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS) 799 pcpu_block_update(block, start, end); 800} 801 802/** 803 * pcpu_block_update_hint_alloc - update hint on allocation path 804 * @chunk: chunk of interest 805 * @bit_off: chunk offset 806 * @bits: size of request 807 * 808 * Updates metadata for the allocation path. The metadata only has to be 809 * refreshed by a full scan iff the chunk's contig hint is broken. Block level 810 * scans are required if the block's contig hint is broken. 811 */ 812static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 813 int bits) 814{ 815 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 816 int nr_empty_pages = 0; 817 struct pcpu_block_md *s_block, *e_block, *block; 818 int s_index, e_index; /* block indexes of the freed allocation */ 819 int s_off, e_off; /* block offsets of the freed allocation */ 820 821 /* 822 * Calculate per block offsets. 823 * The calculation uses an inclusive range, but the resulting offsets 824 * are [start, end). e_index always points to the last block in the 825 * range. 826 */ 827 s_index = pcpu_off_to_block_index(bit_off); 828 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 829 s_off = pcpu_off_to_block_off(bit_off); 830 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 831 832 s_block = chunk->md_blocks + s_index; 833 e_block = chunk->md_blocks + e_index; 834 835 /* 836 * Update s_block. 837 * block->first_free must be updated if the allocation takes its place. 838 * If the allocation breaks the contig_hint, a scan is required to 839 * restore this hint. 840 */ 841 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 842 nr_empty_pages++; 843 844 if (s_off == s_block->first_free) 845 s_block->first_free = find_next_zero_bit( 846 pcpu_index_alloc_map(chunk, s_index), 847 PCPU_BITMAP_BLOCK_BITS, 848 s_off + bits); 849 850 if (pcpu_region_overlap(s_block->scan_hint_start, 851 s_block->scan_hint_start + s_block->scan_hint, 852 s_off, 853 s_off + bits)) 854 s_block->scan_hint = 0; 855 856 if (pcpu_region_overlap(s_block->contig_hint_start, 857 s_block->contig_hint_start + 858 s_block->contig_hint, 859 s_off, 860 s_off + bits)) { 861 /* block contig hint is broken - scan to fix it */ 862 if (!s_off) 863 s_block->left_free = 0; 864 pcpu_block_refresh_hint(chunk, s_index); 865 } else { 866 /* update left and right contig manually */ 867 s_block->left_free = min(s_block->left_free, s_off); 868 if (s_index == e_index) 869 s_block->right_free = min_t(int, s_block->right_free, 870 PCPU_BITMAP_BLOCK_BITS - e_off); 871 else 872 s_block->right_free = 0; 873 } 874 875 /* 876 * Update e_block. 877 */ 878 if (s_index != e_index) { 879 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 880 nr_empty_pages++; 881 882 /* 883 * When the allocation is across blocks, the end is along 884 * the left part of the e_block. 885 */ 886 e_block->first_free = find_next_zero_bit( 887 pcpu_index_alloc_map(chunk, e_index), 888 PCPU_BITMAP_BLOCK_BITS, e_off); 889 890 if (e_off == PCPU_BITMAP_BLOCK_BITS) { 891 /* reset the block */ 892 e_block++; 893 } else { 894 if (e_off > e_block->scan_hint_start) 895 e_block->scan_hint = 0; 896 897 e_block->left_free = 0; 898 if (e_off > e_block->contig_hint_start) { 899 /* contig hint is broken - scan to fix it */ 900 pcpu_block_refresh_hint(chunk, e_index); 901 } else { 902 e_block->right_free = 903 min_t(int, e_block->right_free, 904 PCPU_BITMAP_BLOCK_BITS - e_off); 905 } 906 } 907 908 /* update in-between md_blocks */ 909 nr_empty_pages += (e_index - s_index - 1); 910 for (block = s_block + 1; block < e_block; block++) { 911 block->scan_hint = 0; 912 block->contig_hint = 0; 913 block->left_free = 0; 914 block->right_free = 0; 915 } 916 } 917 918 if (nr_empty_pages) 919 pcpu_update_empty_pages(chunk, -nr_empty_pages); 920 921 if (pcpu_region_overlap(chunk_md->scan_hint_start, 922 chunk_md->scan_hint_start + 923 chunk_md->scan_hint, 924 bit_off, 925 bit_off + bits)) 926 chunk_md->scan_hint = 0; 927 928 /* 929 * The only time a full chunk scan is required is if the chunk 930 * contig hint is broken. Otherwise, it means a smaller space 931 * was used and therefore the chunk contig hint is still correct. 932 */ 933 if (pcpu_region_overlap(chunk_md->contig_hint_start, 934 chunk_md->contig_hint_start + 935 chunk_md->contig_hint, 936 bit_off, 937 bit_off + bits)) 938 pcpu_chunk_refresh_hint(chunk, false); 939} 940 941/** 942 * pcpu_block_update_hint_free - updates the block hints on the free path 943 * @chunk: chunk of interest 944 * @bit_off: chunk offset 945 * @bits: size of request 946 * 947 * Updates metadata for the allocation path. This avoids a blind block 948 * refresh by making use of the block contig hints. If this fails, it scans 949 * forward and backward to determine the extent of the free area. This is 950 * capped at the boundary of blocks. 951 * 952 * A chunk update is triggered if a page becomes free, a block becomes free, 953 * or the free spans across blocks. This tradeoff is to minimize iterating 954 * over the block metadata to update chunk_md->contig_hint. 955 * chunk_md->contig_hint may be off by up to a page, but it will never be more 956 * than the available space. If the contig hint is contained in one block, it 957 * will be accurate. 958 */ 959static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 960 int bits) 961{ 962 int nr_empty_pages = 0; 963 struct pcpu_block_md *s_block, *e_block, *block; 964 int s_index, e_index; /* block indexes of the freed allocation */ 965 int s_off, e_off; /* block offsets of the freed allocation */ 966 int start, end; /* start and end of the whole free area */ 967 968 /* 969 * Calculate per block offsets. 970 * The calculation uses an inclusive range, but the resulting offsets 971 * are [start, end). e_index always points to the last block in the 972 * range. 973 */ 974 s_index = pcpu_off_to_block_index(bit_off); 975 e_index = pcpu_off_to_block_index(bit_off + bits - 1); 976 s_off = pcpu_off_to_block_off(bit_off); 977 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 978 979 s_block = chunk->md_blocks + s_index; 980 e_block = chunk->md_blocks + e_index; 981 982 /* 983 * Check if the freed area aligns with the block->contig_hint. 984 * If it does, then the scan to find the beginning/end of the 985 * larger free area can be avoided. 986 * 987 * start and end refer to beginning and end of the free area 988 * within each their respective blocks. This is not necessarily 989 * the entire free area as it may span blocks past the beginning 990 * or end of the block. 991 */ 992 start = s_off; 993 if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 994 start = s_block->contig_hint_start; 995 } else { 996 /* 997 * Scan backwards to find the extent of the free area. 998 * find_last_bit returns the starting bit, so if the start bit 999 * is returned, that means there was no last bit and the 1000 * remainder of the chunk is free. 1001 */ 1002 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 1003 start); 1004 start = (start == l_bit) ? 0 : l_bit + 1; 1005 } 1006 1007 end = e_off; 1008 if (e_off == e_block->contig_hint_start) 1009 end = e_block->contig_hint_start + e_block->contig_hint; 1010 else 1011 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 1012 PCPU_BITMAP_BLOCK_BITS, end); 1013 1014 /* update s_block */ 1015 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 1016 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 1017 nr_empty_pages++; 1018 pcpu_block_update(s_block, start, e_off); 1019 1020 /* freeing in the same block */ 1021 if (s_index != e_index) { 1022 /* update e_block */ 1023 if (end == PCPU_BITMAP_BLOCK_BITS) 1024 nr_empty_pages++; 1025 pcpu_block_update(e_block, 0, end); 1026 1027 /* reset md_blocks in the middle */ 1028 nr_empty_pages += (e_index - s_index - 1); 1029 for (block = s_block + 1; block < e_block; block++) { 1030 block->first_free = 0; 1031 block->scan_hint = 0; 1032 block->contig_hint_start = 0; 1033 block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 1034 block->left_free = PCPU_BITMAP_BLOCK_BITS; 1035 block->right_free = PCPU_BITMAP_BLOCK_BITS; 1036 } 1037 } 1038 1039 if (nr_empty_pages) 1040 pcpu_update_empty_pages(chunk, nr_empty_pages); 1041 1042 /* 1043 * Refresh chunk metadata when the free makes a block free or spans 1044 * across blocks. The contig_hint may be off by up to a page, but if 1045 * the contig_hint is contained in a block, it will be accurate with 1046 * the else condition below. 1047 */ 1048 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 1049 pcpu_chunk_refresh_hint(chunk, true); 1050 else 1051 pcpu_block_update(&chunk->chunk_md, 1052 pcpu_block_off_to_off(s_index, start), 1053 end); 1054} 1055 1056/** 1057 * pcpu_is_populated - determines if the region is populated 1058 * @chunk: chunk of interest 1059 * @bit_off: chunk offset 1060 * @bits: size of area 1061 * @next_off: return value for the next offset to start searching 1062 * 1063 * For atomic allocations, check if the backing pages are populated. 1064 * 1065 * RETURNS: 1066 * Bool if the backing pages are populated. 1067 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 1068 */ 1069static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 1070 int *next_off) 1071{ 1072 unsigned int start, end; 1073 1074 start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 1075 end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 1076 1077 start = find_next_zero_bit(chunk->populated, end, start); 1078 if (start >= end) 1079 return true; 1080 1081 end = find_next_bit(chunk->populated, end, start + 1); 1082 1083 *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 1084 return false; 1085} 1086 1087/** 1088 * pcpu_find_block_fit - finds the block index to start searching 1089 * @chunk: chunk of interest 1090 * @alloc_bits: size of request in allocation units 1091 * @align: alignment of area (max PAGE_SIZE bytes) 1092 * @pop_only: use populated regions only 1093 * 1094 * Given a chunk and an allocation spec, find the offset to begin searching 1095 * for a free region. This iterates over the bitmap metadata blocks to 1096 * find an offset that will be guaranteed to fit the requirements. It is 1097 * not quite first fit as if the allocation does not fit in the contig hint 1098 * of a block or chunk, it is skipped. This errs on the side of caution 1099 * to prevent excess iteration. Poor alignment can cause the allocator to 1100 * skip over blocks and chunks that have valid free areas. 1101 * 1102 * RETURNS: 1103 * The offset in the bitmap to begin searching. 1104 * -1 if no offset is found. 1105 */ 1106static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 1107 size_t align, bool pop_only) 1108{ 1109 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1110 int bit_off, bits, next_off; 1111 1112 /* 1113 * This is an optimization to prevent scanning by assuming if the 1114 * allocation cannot fit in the global hint, there is memory pressure 1115 * and creating a new chunk would happen soon. 1116 */ 1117 if (!pcpu_check_block_hint(chunk_md, alloc_bits, align)) 1118 return -1; 1119 1120 bit_off = pcpu_next_hint(chunk_md, alloc_bits); 1121 bits = 0; 1122 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 1123 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 1124 &next_off)) 1125 break; 1126 1127 bit_off = next_off; 1128 bits = 0; 1129 } 1130 1131 if (bit_off == pcpu_chunk_map_bits(chunk)) 1132 return -1; 1133 1134 return bit_off; 1135} 1136 1137/* 1138 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 1139 * @map: the address to base the search on 1140 * @size: the bitmap size in bits 1141 * @start: the bitnumber to start searching at 1142 * @nr: the number of zeroed bits we're looking for 1143 * @align_mask: alignment mask for zero area 1144 * @largest_off: offset of the largest area skipped 1145 * @largest_bits: size of the largest area skipped 1146 * 1147 * The @align_mask should be one less than a power of 2. 1148 * 1149 * This is a modified version of bitmap_find_next_zero_area_off() to remember 1150 * the largest area that was skipped. This is imperfect, but in general is 1151 * good enough. The largest remembered region is the largest failed region 1152 * seen. This does not include anything we possibly skipped due to alignment. 1153 * pcpu_block_update_scan() does scan backwards to try and recover what was 1154 * lost to alignment. While this can cause scanning to miss earlier possible 1155 * free areas, smaller allocations will eventually fill those holes. 1156 */ 1157static unsigned long pcpu_find_zero_area(unsigned long *map, 1158 unsigned long size, 1159 unsigned long start, 1160 unsigned long nr, 1161 unsigned long align_mask, 1162 unsigned long *largest_off, 1163 unsigned long *largest_bits) 1164{ 1165 unsigned long index, end, i, area_off, area_bits; 1166again: 1167 index = find_next_zero_bit(map, size, start); 1168 1169 /* Align allocation */ 1170 index = __ALIGN_MASK(index, align_mask); 1171 area_off = index; 1172 1173 end = index + nr; 1174 if (end > size) 1175 return end; 1176 i = find_next_bit(map, end, index); 1177 if (i < end) { 1178 area_bits = i - area_off; 1179 /* remember largest unused area with best alignment */ 1180 if (area_bits > *largest_bits || 1181 (area_bits == *largest_bits && *largest_off && 1182 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 1183 *largest_off = area_off; 1184 *largest_bits = area_bits; 1185 } 1186 1187 start = i + 1; 1188 goto again; 1189 } 1190 return index; 1191} 1192 1193/** 1194 * pcpu_alloc_area - allocates an area from a pcpu_chunk 1195 * @chunk: chunk of interest 1196 * @alloc_bits: size of request in allocation units 1197 * @align: alignment of area (max PAGE_SIZE) 1198 * @start: bit_off to start searching 1199 * 1200 * This function takes in a @start offset to begin searching to fit an 1201 * allocation of @alloc_bits with alignment @align. It needs to scan 1202 * the allocation map because if it fits within the block's contig hint, 1203 * @start will be block->first_free. This is an attempt to fill the 1204 * allocation prior to breaking the contig hint. The allocation and 1205 * boundary maps are updated accordingly if it confirms a valid 1206 * free area. 1207 * 1208 * RETURNS: 1209 * Allocated addr offset in @chunk on success. 1210 * -1 if no matching area is found. 1211 */ 1212static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 1213 size_t align, int start) 1214{ 1215 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1216 size_t align_mask = (align) ? (align - 1) : 0; 1217 unsigned long area_off = 0, area_bits = 0; 1218 int bit_off, end, oslot; 1219 1220 lockdep_assert_held(&pcpu_lock); 1221 1222 oslot = pcpu_chunk_slot(chunk); 1223 1224 /* 1225 * Search to find a fit. 1226 */ 1227 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 1228 pcpu_chunk_map_bits(chunk)); 1229 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 1230 align_mask, &area_off, &area_bits); 1231 if (bit_off >= end) 1232 return -1; 1233 1234 if (area_bits) 1235 pcpu_block_update_scan(chunk, area_off, area_bits); 1236 1237 /* update alloc map */ 1238 bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 1239 1240 /* update boundary map */ 1241 set_bit(bit_off, chunk->bound_map); 1242 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 1243 set_bit(bit_off + alloc_bits, chunk->bound_map); 1244 1245 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 1246 1247 /* update first free bit */ 1248 if (bit_off == chunk_md->first_free) 1249 chunk_md->first_free = find_next_zero_bit( 1250 chunk->alloc_map, 1251 pcpu_chunk_map_bits(chunk), 1252 bit_off + alloc_bits); 1253 1254 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 1255 1256 pcpu_chunk_relocate(chunk, oslot); 1257 1258 return bit_off * PCPU_MIN_ALLOC_SIZE; 1259} 1260 1261/** 1262 * pcpu_free_area - frees the corresponding offset 1263 * @chunk: chunk of interest 1264 * @off: addr offset into chunk 1265 * 1266 * This function determines the size of an allocation to free using 1267 * the boundary bitmap and clears the allocation map. 1268 * 1269 * RETURNS: 1270 * Number of freed bytes. 1271 */ 1272static int pcpu_free_area(struct pcpu_chunk *chunk, int off) 1273{ 1274 struct pcpu_block_md *chunk_md = &chunk->chunk_md; 1275 int bit_off, bits, end, oslot, freed; 1276 1277 lockdep_assert_held(&pcpu_lock); 1278 pcpu_stats_area_dealloc(chunk); 1279 1280 oslot = pcpu_chunk_slot(chunk); 1281 1282 bit_off = off / PCPU_MIN_ALLOC_SIZE; 1283 1284 /* find end index */ 1285 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 1286 bit_off + 1); 1287 bits = end - bit_off; 1288 bitmap_clear(chunk->alloc_map, bit_off, bits); 1289 1290 freed = bits * PCPU_MIN_ALLOC_SIZE; 1291 1292 /* update metadata */ 1293 chunk->free_bytes += freed; 1294 1295 /* update first free bit */ 1296 chunk_md->first_free = min(chunk_md->first_free, bit_off); 1297 1298 pcpu_block_update_hint_free(chunk, bit_off, bits); 1299 1300 pcpu_chunk_relocate(chunk, oslot); 1301 1302 return freed; 1303} 1304 1305static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 1306{ 1307 block->scan_hint = 0; 1308 block->contig_hint = nr_bits; 1309 block->left_free = nr_bits; 1310 block->right_free = nr_bits; 1311 block->first_free = 0; 1312 block->nr_bits = nr_bits; 1313} 1314 1315static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 1316{ 1317 struct pcpu_block_md *md_block; 1318 1319 /* init the chunk's block */ 1320 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 1321 1322 for (md_block = chunk->md_blocks; 1323 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 1324 md_block++) 1325 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 1326} 1327 1328/** 1329 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 1330 * @tmp_addr: the start of the region served 1331 * @map_size: size of the region served 1332 * 1333 * This is responsible for creating the chunks that serve the first chunk. The 1334 * base_addr is page aligned down of @tmp_addr while the region end is page 1335 * aligned up. Offsets are kept track of to determine the region served. All 1336 * this is done to appease the bitmap allocator in avoiding partial blocks. 1337 * 1338 * RETURNS: 1339 * Chunk serving the region at @tmp_addr of @map_size. 1340 */ 1341static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 1342 int map_size) 1343{ 1344 struct pcpu_chunk *chunk; 1345 unsigned long aligned_addr, lcm_align; 1346 int start_offset, offset_bits, region_size, region_bits; 1347 size_t alloc_size; 1348 1349 /* region calculations */ 1350 aligned_addr = tmp_addr & PAGE_MASK; 1351 1352 start_offset = tmp_addr - aligned_addr; 1353 1354 /* 1355 * Align the end of the region with the LCM of PAGE_SIZE and 1356 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of 1357 * the other. 1358 */ 1359 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); 1360 region_size = ALIGN(start_offset + map_size, lcm_align); 1361 1362 /* allocate chunk */ 1363 alloc_size = struct_size(chunk, populated, 1364 BITS_TO_LONGS(region_size >> PAGE_SHIFT)); 1365 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1366 if (!chunk) 1367 panic("%s: Failed to allocate %zu bytes\n", __func__, 1368 alloc_size); 1369 1370 INIT_LIST_HEAD(&chunk->list); 1371 1372 chunk->base_addr = (void *)aligned_addr; 1373 chunk->start_offset = start_offset; 1374 chunk->end_offset = region_size - chunk->start_offset - map_size; 1375 1376 chunk->nr_pages = region_size >> PAGE_SHIFT; 1377 region_bits = pcpu_chunk_map_bits(chunk); 1378 1379 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 1380 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1381 if (!chunk->alloc_map) 1382 panic("%s: Failed to allocate %zu bytes\n", __func__, 1383 alloc_size); 1384 1385 alloc_size = 1386 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 1387 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1388 if (!chunk->bound_map) 1389 panic("%s: Failed to allocate %zu bytes\n", __func__, 1390 alloc_size); 1391 1392 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 1393 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 1394 if (!chunk->md_blocks) 1395 panic("%s: Failed to allocate %zu bytes\n", __func__, 1396 alloc_size); 1397 1398#ifdef CONFIG_MEMCG_KMEM 1399 /* first chunk is free to use */ 1400 chunk->obj_cgroups = NULL; 1401#endif 1402 pcpu_init_md_blocks(chunk); 1403 1404 /* manage populated page bitmap */ 1405 chunk->immutable = true; 1406 bitmap_fill(chunk->populated, chunk->nr_pages); 1407 chunk->nr_populated = chunk->nr_pages; 1408 chunk->nr_empty_pop_pages = chunk->nr_pages; 1409 1410 chunk->free_bytes = map_size; 1411 1412 if (chunk->start_offset) { 1413 /* hide the beginning of the bitmap */ 1414 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 1415 bitmap_set(chunk->alloc_map, 0, offset_bits); 1416 set_bit(0, chunk->bound_map); 1417 set_bit(offset_bits, chunk->bound_map); 1418 1419 chunk->chunk_md.first_free = offset_bits; 1420 1421 pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 1422 } 1423 1424 if (chunk->end_offset) { 1425 /* hide the end of the bitmap */ 1426 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 1427 bitmap_set(chunk->alloc_map, 1428 pcpu_chunk_map_bits(chunk) - offset_bits, 1429 offset_bits); 1430 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 1431 chunk->bound_map); 1432 set_bit(region_bits, chunk->bound_map); 1433 1434 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 1435 - offset_bits, offset_bits); 1436 } 1437 1438 return chunk; 1439} 1440 1441static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 1442{ 1443 struct pcpu_chunk *chunk; 1444 int region_bits; 1445 1446 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 1447 if (!chunk) 1448 return NULL; 1449 1450 INIT_LIST_HEAD(&chunk->list); 1451 chunk->nr_pages = pcpu_unit_pages; 1452 region_bits = pcpu_chunk_map_bits(chunk); 1453 1454 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 1455 sizeof(chunk->alloc_map[0]), gfp); 1456 if (!chunk->alloc_map) 1457 goto alloc_map_fail; 1458 1459 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 1460 sizeof(chunk->bound_map[0]), gfp); 1461 if (!chunk->bound_map) 1462 goto bound_map_fail; 1463 1464 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 1465 sizeof(chunk->md_blocks[0]), gfp); 1466 if (!chunk->md_blocks) 1467 goto md_blocks_fail; 1468 1469#ifdef CONFIG_MEMCG_KMEM 1470 if (!mem_cgroup_kmem_disabled()) { 1471 chunk->obj_cgroups = 1472 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * 1473 sizeof(struct obj_cgroup *), gfp); 1474 if (!chunk->obj_cgroups) 1475 goto objcg_fail; 1476 } 1477#endif 1478 1479 pcpu_init_md_blocks(chunk); 1480 1481 /* init metadata */ 1482 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 1483 1484 return chunk; 1485 1486#ifdef CONFIG_MEMCG_KMEM 1487objcg_fail: 1488 pcpu_mem_free(chunk->md_blocks); 1489#endif 1490md_blocks_fail: 1491 pcpu_mem_free(chunk->bound_map); 1492bound_map_fail: 1493 pcpu_mem_free(chunk->alloc_map); 1494alloc_map_fail: 1495 pcpu_mem_free(chunk); 1496 1497 return NULL; 1498} 1499 1500static void pcpu_free_chunk(struct pcpu_chunk *chunk) 1501{ 1502 if (!chunk) 1503 return; 1504#ifdef CONFIG_MEMCG_KMEM 1505 pcpu_mem_free(chunk->obj_cgroups); 1506#endif 1507 pcpu_mem_free(chunk->md_blocks); 1508 pcpu_mem_free(chunk->bound_map); 1509 pcpu_mem_free(chunk->alloc_map); 1510 pcpu_mem_free(chunk); 1511} 1512 1513/** 1514 * pcpu_chunk_populated - post-population bookkeeping 1515 * @chunk: pcpu_chunk which got populated 1516 * @page_start: the start page 1517 * @page_end: the end page 1518 * 1519 * Pages in [@page_start,@page_end) have been populated to @chunk. Update 1520 * the bookkeeping information accordingly. Must be called after each 1521 * successful population. 1522 */ 1523static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 1524 int page_end) 1525{ 1526 int nr = page_end - page_start; 1527 1528 lockdep_assert_held(&pcpu_lock); 1529 1530 bitmap_set(chunk->populated, page_start, nr); 1531 chunk->nr_populated += nr; 1532 pcpu_nr_populated += nr; 1533 1534 pcpu_update_empty_pages(chunk, nr); 1535} 1536 1537/** 1538 * pcpu_chunk_depopulated - post-depopulation bookkeeping 1539 * @chunk: pcpu_chunk which got depopulated 1540 * @page_start: the start page 1541 * @page_end: the end page 1542 * 1543 * Pages in [@page_start,@page_end) have been depopulated from @chunk. 1544 * Update the bookkeeping information accordingly. Must be called after 1545 * each successful depopulation. 1546 */ 1547static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 1548 int page_start, int page_end) 1549{ 1550 int nr = page_end - page_start; 1551 1552 lockdep_assert_held(&pcpu_lock); 1553 1554 bitmap_clear(chunk->populated, page_start, nr); 1555 chunk->nr_populated -= nr; 1556 pcpu_nr_populated -= nr; 1557 1558 pcpu_update_empty_pages(chunk, -nr); 1559} 1560 1561/* 1562 * Chunk management implementation. 1563 * 1564 * To allow different implementations, chunk alloc/free and 1565 * [de]population are implemented in a separate file which is pulled 1566 * into this file and compiled together. The following functions 1567 * should be implemented. 1568 * 1569 * pcpu_populate_chunk - populate the specified range of a chunk 1570 * pcpu_depopulate_chunk - depopulate the specified range of a chunk 1571 * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk 1572 * pcpu_create_chunk - create a new chunk 1573 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 1574 * pcpu_addr_to_page - translate address to physical address 1575 * pcpu_verify_alloc_info - check alloc_info is acceptable during init 1576 */ 1577static int pcpu_populate_chunk(struct pcpu_chunk *chunk, 1578 int page_start, int page_end, gfp_t gfp); 1579static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 1580 int page_start, int page_end); 1581static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, 1582 int page_start, int page_end); 1583static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 1584static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 1585static struct page *pcpu_addr_to_page(void *addr); 1586static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 1587 1588#ifdef CONFIG_NEED_PER_CPU_KM 1589#include "percpu-km.c" 1590#else 1591#include "percpu-vm.c" 1592#endif 1593 1594/** 1595 * pcpu_chunk_addr_search - determine chunk containing specified address 1596 * @addr: address for which the chunk needs to be determined. 1597 * 1598 * This is an internal function that handles all but static allocations. 1599 * Static percpu address values should never be passed into the allocator. 1600 * 1601 * RETURNS: 1602 * The address of the found chunk. 1603 */ 1604static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 1605{ 1606 /* is it in the dynamic region (first chunk)? */ 1607 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 1608 return pcpu_first_chunk; 1609 1610 /* is it in the reserved region? */ 1611 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 1612 return pcpu_reserved_chunk; 1613 1614 /* 1615 * The address is relative to unit0 which might be unused and 1616 * thus unmapped. Offset the address to the unit space of the 1617 * current processor before looking it up in the vmalloc 1618 * space. Note that any possible cpu id can be used here, so 1619 * there's no need to worry about preemption or cpu hotplug. 1620 */ 1621 addr += pcpu_unit_offsets[raw_smp_processor_id()]; 1622 return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 1623} 1624 1625#ifdef CONFIG_MEMCG_KMEM 1626static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, 1627 struct obj_cgroup **objcgp) 1628{ 1629 struct obj_cgroup *objcg; 1630 1631 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT)) 1632 return true; 1633 1634 objcg = get_obj_cgroup_from_current(); 1635 if (!objcg) 1636 return true; 1637 1638 if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) { 1639 obj_cgroup_put(objcg); 1640 return false; 1641 } 1642 1643 *objcgp = objcg; 1644 return true; 1645} 1646 1647static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1648 struct pcpu_chunk *chunk, int off, 1649 size_t size) 1650{ 1651 if (!objcg) 1652 return; 1653 1654 if (likely(chunk && chunk->obj_cgroups)) { 1655 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; 1656 1657 rcu_read_lock(); 1658 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1659 pcpu_obj_full_size(size)); 1660 rcu_read_unlock(); 1661 } else { 1662 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); 1663 obj_cgroup_put(objcg); 1664 } 1665} 1666 1667static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1668{ 1669 struct obj_cgroup *objcg; 1670 1671 if (unlikely(!chunk->obj_cgroups)) 1672 return; 1673 1674 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; 1675 if (!objcg) 1676 return; 1677 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; 1678 1679 obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); 1680 1681 rcu_read_lock(); 1682 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 1683 -pcpu_obj_full_size(size)); 1684 rcu_read_unlock(); 1685 1686 obj_cgroup_put(objcg); 1687} 1688 1689#else /* CONFIG_MEMCG_KMEM */ 1690static bool 1691pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) 1692{ 1693 return true; 1694} 1695 1696static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 1697 struct pcpu_chunk *chunk, int off, 1698 size_t size) 1699{ 1700} 1701 1702static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 1703{ 1704} 1705#endif /* CONFIG_MEMCG_KMEM */ 1706 1707/** 1708 * pcpu_alloc - the percpu allocator 1709 * @size: size of area to allocate in bytes 1710 * @align: alignment of area (max PAGE_SIZE) 1711 * @reserved: allocate from the reserved chunk if available 1712 * @gfp: allocation flags 1713 * 1714 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 1715 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 1716 * then no warning will be triggered on invalid or failed allocation 1717 * requests. 1718 * 1719 * RETURNS: 1720 * Percpu pointer to the allocated area on success, NULL on failure. 1721 */ 1722static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 1723 gfp_t gfp) 1724{ 1725 gfp_t pcpu_gfp; 1726 bool is_atomic; 1727 bool do_warn; 1728 struct obj_cgroup *objcg = NULL; 1729 static int warn_limit = 10; 1730 struct pcpu_chunk *chunk, *next; 1731 const char *err; 1732 int slot, off, cpu, ret; 1733 unsigned long flags; 1734 void __percpu *ptr; 1735 size_t bits, bit_align; 1736 1737 gfp = current_gfp_context(gfp); 1738 /* whitelisted flags that can be passed to the backing allocators */ 1739 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 1740 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 1741 do_warn = !(gfp & __GFP_NOWARN); 1742 1743 /* 1744 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 1745 * therefore alignment must be a minimum of that many bytes. 1746 * An allocation may have internal fragmentation from rounding up 1747 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 1748 */ 1749 if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 1750 align = PCPU_MIN_ALLOC_SIZE; 1751 1752 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 1753 bits = size >> PCPU_MIN_ALLOC_SHIFT; 1754 bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 1755 1756 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 1757 !is_power_of_2(align))) { 1758 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 1759 size, align); 1760 return NULL; 1761 } 1762 1763 if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg))) 1764 return NULL; 1765 1766 if (!is_atomic) { 1767 /* 1768 * pcpu_balance_workfn() allocates memory under this mutex, 1769 * and it may wait for memory reclaim. Allow current task 1770 * to become OOM victim, in case of memory pressure. 1771 */ 1772 if (gfp & __GFP_NOFAIL) { 1773 mutex_lock(&pcpu_alloc_mutex); 1774 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { 1775 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1776 return NULL; 1777 } 1778 } 1779 1780 spin_lock_irqsave(&pcpu_lock, flags); 1781 1782 /* serve reserved allocations from the reserved chunk if available */ 1783 if (reserved && pcpu_reserved_chunk) { 1784 chunk = pcpu_reserved_chunk; 1785 1786 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 1787 if (off < 0) { 1788 err = "alloc from reserved chunk failed"; 1789 goto fail_unlock; 1790 } 1791 1792 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1793 if (off >= 0) 1794 goto area_found; 1795 1796 err = "alloc from reserved chunk failed"; 1797 goto fail_unlock; 1798 } 1799 1800restart: 1801 /* search through normal chunks */ 1802 for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) { 1803 list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot], 1804 list) { 1805 off = pcpu_find_block_fit(chunk, bits, bit_align, 1806 is_atomic); 1807 if (off < 0) { 1808 if (slot < PCPU_SLOT_FAIL_THRESHOLD) 1809 pcpu_chunk_move(chunk, 0); 1810 continue; 1811 } 1812 1813 off = pcpu_alloc_area(chunk, bits, bit_align, off); 1814 if (off >= 0) { 1815 pcpu_reintegrate_chunk(chunk); 1816 goto area_found; 1817 } 1818 } 1819 } 1820 1821 spin_unlock_irqrestore(&pcpu_lock, flags); 1822 1823 /* 1824 * No space left. Create a new chunk. We don't want multiple 1825 * tasks to create chunks simultaneously. Serialize and create iff 1826 * there's still no empty chunk after grabbing the mutex. 1827 */ 1828 if (is_atomic) { 1829 err = "atomic alloc failed, no space left"; 1830 goto fail; 1831 } 1832 1833 if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) { 1834 chunk = pcpu_create_chunk(pcpu_gfp); 1835 if (!chunk) { 1836 err = "failed to allocate new chunk"; 1837 goto fail; 1838 } 1839 1840 spin_lock_irqsave(&pcpu_lock, flags); 1841 pcpu_chunk_relocate(chunk, -1); 1842 } else { 1843 spin_lock_irqsave(&pcpu_lock, flags); 1844 } 1845 1846 goto restart; 1847 1848area_found: 1849 pcpu_stats_area_alloc(chunk, size); 1850 spin_unlock_irqrestore(&pcpu_lock, flags); 1851 1852 /* populate if not all pages are already there */ 1853 if (!is_atomic) { 1854 unsigned int page_end, rs, re; 1855 1856 rs = PFN_DOWN(off); 1857 page_end = PFN_UP(off + size); 1858 1859 for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) { 1860 WARN_ON(chunk->immutable); 1861 1862 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 1863 1864 spin_lock_irqsave(&pcpu_lock, flags); 1865 if (ret) { 1866 pcpu_free_area(chunk, off); 1867 err = "failed to populate"; 1868 goto fail_unlock; 1869 } 1870 pcpu_chunk_populated(chunk, rs, re); 1871 spin_unlock_irqrestore(&pcpu_lock, flags); 1872 } 1873 1874 mutex_unlock(&pcpu_alloc_mutex); 1875 } 1876 1877 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 1878 pcpu_schedule_balance_work(); 1879 1880 /* clear the areas and return address relative to base address */ 1881 for_each_possible_cpu(cpu) 1882 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 1883 1884 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 1885 kmemleak_alloc_percpu(ptr, size, gfp); 1886 1887 trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align, 1888 chunk->base_addr, off, ptr, 1889 pcpu_obj_full_size(size), gfp); 1890 1891 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); 1892 1893 return ptr; 1894 1895fail_unlock: 1896 spin_unlock_irqrestore(&pcpu_lock, flags); 1897fail: 1898 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 1899 1900 if (!is_atomic && do_warn && warn_limit) { 1901 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 1902 size, align, is_atomic, err); 1903 dump_stack(); 1904 if (!--warn_limit) 1905 pr_info("limit reached, disable warning\n"); 1906 } 1907 if (is_atomic) { 1908 /* see the flag handling in pcpu_balance_workfn() */ 1909 pcpu_atomic_alloc_failed = true; 1910 pcpu_schedule_balance_work(); 1911 } else { 1912 mutex_unlock(&pcpu_alloc_mutex); 1913 } 1914 1915 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 1916 1917 return NULL; 1918} 1919 1920/** 1921 * __alloc_percpu_gfp - allocate dynamic percpu area 1922 * @size: size of area to allocate in bytes 1923 * @align: alignment of area (max PAGE_SIZE) 1924 * @gfp: allocation flags 1925 * 1926 * Allocate zero-filled percpu area of @size bytes aligned at @align. If 1927 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 1928 * be called from any context but is a lot more likely to fail. If @gfp 1929 * has __GFP_NOWARN then no warning will be triggered on invalid or failed 1930 * allocation requests. 1931 * 1932 * RETURNS: 1933 * Percpu pointer to the allocated area on success, NULL on failure. 1934 */ 1935void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 1936{ 1937 return pcpu_alloc(size, align, false, gfp); 1938} 1939EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 1940 1941/** 1942 * __alloc_percpu - allocate dynamic percpu area 1943 * @size: size of area to allocate in bytes 1944 * @align: alignment of area (max PAGE_SIZE) 1945 * 1946 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 1947 */ 1948void __percpu *__alloc_percpu(size_t size, size_t align) 1949{ 1950 return pcpu_alloc(size, align, false, GFP_KERNEL); 1951} 1952EXPORT_SYMBOL_GPL(__alloc_percpu); 1953 1954/** 1955 * __alloc_reserved_percpu - allocate reserved percpu area 1956 * @size: size of area to allocate in bytes 1957 * @align: alignment of area (max PAGE_SIZE) 1958 * 1959 * Allocate zero-filled percpu area of @size bytes aligned at @align 1960 * from reserved percpu area if arch has set it up; otherwise, 1961 * allocation is served from the same dynamic area. Might sleep. 1962 * Might trigger writeouts. 1963 * 1964 * CONTEXT: 1965 * Does GFP_KERNEL allocation. 1966 * 1967 * RETURNS: 1968 * Percpu pointer to the allocated area on success, NULL on failure. 1969 */ 1970void __percpu *__alloc_reserved_percpu(size_t size, size_t align) 1971{ 1972 return pcpu_alloc(size, align, true, GFP_KERNEL); 1973} 1974 1975/** 1976 * pcpu_balance_free - manage the amount of free chunks 1977 * @empty_only: free chunks only if there are no populated pages 1978 * 1979 * If empty_only is %false, reclaim all fully free chunks regardless of the 1980 * number of populated pages. Otherwise, only reclaim chunks that have no 1981 * populated pages. 1982 * 1983 * CONTEXT: 1984 * pcpu_lock (can be dropped temporarily) 1985 */ 1986static void pcpu_balance_free(bool empty_only) 1987{ 1988 LIST_HEAD(to_free); 1989 struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot]; 1990 struct pcpu_chunk *chunk, *next; 1991 1992 lockdep_assert_held(&pcpu_lock); 1993 1994 /* 1995 * There's no reason to keep around multiple unused chunks and VM 1996 * areas can be scarce. Destroy all free chunks except for one. 1997 */ 1998 list_for_each_entry_safe(chunk, next, free_head, list) { 1999 WARN_ON(chunk->immutable); 2000 2001 /* spare the first one */ 2002 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 2003 continue; 2004 2005 if (!empty_only || chunk->nr_empty_pop_pages == 0) 2006 list_move(&chunk->list, &to_free); 2007 } 2008 2009 if (list_empty(&to_free)) 2010 return; 2011 2012 spin_unlock_irq(&pcpu_lock); 2013 list_for_each_entry_safe(chunk, next, &to_free, list) { 2014 unsigned int rs, re; 2015 2016 for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) { 2017 pcpu_depopulate_chunk(chunk, rs, re); 2018 spin_lock_irq(&pcpu_lock); 2019 pcpu_chunk_depopulated(chunk, rs, re); 2020 spin_unlock_irq(&pcpu_lock); 2021 } 2022 pcpu_destroy_chunk(chunk); 2023 cond_resched(); 2024 } 2025 spin_lock_irq(&pcpu_lock); 2026} 2027 2028/** 2029 * pcpu_balance_populated - manage the amount of populated pages 2030 * 2031 * Maintain a certain amount of populated pages to satisfy atomic allocations. 2032 * It is possible that this is called when physical memory is scarce causing 2033 * OOM killer to be triggered. We should avoid doing so until an actual 2034 * allocation causes the failure as it is possible that requests can be 2035 * serviced from already backed regions. 2036 * 2037 * CONTEXT: 2038 * pcpu_lock (can be dropped temporarily) 2039 */ 2040static void pcpu_balance_populated(void) 2041{ 2042 /* gfp flags passed to underlying allocators */ 2043 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 2044 struct pcpu_chunk *chunk; 2045 int slot, nr_to_pop, ret; 2046 2047 lockdep_assert_held(&pcpu_lock); 2048 2049 /* 2050 * Ensure there are certain number of free populated pages for 2051 * atomic allocs. Fill up from the most packed so that atomic 2052 * allocs don't increase fragmentation. If atomic allocation 2053 * failed previously, always populate the maximum amount. This 2054 * should prevent atomic allocs larger than PAGE_SIZE from keeping 2055 * failing indefinitely; however, large atomic allocs are not 2056 * something we support properly and can be highly unreliable and 2057 * inefficient. 2058 */ 2059retry_pop: 2060 if (pcpu_atomic_alloc_failed) { 2061 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 2062 /* best effort anyway, don't worry about synchronization */ 2063 pcpu_atomic_alloc_failed = false; 2064 } else { 2065 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 2066 pcpu_nr_empty_pop_pages, 2067 0, PCPU_EMPTY_POP_PAGES_HIGH); 2068 } 2069 2070 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) { 2071 unsigned int nr_unpop = 0, rs, re; 2072 2073 if (!nr_to_pop) 2074 break; 2075 2076 list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { 2077 nr_unpop = chunk->nr_pages - chunk->nr_populated; 2078 if (nr_unpop) 2079 break; 2080 } 2081 2082 if (!nr_unpop) 2083 continue; 2084 2085 /* @chunk can't go away while pcpu_alloc_mutex is held */ 2086 for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) { 2087 int nr = min_t(int, re - rs, nr_to_pop); 2088 2089 spin_unlock_irq(&pcpu_lock); 2090 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 2091 cond_resched(); 2092 spin_lock_irq(&pcpu_lock); 2093 if (!ret) { 2094 nr_to_pop -= nr; 2095 pcpu_chunk_populated(chunk, rs, rs + nr); 2096 } else { 2097 nr_to_pop = 0; 2098 } 2099 2100 if (!nr_to_pop) 2101 break; 2102 } 2103 } 2104 2105 if (nr_to_pop) { 2106 /* ran out of chunks to populate, create a new one and retry */ 2107 spin_unlock_irq(&pcpu_lock); 2108 chunk = pcpu_create_chunk(gfp); 2109 cond_resched(); 2110 spin_lock_irq(&pcpu_lock); 2111 if (chunk) { 2112 pcpu_chunk_relocate(chunk, -1); 2113 goto retry_pop; 2114 } 2115 } 2116} 2117 2118/** 2119 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages 2120 * 2121 * Scan over chunks in the depopulate list and try to release unused populated 2122 * pages back to the system. Depopulated chunks are sidelined to prevent 2123 * repopulating these pages unless required. Fully free chunks are reintegrated 2124 * and freed accordingly (1 is kept around). If we drop below the empty 2125 * populated pages threshold, reintegrate the chunk if it has empty free pages. 2126 * Each chunk is scanned in the reverse order to keep populated pages close to 2127 * the beginning of the chunk. 2128 * 2129 * CONTEXT: 2130 * pcpu_lock (can be dropped temporarily) 2131 * 2132 */ 2133static void pcpu_reclaim_populated(void) 2134{ 2135 struct pcpu_chunk *chunk; 2136 struct pcpu_block_md *block; 2137 int freed_page_start, freed_page_end; 2138 int i, end; 2139 bool reintegrate; 2140 2141 lockdep_assert_held(&pcpu_lock); 2142 2143 /* 2144 * Once a chunk is isolated to the to_depopulate list, the chunk is no 2145 * longer discoverable to allocations whom may populate pages. The only 2146 * other accessor is the free path which only returns area back to the 2147 * allocator not touching the populated bitmap. 2148 */ 2149 while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) { 2150 chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot], 2151 struct pcpu_chunk, list); 2152 WARN_ON(chunk->immutable); 2153 2154 /* 2155 * Scan chunk's pages in the reverse order to keep populated 2156 * pages close to the beginning of the chunk. 2157 */ 2158 freed_page_start = chunk->nr_pages; 2159 freed_page_end = 0; 2160 reintegrate = false; 2161 for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) { 2162 /* no more work to do */ 2163 if (chunk->nr_empty_pop_pages == 0) 2164 break; 2165 2166 /* reintegrate chunk to prevent atomic alloc failures */ 2167 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) { 2168 reintegrate = true; 2169 goto end_chunk; 2170 } 2171 2172 /* 2173 * If the page is empty and populated, start or 2174 * extend the (i, end) range. If i == 0, decrease 2175 * i and perform the depopulation to cover the last 2176 * (first) page in the chunk. 2177 */ 2178 block = chunk->md_blocks + i; 2179 if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS && 2180 test_bit(i, chunk->populated)) { 2181 if (end == -1) 2182 end = i; 2183 if (i > 0) 2184 continue; 2185 i--; 2186 } 2187 2188 /* depopulate if there is an active range */ 2189 if (end == -1) 2190 continue; 2191 2192 spin_unlock_irq(&pcpu_lock); 2193 pcpu_depopulate_chunk(chunk, i + 1, end + 1); 2194 cond_resched(); 2195 spin_lock_irq(&pcpu_lock); 2196 2197 pcpu_chunk_depopulated(chunk, i + 1, end + 1); 2198 freed_page_start = min(freed_page_start, i + 1); 2199 freed_page_end = max(freed_page_end, end + 1); 2200 2201 /* reset the range and continue */ 2202 end = -1; 2203 } 2204 2205end_chunk: 2206 /* batch tlb flush per chunk to amortize cost */ 2207 if (freed_page_start < freed_page_end) { 2208 spin_unlock_irq(&pcpu_lock); 2209 pcpu_post_unmap_tlb_flush(chunk, 2210 freed_page_start, 2211 freed_page_end); 2212 cond_resched(); 2213 spin_lock_irq(&pcpu_lock); 2214 } 2215 2216 if (reintegrate || chunk->free_bytes == pcpu_unit_size) 2217 pcpu_reintegrate_chunk(chunk); 2218 else 2219 list_move_tail(&chunk->list, 2220 &pcpu_chunk_lists[pcpu_sidelined_slot]); 2221 } 2222} 2223 2224/** 2225 * pcpu_balance_workfn - manage the amount of free chunks and populated pages 2226 * @work: unused 2227 * 2228 * For each chunk type, manage the number of fully free chunks and the number of 2229 * populated pages. An important thing to consider is when pages are freed and 2230 * how they contribute to the global counts. 2231 */ 2232static void pcpu_balance_workfn(struct work_struct *work) 2233{ 2234 /* 2235 * pcpu_balance_free() is called twice because the first time we may 2236 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us 2237 * to grow other chunks. This then gives pcpu_reclaim_populated() time 2238 * to move fully free chunks to the active list to be freed if 2239 * appropriate. 2240 */ 2241 mutex_lock(&pcpu_alloc_mutex); 2242 spin_lock_irq(&pcpu_lock); 2243 2244 pcpu_balance_free(false); 2245 pcpu_reclaim_populated(); 2246 pcpu_balance_populated(); 2247 pcpu_balance_free(true); 2248 2249 spin_unlock_irq(&pcpu_lock); 2250 mutex_unlock(&pcpu_alloc_mutex); 2251} 2252 2253/** 2254 * free_percpu - free percpu area 2255 * @ptr: pointer to area to free 2256 * 2257 * Free percpu area @ptr. 2258 * 2259 * CONTEXT: 2260 * Can be called from atomic context. 2261 */ 2262void free_percpu(void __percpu *ptr) 2263{ 2264 void *addr; 2265 struct pcpu_chunk *chunk; 2266 unsigned long flags; 2267 int size, off; 2268 bool need_balance = false; 2269 2270 if (!ptr) 2271 return; 2272 2273 kmemleak_free_percpu(ptr); 2274 2275 addr = __pcpu_ptr_to_addr(ptr); 2276 2277 spin_lock_irqsave(&pcpu_lock, flags); 2278 2279 chunk = pcpu_chunk_addr_search(addr); 2280 off = addr - chunk->base_addr; 2281 2282 size = pcpu_free_area(chunk, off); 2283 2284 pcpu_memcg_free_hook(chunk, off, size); 2285 2286 /* 2287 * If there are more than one fully free chunks, wake up grim reaper. 2288 * If the chunk is isolated, it may be in the process of being 2289 * reclaimed. Let reclaim manage cleaning up of that chunk. 2290 */ 2291 if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) { 2292 struct pcpu_chunk *pos; 2293 2294 list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list) 2295 if (pos != chunk) { 2296 need_balance = true; 2297 break; 2298 } 2299 } else if (pcpu_should_reclaim_chunk(chunk)) { 2300 pcpu_isolate_chunk(chunk); 2301 need_balance = true; 2302 } 2303 2304 trace_percpu_free_percpu(chunk->base_addr, off, ptr); 2305 2306 spin_unlock_irqrestore(&pcpu_lock, flags); 2307 2308 if (need_balance) 2309 pcpu_schedule_balance_work(); 2310} 2311EXPORT_SYMBOL_GPL(free_percpu); 2312 2313bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 2314{ 2315#ifdef CONFIG_SMP 2316 const size_t static_size = __per_cpu_end - __per_cpu_start; 2317 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2318 unsigned int cpu; 2319 2320 for_each_possible_cpu(cpu) { 2321 void *start = per_cpu_ptr(base, cpu); 2322 void *va = (void *)addr; 2323 2324 if (va >= start && va < start + static_size) { 2325 if (can_addr) { 2326 *can_addr = (unsigned long) (va - start); 2327 *can_addr += (unsigned long) 2328 per_cpu_ptr(base, get_boot_cpu_id()); 2329 } 2330 return true; 2331 } 2332 } 2333#endif 2334 /* on UP, can't distinguish from other static vars, always false */ 2335 return false; 2336} 2337 2338/** 2339 * is_kernel_percpu_address - test whether address is from static percpu area 2340 * @addr: address to test 2341 * 2342 * Test whether @addr belongs to in-kernel static percpu area. Module 2343 * static percpu areas are not considered. For those, use 2344 * is_module_percpu_address(). 2345 * 2346 * RETURNS: 2347 * %true if @addr is from in-kernel static percpu area, %false otherwise. 2348 */ 2349bool is_kernel_percpu_address(unsigned long addr) 2350{ 2351 return __is_kernel_percpu_address(addr, NULL); 2352} 2353 2354/** 2355 * per_cpu_ptr_to_phys - convert translated percpu address to physical address 2356 * @addr: the address to be converted to physical address 2357 * 2358 * Given @addr which is dereferenceable address obtained via one of 2359 * percpu access macros, this function translates it into its physical 2360 * address. The caller is responsible for ensuring @addr stays valid 2361 * until this function finishes. 2362 * 2363 * percpu allocator has special setup for the first chunk, which currently 2364 * supports either embedding in linear address space or vmalloc mapping, 2365 * and, from the second one, the backing allocator (currently either vm or 2366 * km) provides translation. 2367 * 2368 * The addr can be translated simply without checking if it falls into the 2369 * first chunk. But the current code reflects better how percpu allocator 2370 * actually works, and the verification can discover both bugs in percpu 2371 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 2372 * code. 2373 * 2374 * RETURNS: 2375 * The physical address for @addr. 2376 */ 2377phys_addr_t per_cpu_ptr_to_phys(void *addr) 2378{ 2379 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 2380 bool in_first_chunk = false; 2381 unsigned long first_low, first_high; 2382 unsigned int cpu; 2383 2384 /* 2385 * The following test on unit_low/high isn't strictly 2386 * necessary but will speed up lookups of addresses which 2387 * aren't in the first chunk. 2388 * 2389 * The address check is against full chunk sizes. pcpu_base_addr 2390 * points to the beginning of the first chunk including the 2391 * static region. Assumes good intent as the first chunk may 2392 * not be full (ie. < pcpu_unit_pages in size). 2393 */ 2394 first_low = (unsigned long)pcpu_base_addr + 2395 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 2396 first_high = (unsigned long)pcpu_base_addr + 2397 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 2398 if ((unsigned long)addr >= first_low && 2399 (unsigned long)addr < first_high) { 2400 for_each_possible_cpu(cpu) { 2401 void *start = per_cpu_ptr(base, cpu); 2402 2403 if (addr >= start && addr < start + pcpu_unit_size) { 2404 in_first_chunk = true; 2405 break; 2406 } 2407 } 2408 } 2409 2410 if (in_first_chunk) { 2411 if (!is_vmalloc_addr(addr)) 2412 return __pa(addr); 2413 else 2414 return page_to_phys(vmalloc_to_page(addr)) + 2415 offset_in_page(addr); 2416 } else 2417 return page_to_phys(pcpu_addr_to_page(addr)) + 2418 offset_in_page(addr); 2419} 2420 2421/** 2422 * pcpu_alloc_alloc_info - allocate percpu allocation info 2423 * @nr_groups: the number of groups 2424 * @nr_units: the number of units 2425 * 2426 * Allocate ai which is large enough for @nr_groups groups containing 2427 * @nr_units units. The returned ai's groups[0].cpu_map points to the 2428 * cpu_map array which is long enough for @nr_units and filled with 2429 * NR_CPUS. It's the caller's responsibility to initialize cpu_map 2430 * pointer of other groups. 2431 * 2432 * RETURNS: 2433 * Pointer to the allocated pcpu_alloc_info on success, NULL on 2434 * failure. 2435 */ 2436struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 2437 int nr_units) 2438{ 2439 struct pcpu_alloc_info *ai; 2440 size_t base_size, ai_size; 2441 void *ptr; 2442 int unit; 2443 2444 base_size = ALIGN(struct_size(ai, groups, nr_groups), 2445 __alignof__(ai->groups[0].cpu_map[0])); 2446 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 2447 2448 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 2449 if (!ptr) 2450 return NULL; 2451 ai = ptr; 2452 ptr += base_size; 2453 2454 ai->groups[0].cpu_map = ptr; 2455 2456 for (unit = 0; unit < nr_units; unit++) 2457 ai->groups[0].cpu_map[unit] = NR_CPUS; 2458 2459 ai->nr_groups = nr_groups; 2460 ai->__ai_size = PFN_ALIGN(ai_size); 2461 2462 return ai; 2463} 2464 2465/** 2466 * pcpu_free_alloc_info - free percpu allocation info 2467 * @ai: pcpu_alloc_info to free 2468 * 2469 * Free @ai which was allocated by pcpu_alloc_alloc_info(). 2470 */ 2471void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 2472{ 2473 memblock_free(ai, ai->__ai_size); 2474} 2475 2476/** 2477 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 2478 * @lvl: loglevel 2479 * @ai: allocation info to dump 2480 * 2481 * Print out information about @ai using loglevel @lvl. 2482 */ 2483static void pcpu_dump_alloc_info(const char *lvl, 2484 const struct pcpu_alloc_info *ai) 2485{ 2486 int group_width = 1, cpu_width = 1, width; 2487 char empty_str[] = "--------"; 2488 int alloc = 0, alloc_end = 0; 2489 int group, v; 2490 int upa, apl; /* units per alloc, allocs per line */ 2491 2492 v = ai->nr_groups; 2493 while (v /= 10) 2494 group_width++; 2495 2496 v = num_possible_cpus(); 2497 while (v /= 10) 2498 cpu_width++; 2499 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 2500 2501 upa = ai->alloc_size / ai->unit_size; 2502 width = upa * (cpu_width + 1) + group_width + 3; 2503 apl = rounddown_pow_of_two(max(60 / width, 1)); 2504 2505 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 2506 lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 2507 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 2508 2509 for (group = 0; group < ai->nr_groups; group++) { 2510 const struct pcpu_group_info *gi = &ai->groups[group]; 2511 int unit = 0, unit_end = 0; 2512 2513 BUG_ON(gi->nr_units % upa); 2514 for (alloc_end += gi->nr_units / upa; 2515 alloc < alloc_end; alloc++) { 2516 if (!(alloc % apl)) { 2517 pr_cont("\n"); 2518 printk("%spcpu-alloc: ", lvl); 2519 } 2520 pr_cont("[%0*d] ", group_width, group); 2521 2522 for (unit_end += upa; unit < unit_end; unit++) 2523 if (gi->cpu_map[unit] != NR_CPUS) 2524 pr_cont("%0*d ", 2525 cpu_width, gi->cpu_map[unit]); 2526 else 2527 pr_cont("%s ", empty_str); 2528 } 2529 } 2530 pr_cont("\n"); 2531} 2532 2533/** 2534 * pcpu_setup_first_chunk - initialize the first percpu chunk 2535 * @ai: pcpu_alloc_info describing how to percpu area is shaped 2536 * @base_addr: mapped address 2537 * 2538 * Initialize the first percpu chunk which contains the kernel static 2539 * percpu area. This function is to be called from arch percpu area 2540 * setup path. 2541 * 2542 * @ai contains all information necessary to initialize the first 2543 * chunk and prime the dynamic percpu allocator. 2544 * 2545 * @ai->static_size is the size of static percpu area. 2546 * 2547 * @ai->reserved_size, if non-zero, specifies the amount of bytes to 2548 * reserve after the static area in the first chunk. This reserves 2549 * the first chunk such that it's available only through reserved 2550 * percpu allocation. This is primarily used to serve module percpu 2551 * static areas on architectures where the addressing model has 2552 * limited offset range for symbol relocations to guarantee module 2553 * percpu symbols fall inside the relocatable range. 2554 * 2555 * @ai->dyn_size determines the number of bytes available for dynamic 2556 * allocation in the first chunk. The area between @ai->static_size + 2557 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 2558 * 2559 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 2560 * and equal to or larger than @ai->static_size + @ai->reserved_size + 2561 * @ai->dyn_size. 2562 * 2563 * @ai->atom_size is the allocation atom size and used as alignment 2564 * for vm areas. 2565 * 2566 * @ai->alloc_size is the allocation size and always multiple of 2567 * @ai->atom_size. This is larger than @ai->atom_size if 2568 * @ai->unit_size is larger than @ai->atom_size. 2569 * 2570 * @ai->nr_groups and @ai->groups describe virtual memory layout of 2571 * percpu areas. Units which should be colocated are put into the 2572 * same group. Dynamic VM areas will be allocated according to these 2573 * groupings. If @ai->nr_groups is zero, a single group containing 2574 * all units is assumed. 2575 * 2576 * The caller should have mapped the first chunk at @base_addr and 2577 * copied static data to each unit. 2578 * 2579 * The first chunk will always contain a static and a dynamic region. 2580 * However, the static region is not managed by any chunk. If the first 2581 * chunk also contains a reserved region, it is served by two chunks - 2582 * one for the reserved region and one for the dynamic region. They 2583 * share the same vm, but use offset regions in the area allocation map. 2584 * The chunk serving the dynamic region is circulated in the chunk slots 2585 * and available for dynamic allocation like any other chunk. 2586 */ 2587void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 2588 void *base_addr) 2589{ 2590 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 2591 size_t static_size, dyn_size; 2592 struct pcpu_chunk *chunk; 2593 unsigned long *group_offsets; 2594 size_t *group_sizes; 2595 unsigned long *unit_off; 2596 unsigned int cpu; 2597 int *unit_map; 2598 int group, unit, i; 2599 int map_size; 2600 unsigned long tmp_addr; 2601 size_t alloc_size; 2602 2603#define PCPU_SETUP_BUG_ON(cond) do { \ 2604 if (unlikely(cond)) { \ 2605 pr_emerg("failed to initialize, %s\n", #cond); \ 2606 pr_emerg("cpu_possible_mask=%*pb\n", \ 2607 cpumask_pr_args(cpu_possible_mask)); \ 2608 pcpu_dump_alloc_info(KERN_EMERG, ai); \ 2609 BUG(); \ 2610 } \ 2611} while (0) 2612 2613 /* sanity checks */ 2614 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 2615#ifdef CONFIG_SMP 2616 PCPU_SETUP_BUG_ON(!ai->static_size); 2617 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 2618#endif 2619 PCPU_SETUP_BUG_ON(!base_addr); 2620 PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 2621 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 2622 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 2623 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 2624 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 2625 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 2626 PCPU_SETUP_BUG_ON(!ai->dyn_size); 2627 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 2628 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 2629 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 2630 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 2631 2632 /* process group information and build config tables accordingly */ 2633 alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 2634 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2635 if (!group_offsets) 2636 panic("%s: Failed to allocate %zu bytes\n", __func__, 2637 alloc_size); 2638 2639 alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 2640 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2641 if (!group_sizes) 2642 panic("%s: Failed to allocate %zu bytes\n", __func__, 2643 alloc_size); 2644 2645 alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 2646 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2647 if (!unit_map) 2648 panic("%s: Failed to allocate %zu bytes\n", __func__, 2649 alloc_size); 2650 2651 alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 2652 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 2653 if (!unit_off) 2654 panic("%s: Failed to allocate %zu bytes\n", __func__, 2655 alloc_size); 2656 2657 for (cpu = 0; cpu < nr_cpu_ids; cpu++) 2658 unit_map[cpu] = UINT_MAX; 2659 2660 pcpu_low_unit_cpu = NR_CPUS; 2661 pcpu_high_unit_cpu = NR_CPUS; 2662 2663 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 2664 const struct pcpu_group_info *gi = &ai->groups[group]; 2665 2666 group_offsets[group] = gi->base_offset; 2667 group_sizes[group] = gi->nr_units * ai->unit_size; 2668 2669 for (i = 0; i < gi->nr_units; i++) { 2670 cpu = gi->cpu_map[i]; 2671 if (cpu == NR_CPUS) 2672 continue; 2673 2674 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 2675 PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 2676 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 2677 2678 unit_map[cpu] = unit + i; 2679 unit_off[cpu] = gi->base_offset + i * ai->unit_size; 2680 2681 /* determine low/high unit_cpu */ 2682 if (pcpu_low_unit_cpu == NR_CPUS || 2683 unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 2684 pcpu_low_unit_cpu = cpu; 2685 if (pcpu_high_unit_cpu == NR_CPUS || 2686 unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 2687 pcpu_high_unit_cpu = cpu; 2688 } 2689 } 2690 pcpu_nr_units = unit; 2691 2692 for_each_possible_cpu(cpu) 2693 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 2694 2695 /* we're done parsing the input, undefine BUG macro and dump config */ 2696#undef PCPU_SETUP_BUG_ON 2697 pcpu_dump_alloc_info(KERN_DEBUG, ai); 2698 2699 pcpu_nr_groups = ai->nr_groups; 2700 pcpu_group_offsets = group_offsets; 2701 pcpu_group_sizes = group_sizes; 2702 pcpu_unit_map = unit_map; 2703 pcpu_unit_offsets = unit_off; 2704 2705 /* determine basic parameters */ 2706 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 2707 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 2708 pcpu_atom_size = ai->atom_size; 2709 pcpu_chunk_struct_size = struct_size(chunk, populated, 2710 BITS_TO_LONGS(pcpu_unit_pages)); 2711 2712 pcpu_stats_save_ai(ai); 2713 2714 /* 2715 * Allocate chunk slots. The slots after the active slots are: 2716 * sidelined_slot - isolated, depopulated chunks 2717 * free_slot - fully free chunks 2718 * to_depopulate_slot - isolated, chunks to depopulate 2719 */ 2720 pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1; 2721 pcpu_free_slot = pcpu_sidelined_slot + 1; 2722 pcpu_to_depopulate_slot = pcpu_free_slot + 1; 2723 pcpu_nr_slots = pcpu_to_depopulate_slot + 1; 2724 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * 2725 sizeof(pcpu_chunk_lists[0]), 2726 SMP_CACHE_BYTES); 2727 if (!pcpu_chunk_lists) 2728 panic("%s: Failed to allocate %zu bytes\n", __func__, 2729 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0])); 2730 2731 for (i = 0; i < pcpu_nr_slots; i++) 2732 INIT_LIST_HEAD(&pcpu_chunk_lists[i]); 2733 2734 /* 2735 * The end of the static region needs to be aligned with the 2736 * minimum allocation size as this offsets the reserved and 2737 * dynamic region. The first chunk ends page aligned by 2738 * expanding the dynamic region, therefore the dynamic region 2739 * can be shrunk to compensate while still staying above the 2740 * configured sizes. 2741 */ 2742 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 2743 dyn_size = ai->dyn_size - (static_size - ai->static_size); 2744 2745 /* 2746 * Initialize first chunk. 2747 * If the reserved_size is non-zero, this initializes the reserved 2748 * chunk. If the reserved_size is zero, the reserved chunk is NULL 2749 * and the dynamic region is initialized here. The first chunk, 2750 * pcpu_first_chunk, will always point to the chunk that serves 2751 * the dynamic region. 2752 */ 2753 tmp_addr = (unsigned long)base_addr + static_size; 2754 map_size = ai->reserved_size ?: dyn_size; 2755 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2756 2757 /* init dynamic chunk if necessary */ 2758 if (ai->reserved_size) { 2759 pcpu_reserved_chunk = chunk; 2760 2761 tmp_addr = (unsigned long)base_addr + static_size + 2762 ai->reserved_size; 2763 map_size = dyn_size; 2764 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); 2765 } 2766 2767 /* link the first chunk in */ 2768 pcpu_first_chunk = chunk; 2769 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 2770 pcpu_chunk_relocate(pcpu_first_chunk, -1); 2771 2772 /* include all regions of the first chunk */ 2773 pcpu_nr_populated += PFN_DOWN(size_sum); 2774 2775 pcpu_stats_chunk_alloc(); 2776 trace_percpu_create_chunk(base_addr); 2777 2778 /* we're done */ 2779 pcpu_base_addr = base_addr; 2780} 2781 2782#ifdef CONFIG_SMP 2783 2784const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 2785 [PCPU_FC_AUTO] = "auto", 2786 [PCPU_FC_EMBED] = "embed", 2787 [PCPU_FC_PAGE] = "page", 2788}; 2789 2790enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 2791 2792static int __init percpu_alloc_setup(char *str) 2793{ 2794 if (!str) 2795 return -EINVAL; 2796 2797 if (0) 2798 /* nada */; 2799#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 2800 else if (!strcmp(str, "embed")) 2801 pcpu_chosen_fc = PCPU_FC_EMBED; 2802#endif 2803#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 2804 else if (!strcmp(str, "page")) 2805 pcpu_chosen_fc = PCPU_FC_PAGE; 2806#endif 2807 else 2808 pr_warn("unknown allocator %s specified\n", str); 2809 2810 return 0; 2811} 2812early_param("percpu_alloc", percpu_alloc_setup); 2813 2814/* 2815 * pcpu_embed_first_chunk() is used by the generic percpu setup. 2816 * Build it if needed by the arch config or the generic setup is going 2817 * to be used. 2818 */ 2819#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 2820 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 2821#define BUILD_EMBED_FIRST_CHUNK 2822#endif 2823 2824/* build pcpu_page_first_chunk() iff needed by the arch config */ 2825#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 2826#define BUILD_PAGE_FIRST_CHUNK 2827#endif 2828 2829/* pcpu_build_alloc_info() is used by both embed and page first chunk */ 2830#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 2831/** 2832 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 2833 * @reserved_size: the size of reserved percpu area in bytes 2834 * @dyn_size: minimum free size for dynamic allocation in bytes 2835 * @atom_size: allocation atom size 2836 * @cpu_distance_fn: callback to determine distance between cpus, optional 2837 * 2838 * This function determines grouping of units, their mappings to cpus 2839 * and other parameters considering needed percpu size, allocation 2840 * atom size and distances between CPUs. 2841 * 2842 * Groups are always multiples of atom size and CPUs which are of 2843 * LOCAL_DISTANCE both ways are grouped together and share space for 2844 * units in the same group. The returned configuration is guaranteed 2845 * to have CPUs on different nodes on different groups and >=75% usage 2846 * of allocated virtual address space. 2847 * 2848 * RETURNS: 2849 * On success, pointer to the new allocation_info is returned. On 2850 * failure, ERR_PTR value is returned. 2851 */ 2852static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( 2853 size_t reserved_size, size_t dyn_size, 2854 size_t atom_size, 2855 pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 2856{ 2857 static int group_map[NR_CPUS] __initdata; 2858 static int group_cnt[NR_CPUS] __initdata; 2859 static struct cpumask mask __initdata; 2860 const size_t static_size = __per_cpu_end - __per_cpu_start; 2861 int nr_groups = 1, nr_units = 0; 2862 size_t size_sum, min_unit_size, alloc_size; 2863 int upa, max_upa, best_upa; /* units_per_alloc */ 2864 int last_allocs, group, unit; 2865 unsigned int cpu, tcpu; 2866 struct pcpu_alloc_info *ai; 2867 unsigned int *cpu_map; 2868 2869 /* this function may be called multiple times */ 2870 memset(group_map, 0, sizeof(group_map)); 2871 memset(group_cnt, 0, sizeof(group_cnt)); 2872 cpumask_clear(&mask); 2873 2874 /* calculate size_sum and ensure dyn_size is enough for early alloc */ 2875 size_sum = PFN_ALIGN(static_size + reserved_size + 2876 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 2877 dyn_size = size_sum - static_size - reserved_size; 2878 2879 /* 2880 * Determine min_unit_size, alloc_size and max_upa such that 2881 * alloc_size is multiple of atom_size and is the smallest 2882 * which can accommodate 4k aligned segments which are equal to 2883 * or larger than min_unit_size. 2884 */ 2885 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 2886 2887 /* determine the maximum # of units that can fit in an allocation */ 2888 alloc_size = roundup(min_unit_size, atom_size); 2889 upa = alloc_size / min_unit_size; 2890 while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2891 upa--; 2892 max_upa = upa; 2893 2894 cpumask_copy(&mask, cpu_possible_mask); 2895 2896 /* group cpus according to their proximity */ 2897 for (group = 0; !cpumask_empty(&mask); group++) { 2898 /* pop the group's first cpu */ 2899 cpu = cpumask_first(&mask); 2900 group_map[cpu] = group; 2901 group_cnt[group]++; 2902 cpumask_clear_cpu(cpu, &mask); 2903 2904 for_each_cpu(tcpu, &mask) { 2905 if (!cpu_distance_fn || 2906 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && 2907 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { 2908 group_map[tcpu] = group; 2909 group_cnt[group]++; 2910 cpumask_clear_cpu(tcpu, &mask); 2911 } 2912 } 2913 } 2914 nr_groups = group; 2915 2916 /* 2917 * Wasted space is caused by a ratio imbalance of upa to group_cnt. 2918 * Expand the unit_size until we use >= 75% of the units allocated. 2919 * Related to atom_size, which could be much larger than the unit_size. 2920 */ 2921 last_allocs = INT_MAX; 2922 best_upa = 0; 2923 for (upa = max_upa; upa; upa--) { 2924 int allocs = 0, wasted = 0; 2925 2926 if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 2927 continue; 2928 2929 for (group = 0; group < nr_groups; group++) { 2930 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 2931 allocs += this_allocs; 2932 wasted += this_allocs * upa - group_cnt[group]; 2933 } 2934 2935 /* 2936 * Don't accept if wastage is over 1/3. The 2937 * greater-than comparison ensures upa==1 always 2938 * passes the following check. 2939 */ 2940 if (wasted > num_possible_cpus() / 3) 2941 continue; 2942 2943 /* and then don't consume more memory */ 2944 if (allocs > last_allocs) 2945 break; 2946 last_allocs = allocs; 2947 best_upa = upa; 2948 } 2949 BUG_ON(!best_upa); 2950 upa = best_upa; 2951 2952 /* allocate and fill alloc_info */ 2953 for (group = 0; group < nr_groups; group++) 2954 nr_units += roundup(group_cnt[group], upa); 2955 2956 ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 2957 if (!ai) 2958 return ERR_PTR(-ENOMEM); 2959 cpu_map = ai->groups[0].cpu_map; 2960 2961 for (group = 0; group < nr_groups; group++) { 2962 ai->groups[group].cpu_map = cpu_map; 2963 cpu_map += roundup(group_cnt[group], upa); 2964 } 2965 2966 ai->static_size = static_size; 2967 ai->reserved_size = reserved_size; 2968 ai->dyn_size = dyn_size; 2969 ai->unit_size = alloc_size / upa; 2970 ai->atom_size = atom_size; 2971 ai->alloc_size = alloc_size; 2972 2973 for (group = 0, unit = 0; group < nr_groups; group++) { 2974 struct pcpu_group_info *gi = &ai->groups[group]; 2975 2976 /* 2977 * Initialize base_offset as if all groups are located 2978 * back-to-back. The caller should update this to 2979 * reflect actual allocation. 2980 */ 2981 gi->base_offset = unit * ai->unit_size; 2982 2983 for_each_possible_cpu(cpu) 2984 if (group_map[cpu] == group) 2985 gi->cpu_map[gi->nr_units++] = cpu; 2986 gi->nr_units = roundup(gi->nr_units, upa); 2987 unit += gi->nr_units; 2988 } 2989 BUG_ON(unit != nr_units); 2990 2991 return ai; 2992} 2993 2994static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align, 2995 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 2996{ 2997 const unsigned long goal = __pa(MAX_DMA_ADDRESS); 2998#ifdef CONFIG_NUMA 2999 int node = NUMA_NO_NODE; 3000 void *ptr; 3001 3002 if (cpu_to_nd_fn) 3003 node = cpu_to_nd_fn(cpu); 3004 3005 if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) { 3006 ptr = memblock_alloc_from(size, align, goal); 3007 pr_info("cpu %d has no node %d or node-local memory\n", 3008 cpu, node); 3009 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n", 3010 cpu, size, (u64)__pa(ptr)); 3011 } else { 3012 ptr = memblock_alloc_try_nid(size, align, goal, 3013 MEMBLOCK_ALLOC_ACCESSIBLE, 3014 node); 3015 3016 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n", 3017 cpu, size, node, (u64)__pa(ptr)); 3018 } 3019 return ptr; 3020#else 3021 return memblock_alloc_from(size, align, goal); 3022#endif 3023} 3024 3025static void __init pcpu_fc_free(void *ptr, size_t size) 3026{ 3027 memblock_free(ptr, size); 3028} 3029#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 3030 3031#if defined(BUILD_EMBED_FIRST_CHUNK) 3032/** 3033 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 3034 * @reserved_size: the size of reserved percpu area in bytes 3035 * @dyn_size: minimum free size for dynamic allocation in bytes 3036 * @atom_size: allocation atom size 3037 * @cpu_distance_fn: callback to determine distance between cpus, optional 3038 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional 3039 * 3040 * This is a helper to ease setting up embedded first percpu chunk and 3041 * can be called where pcpu_setup_first_chunk() is expected. 3042 * 3043 * If this function is used to setup the first chunk, it is allocated 3044 * by calling pcpu_fc_alloc and used as-is without being mapped into 3045 * vmalloc area. Allocations are always whole multiples of @atom_size 3046 * aligned to @atom_size. 3047 * 3048 * This enables the first chunk to piggy back on the linear physical 3049 * mapping which often uses larger page size. Please note that this 3050 * can result in very sparse cpu->unit mapping on NUMA machines thus 3051 * requiring large vmalloc address space. Don't use this allocator if 3052 * vmalloc space is not orders of magnitude larger than distances 3053 * between node memory addresses (ie. 32bit NUMA machines). 3054 * 3055 * @dyn_size specifies the minimum dynamic area size. 3056 * 3057 * If the needed size is smaller than the minimum or specified unit 3058 * size, the leftover is returned using pcpu_fc_free. 3059 * 3060 * RETURNS: 3061 * 0 on success, -errno on failure. 3062 */ 3063int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 3064 size_t atom_size, 3065 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 3066 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 3067{ 3068 void *base = (void *)ULONG_MAX; 3069 void **areas = NULL; 3070 struct pcpu_alloc_info *ai; 3071 size_t size_sum, areas_size; 3072 unsigned long max_distance; 3073 int group, i, highest_group, rc = 0; 3074 3075 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 3076 cpu_distance_fn); 3077 if (IS_ERR(ai)) 3078 return PTR_ERR(ai); 3079 3080 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 3081 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 3082 3083 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 3084 if (!areas) { 3085 rc = -ENOMEM; 3086 goto out_free; 3087 } 3088 3089 /* allocate, copy and determine base address & max_distance */ 3090 highest_group = 0; 3091 for (group = 0; group < ai->nr_groups; group++) { 3092 struct pcpu_group_info *gi = &ai->groups[group]; 3093 unsigned int cpu = NR_CPUS; 3094 void *ptr; 3095 3096 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 3097 cpu = gi->cpu_map[i]; 3098 BUG_ON(cpu == NR_CPUS); 3099 3100 /* allocate space for the whole group */ 3101 ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn); 3102 if (!ptr) { 3103 rc = -ENOMEM; 3104 goto out_free_areas; 3105 } 3106 /* kmemleak tracks the percpu allocations separately */ 3107 kmemleak_free(ptr); 3108 areas[group] = ptr; 3109 3110 base = min(ptr, base); 3111 if (ptr > areas[highest_group]) 3112 highest_group = group; 3113 } 3114 max_distance = areas[highest_group] - base; 3115 max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 3116 3117 /* warn if maximum distance is further than 75% of vmalloc space */ 3118 if (max_distance > VMALLOC_TOTAL * 3 / 4) { 3119 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 3120 max_distance, VMALLOC_TOTAL); 3121#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 3122 /* and fail if we have fallback */ 3123 rc = -EINVAL; 3124 goto out_free_areas; 3125#endif 3126 } 3127 3128 /* 3129 * Copy data and free unused parts. This should happen after all 3130 * allocations are complete; otherwise, we may end up with 3131 * overlapping groups. 3132 */ 3133 for (group = 0; group < ai->nr_groups; group++) { 3134 struct pcpu_group_info *gi = &ai->groups[group]; 3135 void *ptr = areas[group]; 3136 3137 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 3138 if (gi->cpu_map[i] == NR_CPUS) { 3139 /* unused unit, free whole */ 3140 pcpu_fc_free(ptr, ai->unit_size); 3141 continue; 3142 } 3143 /* copy and return the unused part */ 3144 memcpy(ptr, __per_cpu_load, ai->static_size); 3145 pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum); 3146 } 3147 } 3148 3149 /* base address is now known, determine group base offsets */ 3150 for (group = 0; group < ai->nr_groups; group++) { 3151 ai->groups[group].base_offset = areas[group] - base; 3152 } 3153 3154 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 3155 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 3156 ai->dyn_size, ai->unit_size); 3157 3158 pcpu_setup_first_chunk(ai, base); 3159 goto out_free; 3160 3161out_free_areas: 3162 for (group = 0; group < ai->nr_groups; group++) 3163 if (areas[group]) 3164 pcpu_fc_free(areas[group], 3165 ai->groups[group].nr_units * ai->unit_size); 3166out_free: 3167 pcpu_free_alloc_info(ai); 3168 if (areas) 3169 memblock_free(areas, areas_size); 3170 return rc; 3171} 3172#endif /* BUILD_EMBED_FIRST_CHUNK */ 3173 3174#ifdef BUILD_PAGE_FIRST_CHUNK 3175#include <asm/pgalloc.h> 3176 3177#ifndef P4D_TABLE_SIZE 3178#define P4D_TABLE_SIZE PAGE_SIZE 3179#endif 3180 3181#ifndef PUD_TABLE_SIZE 3182#define PUD_TABLE_SIZE PAGE_SIZE 3183#endif 3184 3185#ifndef PMD_TABLE_SIZE 3186#define PMD_TABLE_SIZE PAGE_SIZE 3187#endif 3188 3189#ifndef PTE_TABLE_SIZE 3190#define PTE_TABLE_SIZE PAGE_SIZE 3191#endif 3192void __init __weak pcpu_populate_pte(unsigned long addr) 3193{ 3194 pgd_t *pgd = pgd_offset_k(addr); 3195 p4d_t *p4d; 3196 pud_t *pud; 3197 pmd_t *pmd; 3198 3199 if (pgd_none(*pgd)) { 3200 p4d_t *new; 3201 3202 new = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE); 3203 if (!new) 3204 goto err_alloc; 3205 pgd_populate(&init_mm, pgd, new); 3206 } 3207 3208 p4d = p4d_offset(pgd, addr); 3209 if (p4d_none(*p4d)) { 3210 pud_t *new; 3211 3212 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE); 3213 if (!new) 3214 goto err_alloc; 3215 p4d_populate(&init_mm, p4d, new); 3216 } 3217 3218 pud = pud_offset(p4d, addr); 3219 if (pud_none(*pud)) { 3220 pmd_t *new; 3221 3222 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE); 3223 if (!new) 3224 goto err_alloc; 3225 pud_populate(&init_mm, pud, new); 3226 } 3227 3228 pmd = pmd_offset(pud, addr); 3229 if (!pmd_present(*pmd)) { 3230 pte_t *new; 3231 3232 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE); 3233 if (!new) 3234 goto err_alloc; 3235 pmd_populate_kernel(&init_mm, pmd, new); 3236 } 3237 3238 return; 3239 3240err_alloc: 3241 panic("%s: Failed to allocate memory\n", __func__); 3242} 3243 3244/** 3245 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 3246 * @reserved_size: the size of reserved percpu area in bytes 3247 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional 3248 * 3249 * This is a helper to ease setting up page-remapped first percpu 3250 * chunk and can be called where pcpu_setup_first_chunk() is expected. 3251 * 3252 * This is the basic allocator. Static percpu area is allocated 3253 * page-by-page into vmalloc area. 3254 * 3255 * RETURNS: 3256 * 0 on success, -errno on failure. 3257 */ 3258int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 3259{ 3260 static struct vm_struct vm; 3261 struct pcpu_alloc_info *ai; 3262 char psize_str[16]; 3263 int unit_pages; 3264 size_t pages_size; 3265 struct page **pages; 3266 int unit, i, j, rc = 0; 3267 int upa; 3268 int nr_g0_units; 3269 3270 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 3271 3272 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 3273 if (IS_ERR(ai)) 3274 return PTR_ERR(ai); 3275 BUG_ON(ai->nr_groups != 1); 3276 upa = ai->alloc_size/ai->unit_size; 3277 nr_g0_units = roundup(num_possible_cpus(), upa); 3278 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 3279 pcpu_free_alloc_info(ai); 3280 return -EINVAL; 3281 } 3282 3283 unit_pages = ai->unit_size >> PAGE_SHIFT; 3284 3285 /* unaligned allocations can't be freed, round up to page size */ 3286 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 3287 sizeof(pages[0])); 3288 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 3289 if (!pages) 3290 panic("%s: Failed to allocate %zu bytes\n", __func__, 3291 pages_size); 3292 3293 /* allocate pages */ 3294 j = 0; 3295 for (unit = 0; unit < num_possible_cpus(); unit++) { 3296 unsigned int cpu = ai->groups[0].cpu_map[unit]; 3297 for (i = 0; i < unit_pages; i++) { 3298 void *ptr; 3299 3300 ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn); 3301 if (!ptr) { 3302 pr_warn("failed to allocate %s page for cpu%u\n", 3303 psize_str, cpu); 3304 goto enomem; 3305 } 3306 /* kmemleak tracks the percpu allocations separately */ 3307 kmemleak_free(ptr); 3308 pages[j++] = virt_to_page(ptr); 3309 } 3310 } 3311 3312 /* allocate vm area, map the pages and copy static data */ 3313 vm.flags = VM_ALLOC; 3314 vm.size = num_possible_cpus() * ai->unit_size; 3315 vm_area_register_early(&vm, PAGE_SIZE); 3316 3317 for (unit = 0; unit < num_possible_cpus(); unit++) { 3318 unsigned long unit_addr = 3319 (unsigned long)vm.addr + unit * ai->unit_size; 3320 3321 for (i = 0; i < unit_pages; i++) 3322 pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT)); 3323 3324 /* pte already populated, the following shouldn't fail */ 3325 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 3326 unit_pages); 3327 if (rc < 0) 3328 panic("failed to map percpu area, err=%d\n", rc); 3329 3330 /* 3331 * FIXME: Archs with virtual cache should flush local 3332 * cache for the linear mapping here - something 3333 * equivalent to flush_cache_vmap() on the local cpu. 3334 * flush_cache_vmap() can't be used as most supporting 3335 * data structures are not set up yet. 3336 */ 3337 3338 /* copy static data */ 3339 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 3340 } 3341 3342 /* we're ready, commit */ 3343 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 3344 unit_pages, psize_str, ai->static_size, 3345 ai->reserved_size, ai->dyn_size); 3346 3347 pcpu_setup_first_chunk(ai, vm.addr); 3348 goto out_free_ar; 3349 3350enomem: 3351 while (--j >= 0) 3352 pcpu_fc_free(page_address(pages[j]), PAGE_SIZE); 3353 rc = -ENOMEM; 3354out_free_ar: 3355 memblock_free(pages, pages_size); 3356 pcpu_free_alloc_info(ai); 3357 return rc; 3358} 3359#endif /* BUILD_PAGE_FIRST_CHUNK */ 3360 3361#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 3362/* 3363 * Generic SMP percpu area setup. 3364 * 3365 * The embedding helper is used because its behavior closely resembles 3366 * the original non-dynamic generic percpu area setup. This is 3367 * important because many archs have addressing restrictions and might 3368 * fail if the percpu area is located far away from the previous 3369 * location. As an added bonus, in non-NUMA cases, embedding is 3370 * generally a good idea TLB-wise because percpu area can piggy back 3371 * on the physical linear memory mapping which uses large page 3372 * mappings on applicable archs. 3373 */ 3374unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 3375EXPORT_SYMBOL(__per_cpu_offset); 3376 3377void __init setup_per_cpu_areas(void) 3378{ 3379 unsigned long delta; 3380 unsigned int cpu; 3381 int rc; 3382 3383 /* 3384 * Always reserve area for module percpu variables. That's 3385 * what the legacy allocator did. 3386 */ 3387 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, 3388 PAGE_SIZE, NULL, NULL); 3389 if (rc < 0) 3390 panic("Failed to initialize percpu areas."); 3391 3392 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 3393 for_each_possible_cpu(cpu) 3394 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 3395} 3396#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 3397 3398#else /* CONFIG_SMP */ 3399 3400/* 3401 * UP percpu area setup. 3402 * 3403 * UP always uses km-based percpu allocator with identity mapping. 3404 * Static percpu variables are indistinguishable from the usual static 3405 * variables and don't require any special preparation. 3406 */ 3407void __init setup_per_cpu_areas(void) 3408{ 3409 const size_t unit_size = 3410 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 3411 PERCPU_DYNAMIC_RESERVE)); 3412 struct pcpu_alloc_info *ai; 3413 void *fc; 3414 3415 ai = pcpu_alloc_alloc_info(1, 1); 3416 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 3417 if (!ai || !fc) 3418 panic("Failed to allocate memory for percpu areas."); 3419 /* kmemleak tracks the percpu allocations separately */ 3420 kmemleak_free(fc); 3421 3422 ai->dyn_size = unit_size; 3423 ai->unit_size = unit_size; 3424 ai->atom_size = unit_size; 3425 ai->alloc_size = unit_size; 3426 ai->groups[0].nr_units = 1; 3427 ai->groups[0].cpu_map[0] = 0; 3428 3429 pcpu_setup_first_chunk(ai, fc); 3430 pcpu_free_alloc_info(ai); 3431} 3432 3433#endif /* CONFIG_SMP */ 3434 3435/* 3436 * pcpu_nr_pages - calculate total number of populated backing pages 3437 * 3438 * This reflects the number of pages populated to back chunks. Metadata is 3439 * excluded in the number exposed in meminfo as the number of backing pages 3440 * scales with the number of cpus and can quickly outweigh the memory used for 3441 * metadata. It also keeps this calculation nice and simple. 3442 * 3443 * RETURNS: 3444 * Total number of populated backing pages in use by the allocator. 3445 */ 3446unsigned long pcpu_nr_pages(void) 3447{ 3448 return pcpu_nr_populated * pcpu_nr_units; 3449} 3450 3451/* 3452 * Percpu allocator is initialized early during boot when neither slab or 3453 * workqueue is available. Plug async management until everything is up 3454 * and running. 3455 */ 3456static int __init percpu_enable_async(void) 3457{ 3458 pcpu_async_enabled = true; 3459 return 0; 3460} 3461subsys_initcall(percpu_enable_async);